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GALOIS THEORY OF ZARISKI PRIME DIVISORS

by

Florian Pop

Abstract. — In this paper we show how to recover a special class of valuations (which
generalize in a natural way the Zariski prime divisors) of function fields from the
Galois theory of the functions fields in discussion. These valuations play a central
role in the birational anabelian geometry and related questions.

Résumé(Théorie de Galois des diviseurs premiers de Zariski). — Dans cet article nous
montrons comment retrouver une classe spéciale de valuations de corps de fonctions
(qui généralisent naturellement les diviseurs premiers de Zariski) à partir de la théorie
de Galois des corps de fonctions en question. Ces valuations jouent un rôle central en
géométrie anabélienne birationnelle et pour d’autres questions connexes.

1. Introduction

The aim of this paper is to give a first insight into the way the pro-` Galois theory

of function fields over algebraically closed base fields of characteristic 6= ` encodes the

Zariski prime divisors of the function fields in discussion. We consider the following

context:

• ` is a fixed rational prime number.

• K|k are function fields with k algebraically closed of characteristic 6= `.

• K(`)|K is the maximal pro-` Galois extension of K in some separable closure of

K, and GK(`) denotes its Galois group.

It is a Program initiated by Bogomolov [Bog] at the beginning of the 1990’s which

has as ultimate goal to recover (the isomorphy type of) the field K from the Ga-

lois group GK(`). Actually, Bogomolov expects to recover the field K even from the
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Galois information encoded in PGalcK , which is the quotient of GK(`) by the sec-

ond factor in its central series. Unfortunately, at the moment we have only a rough

idea (maybe a hope) about how to recover the field K from GK(`), and not a defini-

tive answer to the problem. Nevertheless, this program is settled and has a positive

answer, in the case k is an algebraic closure of a finite field, Pop [Popd]; see also

Bogomolov–Tschinkel [BTb] for the case of function fields of smooth surfaces with

trivial fundamental group.

It is important to remark that ideas of this type were first initiated by Neukirch,

who asked whether the isomorphism type of a number field F is encoded in its ab-

solute Galois group. The final result in this direction is the celebrated result by

Neukirch, Iwasawa, Uchida (with previous partial results by Ikeda, Komatsu, etc.)

which roughly speaking asserts that the isomorphy types of global fields are functo-

rially encoded in their absolute Galois groups. Nevertheless, it turns out that the

result above concerning global fields is just a first piece in a very broad picture,

namely that of Grothendieck’s anabelian geometry, see Grothendieck [Grob], [Groa].

Grothendieck predicts in particular, that the finitely generated infinite fields are func-

torially encoded in their absolute Galois groups. This was finally proved by the author

Pop [Popc], [Popa]; see also Spiess [Spi].

The strategy to prove the above fact is to first develop a “Local theory”, which

amounts of recovering local type information about a finitely generated field from its

absolute Galois group. And then “globalize” the local information in order to finally

get the field structure. The local type information consists of recovering the Zariski

prime divisors of the finitely generated field. These are the discrete valuations which

are defined by the Weil prime divisors of the several normal models of the finitely

generated field in discussion.

In this manuscript, we will mimic the Local theory from the case of finitely gener-

ated infinite fields, and will develop a geometric pro-` Local theory, whose final aim

is to recover the so called quasi-divisorial valuations of a function field K|k form GK(`)

– notations as at the beginning of the Introduction. We remark that this kind of

results played a key role in Pop [Popd], where only the case k = Fp was considered.

We mention here briefly the notions introduced later and the main results proved

later in the paper – notations as above.

Let v be some valuation of K(`), and for subfields Λ of K(`) denote by vΛ and Λv

the value group, respectively residue field, of the restriction of v to Λ. And let Tv ⊆ Zv

be the inertia, respectively decomposition, group of v in GK(`) = Gal
(

K(`)|K
)

.

First recall, see Section 3, A), that a Zariski prime divisor v of K(`) is any valuation

of K(`) whose restriction v|K to K “comes from geometry”, i.e., the valuation ring of

v|K equals the local ring OX,xv
of the generic point xv of some Weil prime divisor

of some normal model X → k of K|k. Thus vK ∼= Z and Kv|k is a function field
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satisfying td(Kv |k) = td(K|k) − 1. Now it turns out that Zv has a “nice” structure

as follows:

Tv
∼= Z` and Zv

∼= Tv × GKv(`) ∼= Z` × GKv(`).

We will call the decomposition groups Zv of Zariski prime divisors v of K(`)|k

divisorial subgroups of GK(`) or of K.

Now in the case k is an algebraic closure of a finite field, it turns out that a maximal

subgroup of GK(`) which is isomorphic to a divisorial subgroup is actually indeed a

divisorial subgroup of GK(`), see [P4]; this follows nevertheless from Proposition 4.1

of this manuscript, as k has no no-trivial valuations in this case.

On the other hand, if k has positive Kronecker dimension (i.e., it is not alge-

braic over a finite field), then the situation becomes more intricate, as the non-trivial

valuations of k play into the game. Let us say that a valuation v of K(`) is a quasi-

divisorial valuation, if it is minimal among the valuations of K(`) having the properties:

td(Kv |kv) = td(K|k) − 1 and vK/vk ∼= Z, see Definition 3.4, and Fact 5.5, 3). Note

that the Zariski prime divisors of K(`) are quasi-divisorial valuations of K(`).

On the Galois theoretic side we make definitions as follows: Let Z be a closed

subgroup of GK(`).

i) We say that Z a divisorial like subgroup of GK(`) or of K, if Z is isomorphic to

a divisorial subgroup of some function field L|l such that td(L|l) = td(K|k), and l

algebraically closed of characteristic 6= `.

ii) We will say that Z is quasi-divisorial, if Z is divisorial like and maximal among

the divisorial like subgroups of GK(`).

Finally, for t ∈ K a non-constant function, let Kt be the relative algebraic closure

of k(t) in K. Thus Kt|k is a function field in one variable, and one has a canonical

projection pt : GK(`) → GKt
(`).

In these notations, the main results of the present manuscript can be summarized

as follows, see Proposition 4.1, Key Lemma 4.2, and Proposition 4.6.

Theorem 1.1. — Let K|k be a function field with td(K|k) > 1, where k is algebraically

closed of characteristic 6= `. Then one has:

(1) A closed subgroup Z ⊂ GK(`) is quasi-divisorial ⇐⇒ Z is maximal among the

subgroups Z ′ of GK(`) which have the properties:

i) Z ′ contains closed subgroups isomorphic to Zd
` , where d = td(K|k).

ii) Z ′ has a non-trivial pro-cyclic normal subgroup T ′ such that Z ′/T ′ has

no non-trivial Abelian normal subgroups.

(2) The quasi-divisorial subgroups of GK(`) are exactly the decomposition groups of

the quasi-divisorial valuations of K(`).

(3) A quasi-divisorial subgroup Z of GK(`) is a divisorial subgroup of GK(`) ⇐⇒

pt(Z) is open in GKt
(`) for some non-constant t ∈ K.
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Among other things, one uses in the proof some ideas by Ware and Arason–

Elman–Jacob, see e.g. Engler–Nogueira [EN] for ` = 2, Engler–Koenigsmann [EK]

in the case ` 6= 2, and/or Efrat [Efr] in general. And naturally, one could use here

Bogomolov [Bog], Bogomolov–Tschinkel [BTa]. We would also like to remark that

this kind of assertions – and even stronger but more technical ones – might be ob-

tained by employing the local theory developed by Bogomolov [Bog], and Bogomolov–

Tschinkel [BTa].

Concerning applications: Proposition 4.1 plays an essential role in tackling Bogo-

molov’s Program in the case the base field k is an algebraic closure of a global field

(and hopefully, in general); and Proposition 4.6 is used in a proof of the so called

Ihara/Oda–Matsumoto Conjecture. (These facts will be published soon).

Acknowledgments
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several suggestions which finally lead to the present form of the manuscript.

2. Basic facts from valuation theory

A) On the decomposition group (See e.g. [End], [Bou], [ZS].)— Consider the

following context: K̃|K is some Galois field extension, and v is a valuation on K̃. For

every subfield Λ of K̃ denote by vΛ and Λv the valued group, respectively the residue

field of Λ with respect to (the restriction of) v on Λ. We denote by p = char(K̃v) the

residue characteristic. Further let Zv, Tv, and Vv be respectively the decomposition

group, the inertia group, and the ramification group of v in Gal(K̃|K), and KV , KT ,

and KZ the corresponding fixed fields in K̃.

Fact 2.1. — The following are well known facts from Hilbert decomposition, and/or

ramification theory for general valuations:

1) K̃v |Kv is a normal field extension. We set Gv := Aut(K̃v |Kv). Further,

Vv ⊂ Tv are normal subgroups of Zv, and one has a canonical exact sequence

1 → Tv → Zv → Gv → 1 .

One has v(KT ) = v(KZ) = vK, and Kv = KZv. Further, KTv |Kv is the separable

part of the normal extension K̃v |Kv, thus it is the maximal Galois sub-extension of

K̃v |Kv. Further, KV |KT is totally tamely ramified.

2) Let µK̃v denote the group of roots of unity in K̃v. There exists a canonical

pairing as follows: ΨK̃ : Tv × vK̃/vK → µK̃v, (g, vx) 7→ (gx/x)v, and the following

hold: The left kernel of ΨK̃ is exactly Vv. The right kernel of ΨK̃ is trivial if p = 0,

respectively equals the Sylow p-group of vK̃/vK if p > 0. In particular, Tv/Vv is

Abelian, Vv is trivial if char(K) = 0, respectively equals the unique Sylow p-group of

Tv if char(K) = p > 0. Further, ΨK̃ is compatible with the action of Gv.
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3) Suppose that v′ ≤ v is a coarsening of v, i.e., Ov ⊆ Ov′ . Then denoting

v0 = v/v′ the valuation induced by v on K̃v′, and by Zv0
its decomposition group in

Gv′ = Aut(K̃v′|Kv), one has: Tv ⊆ Zv are the preimages of Tv0
⊆ Zv0

in Zv′ via the

canonical projection Zv′ → Gv′ . In particular, Tv′ ⊆ Tv and Zv ⊆ Zv′ .

Fact 2.2. — Let ` be a rational prime number. In the notations and the context from

Fact 2.1 above, suppose that K contains the `∞ roots of unity, and fix once for all an

identification of the Tate `-module of Gm,K with Z`(1), say

ı : T` → Z`(1).

And let the Galois extensions K̃|K considered at Fact 2.1 satisfy K`,ab ⊆ K̃ ⊆ K(`),

where K`,ab is the maximal Abelian extension of K inside K(`). Finally, we consider

valuations v on K̃ such that Kv has characteristic 6= `. Then by the discussion above

we have: Vv = {1}, and further: vK̃ is the `-divisible hull of vK; and the residue

field extension K̃v |Kv is separable and also satisfies the properties above we asked

for K̃|K to satisfy.

1) For n = `e, there exists a unique sub-extension Kn|K
T of K̃|KT such that

Kn|K
Z is a Galois sub-extension of K̃|KZ , and vKn = 1

n
vKT = 1

n
vK. On the other

hand, the multiplication by n induces a canonical isomorphism 1
n

vK / vK ∼= vK/n.

Therefore, the pairing ΨK̃ gives rise to a non-degenerate pairing

Ψn : Tv/n× vK/n → µn
ı−→ Z/n(1),

hence to isomorphisms θv,n : vK/n → Hom(Tv, µn), θv,n : Tv/n → Hom(vK, µn).

In particular, taking limits over all n = `e, one obtains a canonical isomorphism of

Gv-modules

θv : Tv → Hom
(

vK, Z`(1)
)

.

2) Next let B = (vxi)i be an F`-basis of the vector space vK / `. For every xi,

choose a system of roots (αi,n)n in K̃ such that α`
i,n = αi,n−1 (all n > 0), where

αi,0 = xi. Then setting K0 = K[(αi,n)i,n] ⊂ K̃, it follows that v is totally ramified

in K0|K, and vK0 is `-divisible. Therefore, K0v = Kv, and the inertia group of

v in K̃|K0 is trivial. In particular, Tv has complements in Zv, and Tv
∼= ZB` (1) as

Gv-modules.

3) Since by hypothesis µ`∞ ⊆ K, the action of Gv on ZB` (1) ∼= Tv is trivial. In

particular, setting δv := |B| = dim F`
(vK/`) we finally have:

Zv
∼= Tv × Gv

∼= Z
δv

` × Gv.

B) Two results of F. K. Schmidt. — In this subsection we will recall the pro-`

form of two important results of F. K. Schmidt and generalizations of these like the

ones in Pop [Popb], The local theory, A. See also Endler–Engler [EE].

Let ` be a fixed rational prime number. We consider fields K of characteristic 6= `

containing the `∞ roots of unity. For such a field K we denote by K(`) a maximal

pro-` Galois extension of K. Thus the Galois group of K(`)|K is the maximal pro-`
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quotient of the absolute Galois group GK of K. We will say that K is `-closed, if

K(`) = K, or equivalently, if every element x ∈ K is an `th power in K.

We next define the pro-` core of a valuation on K(`). This is the pro-` correspondent

of the core of a valuation on the separable closure of K, as defined in [P1], The local

theory, A. The construction is as follows: In the above context, let v be a valuation of

K(`) which is pro-` Henselian on some subfield Λ of K(`). Consider the set V ′ of all

the coarsenings v′ of v such that Λv′ is pro-` closed, and set V = V ′ ∪ {v}. Note that

V ′ might be empty. By general valuation theory, V has an infimum whose valuation

ring is the union of all the valuation rings Ov′ (v′ ∈ V). We denote this valuation by

vpro-`,Λ = inf V

and call it the pro-` Λ-core of v. Finally, for a given valuation v on K(`) we denote

by vpro-`,K the pro-` KZ-core of v, where KZ is the decomposition field of v in K(`).

With this definition of a “core”, the Proposition 1.2 and Proposition 1.3 from [P1]

remain true in the following form:

Proposition 2.3. — Let v be a non-trivial valuation of K(`), and suppose that KZ is

not pro-` closed. Then the pro-` KZ-core vpro-`,K of v is non-trivial and lies in V.

Consequently:

(1) Kv is pro-` closed ⇐⇒ KZvpro-`,K is pro-` closed ⇐⇒ Zv = Tv.

(2) If v has rank one or Kv is not pro-` closed, then v equals its pro-` KZ-core.

Proof. — The proof is word by word identical with the one from loc. cit.

The following result is the announced pro-` form of the results of F. K. Schmidt.

Proposition 2.4. — Suppose that K is not pro-` closed. Let w1, w2 be two valuations

on K(`) such that they are pro-` Henselian on some sub-extension Λ|K of K(`)|K.

Then their pro-` Λ-cores are comparable.

Consequently, let K ⊆ L ⊆ Λ ⊆ K(`) be sub-extensions of K(`)|K, and let v be a

valuation on K(`) that is pro-` Henselian on Λ and equals its pro-` Λ-core. Then the

following hold:

(1) If Λ|L is normal, then v is pro-` Henselian on L and equals its pro-` L-core. In

particular, Zv is self-normalizing in GK(`).

(2) If Λ|L is finite, then v is pro-` Henselian on L and v = vpro-`,L. In particular,

Zv is not a proper open subgroup of a closed subgroup of GK(`).

Proof. — The proofs of these assertions are identical to the ones in [Popb], loc. cit.,

thus we will omit them here. For the fact that Zv is self-normalizing, let N be its

normalizer in GK(`), and set Λ = KZ and L = K(`)N . Then Λ|L is normal, so v is

pro-` Henselian on L by the first part of (1) above. Thus finally Λ = KZ = L, i.e.,

N = Zv.
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3. Zariski prime divisors and quasi-divisorial valuations

In the sequel we consider function fields K|k over algebraically closed base fields k

of characteristic 6= `.

A) Zariski prime divisors

Remark/Definition 3.1. — Recall that a valuation v of K is called a k-valuation, if v

is trivial on k. For a k-valuation v of K the following conditions are equivalent:

i) v is discrete, and its residue field Kv is a function field in td(K|k)− 1 variables.

ii) td(Kv |k) = td(K|k) − 1.

A k-valuation v on K with the above equivalent properties is called a Zariski prime

divisor of K|k. See Appendix, A), where a geometric description of the Zariski prime

divisors of K|k is given.

The aim of this subsection is to give a first insight in the pro-` Galois theory of

the Zariski prime divisors of K|k. By abuse of language, we say that a k-valuation

v of K(`) is a Zariski prime divisor, if v is the prolongation of some Zariski prime

divisor of K|k to K(`). Since K(`) |K is algebraic, hence K(`)v |Kv is algebraic

too, it follows that a k-valuation of K(`) is a Zariski prime divisor if and only if

td(K(`)v |k) = td(K(`) |k) − 1.

With this convention, for a Zariski prime divisor v of K(`)|k we denote the decom-

position group of v in GK(`) by Zv. By general decomposition theory we have: Two

Zariski prime divisors of K(`)|k have the same restriction to K if and only if they are

conjugated under GK(`).

Definition 3.2. — In the notations from above, we will say that Zv is a divisorial sub-

group of GK(`) or of the function field K|k (at the Zariski prime divisor v, if this is

relevant for the context).

More generally, a closed subgroup Z ⊂ GK(`) which is isomorphic to a divisorial

subgroup Zw of a function field L|l with td(L|l) = td(K|k) and l algebraically closed

of characteristic 6= ` is called a divisorial like subgroup of GK(`) or of K|k.

By the remark above, the divisorial subgroups as well as the divisorial like sub-

groups of GK(`) form full conjugacy classes of closed subgroups of GK(`). Some of

the significant properties of the divisorial subgroups are summarized in the following:

Proposition 3.3. — Let v be a Zariski prime divisor of K(`)|k. Let Zv ⊂ GK(`) be the

divisorial subgroup at v, Tv the inertia group of Zv, and Gv = Zv/Tv the Galois group

of the corresponding Galois residue field extension K(`)v |Kv. Then the following

hold:

(1) K(`)v = (Kv)(`), hence Gv = GKv(`). Further, Tv
∼= Z` and Zv

∼= Tv×GKv(`)

as pro-finite groups.
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In particular, a divisorial like subgroup of GK(`) is any closed subgroup Z which is

isomorphic to Z` × GL1
(`) for some function field L1|l with l algebraically closed of

characteristic 6= ` and td(L1|l) = td(K|k) − 1.

(2) Tv is the unique maximal Abelian normal subgroup of Zv.

(3) Zv is self-normalizing in GK(`), and it is maximal among the subgroups of

GK(`) which have a non-trivial pro-cyclic normal subgroup.

Proof. — Assertion (1) follows immediately from Fact 2.2, 2), 3).

Concerning (2), let T ⊆ Zv be an Abelian normal closed subgroup. Then the image

T of T in GKv(`) is an Abelian normal subgroup of GKv(`). Thus the assertion follows

from the following:

Claim. — If L|k is a function field, then GL(`) has no non-trivial Abelian normal

subgroups.

In order to prove the Claim, recall that if L 6= k, then L is a Hilbertian field; see e.g.

[FJ], Ch.16 for basic facts concerning Hilbertian fields. Let L1|L be a proper Galois

sub-extension of L(`)|L. Then by Kummer theory, L(`)|L1 is not finite. Choose any

proper finite sub-extension L2|L1 of L(`)|L1. Then by Weissauer’s Theorem, L2 is a

Hilbertian field. Since every finite split embedding problem with Abelian kernel over

L2 is properly solvable, it follows that L2 has “many” finite Galois `-extensions which

are not Abelian. Therefore, L(`)|L1 cannot be an Abelian extension.

To (3): First, since a Zariski prime divisor has rank one, it follows by Proposi-

tion 2.3 that it equals its absolute pro-` core. Thus by Proposition 2.4, (1), it follows

that its decomposition group is self-normalizing. Concerning the maximality: Let Z ′

be a subgroup of GK(`) having a non-trivial pro-cyclic normal subgroup T ′ and sat-

isfying Zv ⊆ Z ′. We show that Z ′ = Zv, and that T ′ = Tv provided T ′ is a maximal

pro-cyclic normal subgroup.

Indeed, since Zv ⊆ Z ′, and T ′ is normal in Z ′, we have: T ′ is normal in G := TvT
′;

and one has an exact sequence 1 → T ′ → G → T v → 1, where T v = Tv/(Tv ∩T ′) is a

quotient of Tv
∼= Z`. Let Λ = K(`)G be the fixed field of G, thus Λ(`) = K(`). Since

Λ contains the algebraically closed field k, it contains the `∞ roots of unity. Thus

by Kummer Theory, the following two finite `-elementary Abelian groups Gab/` and

Λ×/` are (Pontrjagin) dual to each other. On the other hand, by the definition of G

– see the above exact sequence, we have: Either Gab/` ∼= Z/`, or Gab/` ∼= (Z/`)2.

Applying again Kummer Theory in its pro-` setting, we get:

a) If Gab/` ∼= Z/`, then Λ×/` is cyclic. Thus Λ(`)|Λ is pro-cyclic. And in turn,

G ∼= Z`.

b) If Gab/` ∼= (Z/`)2, then Λ×/` is generated by exactly two elements. Thus

G = GΛ(`) has Z` × Z` as a quotient. Hence taking into account the exact

sequence above 1 → T ′ → G → T v → 1, it follows that G ∼= Z` × Z`.
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From this we conclude that G is abelian in both cases a) and b) above; hence Tv is

a normal subgroup of G = TvT
′. Since v is pro-` Henselian on the fixed field KT of

Tv and equals its pro-` KT -core, it follows by the above cited result of F. K. Schmidt,

Proposition 2.4, (1), that Λ is pro-` Henselian with respect to v. Thus denoting by

KT ′

the fixed field of T ′ in K(`), we have Λ ⊆ KT ′

. Hence v is pro-` Henselian on

KT ′

. Finally, as T ′ is a normal subgroup of Z ′, it follows by loc.cit. again that v is

pro-` Henselian on the fixed field KZ′

of Z ′. Since Zv is the decomposition group of

v in GK(`), it finally follows that Z ′ ⊆ Zv. Thus Z ′ = Zv, and T ′ = Tv provided T ′

is a maximal pro-cyclic normal subgroup of Z ′.

B) Quasi-divisorial valuations. — The ultimate goal of the Galois theory of the

Zariski prime divisors of K|k is to identify these divisors as corresponding to the

conjugacy classes of particular divisorial like subgroups. Nevertheless, the only kind

of extra information one might use in such a characterization should be of group

theoretic nature, originating in the pro-` Galois theory of function fields. Obviously,

the best one can expect is that “morally”the converse of Proposition 3.3 above should

also be true; this means that if Z ⊂ GK(`) is a divisorial like subgroup, then it

should originate from a Zariski prime divisor of K(`)|k, which should be unique.

Unfortunately, this cannot be true, as indicated below.

• First, every open subgroup Z ′ ⊆ Zv of a divisorial subgroup is a divisorial

like subgroup. Indeed, such an open subgroup is a divisorial subgroup for some

properly chosen finite sub-extension K ′|K of K(`)|K. Thus in general, a divisorial

like subgroup is not a divisorial subgroup.

An obvious way to remedy this failure for the converse of Proposition 3.3 is by

restricting ourselves to considering maximal divisorial like subgroup Z of GK(`) only,

and then ask whether every such a maximal subgroup Z is divisorial.

• Unfortunately, there is a more subtle source of divisorial like subgroups of GK(`)

coming from so called defectless valuations v on K(`) of relative rational rank 1, which

generalize in a natural way the Zariski prime divisors of K|k.

In order to explain these phenomena, we introduce notations/notions as follows:

Let v be an arbitrary valuation on K(`). Since k is algebraically closed, v k is a

totally ordered Q-vector space (which is trivial, if the restriction of v to k is trivial).

We will denote by rv the rational rank of the torsion free group vK/vk, and by abuse

of language call it the rational rank of v. Next remark that the residue field kv is

algebraically closed too, and Kv |kv is some field extension (not necessarily a function

field!). We will denote tdv = td(Kv |kv) and call it the residual transcendence degree.

By general valuation theory, see e.g. [Bou], Ch.6, §10, 3, one has the following:

rv + tdv ≤ td(K|k).

We will say that v has no (transcendence) defect, or that v is defectless, if the above

inequality is an equality, i.e., rv + tdv = td(K|k). See Appendix, B), for basic facts
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concerning defectless valuations, in particular for a “recipe” which produces all the

defectless valuations v of K(`).

Remark/Definition 3.4. — For a valuation v of K(`) the following conditions are equiv-

alent:

i) The valuation v is minimal among the valuations w of K(`) satisfying rw = 1

and tdw = td(K|k) − 1.

ii) v has no relative defect and satisfies: First, rv = 1, and second, rv′ = 0 for any

proper coarsening v′ of v.

A valuation of K with the equivalent properties i), ii), above is called quasi-divisorial.

In particular, by Appendix, Fact 5.5, 2), b), it follows that if v is quasi-divisorial,

then Kv|kv is a function field with td(Kv |kv) = td(K|k)−1, and second, vK/vk ∼= Z.

Further, every Zariski prime divisor of K|k is a quasi-divisorial valuation. And a

quasi-divisorial valuation v of K(`) is a Zariski prime divisor if and only if v is trivial

on k.

The aim of this subsection is to give a first insight in the pro-` Galois theory of the

quasi-divisorial valuation of K|k.

Proposition 3.5. — Let v be a valuation on K(`) having no relative defect such that

rv = 1 and char(Kv) 6= `. Let Tv ⊂ Zv and Gv = Zv/Tv be defined as usual. Then

the following hold:

(1) K(`)v = (Kv)(`), hence Gv = GKv(`). Further, Tv
∼= Z` and Zv

∼= Tv×GKv(`)

as pro-finite groups. In particular, Zv is a divisorial like subgroup of GK(`).

(2) Tv is the unique maximal Abelian normal subgroup of Zv.

(3) Suppose that td(K|k) > 1. Then Zv is maximal among the divisorial like

subgroups of GK(`) if and only if v is a quasi-divisorial valuation on K(`).

Proof. — For assertion (1), recall that Kv |kv is a function field which satisfies

td(Kv |kv) = td(K|k)−1. One concludes by applying Fact 2.2, 2), 3) and taking into

account that vK/` ∼= Z/`.

The proof of assertion (2) is identical with the proof of the corresponding assertion

in the case of divisorial subgroups of GK(`) in Proposition 3.3.

To (3): First, suppose that Zv is maximal among the divisorial like subgroups of

GK(`). Let v′ be the unique coarsening of v which is a quasi-divisorial valuation of

K(`), as described in Appendix, Fact 5.5, 3). We claim that v = v′. Indeed, let

v0 = v/v′ be the valuation induced by v on the residue field K(`)v′. Then by general

decomposition theory for valuations, see e.g. Fact 2.1, 3), it follows via the canonical

exact sequence

1 → Tv′ → Zv′ → GKv′(`) → 1,

that Zv is exactly the preimage of Zv0
in Zv′ . Since v′ has rv′ = 1 and is defectless,

by assertion (1) of the Proposition, it follows that Zv′ is divisorial like. On the other

SÉMINAIRES & CONGRÈS 13
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hand, Zv ⊆ Zv′ is maximal among divisorial like subgroups of GK(`), hence Zv = Zv′ .

But then Zv0
= GKv′(`), and so v0 is pro-` Henselian on the function field Kv′|kv′.

Since Kv′|kv′ has transcendence degree equal to td(K|k) − 1 > 0, the valuation v0

must be the trivial valuation. Thus finally v = v′, and v is quasi-divisorial.

For the converse, suppose that v is quasi-divisorial. We show that Zv is maximal

among the subgroups Z ′ of GK(`) having a non-trivial pro-cyclic normal subgroup T ′.

The proof is more or less identical with the proof of assertion (3) of Proposition 3.3.

Indeed, in the above notations (which are identical with the ones from loc.cit.) and

reasoning like there, we have: The fixed field Λ of G := TvT
′ is pro-` Henselian with

respect to v. Next recall that KT is the fixed field of Tv in K(`). Hence Λ ⊂ KT .

Claim. — The pro-`, KT -core vpro-`,KT equals v.

To simplify notations, let L = KT be the fixed field of Tv in K(`), and w =

vpro-`,L = vpro-`,KT . Then L(`) = K(`), and GL(`) = Tv. And further, GL(`) ⊂ Zw,

as w is pro-` Henselian on L. By contradiction, suppose that w < v is a proper

coarsening of v. Since v is quasi-divisorial, it follows that wK is divisible, thus wL is

divisible too. Therefore, Tw = 1 by Fact 2.2; and the canonical projection below is

an isomorphism

πw : Zw → GKw(`).

On the other hand, since KT v = Lv is pro-` closed, and w = vpro-`,L, it follows by

Proposition 2.3, (1), that Lw is pro-` closed too. Thus πw(GL(`)) = GLw(`) = 1,

hence GL(`) is trivial. Contradiction! The Claim is proved.

We return to the proof of assertion (3): Taking into account that w = vpro-`,KT

is pro-` Henselian on Λ, and that Λ ⊆ KT = L, by using the Claim above and the

properties of pro-` core, we get:

v = vpro-`,KT ≤ vpro-`,Λ ≤ v.

Hence finally vpro-`,Λ = v. Therefore, as in loc.cit., it follows that v is pro-` Henselian

on the fixed field K(`)Z′

. Equivalently, Z ′ ⊆ Zv.

4. Characterization of the (quasi-)divisorial subgroups

A) Arithmetical nature of quasi-divisorial subgroups. — Recall the nota-

tions from the Introduction: A closed subgroup Z ⊂ GK(`) is called quasi-divisorial,

if it is divisorial like and maximal among the divisorial like subgroups of GK(`). The

aim of this section is to show that the quasi-divisorial subgroups are of arithmeti-

cal/geometrical nature. More precisely, we will prove the following:

Proposition 4.1. — Let K|k be a function field with d = td(K|k) > 1. Then the

following hold:

(1) Every divisorial like subgroup of GK(`) is contained in a unique quasi-divisorial

subgroup of GK(`).
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(2) Suppose that Z is a quasi-divisorial subgroup of GK(`). Then there ex-

ists a unique quasi-divisorial valuation v on K(`) such that Zv = Z. Moreover,

char(Kv) 6= `.

Proof. — The main step in the proof is the following Key Lemma, which in some sense

plays the same role as the q-Lemma in the Local theory from [P1]. Nevertheless, its

proof requires other techniques, see below.

Key Lemma 4.2. — In the context of the Theorem, let Z ⊂ GK(`) be a subgroup with

the following properties:

i) Z contains closed subgroups Z0 isomorphic to Zd
` with d = td(K|k).

ii) Z has non-trivial Abelian normal subgroups.

Then there exists a non-trivial valuation v of K(`) which is pro-` Henselian on the

fixed field KZ of Z in K(`) and satisfies the following: v has no relative defect, and

rv > 0, and char(Kv) 6= `, and Tv ∩ Z ∼= Z
rv

` .

Moreover, if Z has a pro-cyclic normal subgroup T such that Z/T has no non-

trivial Abelian normal subgroups, then there exists a unique quasi-divisorial valuation

v such that Z ⊆ Zv and T = Tv ∩ Z.

Proof. — The main ingredient in the proof of Key Lemma is the following re-

sult, see e.g. Engler–Nogueira [EN] for ` = 2, and Engler–Koenigsmann [EK]

and/or Efrat [Efr] in general. And naturally, one could use here Bogomolov [Bog],

Bogomolov–Tschinkel [BTa].

Fact 4.3. — Let Λ be a field such that GΛ(`) ∼= Z` ×| Z`. Then there exists a non-

trivial valuation w on K(`) which is `-Henselian on Λ such that wΛ is not `-divisible,

and the residual characteristic char(Λw) 6= `.

As a consequence of Fact 4.3 we have the following:

Fact 4.4. — Let K|k be as above, and d = td(K|k). Then by induction on d it follows:

Every Abelian subgroup G ⊂ GK(`) is of the form G ∼= Zs
` for some s = sG ≤ d.

Using these facts and the techniques developed in Pop [Popb], Local Theory, one

can easily prove the above Key Lemma as follows:

Let KZ be the fixed field of Z in K(`). Let T ′ ∼= Zr
` be a maximal non-trivial

Abelian normal subgroup of Z. We remark that Z contains a subgroup G ⊆ Z as

the one in the Fact 4.3 above such that G ∩ T ′ is non-trivial. Indeed, if r > 1, then

T ′ contains a subgroup G ∼= Z` × Z`. If on the other side r = 1, then we choose any

g ∈ Z not in T ′. Then denoting by G the closed subgroup generated by T ′ and g, we

get a subgroup G ⊆ Z with the desired properties.

Next let Λ be the fixed field of G in K(`). Then by Fact 4.3 above, there is a

valuation w on K(`) which is pro-` Henselian on Λ and satisfies: wΛ is not `-divisible,

and Λw has characteristic 6= `.
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In particular, w is also pro-` Henselian on the fixed field ΛT ′∩G of T ′ ∩G in K(`).

Let v be the pro-` ΛT ′∩G-core of w. We claim that v has the properties we asked for

in the Key Lemma.

Claim 1. — v is pro-` Henselian on KZ .

Indeed, taking into account that T ′ ∩ G is a normal subgroup of T ′, it follows by

Proposition 2.4, (1), that v is pro-` Henselian on the fixed field KT ′

of T ′ in K(`). On

the other hand, since KT ′

⊆ ΛT ′∩G, and v equals its pro-` ΛT ′∩G-core, it follows that

v equals its pro-` KT ′

-core. Thus reasoning as above, since T ′ is a normal subgroup

in Z, it follows that v is pro-` Henselian on the fixed field KZ of Z in K(`). And

moreover, v equals its pro-` KZ-core.

Claim 2. — v has no relative defect.

Indeed, let Λ0 be the fixed field of a subgroup Z0
∼= Zd

` of Z ⊂ GK(`). Taking into

account that v is pro-` Henselian on Λ0, applying Fact 2.2, 3), we have:

Zd
`
∼= Z0 = GΛ0

(`) ∼= Z
δ0

` × GΛ0v(`),

where δ0 equals the dimension of the F` vector space vΛ0/`. And since Z0 is Abelian,

GΛ0v(`) is Abelian too, say GΛ0v(`) ∼= Zs
` . Hence d = δ0 + s. On the other hand, we

have the inequalities as follows:

a) δ0 ≤ δv = rv, deduced from the exact sequence 0 → vk → vK → Zrv → 0.

Here vk is a divisible group, and δv is the dimension of the F` vector space vK/`.

b) s ≤ td(Λ0v |kv) = td(Kv |kv) = tdv, by Fact 4.4.

Therefore we have: d = δ0 + s ≤ rv + tdv ≤ d, and hence the inequalities at a), b)

above are equalities, and rv + tdv = d. Thus v has no relative defect.

In order to show that Tv ∩Z ∼= Z
rv

` , we use the conclusion of the discussion above:

We have namely proved that via πv : Zv → GKv(`) one has: Z0∩ker(πv) ∼= Z
δ0

` = Z
rv

` .

Therefore, since ker(πv) = Tv, we have:

Zrv ∼= Z0 ∩ Tv ⊆ Z ∩ Tv ⊆ Tv
∼= Zrv .

Thus finally we get Tv ∩ Z ∼= Z
rv

` .

Finally, we address the last assertion of the Key Lemma, and consider the case

when Z has a pro-cyclic normal subgroup T such that Z/T has no non-trivial Abelian

subgroups. Let v be the valuation just constructed above. Since Tv is the center of Zv,

it follows that Z ∩ Tv
∼= Z

rv

` is contained in the center of Z. Hence by the hypothesis

on Z and T it follows that Z ∩ Tv is contained in T ∼= Z`, thus in particular rv = 1.

Furthermore, since Z`
∼= Tv ∩Z ⊆ T ∼= Z`, it follows that Tv ∩Z is an open subgroup

of T . Thus
πv(T ) ∼= T/(T ∩ Tv) = T/(Z ∩ Tv)

is a finite cyclic subgroup of GKv(`). Since GKv(`) is torsion free, it follows that

πv(T ) = 1, thus T = Tv ∩ Z.
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In order to conclude, replace v by its minimal coarsening v′ which is a quasi-

divisorial valuation, as in Appendix, Fact 5.5, 3). Then by Fact 2.1, 3), one has

Zv ⊆ Zv′ . And by Proposition 3.5, (3), v′ is the only quasi-divisorial valuation of

K(`) such that Zv ⊆ Zv′ .

This concludes the proof of the Key Lemma.

We now come to the proof of the Proposition 4.1. Assertion (1) is an immediate

consequence of the Key Lemma and the fact that (by Proposition 3.3) the divisorial

like subgroups satisfy the conditions i), ii), of the Key Lemma. For Assertion (2),

the uniqueness of v follows from Proposition 2.4 by taking into account that a quasi-

divisorial valuation equals its absolute pro-` core (as its residue field is not pro-` closed

if d > 1).

B) Characterization of the divisorial subgroups. — We now show that us-

ing the information encoded in “sufficiently many” 1-dimensional projections one can

characterize the divisorial subgroups among all the quasi-divisorial subgroups. First

some preparations:

Fact 4.5. — Let K|k be a function field in d = td(K|k) > 1 variables, and L|k a

function subfield of K|k with td(L|k) > 0. In particular, we can and will view L(`)

as a subfield of K(`). Finally let v be a valuation of K(`), and denote by KZ and LZ

its decomposition groups in GK(`), respectively GL(`). Then the following hold:

1) If v is defectless on K(`), then v is defectless on L(`). Moreover, if v is a quasi-

divisorial valuation of K(`), then v is either trivial or a quasi-divisorial valuation on

L(`).

2) One has LZ ⊆ KZ . Further, denoting by L′ the relative algebraic closure of LZ

in KZ , it follows that L′|LZ is finite.

Proof. — The first assertion follows by the additivity of rv and tdv in towers of

fields in the case of defectless valuations. For the second assertion see the proof of

Corollary 1.18 from [Popb].

Next we define 1-dimensional projections of GK(`) as follows: For every t ∈ K\k,

let Kt be the relative algebraic closure of k(t) in K. Then Kt|k is a function field in

one variable. Moreover, if t is “general”, then Kt = k(t) is a rational function field

over k. Turning our attention to Galois theory, the inclusion ıt : Kt → K gives rise

to a surjective restriction homomorphism

pt : GK(`) → GKt
(`).

We now are ready to announce the recipe for detecting the divisorial valuations of

K|k using the projections pt.

SÉMINAIRES & CONGRÈS 13
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Proposition 4.6. — Let K|k be a function field as usual, and suppose td(K|k) > 1.

Then for a given quasi-divisorial subgroup Z ⊂ GK(`), the following assertions are

equivalent:

i) Z is a divisorial subgroup of GK(`).

ii) ∃ t ∈ K\k such that pt(Z) ⊆ GKt
(`) is an open subgroup.

Proof. — First, suppose that Z = Zv is the divisorial subgroup defined by some

divisorial valuation v on K(`). Then choosing t such that t is a v-unit and tv is

transcendental over k in Kv, we have: v is trivial on L := Kt. And in particular, v

is pro-` Henselian on L, i.e., LZ = L. Therefore, in the notations from the Fact 4.5

above, it follows by loc.cit. that the relative algebraic closure L′ of LZ = L in KZ is

a finite extension of L = Kt. Thus pt(Z) = GL′(`) ≤ GKt
(`) is an open subgroup.

Conversely, suppose that pt(Z) is an open subgroup of GKt
(`) for some non-

constant t ∈ K. Equivalently, the relative algebraic closure L′ of the field L := Kt in

KZ is a finite extension of L. Now denoting by LZ the decomposition field of v in

L(`), it follows by Fact 4.5 that L ⊆ LZ ⊆ L′. Therefore, LZ |L is finite, thus LZ |k is

a function field in one variable over k. And since v is a pro-` Henselian valuation of

this function field, it follows that v must be trivial on LZ . In particular, v is trivial

on k. Hence v is a Zariski prime divisor of K.

5. Appendix

A) Geometric interpretation of the Zariski prime divisors. — Let K|k be a

function field. A model X → k of K|k is any integral k-variety X → k whose function

field k(X)|k is identified with K|k. In particular, we then identify the structure sheaf

OX with a sheaf of k-subalgebras of K|k. In particular, the restriction morphisms of

OX , say ρUV : OX(U) → OX(V ) for V ⊂ U are simply the inclusions. Therefore, we

have the following:

Fact 5.1. — On the set of all the models Xi → k of K|k there exists a naturally

defined domination relation as follows: Xj ≥ Xi if and only if there exists a surjective

morphism ϕji : Xj → Xi which at the structure sheaf level is defined by inclusions.

Let PK be the set of all projective normal models of K. Some basic results in algebraic

geometry guarantee the following, see e.g., Zariski–Samuel [ZS], Ch.VI, especially §17,

Mumford [Mum99], Ch.I, etc.:

1. Every model Xi → k is contained as an open subvariety in a complete model

X̃i → k of K|k (Nagata’s Theorem).

2. Every complete model X → k is dominated by some Xi ∈ PK (Chow’s Lemma).

3. The set PK is increasingly filtered with respect to ≥, hence it is a surjective

projective system.
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4. Given any function f 6= 0 in K, there exist projective models Xi → k such that

for each xi ∈ Xi one has: Either f of 1/f is defined at xi.

5. Let v be a k-valuation of K|k with valuation ring Ov. Then for every model

X → k of K|k, there exists at most one point x ∈ X such that Ov dominates

the local ring OX,x (Valuation criterion).

If such a point exists, we will say that x is the center of v on X .

6. If in the above context, X → k is proper, then every v has a center on X

(valuation criterion).

Remark/Definition 5.2. — We denote by RK|k the space of all the k-valuations of K|k,

and call it the Riemann space of K|k. There exists a canonical identification of RK|k

with lim
←−

i

Xi as follows:

Let v be a k-valuation of K|k with valuation ring Ov. For every projective – thus

proper – model Xi → k of K|k, let xi ∈ Xi be the center of v on Xi. Clearly,

if Xj ≥ Xi, say via a morphism φji : Xj → Xi, then φji(xj) = xi. Therefore

(xi)i ∈ RK = lim
←−

i

Xi. Further, for the local rings we have: OXi,xi
⊆ OXj ,xj

. Thus

Rv := ∪Xi
OXi,xi

is a k-subalgebra of K|k, which finally turns to be exactly the

valuation ring Ov.

Conversely, given (xi)i ∈ lim
←−

i

Xi, one has: OXi,xi
⊆ OXj ,xj

if j ≥ i. Thus O :=

∪Xi
OXi,xi

is a k-subalgebra of K|k. Using Fact 3.1, 4) above, it follows that for every

f 6= 0 from K one has: Either f of 1/f lie in OXi,xi
for i sufficiently large; thus f of

1/f lie in O. Hence O is a k-valuation ring of a k-valuation v of K|k.

Remark/Definition 5.3. — We remark that for a point v = (xi)i in RK|k as above, the

following conditions are equivalent, one uses e.g. [Bou], Ch.IV, §3, or [Popb], The

Local Theory:

i) For i sufficiently large, xi has co-dimension 1, or equivalently, xi is the generic

point of a prime Weil divisor of Xi. Hence v is the discrete k-valuation of K with

valuation ring OXi,xi
.

ii) v is discrete, and Kv|k is a function field in td(K|k) − 1 variables.

iii) td(Kv |k) = td(K|k) − 1.

A valuation v on K with the above equivalent properties is called a Zariski prime

divisor of K|k. As a corollary of the observations above we have:

The space of all Zariski prime divisors of K is the union of the spaces of Weil

prime divisors of all normal models of K|k (if we identify every Weil prime divisor

with the discrete valuation on K it defines).

B) Defectless valuations. — We consider function fields K|k as at the beginning

of the Subsection 3, B). In the notations from there, for a valuation v of K we denote
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by rv and tdv the rational rank, respectively the residual transcendence degree of v.

We recall the following basic facts concerning defectless valuations.

Fact 5.4. — Let v be the composition v = v0 v′ of a valuation v′ on K(`) and a

valuation v0 on K0(`), where K0 := Kv′ is a field extension of the algebraically closed

field k0 := kv′.

1) One has a canonical diagram with exact rows as follows:

0 → v0k0 → vk → v′k → 0




y





y





y

0 → v0K0 → vK → v′K → 0

The vertical maps are inclusions, therefore one has an exact sequence of torsion free

groups

(∗) 0 → v0K0/v0k0 → vK/vk → v′K/v′k → 0 .

From this we deduce the following:

a) r(·) is additive in the following sense: rv = rv′ + rv0
.

b) There exists a unique minimal coarsening say v′ of v such that rv′ = rv.

And this coarsening is defined by some convex divisible subgroup ∆′ of vK.

2) Further, one has tdv = tdv0
, thus tdv′ ≥ tdv +rv0

.

3) Hence v is defectless ⇐⇒ both v′ and v0 are defectless.

Proof. — The only less obvious fact might be assertion b). In order to prove it,

suppose first that v′ is a coarsening of v such that rv′ = rv. Then from the exact

sequence (∗) above we deduce that rv0
= 0. Thus v0K0/v0k0 is a torsion free group

of rational rank equal to 0. Hence v0K0 = v0k0. Since k0 = kv′ is algebraically

closed, v0k0 is divisible; hence the convex subgroup ∆v′ := v0K0 of vK defining v′ is

divisible. One gets ∆′ by taking the union of all the convex divisible subgroups of the

form ∆v′ for v′ having rv′ = rv.

Note that ∆′ = vK if and only if rv = 0.

Fact 5.5. — Let v be a defectless valuation on K(`).

1) The fundamental equality holds for every finite extension L|K of K. This means,

that if v1, . . . , vr are the finitely many prolongations of v0 := v|K to L, then

[L : K] =
∑

ie(vi|v0) f(vi|v0).

This is a non-trivial fact, see e.g., Kuhlmann [Kuh]. It is a generalization of results

by several people starting with Deuring, Grauert–Remmert’s Stability Theorem from

the rigid algebraic geometry, etc.

2) In particular, using the description of the defectless valuations given by Fact 5.6

below, one gets the following:

a) vK / vk ∼= Zrv .
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b) Kv |kv is a function field in tdv variables.

3) The unique minimal coarsening v′ of v such that rv = rv′ – defined in Fact 5.4,

1), b), is defectless and is defined by the unique maximal divisible convex subgroup ∆′

of vK.

In particular, for every defectless valuation v of K(`) with rv = 1, there exists a

unique coarsening v′ of v which is a quasi-divisorial valuation of K|k.

Fact 5.6. — A recipe which produces all possible valuations without relative defect

on K|k with given invariants r = rv and td = tdv is as follows:

First let v be a defectless valuation on K(`), say with invariants r = rv and

td = tdv. Since vK(`)/vK is a torsion group, it follows that vK/vk has rational rank

equal to r. We do the following:

– Choose a system (t1, . . . , tr) of elements of K× such that setting γi = v ti, the

resulting system (γ1, . . . , γr) of elements of vK is linearly independent in vK/vk.

– Further choose a system of v-units T0 = (tr+1, . . . , td) in K such that

(tr+1v, . . . , tdv) is a transcendence basis of Kv |kv.

Using e.g. [Bou], Ch.6, §10, 3, it follows that T = (t1, . . . , td) is a system of elements

of K which is algebraically independent over k. Since v is defectless by hypothesis,

it follows that d = td(K|k), i.e., T is a transcendence basis of K|k. Thus denoting

by wT0 and wT the restrictions of v to the rational function fields k(T0) ⊂ k(T )

respectively, the following hold:

i) wT0 is the so called generalized Gauß valuation defined by vk := v|k and T0 on

k(T0), i.e., for every polynomial p(t) in the system of variables t0 = (tr+1, . . . , td),

say p(t0) =
∑

i
ait

i
0 ∈ k[T0] one has:

wT0
(

p(t0)
)

= min
i

vk(ai) = v
(

p(t0)
)

.

ii) wT is the unique prolongation of wT0 to k(T ) such that for all ti (1 ≤ i ≤ r)

one has:

wT (ti) = γi = v(ti).

And finally, v|K is one of the finitely many prolongations of vT to the finite exten-

sion K|k(T ).

In particular, Γ := vk(T ) = wT k(T ) = vk + γ1Z + · · · + γrZ is a totally ordered

group such that Γ/vk is a free Abelian group of rank r. And the residue field k(T )vT
is the rational function field kv(tr+1v, . . . , tdv).

The observation above can be “reversed” in order to produce defectless valuations

on K(`) as follows. Consider:

– Valuations vk on k together with totally ordered groups of the form Γ = vkk +

γ1Z + · · · + γrZ with Γ/vkk a free Abelian group of rank r.

– Transcendence bases T = (t1, . . . , td) of K|k.
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We set T0 = (tr+1, . . . , td). On the rational function fields k(T0) we consider the

generalized Gauß valuation wT0 defined by vk and T0; and we denote by wT the unique

prolongation of wT0 to k(T ) satisfying wT (ti) = γi if i ≤ r.

Then finally we have:

For every wT obtained as indicated above, all its prolongations v to K(`) are

defectless valuations on K(`).

Conversely, every valuation without relative defect on K|k is obtained by the above

recipe.

In particular, a valuation v without relative defect on K(`) is a Zariski prime divisor

⇐⇒ v is trivial on k and has rv = 1

Remark 5.7. — It would be very desirable to have a geometric description of the space

of all the quasi-divisorial valuations of K(`), thus generalizing the construction of all

the Zariski prime divisors of K|k given in the subsection A) above. Unfortunately, at

the moment we are not able to do this in a satisfactory way.

One could do this along the same lines as in subsection A) above for a special class

of quasi-divisorial valuations, which are the so called constant reductions à la Deuring,

see Roquette [Roq], followed by Zariski prime divisors of the residue function fields

of such constant reductions. This situation arises in an arithmetical way as follows,

see loc.cit.:

Let R be the valuation ring of a valuation vk of the base field k. Let X0 =

ProjR[X0, . . . , Xd] be the d-dimensional projective space over R, where d = td(K|k).

Let T be a transcendence basis of K|k, and identify k(T ) with the function field of

X0 via ti = Xi/X0. Then the local ring of the generic point η of the special fiber

of X0 is exactly the valuation ring of the Gauß T , vk-valuation vT on k(T ). Finally,

if X → X0 is the normalization of X0 in the function field extension k(T ) ↪→ K,

then denoting by ηi the generic points of the special fiber of X , it follows that the

corresponding local rings OX ,ηi
are exactly the valuation rings of the prolongations

vi of vT to K. Obviously, if vi is a constant reduction of K|k, then rvi
= 0 and

tdvi
= td(K|k). By abuse of language, we will say that a valuation v0 of K(`) is

a constant reduction, if td(Kv0| kv0) = td(K|k). Thus the constant reductions of

K(`) are exactly the prolongations to K(`) of the “usual” constant reductions of K|k

defined above.

Finally, if v0 is a given constant reduction of K(`), and v1 is a Zariski prime

divisor of the residue field K(`)v0 = (Kv0)(`) of v0, then the composition of the

two valuations v = v1v0 is a quasi-divisorial valuation on K(`) which we call a

c.r.-divisorial valuation.
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