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1 Introduction

A bi-Hamiltonian manifold M is a smooth manifold endowed with two compatible bi-vec-
tors P , P ′ such that

[P, P ] = [P, P ′] = [P ′, P ′] = 0,

where [·, ·] is the Schouten bracket. The bi-vectors P , P ′ determine a pair of compatible Poisson
brackets on M , for instance

{f(z), g(z)} = 〈df, Pdg〉 =
dim M∑

i,j

P ij(z)
∂f(z)
∂zi

∂g(z)
∂zj

, (1.1)

and similar brackets {·, ·}′ to P ′.
Dynamical systems on M having enough functionally independent integrals of motion H1, . . .,

Hn in involution with respect to both Poisson brackets

{Hi,Hj} = {Hi,Hj}′ = 0. (1.2)

will be called bi-integrable systems.
A sufficient condition in order that integrals of motion H1, . . . ,Hn be in bi-involution is

that the corresponding vector fields XHi are bi-Hamiltonian vector fields [13, 17], which form
a so-called anchored Lenard–Magri sequence

PdH1 = 0, XHi = PdHi = P ′dHi−1, P ′dHn = 0. (1.3)

The class of manifolds we will consider are particular bi-Hamiltonian manifolds, to be termed
ωN -manifolds, where one of the two Poisson bi-vectors is nondegenerate (say P ) and thus defines
a symplectic form ω = P−1 and, together with the other one, a recursion operator [3, 4]

N = P ′P−1, (1.4)
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and its dual N∗ = P−1P ′. Operator N is called a Nijenhuis operator [13, 17] or hereditary
operator [10, 8].

One of the main property of the recursion operator N is that bi-vectors P = P (0) and
P ′ = P (1) belong to a whole family of compatible Poisson tensors

P (k) = NkP, (1.5)

which define a family of compatible Poisson brackets {·, ·}(k) on the ωN -manifold M .
Another useful property of N is that normalized traces of the powers of N are integrals of

motion satisfying Lenard–Magri recurrent relations (1.3) [17]:

Hj =
1
2j

trN j . (1.6)

The class of coordinates, called Darboux–Nijenhuis coordinates, are canonical with respect to ω
and diagonalize recursion operator N . According to [3, 4], the n-tuple (H0, . . . ,Hn) of Hamil-
tonians on M (where n = 1

2 dim M) is separable in Darboux–Nijenhuis coordinates if and only
if they are in involution with respect to both Poisson brackets (1.2).

In this paper we compare two known families of the separated variables for the open Toda
lattice [18, 19] with the corresponding Darboux–Nijenhuis coordinates.

2 The separation of variables method

In the separation of variables method variables we are looking for complete integral S(q, t, α1, . . .,
αn) of the Hamilton–Jacobi equation

∂S

∂t
+ H

(
q,

∂S

∂q
, t

)
= 0, det

∥∥∥∥ ∂2S

∂qi∂αj

∥∥∥∥ 6= 0, (2.1)

where q = (q1, . . . , qn), in the additive form

S(q, t, α1, . . . , αn) = −Ht +
n∑

i=1

Si(qi, α1, . . . , αn). (2.2)

Here the i-th component Si depends only on the i-th coordinate qi and n parameters α1, . . . , αn

which are the values of integrals of motion. In such a case H is said to be separable and
coordinates q are said to be separated coordinates for H, in order to stress that the possibility
to find an additive complete integral of (2.2) depends on the choice of the coordinates.

For any complete integral of the equation (2.1) solutions qi = qi(t, α, β) and pi = pi(t, α, β)
of the Hamilton equations of motion are found from the Jacobi equations

βi = − ∂S

∂αi
, pi =

∂S

∂qi
, i = 1, . . . , n. (2.3)

In the separation of variables method the each second Jacobi equation

pi =
∂

∂qi
Si(qi, α1, . . . , αn), (2.4)

contains the pair of the Darboux coordinates pi and qi only. These equations and their more
symmetric form

Φi(qi, pi, α1, . . . , αn) = 0, det
∥∥∥∥∂Φj

∂αk

∥∥∥∥ 6= 0, (2.5)

are called the separated equations.
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The separated variables (p, q) are defined up to canonical transformations pi → fi(pi, qi) and
qi → gi(pi, qi) and integrals of motion Hj = αj can be always replaced with H̃j = φj(H1, . . . ,Hn).
Such transformations change the form of the separated equations (2.5).

For example, we can use canonical transformation to the action-angle variables

Ij =
1
2π

∮
pjdqj =

1
2π

∮
∂Sj(qj , α1, . . . , αn)

∂qj
dqj , wj =

∂W

∂Ij
. (2.6)

Here W =
n∑

i=1
Si(qi, α1, . . . , αn) is Hamilton’s characteristic function. The action-angle variab-

les I, w are the special separated variables which allow us to linearize equations of motion

İj = 0, ẇj = Fj(I1, . . . , In), j = 1, . . . , n.

However, the action-angle variables are not always convenient, for instance for the quantum
integrable system.

Example 1. Consider a two-particle open Toda chain with the following integrals of motion

H1 = p1 + p2, H2 =
p2
1 + p2

2

2
+ eq1−q2 . (2.7)

Variables

v1,2 =
1√
2
(q1 ± q2), u1,2 =

1√
2
(p1 ± p2) (2.8)

are separated variables, because substituting these variables in the definition of integrals of
motion we obtain desired separated equations (2.5)

Φ1(v1, u1, α) =
√

2u1 −H1 = 0, Φ2(v2, u2, α) = e
√

2v2 +
u2

2

2
−H2 +

H2
1

4
= 0.

Provided Hi = αi and ui =
∂Si

∂vi
, these separated equations

∂S1

∂v1
=

α1√
2
,

1
2

(
∂S2

∂v2

)2

+ e
√

2v2 − α2 +
α2

1

4
= 0,

can easily be integrated by quadratures

S1 =
α1v1√

2
, (2.9)

S2 = ∓
√

4α2 − α2
1 − 4e

√
2v2 ±

√
4α2 − α2

1arctanh


√

4α2 − α2
1 − 4e

√
2v2√

4α2 − α2
1

 .

Then we have to substitute the corresponding Hamilton principal function S = −α2t + S1 + S2

in the Jacobi equations

β1 = − ∂S

∂α1
= − v1√

2
+

α1√
4α2 − α2

1

arctanh


√

4α2 − α2
1 − 4e

√
2v2√

4α2 − α2
1

 ,

β2 = − ∂S

∂α2
= t− 2√

4α2 − α2
1

arctanh


√

4α2 − α2
1 − 4e

√
2v2√

4α2 − α2
1

 ,
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and solve the obtained equations with respect to v1,2

v1 =
α1(t− β2)√

2
+
√

2β1,

v2 =
√

2 ln
(

α2 −
α2

1

4

)
− 2

√
2 ln

(
cosh

(√
α2 −

α2
1

4
(t− β2)

))
.

Using these solutions and canonical transformation (2.8) we obtain closed equations for trajec-
tories of motion in the original variables

q1,2 =
α1(t− β2)

2
± 1

2
ln
(

α2 −
α2

1

4

)
∓ ln

(
cosh

(√
α2 −

α2
1

4
(t− β2)

))
− β1. (2.10)

In similar way we can get p1,2(t) from the second Jacobi equations (2.4).
Parameters β1,2 may be excluded by the shifts t → t + β2 and qi → qi + β1 and, thus, the

solutions q1,2(t) depend on two values of integrals of motion α1,2 only.
Now from (2.6) one can easily find the action variables

I1 = α1 =
√

2u1, I2 = 4α2 − α2
1 = 2u2

2 + 4e
√

2v2 (2.11)

and the angle variables

w1 =
∂S

∂I1
=

v1√
2
, w2 =

∂S

∂I1
= − 1

2
√

2

arctanh

(
u2√

u2
2+2e

√
2v2

)
√

u2
2 + 2e

√
2v2

. (2.12)

In these coordinates symplectic form has a standard form

ω =
2∑

j=1

dpj ∧ dqj =
2∑

j=1

dIj ∧ dwj

and equations of motion are linearized

İj = 0, ẇ1 =
∂H

∂I1
=

I1

2
, ẇ2 =

∂H

∂I2
=

1
4
.

Using solutions of these equations and inverted canonical transformation I, w → p, q one can
easily derive equations for the trajectories of motion (2.10).

Separated variables v1,2 and u1,2 can also be used in quantum mechanics, for example, to
find the spectrum of Hamiltonian of a periodical two-particle Toda chain [14].

2.1 Darboux–Nijenhuis coordinates

In this section we will describe a class of canonical coordinates on ωN -manifolds, called Darboux–
Nijenhuis coordinates. They will play the important role of variables of separation for (suitable)
systems on ωN -manifolds.

By definition a set of local coordinates (xi, yi) on an ωN -manifold is called a set of Darboux–
Nijenhuis coordinates if they are canonical with respect to the symplectic form

ω = P−1 =
n∑

i=1

dyi ∧ dxi
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and put the recursion operator N in diagonal form,

N =
n∑

i=1

λi

(
∂

∂xi
⊗ dxi +

∂

∂yi
⊗ dyi

)
. (2.13)

This means that the only nonzero Poisson brackets are

{xi, yj} = δij , {xi, yj}′ = λiδij . (2.14)

The distinguishing property of the pairs of Darboux–Nijenhuis coordinates (xi, yi) is that their
differentials span an eigenspace of N∗, that is, satisfy the equations

N∗dxi = λidxi, N∗dyi = λidyi (2.15)

As a consequence of the compatibility between P and P ′, the Nijenhuis torsion of N vanishes

TN (X, Y ) = [NX,NY ]−N
(
[NX,Y ] + [X, NY ]−N [X, Y ]

)
= 0, (2.16)

here X, Y are arbitrary vector fields on M .
According to the Frölicher–Nijenhuis theory [9], condition (2.16) implies that the distribution

of the eigenvectors of N is integrable. In application to Darboux–Nijenhuis coordinates it
means that it is possible to find by quadratures 2n functions (xi, yi) directly from the equa-
tions (2.15) [11, 16]. Hence, the Frölicher–Nijenhuis theory allows one to construct the Darboux–
Nijenhuis variables as solutions of the equations (2.15) or their equivalent (2.14).

However, for any function f(xi, yi) equation

N∗df(xi, yi) = λidf(xi, yi)

is also satisfied. Hence, any pair of Darboux–Nijenhuis coordinates is defined up to arbitrary
canonical transformations. So in the general case equations (2.15) have infinitely many solutions
and, thus, it is impossible to create a common effective algorithm to solve these equations.

This problem can be partially solved. As a consequence of the vanishing of the Nijenhuis
torsion of N the eigenvalues λi always satisfy (2.15)

N∗dλi = λidλi.

The eigenvalues λi and their conjugated variables µi are the special Darboux–Nijenhuis coordi-
nates [4], which are distinguished because λi are simply the roots of the minimal characteristic
polynomial of N

∆N (λ) =
(
det(N − λI)

)1/2 = λn − (c1λ
n−1 + · · ·+ cn) =

n∏
j=1

(λ− λj). (2.17)

Here cj(λ1, . . . , λn) are elementary symmetric polynomials of power j which are related with
integrals of motion Hj (1.6) by the Newton formulas.

The complimentary variables µj must be calculated as solutions of the overdetermined system
of partial differential equations (2.15)

N∗dµi = λidµi, {λi, µj} = δij , {µi, µj} = 0, (2.18)

whose solutions µj are still determined up to infinitely many canonical transformations µj →
µj + f(λj).

An effective algorithm for calculating Darboux–Nijenhuis variables has not been developed
yet despite these variables play an important role in the method of separation of variables due
to the following theorem.
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Theorem 1 ([3, 4]). If M is a 2n-dimensional ωN -manifold such that in the neighborhood of
any point z ∈ M recursion operator N has n different functionally independent eigenvalues and
if {H1, . . . ,Hn} is a family of independent functions on M , then the following statements are
equivalent:

1) functions {H1, . . . ,Hn} are in bi-involution (1.2);

2) the Lagrangian foliation F defined by {H1, . . . ,Hn} is separable in Darboux–Nijenhuis
coordinates;

3) the distribution D tangent to the foliation defined by {H1, . . . ,Hn} is Lagrangian with
respect to ω = P−1 and invariant with respect to N .

It easy to prove that for integrable after Liouville bi-Hamiltonian systems with the integrals
of motion Hj (1.6) recursion operator N has exactly n functionally independent eigenvalues,

because Hj = j−1
n∑

i=1
λj

i and

dH1 ∧ · · · ∧ dHn =
∏
i6=j

(λi − λj)dλ1 ∧ · · · ∧ dλn.

For bi-Hamiltonian systems integrals of motion Hi (1.6) define a distinguished bi-Lagrangian
foliation, called principal foliation [4].

For generic bi-integrable systems invariance of the distribution D with respect to N means
that there is a control matrix F with eigenvalues (λ1, . . . , λn) such that

N∗dHi =
n∑

k=1

FijdHj , i = 1, . . . , n. (2.19)

In the Darboux–Nijenhuis coordinates equations (2.19) may be considered as the known Levi-
Civita criterion for separability [15], see [4].

In particular case for bi-Hamiltonian systems (1.3) the control matrix F has the following
form

F =


0 1 0 · · · 0
0 0 1 · · · 0
... · · · 0 1

cn cn+1 · · · c1

 . (2.20)

Here ck are coefficients of the characteristic polynomial ∆N (λ) (2.17) of the recursion opera-
tor N .

Example 2. According to [2, 6], for a two-particle open Toda chain recursion operator reads as

N =


p1 0 0 1
0 p2 −1 0
0 −eq1−q2 p1 0

eq1−q2 0 0 p2

 .

Integrals of motion (2.7) are reproduced by N (1.6). Therefore eigenvalues of N

λ1,2 =
p1 + p2

2
+

√
p2
1 + p2

2 − 2p1p2 + 4 exp(q1 − q2)
2

.

are a half of the special Darboux–Nijenhuis coordinates for the open Toda lattice. Of course,
these coordinates are the action variables λ̇i = 0.



On the Darboux–Nijenhuis Variables for the Open Toda Lattice 7

The complimentary variables µ1,2 must be calculated as solutions of the overdetermined
system of partial differential equations (2.18). However even in this simple case we could not
directly solve these thirteen PDEs (2.18) for the two unknown functions µi(q1, q2, p1, p2).

Nevertheless we can find variables µi by using the action-angle variables (2.11), (2.12) ob-
tained before. Since

λi =
I1 ±

√
I2

2
, (2.21)

the second half of the special Darboux–Nijenhuis coordinates reads as

µi = w1 ± 2
√

I2w2 =
q1 − q2

2
∓ arctanh

(
p1 − p2√

(p1 − p2)2 + 4 exp(q1 − q2)

)
. (2.22)

By definition action variables λi are roots of the minimal characteristic polynomial

∆N (λ) = λ2 − (p1 + p2)λ + p1p2 − eq1−q2 ,

whereas angle variables µi can be defined in the following way:

µi = ln B(λi), B(λ) = −eq2(λ− p1).

Summing up, to build the special Darboux–Nijenhuis variables we de-facto had to use another
set of separated variables vi, ui which are not Darboux–Nijenhuis variables.

In the next section we discuss how analogous variables u and v are related with the special
Darboux–Nijenhuis variables for n-particle open Toda lattice.

3 Open Toda lattice

Let us consider open Toda associated with the root system of An type. The Hamilton function
is equal to

H =
1
2

n∑
i=1

pi
2 +

n−1∑
i=1

eqi−qi+1 .

Here p, q are Darboux coordinates on the manifold M ' R2n

{qi, pj} = δij , {pi, pj} = {qi, qj} = 0. (3.1)

Bi-Hamiltonian structure of Toda chains was investigated both in terms of physical variables
(p, q) and in terms of so-called Flaschka variables [7]. We will use original physical variables p
and q, for which second Poisson tensor has the form [2, 6]

P ′ =
n−1∑
i=1

eqi−qi+1
∂

∂pi+1
∧ ∂

∂pi
+

n∑
i=1

pi
∂

∂qi
∧ ∂

∂pi
+

n∑
i<j

∂

∂qj
∧ ∂

∂qi
. (3.2)

Throughout the rest of the paper N is recursion operator N = P ′P−1 for the open Toda
lattice, where P ′ is given by (3.2) and P is canonical tensor associated with canonical Poisson
brackets (3.1) in R2n.
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3.1 The Moser method

In this section we will give a brief review of a method for integrating equations of motion for an
open Toda lattice proposed by Moser [18]. A contemporary algebraic-geometric review of the
Moser method can be found in [25].

Let us start with a n× n Lax matrix L with the components

Ljk = pjδj,k + e
qj−qj+1

2 (δj,k+1 + δj−1,k). (3.3)

Following [18] we define the Weyl function

X (λ) =
(
R(λ)~α, ~α

)
, ~α = (0, 0, . . . , eqn/2), (3.4)

where R(λ) = (L−λI)−1 is a resolvent of the Jacobi matrix (3.3) and ~α is dynamical normaliza-
tion of the corresponding Baker–Akhiezer function. It is known since the work of Stiltjies [22],
the Weyl function plays the key role in reconstruction of the matrix L from its spectral data
and it is a ratio of the two monic polynomials

X (λ) =
B(λ)
A(λ)

, (3.5)

where B(λ) is a polynomial of degree (n−1) and A(λ) = det(L−λI) is a polynomial of degree n
with distinct roots λj

A(λ) =
n∏

i=1

(λ− λj), B(λ) = −eqn(λn−1 + b2λ
n−2 + · · ·+ b0). (3.6)

Proposition 1. For the open Toda lattice two Poisson brackets associated with tensors P = P (0)

(1.5) and P ′ = P (1) (3.2) form quadratic algebras for the polynomials A(λ), B(λ) and for the
Weyl function X (λ).

It is easy to prove that at k = 0, 1 these quadratic brackets are equal to

{A(λ), A(µ)}(k) = {B(λ), B(µ)}(k) = 0, (3.7)

{A(λ), B(µ)}(k) =
µkA(λ)B(µ)− λkA(µ)B(λ)

λ− µ

and

{X (λ),X (µ)}(k) =

(
X (λ)−X (µ)

)(
µkX (λ)− λkX (µ)

)
λ− µ

. (3.8)

At k = 0 brackets (3.7) are the part of the Sklyanin brackets [19] and nontrivial expression in
the right hand side of (3.7) is called a Bezoutian of polynomials A and B [12].

At k = 0 brackets (3.8) give the Atiyah–Hitchin Poisson structure in the space of meromorphic
maps X (λ) : CP1 → CP1 [1].

Remark 1. According to [5] the Poisson brackets between polynomials A(λ) and B(µ) associa-
ted with Poisson tensors P (k) (1.5) at k = 0, 1, . . . , n are equal to

{A(λ), B(µ)}(k) =
A(λ)B[k](µ)−A(µ)B[k](λ)

λ− µ
(3.9)

=
µkA(λ)B(µ)− λkA(µ)B(λ)

λ− µ
+ A(λ)A(µ)

(
β[k](λ)− β[k](µ)

)
λ− µ

.



On the Darboux–Nijenhuis Variables for the Open Toda Lattice 9

The right hand side of (3.9) contains either remainder

B[k](λ) = λkB(λ) modA(λ), (3.10)

either result of simple division in the space of polynomials

β[k] =
λkB(λ)
A(λ)

, (3.11)

which is polynomial part of the Laurent decomposition of the ratio λkB(λ)/A(λ). It is easy to
see that β[1] = 0 and β[1] = −eqn and from (3.9) one gets (3.7).

In the Moser approach to the open Toda lattice [18] we can introduce the action-angle vari-
ables using the Weyl function (3.4). Namely, action coordinates are poles λi (3.6) of the Weyl
function X (λ), whereas angle variables are given by

µj = ln B(λj).

It is easy to check that polynomial A(λ) = det(L − λI) = ∆N (λ) is a minimal characteristic
polynomial of the recursion operator N . Moreover, it follows from (3.7) that λi and µj satisfy
the necessary relations (2.14)

{λi, µj} = δij , {λi, µj}′ = λiδij .

We could avoid calculating of the second Poisson brackets between A and B by means of the
equation

N∗d∆N (λ) = λd∆N (λ) + ∆N (λ)dc1, (3.12)

which can be obtained from the recurrent Lenard–Magri relations (1.3) rewritten in the form
N∗dHk = dHk+1 and from the Newton formulas connecting Hk with coefficients ck [4]. Com-
bining this equation with a result of [23]

B(λ) = −eqn
∂

∂c1
∆N (λ) (3.13)

one can easily prove that B(λ) is a Stäckel function [4]

N∗dB(λ) = λdB(λ) + ∆N (λ)deqn

and, thus,

N∗dµi = λidµi.

Summing up, the Moser variables are the special Darboux–Nijenhuis variables for the open
Toda lattice. The corresponding equations of motion have the form

{Hi, λj} = ∂τiλj = 0, {Hi, µj} = ∂τiµj = λi−1
j .

Evolution of the variables µj with respect to the times τi conjugated to the bi-Hamiltonian
integrals of motion Hi (1.6) is linear.

Brackets(3.8) for the Weyl function are invariant with respect to linear-fractional transfor-
mations

X → X ′ =
aX + b

cX + d
(3.14)

and, therefore, we can introduce another family of the separated variables using the same Weyl
function [25]. This second coordinate system is considered in the next section in framework of
the classical r-matrix theory.
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3.2 The Sklyanin method

In this section we briefly discuss an application of the generic Sklyanin method [19, 20] to the
open Toda lattice. Let us consider a 2× 2 monodromy matrix

T (λ) =
(

A B
C D

)
(λ) = L1(λ) · · ·Ln−1(λ)Ln(λ), (3.15)

where

Li =
(

λ− pi −eqi

e−qi 0

)
.

Monodromy matrix T (λ) (3.15) is the Lax matrix for periodic Toda lattice [19], whereas the
Lax matrix for open Toda lattice is equal to

To(λ) = KT (λ) =
(

A B
0 0

)
(λ), K =

(
1 0
0 0

)
.

The entries A and B of this 2× 2 Lax matrix coincide with denominator and numerator of the
Weyl function (3.5) respectively.

Proposition 2. The Poisson brackets between entries of the monodromy matrix T (λ) (3.15)
associated with Poisson tensors P (k) (1.5) at k = 0, 1 are equal to

{ 1

T (λ),
2

T (µ)
}(k) = r12(λ, µ)

1

T (λ)
2

T (µ)−
1

T (λ)
2

T (µ) r21(λ, µ)

+
1

T (λ) s(λ, µ)
2

T (µ)−
2

T (λ) s(λ, µ)
1

T (µ), (3.16)

where f irst r-matrix is equal to

r12(λ, µ) =
−1

λ− µ


1 0 0 0
0 1− λk+µk

2 µk 0
0 λk 1− λk+µk

2 0
0 0 0 1

 , rij(λ, µ) = Πrji(λ, µ)Π,

whereas the second matrix s(λ, µ) reads as

s(λ, µ) =
−1

λ− µ


0 0 0 0
0 λk−µk

2 0 0
0 0 λk−µk

2 0
0 0 0 0

 .

Here,
1
T (λ) = T (λ)⊗ I,

2
T (µ) = I ⊗ T (µ) and Π is a permutation matrix in auxiliary space, i.e.

ΠX ⊗ Y = Y ⊗XΠ for arbitrary matrices X, Y

At k = 0 first matrix r(λ, µ) = −(λ − µ)−1Π is the standard rational r-matrix, while the
second matrix s(λ, µ) is equal to zero. In this case quadratic brackets (3.16) are the Sklyanin
bracket [19].

Proposition 3. In generic case the Poisson brackets {·, ·}(k) associated with Poisson tensors
P (k) (1.5) at k = 0, 1, . . . , n are equal to:

{A(λ), A(µ)}(k) = {B(λ), B(µ)}(k) = {C(λ), C(µ)}(k) = {D(λ), D(µ)}(k) = 0,
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{A(λ), B(µ)}(k) =
µkA(λ)B(µ)− λkA(µ)B(λ)

λ− µ
+ A(λ)A(µ)

(
β[k](λ)− β[k](µ)

)
λ− µ

,

{A(λ), C(µ)}(k) = −µkA(λ)C(µ)− λkA(µ)C(λ)
λ− µ

−A(λ)A(µ)

(
γ[k](λ)− γ[k](µ)

)
λ− µ

,

{D(λ), B(µ)}(k) = −
µk
(
D(λ)B(µ)−D(µ)B(λ)

)
λ− µ

− β[k−1]D(λ)A(µ),

{D(λ), C(µ)}(k) =
µk
(
D(λ)C(µ)−D(µ)C(λ)

)
λ− µ

+ γ[k−1]D(λ)A(µ),

{B(λ), C(µ)}(k) = −µkA(λ)D(µ)− λkA(µ)D(λ)
λ− µ

,

and

{A(λ), D(µ)}(k) =
λk
(
C(λ)B(µ)− C(µ)B(λ)

)
λ− µ

− A(λ)
λ− µ

(
B(µ)

(
β[k](λ)− β[k](µ)

)
− C(µ)

(
γ[k](λ)− γ[k](µ)

))
.

Here β[k] = λkB(λ)/A(λ) (3.11) and γ[k] = λkC(λ)/A(λ) are polynomial parts of the Laurent
decompositions of quotients of the corresponding polynomials.

So, at k > 1 we have to add to the matrices r1,2 and s dynamical terms proportional to the
functions β[k] and γ[k].

According to [7, 19, 20] the separated coordinates are poles of the corresponding Baker–
Akhiezer function with the standard normalization ~α = (0, 1). In this case the first half of
variables are coming from (n − 1) finite roots and logarithm of leading coefficient of the non-
diagonal entry of the monodromy matrix

B(λ) = −e−vn

n−1∏
j=1

(λ− uj), vn = −qn, (3.17)

Another half is given by

vj = − lnA(uj), j = 1, . . . , n− 1, and un = −c1 =
n∑

i=1

pi. (3.18)

In the separated variables polynomial A(λ) reads as

A(λ) =

λ +
n∑

j=1

uj

 n−1∏
j=1

(λ− uj) +
n−1∑
j=1

e−vj

n−1∏
i6=j

λ− ui

uj − ui
. (3.19)

This definition of the separated variables is obviously related with the following transformation
X → X−1 of the Weyl function [25].

It follows from (3.16) that at k = 0, 1

{A(λ), B(µ)}(k) =
1

λ− µ

(
µkA(λ)B(µ)− λkA(µ)B(λ)

)
. (3.20)

Substituting these brackets into the equations

0 = {A(λ), B(uj)}(k) = {A(λ), B(µ)}(k)
∣∣∣
µ=uj

+ B′(uj){A(λ), uj}(k)
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one gets

{A(λ), uj}(k) = λkA(uj)
n−1∏
i6=j

λ− ui

uj − ui
, j = 1, . . . , n− 1. (3.21)

If λ = ui this implies part of the necessary relation (2.14)

{uj , vi}(k) = uk
i δij , k = 0, 1, i, j = 1, . . . , n− 1.

Now we can collect all the coefficients with the same powers of λ and µ in (3.20) and prove that

{un, vn} = 1, {ui, un} = 0, {vn, vi} = 0,

{un, vn}′ = −
n∑

i=1

ui, {un, ui}′ = fi =
e−vi

n−1∏
j 6=i

(ui − uj)
, {vn, vi}′ = −1.

In a similar manner from {B(λ), B(µ)}(k) = 0 one gets

{ui, uj}(k) = {vn, uj}(k) = 0, i, j = 1, . . . , n− 1,

and from {A(λ), A(µ)}(k) = 0 it follows that

{un, vi} = 0, {vi, vj} = 0, i, j = 1, . . . , n− 1,

{un, vi}′ = gi = −e−vn
A′(λ)
B′(λ)

∣∣∣∣
λ=ui

, {vi, vj}′ = 0.

Here A′(λ) and B′(λ) are derivatives by λ.
Summing up, the 2n separated variables vi and ui are the Darboux variables

ω =
n∑

i=1

dui ∧ dvi,

but the corresponding recursion operator N consists of two diagonal and three non-diagonal
terms

N =
n−1∑
i=1

ui

(
∂

∂ui
⊗ dui +

∂

∂vi
⊗ dvi

)
−

n∑
i=1

ui

(
∂

∂un
⊗ dvn +

∂

∂vn
⊗ dun

)

+
n−1∑
i=1

fi

(
∂

∂ui
⊗ dun −

∂

∂un
⊗ dui

)
+

n−1∑
i=1

(
∂

∂vn
⊗ dvi −

∂

∂vi
⊗ dvn

)

+
n−1∑
i=1

gi

(
∂

∂vi
⊗ dun +

∂

∂un
⊗ dvi

)
. (3.22)

Thus 2n separated variables vi and ui obtained in framework of the Sklyanin method [19] are not
the Darboux–Nijenhuis variables. Evidently it is related with the difference in the form of the
corresponding separated equations, which follow directly from the definitions of vj and un (3.18)

Φj = e−vj −∆(uj , α1, . . . , αn) = 0, Φn = un + α1 = 0. (3.23)
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The first (n−1) equations of motion, see (3.21), are linearized by the Abel transformation [19, 21]{
A(λ),

n−1∑
k=1

∫ vk

σj

}
= −λj−1, σj =

λj−1dλ

∆N (λ)
, j = 1, . . . , n− 1,

where {σj} is a basis of Abelian differentials of first order on an algebraic curve z = ∆N (λ)
corresponding to separated equations (3.23).

It means that we can introduce the action-angle variables

Ij = cj , w1 = vn, and wj+1 =
n−1∑
k=1

∫ vk

σj ,

such that evolution of variables wj with respect to times τj conjugated to the action variables Ij

are linear. These action variables are related with the previous ones

A(λ) =
n∏

i=1

(λ− λi) = λn −
n∑

j=1

Ijλ
n−j .

Bi-Hamiltonian integrals of motion Hj (1.6) produce the flows which preserve the spectrum of
the n × n Jacobi matrix L (3.3). Integrals of motion Ij = cj produce the transversal to the
isospectral manifolds flows, which preserve the divisor [25].

As sequence the special Darboux–Nijenhuis variables λ, µ are dual to the Sklyanin variab-
les u, v. Namely, λi, µi are roots of polynomial A(λ) and values of polynomial B(λ) at λ = λi,
while uj , vj are roots of polynomial B(λ) and values of polynomial A(λ) at λ = uj .

Remark 2. From the factorization of the monodromy matrix T (λ) (3.15) one gets

Bn(λ) = −eqnAn−1(λ) ⇒ Bn(uj) = −eqnAn−1(λj) = 0.

This implies that the Moser variables λj for a (n − 1)-particle chain, i.e. special Darboux–
Nijenhuis variables, coincide with the Sklyanin variables uj , i = 1, . . . , n − 1 for a n-particle
chain.

We can prove this fact directly using matrix representation of the recursion operator for
(n − 1)-particle chain, which can be obtained by the matrix representation (3.22) deleting the
n-th and 2n-th rows and columns.

Remark 3. The Sklyanin variables are the separated variables for open and periodic Toda
lattices simultaneously, in contrast with the Moser variables. For the periodic Toda lattice the
Darboux–Nijenhuis variables were constructed by using Flaschka variables in [3].

Example 3. At n = 2 the Sklyanin variables are equal to

v1 = − ln(−eq1−q2), v2 = −q2, u1 = p1, u2 = p1 + p2,

and

N =


u1 0 0 −e−v1

2u1 − u2 u2 − u1 e−v1 0
0 −1 u1 2u1 − u2

1 0 0 u2 − u1

 .

We have three different families of the separated variables for the Toda lattice at n = 2 only.
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4 Conclusion

For the open Toda lattice associated with the root system of An type we prove that the Moser
variables are special Darboux–Nijenhuis variables, while the Sklyanin variables are “almost
Darboux–Nijenhuis variables”, in which recursion operator consists of a diagonal part and two
non-diagonal rows and columns only.

The similar results for the generalized open Toda lattices associated with the root systems
of Bn, Cn and Dn type were found in [24].

Nevertheless we have to underline that construction of the Moser variables and the Sklyanin
variables directly in the framework of the bi-Hamiltonian geometry is an open question.
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