ON THE MOTION OF A CURVE
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Abstract. We consider a non-linear 4-th order parabolic equation derived from bending
energy of wires in the 3-dimensional Euclidean space. We show that a solution exists for all
time, and converges to an elastica when ¢ goes to co.

Résumé. On considére une équation parabolique du 4° ordre non linéaire provenant de
I’énergie de flexion d’un céable dans ’espace euclidien de dimension 3. On montre qu’une
solution existe pour tout temps, et converge lorsque t tend vers I'infini vers un “elastica”.
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INTRODUCTION

Consider a springy circle wire in the Euclidean space R3. We characterize such
a wire as a closed curve v with fixed line element and fixed length. We treat curves
v : 8 =R/Z — R3 with |y/| = 1. We denote by = the parameter of the curve, and

denote by /, " or (™ the derivatives with respect to .

For such a curve, its elastic energy is given by

EXV)::fWV”de-

Solutions of the corresponding Euler-Lagrange equation are called elastic curves. We
discuss the corresponding parabolic equation in this paper. We will see that the
equation becomes

oy ==Y+ (v 21" P)y)
— " + ‘7//‘21] — 2|7//‘4 _ |7(3)‘2 )

Theorem. — For any C* initial data ~yo(x) with |v{| = 1, the above equation has
a unique solution ~y(x,t) for all time, and the solution converges to an elastica when

t — o0.

We refer to Langer and Singer [13] for the classification of closed elasticae in
the Euclidean space. They also discuss Palais-Smale’s condition C and the gradient
flow in [14]. However, their flow is completely different from ours. Our equation
represents the physical motion of springy wire under high viscosity, while their flow

has no physical meaning.

This paper is organized as follows. First, we prepare some basic facts. Section 1 :
The equation (introduce the above equation), Section 2 : Notations, Section 3 : Basic
inequalities, Section 4 : Estimations for ODE (—v” +av = b). After this preparation,
the proof of Theorem goes as usual. Section 5 : Linearized equation, Section 6 : Short
time existence (by open—closed method), Section 7 : Long time existence, Section 8 :

Convergence (using real analyticity of the Euclidean space).
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4U0 N KOO

1. THE EQUATION

To derive an equation of motion governed by energy, we perturb the
curve v = y(z) with a time parameter ¢ : v = ~(x,t). Then, the elastic energy

changes as

d
%\t:OEW) = 2%(7”,&%_07”) dx = 2%(7(4),8&1&_07) dz

where 7y(z,0) = v(z). Therefore, —y*) would be the most efficient direction to
minimize the elastic energy. However, this direction does not preserve the condition
|7'| = 1. To force to preserve the condition we have to add certain terms. Let V be

the space of all directions satisfying the condition in the sense of first derivative, i.e.,
Vi={nl{®"n") =0}

We can check that a direction is L? orthogonal to V if and only if it has a form
(wy')’ for some function w(z). Therefore, the “true” direction has a form —vy(®*) +
(wy')’, where the function w has to satisfy the condition ((—y®* + (wv')")’,+’) = 0.
Namely, we consider the equation

Oy = =7 + (wy')
(1.1) (' + ()", ) =0,
V=1
Note that both v and w are unknown functions on S! x R, .
The second equality of (1.1) is reduced as follows. By the third condition, we see
( /
(v ()~

//|2
(\7”\2)’ :
(W’\ )+ )2

Iv

)
7)
(.7
)

((5) /
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ON 10K MOLTION OF A CURVE 10O0WARDS ELASTICA aUl

Hence,
()", 7)) = w" = y"Pw
and the second equality in (1.1) becomes
—w'" + h”|2w — 2("7”|2)N _ |’7(3)‘2 )
If we put v = w + 2|v”|?, then we get
—" + ‘7//‘212 — 2|7//‘4 . ‘7(3)‘2 )

We conclude that equation (1.1) is equivalent to the equation

{ 0y = =1 + (0 = 2P

— " + ‘7//‘212 — 2|7//‘4 . |’}/(3)‘2 )

EP

The equation of elastic curves is
W+ (v =2"P)Y) =0,
EE —U//+"Y//‘2U:2|’7//|4— |7(3)|2 ,
Yl=1.
The first equality gives

3
S + =21

0=(7,—7H + ((v -21Y"*)v)) = 5

Hence, the equation of elastic curves reduces to the equation
(4) 3. 2 n’
Y =GN +e) =0,

where ¢ is an arbitrary number.

2. NOTATIONS

Throughout this paper, we use variables z on S! = R/Z and t on R, = [0, c0).

Symbols *” and (") denote the derivation with respect to the variable z, even for a
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24U N KOO

function on S' x R,.. The derivative with respect to the variable ¢ is always denoted
by 8t.
For functions on S, we use the C™ norm H*ch, the L? norm H*H, the Sobolev

space H" with norm H*Hn, and the Holder space C? T4 with norm H* Hx,(n—l—4ﬂ)7 where

n denotes a non-negative integer and p denotes a positive real number with 4 < 1.
When these norms are applied to a function on S* x R, , we get a function on R,.

We also use the L? inner product (x, ).

For functions on S! x [0,7T), we use weighted Holder space C™4# with norm

H*H(n+4u)' This norm is defined as follows.

HfH(n—‘,-4u) = [fl@n+awy + [flen/atm + Z sup |5ff(s)| )

0<4r+s<n

[f](a:,n—i—élu) = Z [QZf(S)](x,4p) ’

4r+s=n

Llemrw = D 07t tnmtr—s)/atn) -
n—4a<4r+s<n
|f($1,t) - f($2,t)

|21 — @a |4

|f(z,t1) — f(z,t2)]

[f](t,2/4+llz) = Sup |t1 - tZ‘Z’/4+M 9

[f]($,4ﬂ) = Sup

Y

where n, r, s and 7 denote non-negative integers with ¢ < 4, and 0 < p < 1/4.

3. BASIC INEQUALITIES

Lemma 3.1. — For any RY valued H'-function u on S*, we have
sup [v]* < 2Jo[|([Jo]} + [o"[]) -
Moreover, if j{ vdx = 0, then

sup |v]? < 2[|ol| - [lo']} -

SEMINAIRES & CONGRES 1



ON 10K MOLTION OF A CURVE 10O0WARDS ELASTICA aUd

Proof. The proof reduces to the case of N = 1. Since
sup |v]? < min |v]? + }{ |(v?)'| dx < HvH2 +2|[o]| - ||| -

If v takes the value 0 at some point, then the term HUH2 on the right hand side can
be omitted.
O

Lemma 3.2. — For integers 0 < p < g < r, we have

@[] < o | T o

For integers 0 < p < q < r and q > 0, we have

sup |U(q)| < 2H,U(p)H(Q(T—q)_l)/(Q(T—P)) ) HU(T)H(2(q—p)+1)/(2(r_p)) .

Proof. Since

Jo ™ = (oD, 00 < ot D] ot

we see that the function logHv(”)H is concave with respect to n > 0. Therefore, the

first inequality holds. From Lemma 3.1, we get
sup\v(Q)\ < \/ﬁHU(q)Hl/2 ) HU(qul)Hl/2 _

Combining it with the first inequality, we get the second inequality. O

4. ESTIMATIONS FOR ODE

Lemma 4.1. — The equation

—V"+av=">
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fora, be L', a >0 and HaHLl > 0 has a unique solution v, and v is bounded in C*

as -1
max [v] < 2(1+ [lal| .)]B]] .1

max | < 2(1+ [l ) o] -

Proof. Set B = HbHLl. Since v = av — b,

Therefore, if v/(p) = 0,

q q
(4.1) / cwdx—BSv’(q)S/ avdr + B .
p p

Assume that max v > 0 and the maximum is attained at x = p. If v > 0 on [p, q],
then —B < v/(q). It implies that for x € [p,q], —B < v'(z) and v(q) > v(p) — B.
Therefore, if minv > 0, then minv > maxv — B, and if minv < 0, then maxv < B.

Combining it with similar estimations for —v, we get

maxv —minv < 2B .

Thus, from the equality
Ozjgcwdx—j{bd:v,

B > %avdw > minv - HaHLl > (maxv — 2B)HaHL1 .

we see

This leads to
maxv < HaH;B +2B.

Again from (4.1), we get
v'(q) < maxw - HaHLl +B<(B+ 2BHCLHL1) +B.

Thus, maxv’ < 2(1+ ||al|,,)B. O
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Lemma 4.2. — Let

" 4av=>b,

where a > 0 and HaHLl > 1. Then we have

N

lollgrve < € - (4 [lal ) - [loll oo
N

o[l < € - @+ [lall;) - (2], -

The positive integer N and the positive number C' depend only on n.
Proof. We check the first inequality. By Lemma 4.1, we see that
sup [v"| < sup |av| + sup [b] < sup |a| - sup [v] 4 sup [b]
< sup|a| - C1|b|| + sup [b] -

Thus, the inequality holds for n = 0. Suppose that the inequality holds up to n.

Then,
sup [0 )] < sup | (av) ™| + sup [+ )]

< Collallgasr - ([0l gnsr + [[Bll
N

< Collaf| gusa - Cs - (L + [lafl ca)l[Bll o + ([l s -

Therefore, the inequality holds for n + 1.
Next, we check the second inequality. By Lemma 4.1,
[ [} < {lavl[ +[o]] < [lal] - sup o] + [[o]
< llall - Callp]| .. + 01| -
Thus, the inequality holds for n = 0. Suppose that the inequality holds up to n.
Then,
[ ]| < [l (av) D + [[o™ 2]

< Gsllall g - oy + la™ V] - sup ol + [Jo]

n+1
N.
< Co[:[] 0+ llall;DNPl], + Crllall,p ey - N0l + 118, -
Therefore, the inequality holds for n + 1. O
Lemma 4.3. — Suppose that functions a = a(x,t), b = b(x,t) and v = v(z,t)

satisfies

" +av=">,
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where a > 0 and HaHLl > 1. Ifa, b€ C""*#, then v, v’ and v"" € C™t**, and we

have

N
[l sy 10 N gy 1" gy < € At g 1Bl g -
The positive integer N and the positive number C' depend only on n.

Proof. Note that if we have bound only for then the assumption leads the

HvH(n—|—4p,)’
bounds for others. By definition,

HUH(@) = sup [v] + [v](zap) + [P -

Here, sup |v|, sup [v'| and [v] (4,4, are bounded by

C1 - (1 +supllal| ;) sup|[bf] 1 < C1 - (1 4 [lal| (4 ) [Bl] sy -

To check [v](,,), let t4 =t + 0t and put fi(t) = f(ty), 0f = fy — f for a function f.
Then,
—5v" + adv = 5b — v da .

Therefore, by Lemma 4.1,

ov ob
sup | =] < Cs - (sup| =2 | +sup [v] - sup|

da
)

< Cs - ([[Bl] gy +supllell s - llallsy,)) -
Thus, also [v],,) is bounded.

Suppose that the claim holds up to n (< 3). Then,

HUH(n—f—l—i—élp,) = HU/H(TH—4M) + [0lt,(n+1) fa4) + 8P 0] -

By similar estimation with the case n = 0, the term [v]w, (41)/4+4,) is estimated as

desired. Thus, the claim holds up to n = 3.

Now suppose that the claim holds up to n = 4m + 3 (m > 0). Then, for
n =4(m+1) 414 (0 < i < 3), the claim holds if both d;v and v*) can be estimated

in C4mtitdn GQipce
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ON 10K MOLTION OF A CURVE 10O0WARDS ELASTICA 419

— 0" + alw = Osb — Ora - v
_(U(4))” +av® =p® _ Wy — 46y — 600" — 4a’v®)
=@ — Wy — 40Py — 6a"v" — 4d’ - (av —b)'
we have

1+ H H(4m+z+4u))
X H@t

Hatv H (4m+1+4u)

bH(4m—|—i+4u) + Hata'H(élm—H'—l—4u) ' HUH(4m+i—|—4u))

I/\

4+ (
(
50 (1+ HCLHZ;JFH4+4M))HbH(4m+i+4+4u) ’
6 (

H @ H(4m—|—z—|—4y) 1+ H H(4m—|—z—|—4—|—4ﬂ) HbH(4m—|—i—|—4+4u) :

5. LINEARIZED EQUATION

In this section, we use the following basic facts concerning a parabolic equation
with constant coefficients. We omit the proof of the first three lemmas. They are

direct modifications of corresponding facts on a heat equation. See [1].

Proposition 5.1. (cf. [1] p. 237 (2.2), p. 262 (1.6)]) — The equation
Opu+ut) =0, u(z,0) = é() ,
with ¢ € C2* has a unique solution u € C**. Moreover, we have

lell 4y < ClIS 1L can) »

where C' is a universal positive constant.

Proposition 5.2. (cf. [1] p. 298 Theorem 4.2]) — The equation

6tu+ ’U,(4) = f7 ’I.L(.CE,O) = ¢($) )
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with ¢ € C3T4 and f € C* has a unique solution u € C**4*, Moreover, we have

tll gy < € U llagy + 19112 caany)
where C' is a universal positive constant.

Proposition 5.3. (cf. [1] p. 298 Theorem 4.3]) — For any ¢g € C2T4# and ¢; € C2#,

there exists u € C*t** such that

u(x,0) = ¢g(x), Opu(z,0) = ¢1(x) ,
and

H“H(4+4u) <C- (HgbOHx,(4+4u) + “¢1}}x,(4u))

Here, C' is a universal positive constant.

Proposition 5.4. (cf. [1] p. 302 Lemma 4.1]) — There is a universal positive constant

C such that for any u € C*T* with u(z,0) = dyu(z,0) = 0, we have,

lll 300 < OT el 4y -

where both norms are taken on S' x [0,T).

Proof. We give the proof for completeness. By definition,
H H(4+4M) [Oru] (@,4) + [u “ )](x ap) [0t )

+ 3 [ amiyjarm + Y supu®| +sup |9y |
1<i<4 0<i<4

H7”LH(3+4/~L) (x ap) T Z [ut] Jt.3—i)/atm) + Z sup |u®] .

0<:<3 0<i<3
We see that

|Opu(x,t) — Otu(x,0)|)
[t — O~ -

sup |Opu| < sup(|t —0]* - TF - [Opu) 4, -

A similar computation leads to
sup [u| < T - sup [pu| < TH4HE. [Osu] (4,1)
() (,3/441) < THA=m, sup |Opu| < T1/4[3tu](t#) )
sup [u)| < TED/4Fn. [u(i)](t71/4+u) for 1 <i<4,
[ iy < TV T amiy iy for1<i<3.
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ON 10K MOLTION OF A CURVE 10O0WARDS ELASTICA 419

Finally,

W (@1, 1) — ul (@2, 1)

[u(3)](x’4u) = sup

|21 — @o |
<max{ sup |z —z" - [w®],  sup T @}
|1 —22|<T1/4 |z1—22|>T1/4

< max{T"* - ], TY* - w0145 } -

Lemma 5.5. — The equation for v and v

(

3 1
Opu+u® + > eu +> " dp® = f

1=0 =0

3
—v" +a%v = Z biu® ,
i=0

u(z,0) = Opu(x,0) =0,

with f, a, b;, ¢;, di € C* and f(x,0) = 0, HCLH > 1 has a solution on some time
interval [0, T). The norm HUH(4+4M) and the positive timeT" are bounded by a constant

depending on the C** norms of f, a, b;, ¢; and d;.

Proof. We follow the proof of [1] p. 322, Theorem 5.4. We define spaces C’g“ and

Cy T4 by setting

Cot = {f € C% | f(x,0) = 0},

and
Oyt = {u e O 4 | u(x,0) = dyu(x,0) =0} .

For u € C’g+4“, take v so that
—v" +a*v = Z biu® |

and put
Pu = dyu +u™® + Z c;ul + Z div®
Pou = 6tu + U,(4) 5

Piu:= Z ciu(i) + Z div(i) .
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We regard P, Py and Py as operators from Cy ™ to C5*. Using Proposition 5.1, we

also define an operator R : Cy* — Cy T by setting
Q(Rf)+RHW =F.  (Rf)(@,0=0.

Note that P = Py + P, PhR =id, RPy = id and

PR=(Py+ P)R=id+PR ,
RP = R(Py + P,) = id+RP; .

Put S = P, R. If the norm of S is sufficiently small, then
P(R(id+9)™") = (id +S)(id+S5) "' =id .

Since operators R and (id +5)~! are isomorphisms, P has R(id +S)~! as inverse.

Therefore, it is sufficient to prove that, if the time 7' is sufficiently small, then

the operator P; R is sufficiently small.

Let f € C* and put uw = Rf. By Proposition 5.2, we know that

lell a9 < Call £l oy -

By Proposition 5.4, for any positive €, there is a time 7" so that

H“H(3+4M) < 5”“”(4+4u)

holds. Moreover, by Lemma 4.3, we know that

< Cullu

HUH(4M)7 HU/H(4M) H(3+4u) :

Combining these, we see that

1Prell gy < ellell g -

SEMINAIRES & CONGRES 1
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Proposition 5.6. — The equation for u and v

(

3 1
Opu+u® + > eu® +> " dp® = f
=0 1=0

3
—v" +a%v = Z biu® ,
i=0

u(z,0) = ¢(x) ,

with f, a, b;, ¢;, d; € C*, ¢ € CI4 and HaH > 1 has a solution on the whole time
interval [0, 00). The norm HUH(4+4M) is bounded by a constant depending on the C**

norms of f, a, b;, ¢;, d; and the C4T* norm of ¢.
Proof. We follow the proof of [1] p. 320, Theorem 5.1. We construct a function
u € C*t4# such that
ﬂ(x70) = ¢($) )
dyi(xz,0) = f(x,0) — oW (z ch z,0)0 (z Zd z,0)y (z
— () + a(x,0)%P(x) = > i, U)d)( (),

by Proposition 5.3. Let © satisfy the equation —0” + a?0 = 3 ¢;i?, and put

g}
Il
I~

U — )

<l

v —

(41
Il

f=r—@u+a"+> cua® +) do?)
Then, the equation for u and v becomes
Ot + Y + Z et + Z 4oV = f
"+ a0 =) bia
t(z,0) = u(x,0) =0 .

Here, we know by Lemma 4.3 that H@H(ﬁlu)’ Hv H(4u) < C’lH H(4+4u)' Therefore,

HfH(z;u) S CQHEH(4+4M) + HfH(4u)
< Cs - ([[9]],, (4 apy + 1@ 0l a0 + 1 sy -
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Thus, by Lemma 5.5, we have solutions @ and ¢ for some short time [0,7"). Hence,
we can construct v and v. But, we know how to estimate the time 7" and u. Thus,

we can repeat this procedure and get a solution on the whole line [0, 00). ]

6. SHORT TIME SECTION

In this section, we consider a modified equation

EP Oy = =W + A((v =21V )Y,
* o =22 — 9|44 _ |32
O YT P =21yt = PP

where A is a constant in [0, 1]. We will give a C*° initial data 7.

Remark. — We put the parameter X\ in the first equality to use the so-called open-
closed method. Unfortunately, it destroys the equality |y'| = 1 in (EP), and disturb
us from applying estimates from section 4. This is the reason why we put the factor
Hv’ H_2 in the second equality. However, when the space is R? and the initial data

has a non-zero rotation number, we may omit this factor. See [6].

Proposition 6.1. — Let v be a C* solution of (EP..) on a finite time interval [0, T).
Suppose that H’YH:), < C; and HW’H > Cy > 0. Then, we have Han < C3, where the
constant C's depends only on the initial data vy, Cy, Co, T and n, but not on .

Proof. We start from the following inequality.

% % 7D = (4D gy (DY = (4(743) g, (n=D)Y
=~ [+ M, (0 = 2 Py ) )

1 1
< [ 4 S 4 Sl = 2P

IN

1 1
I+ Sl =2 P

Suppose that H’yHn is bounded, where n > 3. Then, the right hand side and

coefficients of the second equation of (EP,) are bounded in H"~3 when n > 3 and in
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L' when n = 3. In both cases we see that Hchn_Q is bounded by Lemma 4.1 and

4.2. Therefore,
1Y) < - (o™ ||+ [Jo =05+ oy ™) + [l ™)
<o (14 o], + 1+
To estimate HUHn and Hv(”“) H, we need the following inequalities from Lemma
3.1 and 3.2.
IV < Caly ™Y E T A I < Gy
sup [y+)| < Cs||[v@H) || < Co ||y || < Co ]y

where i = 1,2. We again apply Lemma 4.2 to the second equation of (EP,). Note
that

I Pl = Iy < Cs
Therefore,
loll,, < Coll2l"[* = WPl < Cro- L+ [WPP,, )
< Cup- (14 [[(W® )2
< Cra - (L4 sup |[y®]- [y + sup [y ] - |y™]))
<Ciz-(1+ HV(HB)HUSH/S + “7(n+3)“2/3)
(

< Cug- (14 /9%

Thus, we have
J@) @ < Cus - (@ 22 4 ) < - (1 )

To estimate H(|7”\27’)(”)H is done as above. It suffices to consider H(h”|2)(”)H.

We see that

1Y) < Cor - (L 72| 4+ sup [y ] - |y ]| + sup [y - []+™)]))
< Chs - (1+ [y ™+

Combining these, we have

SOCIETE MATHEMATIQUE DE FRANCE 1996



E YAV N KOO

]ty < =7 + Cho - (14 ||y P?)2 < Cap -
L]

Proposition 6.2. — Let v be a C*> solution of the equation (EP,) with non-
constant initial data vy. Then, there are positive constants T and C so that, on the
time interval [0,T'), v is bounded in C* topology and Hv’H > C > 0. The constants
T, C and the C* bound of v depend only on the C* norm of the initial data ~,, but

not on \.

Proof. Note that we do not assume that H'y' H is bounded away from 0. First, we

estimate Hy(?’)H. We have

ST = 6®,007)
= |+ 2, (0= 20 Pr))

<2 lh @I + Sl =20

1
2

Therefore, if we have estimates of the form
(=27 < Cr- (1 + [y - @+ @]
for some constant p < 1, then we will get
d 2 T
SO < -+ ).

This will imply the existence of a time T such that H'y(?’) H is bounded from above on
[0,T).
We take a term from the expansion of (|y”|29/)"”. If it contains 4, then it is

bounded by
IS A< - 2]

If it contains (), then it is bounded by

Cs 7@ |- sup [y ] < Cy[y® )| ]y @
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In both cases, we get the desired estimation, since Hv(‘l)H < H7(3)H1/2 . “7(5)“1/2'
From the expansion of (vy")”, we get Hv’y(g)H, Hv”y”H and Hv”’y’H. From Lemma
4.1, the first one va(?’)H is bounded by
sup ol - /@] < s (I FIP + W@ < Ca -+ 1)

Again from Lemma 4.1, the second one Hv’ ~" H is bounded by

sup [ [ < Co - @+ /77 I - Al PIE + W1 1]

and 2 2 2 -1
I < I 21 = I

I PIE < sup b1 I1F < s - 1L I
VO < 11 < I O1 )
Il < I I @

Hence, the negative power of ||7/|| cancels, and we see
sup v/] - [|7"]| < Cs - (1 + [y 1) - 1+ [/ 2]) -
The last one ||v”+|| is bounded by
A I I Poll + 1+ TP - sup -
Here, the last two terms are bounded by
(A" sp @1 @I - [yl < @ - @ 2]

For the first term, we see

I ol - sup < 207 [ 12 Pl

and

"[Po[| < sup|y"| - sup |v] - [|7"]]
< Colly®@|| - Iy 1 PI + 1)
< Colly@| - [l Gswp 1y - [l + 1)
< Cuol V@ - I A1 1+ v @)

= Cuol @I Il + 1) -

[1s:
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And,
“7,“—3/2 . H7(3)H3 . “7//“3/2 < H7/H_3/2 ) H7/H9/8 _ }}7(5)”3/8 . HV(g)Hg
< I O o O
= @ @
Thus,

o2 < G- 1+ [+ O - )
< Cia- 0+ h I (14 ).

From this estimate, we get positive constants C13 and T depending only on H’yég) H
such that H'y(3)H < Ci3 on [0,T). In particular, H'yHCQ and sup |v| are bounded from

above. Then, we have

1d

5 7 7= =" 0m) = (1P, @+ A 2" P))

> ) = [ o = 2P|

> —Chy .

Thus, we have a positive time 77 such that Hv(?’)H < (15 and Hv’H > C16 > 0 on
[0,77). This completes our proof by Proposition 6.1. O

Proposition 6.3. — The C* solution ~y in Proposition 6.2 is unique on the time

interval [0, T).

Proof. Let {#,0} be another C*> solution of the equation (EP,). Then we have

3 1
0T -N=-G=-NY+Y P-(G-NI+) Qi)
=0 =0
_92 3 .
—@=0)"+ [T PE ) =) Ri- (-1,
=0

where P;, (); and R; are expressed by ~, 4, v and v, which are bounded from above.
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Therefore,

3

= [l =P+ D (P (=) (=)
1=0

+3(Q- (=) (- 1))
1=0

2

= |G =PI+ (P (=) (=)
1=0

—(Ps- =), G=DP) +2_(Qi- (7 =) 0 =0)"*)

<[l =@" +erlly =l 15 =l + Gl =l []o =0, -

Here, by Lemma 4.2,
[o=vll, < Cslly =1, -

Thus,
1d , B - -
5 7 1= < =@ =@ +Cally =, - 7 =l
< Ll + sl -y I < sl -
Since (§ — )" =0 at t = 0, it remains so for all ¢t < T O

Proposition 6.4. — Let v be a C4*4* solution of the equation (EP,) with CAT4#
non-constant initial data ~y. Then v is C* ont > 0. If vy is C*°, then v is C* for
t>0.

Proof. Let 4 be a solution of the equation
04 +4Y =0,
{ Y(,0) =o(x) -
Put 4 = v — 4. Then 7 satisfies the following equation.
07 +7W = c:= W+ M -2y P))
{ 3(2,0)=0.
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Suppose that v € C"™+4 on t > 0, where n is a non-negative integer. Then by
Lemma 4.3, we have v and v/ € C"*1+4 on t > 0, and ¢ € C*H1+4 . Therefore,

Proposition 5.2 implies that 7,y € C™H5+4x,

Thus, by induction, we know that v is C*. If vq is already C*°, then the above

estimation can be done on t > 0. O

Theorem 6.5. — For any C* non-constant initial data 7y, there is a positive time

T such that the equation

{@7=—¢“+«v—mvvww,

EPrx=1 =2\ 2 4 2
=0+ VP =211t = )
has a unique C* solution v = y(x,t) on S* x [0,T).

Proof. Let T be as in Proposition 6.2. Suppose that the equation (EP,) has a C4+4#
solution on [0,7T") for A = A\g. Note that v is C*° by Proposition 6.4. Put

O(7,A) := Oy + Y = M(v = 21" 1*)y)
where v is defined by
"+ [P =211 = P

The map ® C*T# xR — C* is a C*° map, and its derivative (§,®) in the v direction

is given by

(6,2)(n) = B + 1" = M(w = 40", 0"y + (v = 21" P’
where w is given by

—w" + H'Y/H_2|7H|2w _ 8‘7//|2(7H777H) . 2(,}/(3)777(3))
_ (_HIYIH_42<’7/7 77/>|'7H|2 + 2}}7/”—2(7//, n//))v .
Since HH’y’H_l\’y”\H > 1, Proposition 5.6 implies that the map n — (6,®)(n) is

an isomorphism from Cy* to Cg* (for definition, see Lemma 5.5). Therefore, we

can apply the implicit function theorem to the map ®, and conclude that there exists
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a solution v for any A\ sufficiently close to A\g. Thus, the set of all A for which we have

a solution is an open set of the interval [0, 1].

Note that we have a solution for A = 0. Let Ay be the supremum of \’s such that
we have solutions . Then, Proposition 6.2 implies that the solutions are bounded in
the C* topology. Therefore, it has a convergent subsequence for A — \g. The limit
~ becomes a solution for A = A\g. Thus, we conclude that Ay = 1. This solution is

unique by Proposition 6.3. ]

Proposition 6.6. — In Theorem 6.5, if the initial data satisfies |vy|?> = 1, then the
solution ~y satisfies |y'|? = 1 for all defined t.

Proof. We can check that
2 .

P ==Y+ P (WP -+ Q- (l] - 1)
where P; and @) are expressed by v and v, which are bounded from above. Therefore,
i n2 4112 _ n2 _ 12
P =17 = (' = 1,8d0')
=~ ("> = 1)"] +Z<P (' = 1), (' = D)

+ (-1 (@, Iv |2— 1)

< —[[('1* = 1)"] +012Hh|2 (Y2 = 1)@

+Call =1 ] - 1.

1
2

Here,
P =11 =1k I =]
<P = WPl + P =1
<2y -1l
Hence,

Il == 20l [+ 17 [P =1
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Therefore,

NP =1UP < =N = 1P + ol P = 1]l = 2|

1 1
< =5l P =07+ 5Callly P = 1]]*

1
2

7. LONG TIME EXISTENCE
In this section, we consider the original equation

Oy = =W + ((v =21y P)Y)
EP

— " + ‘7//‘21] — 2|7//‘4 _ |7(3)‘2 )
We give a C* initial data v satisfying |v,| = 1. By Proposition 6.6, the solution of
(EP)=1) with initial data -y satisfies |7’| = 1, and is the solution of (EP).
Let v be a solution of (EP) on [0,T") for some positive time 7. We will show that
~ is uniformly bounded in the C* topology. The next Lemma is obvious.
Lemma 7.1. — The center of gravity of the curve -y is preserved.
Therefore, we may assume that ¢ y(x)dz = 0 for all time. Because our problem

comes from a variational problem, we observe

Lemma 7.2. — The quantity Hv” H is non-increasing. In particular, it is bounded

from above and away from 0.
Proof. We have
1d 2
5 7 I = (™. 00)

- <7(4), _7(4) +((v— 2‘7//‘2)7/)/>

= | = (0 =2y P)1)|* <0
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Boundedness from below comes from the fact that Hy” H > Hy’ H =1. O

Combining it with Lemma 4.1, we get

Lemma 7.3. — We have
2
sup [v], sup [v/| < C- (|4®]|” + 1)

where the positive constant C' is independent of T

Lemma 7.4. — There are positive constants C7 and Cs independent of T', such that
the following holds

d 2 4)112

= "< =Gy + G

Proof. Put  =~®) — (v —2[7"|?)7’ and a = . Note that

1d 2 2

57 117 ==l

We calculate the tangential factor and normal component of 8 and « to 7. Because
(YO ) = (" A = WP ==

(B.9) =) —v+ 2P = —v+ Y7

Hence,

BY =B = (B4 =9 = =2y vy = Py =+ R
Because

3
(7(4)77,) = _§(|7H‘2)/ )
1
(.9) = (7 0) = (0 =20 P) = ="+ 5 (V")

Hence,

o =a—(a, )y

1
=7 = (0 =2y = (0= 2" P 0y = S ()Y

=y — (v —21y"?)y" (W’I) ’

/
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Now, we have

| § sl = | o= 20" P)y' dal
—| v~ 20"y da

<|]§ ) vdx\+—|]§\v"| ' dl

—| e vdx\+§|74 (17" Y da

< sup ] [laf] + 2|11
< Cs-(||a)| +1) (using Lemma 7.1) .
Therefore,
sup 8] <| § Bl + |8 < Ca- (] + 1)
and,
sup [v — ||, sup |[Y® + 7[>y < Cy - (|l + 1) .

It implies that

af] = |7 = (v = 27" P + S (V1P|
> W‘”H —[ltw =211 v”H HW’I Il
Here,
(v = 217" 1*)7"|| < Cssup [v — 2|7
< Cssuplv — 7| + Cs sup ||
<Co (lof| + 1)+ Cr- (1 + 7P
< s ([la]| + [y @)% +1
and
1YY = 217", 7)) < Cosup |7
< Cuol O < O P
Therefore,

(1+Cs) - |laf| = 7™ - C12H’Y(4)H3/4 — Ci3 > Cua|[vW]| = Cu5 .
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Theorem 7.5. — The equation (EP) has a unique solution on the whole time interval

[0, 00).

Proof. Using Proposition 6.2, it suffices to prove that Hy(?’) H is bounded for any finite

time. To show it, we use

d
= PO1F =20/, @ + (0 =20 1P1)")
< =V + 1l = 2P|
We will estimate the last line. Note that

sup | < 1 [7®]7* < Gl [ < Gl
IV < @),
IVl < Gl

sup |7(3)‘ < Cﬁ}h(g)Hl/sz(z;)Hl/z < 07}}7(5)”1/2 .

2/3

Therefore,
2| < ol B = Coll (v, + 1
< Cy - (sup Y| - [|[y@ || + sup |- |7
< Cro - ([ @752 4 |y /212

< | ®°,

(Y122 || < Cral| (V" 7)Y || < Crssup |7 - ||V
< O[]y | = s ]y |72,

[P < Crosup 1 - [[VP]] < Cur ]y @,

"1 //|2 (3)|27/_2|7H‘47,H

< Cis - (sup o] - sup |y"| + sup [y®] - [|[y®|| + sup [y )
< Cro - (W@ [P2 0 4 ]y @ @)

[o"Y'|| = [[IV" [Py + Iy

(by Lemma 7.3)

< Coo- (14 }}7(5)”5/6),

SOCIETE MATHEMATIQUE DE FRANCE 1996



40U N KOO

[0 < Corsup /] < Coa - (14 |/ *) (b Lemma 7.3)

[or® ]| < sup ol - [y

< Can- 1+ O < Ol 1+ 1))

Combining these, we have

LIy < @ + Cas - (1 P+ [y )
< Cs- (14 @I

It implies that
d
dt log|[|7[|” < Cor - (1 + |7 -

Combining it with Lemma 7.4

d

7 NI < —Cos v @ + Coo

we get

d
i 0" + Cao og |y @) < O -

That is, H’y(g) H is bounded on any finite time interval.

8. CONVERGENCE
In this section, we continue to consider the original equation

0y ==Y+ (v 21" P)y)
EP

— " + ‘7//‘21] — 2|7//‘4 _ |7(3)‘2 ,
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with C* initial data vy. By Theorem 7.5, we have a unique solution v for all time.
To prove the convergence of the solution 7y, we need some preliminaries. As in the

proof of Lemma 7.4, put

a=7Y —((v-2y"?)) .

Also, put

w=uv—2}y"*.
Lemma 8.1. — There are positive constants C' and N independent of the time t
such that

Hw <C-(1+ HaHN) )

I

Proof. In the proof of Lemma 7.4, we have shown that H7H4 <Cp-(1+ HaH) Hence,
by Lemma 4.2, HUH3 <Cy-(1+ HozHN). Thus, we get the result. ]

Lemma 8.2. — For each non-negative integer n, there are positive constants C' and

N independent of the time t such that

e Nl < €t o) -

Proof. By Lemma 8.1, the result holds for n = 0.
Suppose that the result holds for up to n. Then,
I < 49— (a4 )42
< o™V + Cull| gnrs - ]l
< o™V + o], q - Nl
< [la™ || 4 Cs - (14 [l | ™)
< Cu- (14 lafl},) -

Moreover, by Lemma 4.2,

[ollps < Cs - (1t Il - (1 () -
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Hence,
N
Han—l—?) = 06 ) (1 + HaHn—T—l) ’
]

Lemma 8.3. — For each non-negative integer n, there are positive constants C' and
N independent of the time t such that

N

ovwl, .y < C- A lall) - flall, s -
Proof. Applying Lemma 4.2 to the equality
—6tv” + ‘7/,‘23151} — 2(7//, o/’)v _ 8|7//|2(7//7a//) . 2(,}/(3)70[(3)) ,

we have

N

90,10 < Cr- (L4 [l gara) - ] p5
N
< G- (L4 ) -l s -
Therefore, from Lemma 8.2, we see
10ew]],,1y = 000 +4(v", 0],
< G (Lt flally®) -l + Ca (U [l - [ladl,, -
]
Proposition 8.4. — For each integer n > 0, we have
/ Ha(")H2dt < 00, and Ha(”)H — 0 when t— o0.
0

Proof. We know that

& 1
| lallae = Gl < oo
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Moreover,

[of|* = (o, 0rar)
= (@, 8 (v = (wy")"))
= —(d/, o3 — dw -~ — wdyy")

d
7|

N |

= —(a/,—a® +wa') since (a/,9) =0

= —llo”|]" = (ws o)

< —Ha”H2 +C-(1+ HaHN)Ha'H2 from Lemma 8.1
|2 N 7

=[la”["+ Co- (1 + flaf el - [l

L+ 2+ ol llal)?

IN

IN

Therefore, we see that HaH — 0. In particular, HaH is bounded. Hence,

1d 2 1 2 2
5 7z el < =5 lle”[" + Cofla]™ -
Integrating it, we see
/OOHO/’H2 < 00 .
0
Suppose that
/OOHQ(R)W < 00, and Ha(k_2)H — 0 when t— o0

for k < 2m, where m > 1. Then,

% Ha(2m)H2 _ 2<a(2m), 6ta(2m)> — 2<a(2m), at’}/(2m+4) B 6t(’lU’}/,)(2m+1)>
= _2Ha(2m+2) H2 _ 2<oz(2m), 8t(w’7/)(2m+1)>

< —[laCm 2+ 2,y |
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Here,

Hat(w,yl)@m—l)HQ — H(atw . ,y/)(Zm—l) + (w . at,y/)(Zm—l)HQ
< QH(atw . ,}//)(Zm—l)H2 + 2H(w . a/)(Zm—l)H2
2 2 2 2
< Cal[7llgann - (106205, + O5 |l coris - |l
< C6H6thzm—1 + C’7H0¢H§m (by Lemma 8.2)

< Cg + C9H‘)‘H§m (by Lemma 8.3)

2
HO‘H2m+1

1 m 2 2
< Latmsa P 4 cugfal?,

IN

a2 4 Croflam|? + 1

Therefore,

d ) 112 1 ) [12 112
ol < ~Lalm |2 1 Crgfla@| 4y

and we see that Ha@m)H — 0 and fOOOHa(QmJFQ)Hth < 00. O

We consider the limiting equation of (EP)

{ =4+ (0= 213"1*)3) =0,

="+ 5P =211 = PP =1

EE

Proposition 8.5. — Let 4 be a solution of (EE). Then, there are a constant 6 €
(0,1/2) and a C4*t4# neighbourhood W of 4 such that

]| > |E() = EG)'°
for any v € W.

This is a direct modification of [2, Theorem 3]. The proof essentially uses real

analyticity of the space, the Euclidean space in our case. We omit the proof.

Theorem 8.6. — The solution of the equation (EP) converges to a closed elastic

curve in the C* topology.

Proof. From Proposition 8.4 and Lemma 8.2, we know that the solution is bounded

in the C* topology. Therefore, there exists a convergent subsequence. For the limit
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curve 9, we apply Proposition 8.5. Suppose that « is sufficiently small in the C*
norm and that ~ is sufficiently close to 4 in the L? norm. Since ~ is bounded in
the C* norm, closeness of v to 4 implies closeness of v(™)(0) to 4(™(0) for each n.

Moreover, v satisfies the ODE

AW (02PN =a,
{ =" P =2 - PP
Therefore, we see that v is close to 4 in the C* topology.

In other words, we can restate Proposition 8.5 as follows. There are a positive
time 7" and a positive constant r such that the inequality in Proposition 8.5 holds for
any v = 7v(x, tp) which satisfies H’y — ’AyH <randty>T.

Take two L? neighbourhoods of 4, W, with radius r and W, /2 with radius /2.

Take two positive times T' < t; <ty so that y(x,t1) € W, /5 and y(z,t9) € W, for all
to € [t1,t2). Then, from the proof of Lemma 7.2,

1d 2
22 By =~ = llo1] - o]
< |0 - [E() - EG)'? .
It implies that
1 d )
%0 d (E(v)—E®))’ <o

and,

[mewgumw—Ewwm.

If v¢, & W, we know that fttf |0¢v||dt > /2. But, [(E(v)—E(%))?]% is bounded.
Hence, there is a positive time T} such that y(z,tg) € W, for all ty > T3. Since we can
take r arbitrary small, v converges into 4 in the L? norm, and hence in the C° norm.

O

Remark. — We proved the convergence using the real analyticity. In fact, we cannot

hope to extend our result to general C*° Riemannian manifolds. See [7].
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