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Abstract. The asymptotically leading term of quasinormal modes (QNMs) in the
Schwarzschild background, ωn = −in/2, is obtained in two straightforward analytical ways
for arbitrary spins.

Key words: Regge–Wheeler equation; quasinormal modes

2000 Mathematics Subject Classification: 83C05; 83C45; 83C57

1 Introduction

The investigation of perturbations of various fields in the Schwarzschild background was started
in [1, 2]. Quasinormal modes (QNM) are the eigenmodes of the homogeneous wave equations,
describing these perturbations, with the boundary conditions corresponding to outgoing waves
at the spatial infinity and incoming waves at the horizon. The interest to QNMs was initiated
by [3, 4].

Two boundary conditions make the frequency spectrum ωn of QNMs discrete. The asymptotic
form of this spectrum for gravitational and scalar perturbations of the Schwarzschild background
was found initially in [5, 6] by numerical methods:

ωn = − i

2

(
n +

1
2

)
+ 0.087424, n→∞, s = 0, 2. (1)

Here and below the gravitational radius rg is put to unity; s is the spin of the perturbation.
This result up to now serves as a touch stone for investigations in the field.

A curious observation was made in [7]: the real constant in (1) can be presented as

Re ωn =
ln 3
4π

= TH ln 3, (2)

where TH is the Hawking temperature (TH = 1/(8πkM) in the common units)1. Then, expres-
sion (2) for the asymptotic of Re ωn was derived in [8] by solving approximately the recursion
relations used previously in the numerical calculations. In the next paper [9] formula (2) was de-
rived analytically. Besides, in [8] the following result was obtained for the asymptotic of QNMs
for spin 1:

ωn = − i

2
n, Re ωn → 0, n→∞, s = 1. (3)

1It was also conjectured in [7] that the asymptotic value (2) for Re ωn is of a crucial importance for the
quantization of gravitational field, fixing the value of the so-called Barbero–Immirzi parameter. In spite of being
very popular, this idea is not in fact dictated by any sound physical arguments; quite the contrary, it is in conflict
with them [10].
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While the results (1), (3) for integer s are firmly established now, it is not the case for
spin 1/2. Two different approaches2 used in [11] result in the interval two times smaller than
those for integer spins, namely:

ωn = − i

4
n, n→∞, s = 1/2. (4)

On the other hand, numerical calculations in [12] result in spectrum

ωn = − i

2

(
n +

1
2

)
, Re ωn → 0, n→∞, s = 1/2. (5)

One of the motivations of our work was the resolution of this discrepancy; we confirm below the
leading term in equation (5).

2 Quasinormal modes in Regge–Wheeler formalism

Our derivation is based on the Regge–Wheeler equation treated to the leading approximation
in large frequency ω, |ω| � 1.

In general, this equation for the radial function Ψ corresponding to the angular momentum j
of a field with integer spin s (s = 0, 1, 2; j ≥ s) is written usually as

d2Ψ
dz2

+
{

ω2 −
(

1− 1
r

) [
j(j + 1)

r2
+

1− s2

r3

]}
Ψ = 0. (6)

Its analogue for s = 1/2 (again the angular momentum j ≥ s), written for the standard repre-
sentation of the Dirac γ-matrices and states of definite parity, is

d2Ψ
dz2

+

{
ω2 −

(
1− 1

r

)
(j + 1/2)2

r2
+

κ

2r3

(
1− 1

r

)1/2

− κ

r2

(
1− 1

r

)3/2
}

Ψ = 0; (7)

here κ = ±(j + 1/2), with the sign depending on the parity of the state considered (this sign is
irrelevant for our problem). The presence of the terms with fractional powers of r and r − 1 in
equation (7) is quite natural since wave equations for half-integer spins are written via tetrads
which are roughly square roots of metric3.

In both equations, (6) and (7), r is treated as a function of the so-called “tortoise” coordi-
nate z. They are related as follows: z = r + ln(r − 1), so that z →∞ for r →∞, and z → −∞
for r → 1. The boundary conditions for QNMs of (6) and (7) are

Ψ(z) ∼ e±iωz, z → ±∞. (8)

For our purpose, it is convenient to go over in both equations, (6) and (7), to the usual
coordinate r and to new radial function u(r) related to Ψ as follows:

Ψ =
r1/2

(r − 1)1/2
u(r). (9)

2We believe that one of them, despite being rather popular, can be dismissed at once. It is based on the
analysis of the location of the poles of the scattering amplitude which by itself causes no objections. However,
following [13, 14, 15], the authors of [11] analyze the poles of the corresponding Born amplitude. Meanwhile,
the Born approximation by itself implies that the amplitude of the scattered wave is small. Therefore, its poles
cannot have any meaning. Any coincidence between their position and that of the poles of a true amplitude is an
accident only.

3We mention here one more rather popular belief, namely, that equation (6) applies to half-integer s as well.
The explicit difference between (6) and (7) demonstrates that this idea is wrong.
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The obtained equations for u(r) can be rewritten as

d2u

dr2
+

{
ω2 +

1
r − 1

[
2ω2 −

(
j +

1
2

)2

+ s2 − 1
4

]
+

1
(r − 1)2

(
ω2 +

1
4

)

+
1
r

[(
j +

1
2

)2

− s2 +
1
4

]
+

1
r2

(
−s2 +

1
4

)}
u = 0, s = 0, 1, 2; (10)

d2u

dr2
+

{
ω2 +

1
r − 1

[
2ω2 −

(
j +

1
2

)2

+
1
2

]
+

1
(r − 1)2

(
ω2 +

1
4

)
(11)

+
1
r

[(
j +

1
2

)2

− 1
2

]
− 3

4
1
r2
− κ

r3/2(r − 1)1/2
+

1
2

κ

r3/2(r − 1)3/2

}
u = 0, s = 1/2.

We are interested in the solutions of equations (10) and (11) in the interval 1 < r < ∞ for
|ω| → ∞. Obviously, all the terms singular at r → 0, in both these equations, are relatively
small in this interval if |ω| → ∞4. Therefore, these terms can be safely omitted, and we arrive
at the following universal truncated wave equation for all spins:

d2u

dr2
+

[
ω2 +

2ω2

r − 1
+

ω2 + 1/4
(r − 1)2

]
u = 0. (12)

We have omitted here also the terms −(j + 1/2)2 + s2 and −(j + 1/2)2 + 1/2 in the coefficients
at 1/(r− 1) in (10) and (11), respectively. Though these terms could be easily included into the
solutions, they would result in corrections to Im ωn on the order of 1/n only, which are negligible
as compared to the leading term ∼ n.

We retain however the term 1/4 in the coefficient at 1/(r − 1)2 in (12). Otherwise the
wave function asymptotic for z → −∞ would be e−iωz+1/2, instead of e−iωz. In other words,
the effective potential in the initial Regge–Wheeler equations (6), (7) would not vanish for
z → −∞, but would tend instead to 1/4. Indeed, the wave function asymptotic for z → −∞ is
determined by the discussed coefficient at 1/(r−1)2. Since the coefficient ω2 +1/4 at 1/(r−1)2

in (12) corresponds to ω2 in equations (6), (7), then obviously the coefficient ω2 in (12) would
correspond to ω2 − 1/4 in (6), (7).

To summarize, it is only natural that equation (12), essentially semiclassical one (due to the
assumption |ω| � 1), is universal, i.e. independent of spin s. Moreover, even if one assumes that
j � 1 as well (i.e. gives up the condition j � |ω| used in (12)), the resulting, again semiclassical
equation

d2u

dr2
+

{
ω2 +

2ω2

r − 1
+

1
(r − 1)2

(
ω2 +

1
4

)
− 1

r(r − 1)

(
j +

1
2

)2
}

u = 0 (13)

is still universal, i.e. spin-independent.
We address now the eigenvalues of equation (12). Its two independent solutions can be

conveniently expressed via the Whittaker functions Wλ,µ(x) [16]. They are

Wiω,iω(−2iω(r − 1)), W−iω,iω(2iω(r − 1)).

4In particular, in equation (11)

|κ|r−3/2(r − 1)−1/2 � |ω2|(r − 1)−1, and |κ|r−3/2(r − 1)−3/2 � |ω2|(r − 1)−2

for the interval 1 < r < ∞.
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r

1

Figure 1. Closed contour in the complex r plane.

With their different asymptotic for r →∞,

Wiω,iω(−2iω(r − 1))→ eiω[r+ln(r−1)] = eiωz,

W−iω,iω(2iω(r − 1))→ e−iω[r+ln(r−1)] = e−iωz,

these solutions are obviously independent. On the other hand, the second one does not comply
with boundary condition (8) and therefore should be excluded.

As to the first solution, its limit for r → 1 is

Wiω,iω(−2iω(r − 1)) −→

−→ Γ(−2iω)
Γ(1/2− 2iω)

[−2iω(r − 1)]iω+1/2 +
Γ(2iω)
Γ(1/2)

[−2iω(r − 1)]−iω+1/2. (14)

When going over to the function Ψ used in the “tortoise” coordinate z (see (9)), the overall factor
(r − 1)1/2 in this expression cancels, and (r − 1)±iω goes over into e±iωz for r → 1. To comply
with the boundary condition on the horizon, one should get rid of the first term in equation (14).
To this end, recalling that Γ(−n) has poles for integer positive n, we put 1/2 − 2iω = −n, or
ωn = −(i/2)(n + 1/2).

In fact, equation (12) by itself was obtained from (10) and (11) under the assumption
|ωn| → ∞, or n � 1. Therefore, in this way we can guarantee, for the initial problem, only
that

ωn = − i

2
n, n� 1, (15)

for all spins. Though less accurate than quantization rules (1), (3), and (5), this one is still quite
sufficient for insisting that the correct quantization rule for spin 1/2 is (5), but not (4).

3 Alternative derivation of quasinormal modes

The same result can be obtained otherwise, without resorting to special functions. This deriva-
tion is as follows.

Equation (12) has two singular points, r = 1 and r = ∞. We connect them by a cut in the
complex plane r going, for instance, from r = 1 along the real axis to the right (see Fig. 1). Let
us consider the closed contour marked by the dashed line in Fig. 1. Since there is no singularity
inside it, the solution at some point on this contour, after going around the contour, comes back
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to its initial value, which means that the phase of this solution changes by 2πn, n = 0,±1,±2, . . . .
When we follow an arc of a large radius r � 1, where the asymptotic solution is eiωrriω, i.e. go
around the singular point at infinity, the wave function acquires the phase δ(∞) = 2πiω. Then
we go around the branch point r = 1 by following an arc of a small radius. Here the asymptotic
solution is (r− 1)−iω+1/2, and the wave function acquires the phase δ(1) = 2π(iω − 1/2). As to
the paths along the cut, no phase at all is acquired along them. Indeed, this cut is due to the
mentioned asymptotic solution v(r) = (r − 1)−iω+1/2, and therefore the wave function can be
written as u(r) = v(r)w(r), where w(r) is analytic at r = 1, i.e. has no cut at all. The phase
acquired by u(r) is obviously the sum of phases acquired by v(r) and w(r). However, along the
paths adjacent to the cut, the phase of v(r) = (r−1)−iω+1/2 remains constant, as well as that of
r− 1. As to the analytic function w(r), along the path from 1 to ∞ its phase can vary, but this
change will be cancelled exactly by that acquired when going in the opposite direction, from ∞
to 1. In other words, effectively for our purpose, the branch point r = 1 behaves as if it were an
isolated singularity.

Thus, going counter-clockwise around the considered closed contour in the complex plane,
one obtains

δ(∞) + δ(1) = 4πiω − π = 2πn,

or the quantization rule

ωn = − i

2
(n + 1/2).

Being interested in the solutions decreasing in time, we choose here positive n (and of course
large ones).
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