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1 Preamble

The classical theory of non-holonomic dynamical systems, even in recent times, is treated in
a growing number of papers. Most of them require the use of modern differentiable and algebraic
structures which are not familiar to non-mathematicians working on concrete applications. On
the other hand, several papers are dedicated to the analysis of special non-holonomic mechanical
systems, quite interesting but treated with ad hoc methods. These are the reasons why I think
useful to propose a ready to use approach to the dynamics of non-holonomic systems, requiring
the knowledge of the basic notions of the vector calculus on the Euclidean three-space and on
tangent bundles only, and avoiding the use of cotangent bundles (Hamiltonian framework) and
jet-bundles.

In the present paper I illustrate two different, general, effective and concise methods for
writing the dynamical equations of a given non-holonomic system. These methods correspond
to the two ways of representing kinematical constraints: by parametric equations or by implicit
equations. They can be applied to linear as well as to non-linear constraints and lead to different
(but obviously equivalent) dynamical systems.

In order to make this paper self-contained, a straightforward approach to the Gauss principle
and to the Gibbs–Appell equations is illustrated. Our starting point will be the well under-
standable Newton dynamical equations for a system of massive points.

The tutorial character of this paper does not exclude the presence of some novelties.
Many articles and books have been consulted in writing this paper. To cite all them would

make the list of references quite long. On the other hand, such a long list would not fit with
the purposes of this paper. Anyway, I must mention the excellent recent books [2, 4], from
which I have got many useful hints. They are very well readable and advisable to non-experts
which would like to go into this matter in more depth, and to know its present developments
and applications.

?This paper is a contribution to the Vadim Kuznetsov Memorial Issue “Integrable Systems and Related Topics”.
The full collection is available at http://www.emis.de/journals/SIGMA/kuznetsov.html
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2 Introduction

Let us consider a mechanical system with a well defined configuration manifold Qn. The di-
mension n of Q is the number of degrees of freedom of the system. Let us denote by q = (qi)
any (Lagrangian) coordinate system on Q and by (q, q̇) = (qi, q̇i) the associated coordinates on
the tangent bundle TQ. This tangent bundle is the space of the kinematical states.

A kinematical constraint is given by a subset C ⊂ TQ. A special case is that of regular
constraint :

Definition 2.1. A kinematical constraint C ⊂ TQ is said to be regular if

• C is a submanifold of dimension n+m, m < n;

• for all q ∈ Q, Fq = C ∩ TqQ is a submanifold of dimension m;

• the restriction to C of the tangent fibration τQ : TQ→ Q is a surjective submersion1.

The constraint is linear if each Fq is a subspace (see Fig. 1).

Figure 1. A regular constraint is a fibration onto Q.

A regular constraint can be represented in two ways:

• Parametric representation: it is described by m equations,

q̇i = ψi(q, z), (2.1)

where z = (zα), α = 1, . . . ,m < n are called parameters. Note that (q, z) can be interpreted
as local coordinates on C.

• Implicit representation: it is described by r = n−m independent equations2,

Ca(q, q̇) = 0, a = 1, . . . , r. (2.2)
1If this notion is not understood by the reader, he can look at the equivalent conditions (2.3) and (2.4) below.

The definition of regularity is taken from [10] and [6]. In [6] an extension of this definition is given: it requires the
existence of a submanifold Q1 ⊂ Q such that C is a submanifold of TQ1 and the restriction to C of the tangent
fibration is a submersion. For our purposes we do not need to consider this more general case.

2This means that the differentials dCa are linearly independent at each point of C.
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In these two representations, the regularity of the constraint is represented by conditions

rank [ψi
α]n×m = m, rank [Ca

i ]n×r = r, (2.3)

respectively, where

ψi
α
.=
∂ψi

∂zα
, Ca

i
.=
∂Ca

∂q̇i
. (2.4)

Note that the regularity conditions may be not fulfilled at certain states, that we call sin-
gular states. They always occurs, for instance, for non-linear homogeneous constraints (see
Remark 7.5).

In the following, with the exception of special remarks, the constraints are assumed to be non-
linear. However, in the case of linear constraints, we shall assume – without loss of generality –
that the functions ψi(q, z) are linear in the parameters, so that ψi = ψi

α(q) zα, or that the
functions Ca(q, q̇) are linear in the q̇, so that Ca = Ca

i (q) q̇i.
The leading idea of the f irst method is to consider the parametric equations (2.1) of the

constraint as a first set of dynamical equations, to be completed by a second set of equations of
the kind żα = Zα(q, z):

q̇i = ψi(q, z),
żα = Zα(q, z). (2.5)

This is a first-order system of ODE’s. Once the initial conditions (q0, z0) are fixed, they give
a unique actual motion of the mechanical system. By actual motion we mean a physical
motion obeying to the constraints.

The explicit expressions of the functions Zα(q, z) depend of course on the given functions
ψi(q, z). But they depend also on the dynamical principles we assume.

The Newton dynamical equation for a material point will be the only physical principle on
which we shall base our approach. Furthermore, we shall assume that the constraints are ideal
or perfect, according to a suitable mathematical definition: this means to accept a certain
constitutive condition on the constraint as a postulate. In this way, the Gauss ‘principle’ will
follow as a ‘theorem’ from the Newton equations of a system of particles.

The second method presented here is based on the implicit representation of the con-
straints. It is a revisitation, with improvements and simplifications, of the well-known Lagrange-
multipliers method. In this context we get the explicit expression of the reactive forces. This
is useful, in the concrete applications, for measuring the stress that the constraints have to
support.

These two methods lead to different first-order dynamical equations i.e., to different vector
fields:

• The first method (parametric representation) produces a vector field Z on the constraint
manifold C. The integral curves of Z give all actual motions – see Fig. 2.

• The second method (implicit representation) produces a vector field D on the whole TQ
but tangent to C. Only its restriction to C has in fact a physical meaning i.e., only its
integral curves which start from a point of C (and which will lie on C) represent actual
motions – see Fig. 3. As a byproduct, this method gives the explicit expressions of the
reactive forces, which can be estimated along any actual motion.
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Figure 2. Parametric representation of C – The
vector field Z.

Figure 3. Implicit representation of C – The
vector field D.

3 Ideal constraints

At a microscopical level, a mechanical system is made of a collection of material points (Pν ,mν),
ν = 1, . . . , N . The position vector rν of each point Pν in the Euclidean three-space is a func-
tion rν(q) of the chosen Lagrangian coordinates. A motion of the system is then represented
by a time-parametrized curve qi = qi(t) on Q, and at each configuration q ∈ Q all possible
velocities of the points are given by

vν =
∂rν

∂qi
q̇i, (vi) ∈ R. (3.1)

A kinematical state of the system is the collection of all pairs position-velocity (rν ,vν) of the
points. The collection of all possible states is then the tangent bundle TQ of Q. At any fixed
state the accelerations aν are given by

aν =
∂2rν

∂qi∂qj
q̇iq̇j +

∂rν

∂qi

dq̇i

dt
. (3.2)

Let us consider the parametric representation (2.1) of the constraint. Then the velocity and the
acceleration of each point, compatible with the kinematical constraint, are

vν(q, z) =
∂rν

∂qi
ψi,

aν(q, z, ż) =
∂2rν

∂qi∂qj
ψiψj +

∂rν

∂qi

(
∂ψi

∂qj
ψj +

∂ψi

∂zα
żα

)
.

Let us write these equations in the more compact form, according to the above-given notation:

vν(q, z) = ∂irν ψ
i,

aν(q, z, ż) = ∂ijrν ψ
iψj + ∂irν

(
ψi

j ψ
j + ψi

α ż
α
)
. (3.3)

As we shall see, the additional parameters ż play a crucial role. Note that, at any fixed
configuration q ∈ Q, the parameters z determine all kinematical states (q, v) compatible with
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the constraints. Intuitively, the parameters ż determine a small displacement from a state (q, q̇)
to another close state (q, q̇′) (with the same configuration q). For a precise definition, let us
decompose the acceleration (3.3) into the sum

aν = a0ν + aαν ż
α, (3.4)

where

a0ν
.= ∂ijrν ψ

iψj + ∂irν ψ
i
j ψ

j , aαν
.= ∂irν ψ

i
α. (3.5)

We observe that the vectors a0ν depend only on the state of the system. We say that

Definition 3.1. The second vector in (3.4)

wν
.= aαν ż

α, (3.6)

represents the virtual displacements of the point Pν at the given kinematical state.

Remark 3.1. Note that the parameters żα span all possible virtual displacements at a given
state. The mechanical meaning of virtual displacement, which is strictly related to that of
ideal constraint (Definition 3.2) would require a detailed discussion. We can skip it simply by
accepting equation (3.6) as a mathematical definition, since it will be justified first, by the fact
that with such a definition the Gauss principle becomes a consequence of the Newton dynamical
equations (Theorem 4.1) and second, by the fact that the reactive forces of ideal constraints are
not dissipative (Remark 3.3).

It is customary to associate the intuitive idea of ‘virtual displacement’ with that of ‘virtual
velocity’, as a limit of a ‘small’ displacement between two configurations’ of the system. Instead,
within the present context, a ‘virtual displacement’ is a ‘small’ displacement between kinema-
tical states (configurations plus velocities), so it is associated with the intuitive idea of ‘virtual
acceleration’. This viewpoint is in fact coherent with the philosophy of the Gauss principle,
which deals with accelerations.

We assume for the dynamics of each point (Pν ,mν) the Newton equation

mν aν = Aν + Rν , (3.7)

where Aν is the active force (due to external fields and internal interactions) and Rν is the
reactive force: it has the role of making the constraint fulfilled.

Remark 3.2. The idea of ‘reactive force’ arises from the Newtonian philosophy, according
which any action deviating a point from the uniform rectilinear motion (in an inertial reference
frame) is a ‘force’, mathematically represented by a vector. Thus, the presence of a kinematical
constraint must be represented by a vector, called ‘reactive force’, to be summed to the ‘active
force’, which in turns represents the action of fields present in the space and independent from
the constraints (gravitational, electromagnetical, centrifugal, Coriolis, etc.).

Definition 3.2. Non-holonomic constraints are said to be ideal or perfect if∑
ν

Rν ·wν = 0 (3.8)

for all virtual displacements wν .
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We consider equation (3.8) as a constitutive condition for the constraint: it says which kind
of reactive forces the constraint is able to supply in order to be satisfied along any motion. It is
straightforward to check that for linear constraints, or simply for holonomic constraints (which
do not involve velocities), equation (3.8) reduces to the classical virtual work principle. The
validity of such a constitutive condition is a matter of theoretical and experimental analysis of
the behavior of the mechanical system one is dealing with.

Theorem 3.1. Let

Ri
.=

∑
ν

Rν · ∂rν

∂qi
, (3.9)

be the Lagrangian reactive forces. Then the definition (3.8) of ideal constraint is equivalent
to the following equations,

Ri ψ
i
α = 0, (3.10)

Ri = λaC
a
i , (3.11)

in the parametric and in the implicit representation, respectively.

Equation (3.11) means that the components Ri are linear combinations of the functions
Ca

i (q, q̇).

Proof. Put equation (3.6) and (3.5) in equation (3.8),

0 =
∑

ν

Rν · aαν ż
α =

∑
ν

Rν · ∂irν ψ
i
α ż

α = Ri ψ
i
α ż

α.

This proves equation (3.10). By differentiating the identity Ca(q, ψ(q, z)) = 0, we get the
following relations between the two representations,

Ca
i ψ

i
α = 0, ∂iC

a + Ca
j ψ

j
i = 0, (3.12)

where

Ca
i
.=
∂Ca

∂q̇i
, ψj

i
.= ∂iψ

j , ∂i
.=

∂

∂qi
. (3.13)

Due to the first identity (3.12), equation (3.10) is then equivalent to (3.11) �

Remark 3.3. Equations (3.13)1 and (3.11) show that the ideal constraints do not dissipate ener-
gy: the power of the reactive forces is zero (we are dealing with time-independent constraints).
See [3].

Remark 3.4. By a well-known process, we pass from the microscopical level to the ‘macrosco-
pical ’ one i.e., to the Lagrange equations

d

dt

(
∂K

∂q̇i

)
− ∂K

∂qi
= Ai +Ri, (3.14)

where

K =
1
2
gij q̇

iq̇j , gij
.=

∑
ν

mν ∂irν · ∂jrν . (3.15)

At the right hand side of the Lagrange equations we find the sum of the active Lagrangian
forces

Ai
.=

∑
ν

Aν · ∂rν

∂qi
, (3.16)

and the reactive Lagrangian forces (3.9).
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4 The Gauss principle

At the microscopical level we introduce the quantity

G
.=

1
2

∑
ν

mν

(
aν −

Aν

mν

)2

. (4.1)

The active forces Aν are known functions of the state (q, q̇). Thus, due to the parametric
equations of the constraints, G becomes a function of (q, z). Moreover, even for active forces
depending on the velocities, Aν does not depend on ż,

∂Aν

∂żα
= 0.

Thus, due to equations (3.4) and (3.5), along any motion satisfying the constraints we have

∂G

∂żα
=

∑
ν

mν

(
aν −

Aν

mν

)
· ∂aν

∂żα
=

∑
ν

mν

(
aν −

Aν

mν

)
· aαν . (4.2)

Furthermore,

∂2G

∂żα∂żβ
=

∑
ν

mν
∂aν

∂żβ
· aαν =

∑
ν

mν aβν · aαν =
∑

ν

mν ψ
i
α ψ

j
β ∂irν · ∂jrν = gij ψ

i
α ψ

j
β.

Then, if we introduce the functions

Gαβ
.= gij ψ

i
α ψ

j
β , (4.3)

we get

∂2G

∂żα∂żβ
= Gαβ . (4.4)

Since the matrix [ψi
α] has maximal rank, the symmetric matrix [Gαβ ] is regular and positive-

definite as well as [gij ].

Theorem 4.1. Assume the Newton equations mν aν = Aν + Rν for each point Pν . Then, at
any state of any actual motion the quantity G takes a minimal value (Gauss principle) if and
only if the constraints are ideal.

Proof. Write the Newton equations in the form

mν

(
aν −

Aν

mν

)
= Rν .

Then, due to equations (3.4), (3.5) and (3.9),

∂G

∂żα
=

∑
ν

Rν · ∂aν

∂żα
=

∑
ν

Rν · aαν = Ri ψ
i
α. (4.5)

This shows that for ideal constraints, see equation (3.10), the Newton equations imply

∂G

∂żα
= 0, (4.6)

at any state along any actual motion. Due to equation (4.4), being [Gαβ ] positive, at the statio-
nary states for which equation (4.6) holds, the function G has a strong minimum. (ii) Conversely,
assume that the Gauss principle holds true. Then equation (4.6) is satisfied, so that from (4.5)
we get Ri ψ

i
α = 0. This means that the constraint is ideal (Theorem 3.1). �
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Remark 4.1. The vector Aν/mν is the acceleration of the point Pν in a free motion, free
from the constraints. Let us denote it by af

ν . As a consequence, the function G can be also
defined as

G
.=

1
2

∑
ν

mν

(
aν − af

ν

)2
, (4.7)

and Theorem 4.1 can be reformulated as follows:

Theorem 4.2. Let rν(t) and rf
ν (t) be two motions of the system Pν such that for t = t0 the

corresponding states coincide i.e.,

rν(t0) = rf
ν (t0), vν(t0) = vf

ν (t0).

Assume that rf
ν (t) is a free motion. Then, at this state, and for any motion compatible with

ideal constraints, the actual accelerations aν(t0), are such that G takes a minimal value.

Remark 4.2. For any arbitrary motion,

vν =
∂rν

∂qi
q̇i, aν =

∂rν

∂qi∂qj
q̇iq̇j +

∂rν

∂qi
q̈i.

Then, at any fixed state compatible with the constraints we have

aν − af
ν =

∂rν

∂qi
(q̈i − q̈i

f ).

Due to the definition (3.15) of gij , from (4.7) we get the so-called Lipschitz expression of the
function G:

G =
1
2
gij (q̈i − q̈i

f )(q̈j − q̈j
f ). (4.8)

Note that in this expression the Christoffel symbols are not involved.

5 The Gibbs–Appell equations

Let us go back to the definition (4.1) of the function G. If we introduce the functions

S
.=

1
2

∑
ν

mν a2
ν , S1

.=
1
2

∑
ν

1
mν

A2
ν , S2

.=
∑

ν

Aν · aν , (5.1)

then we have the decomposition

G = S + S1 − S2.

The function S is called the energy of the accelerations. We observe that

∂S1

∂żα
= 0

and that, due to the second equation (3.3) and the definition (3.16) of active Lagrangian force,

∂S2

∂żα
=

∑
ν

Aν · ∂irν ψ
i
α = Ai ψ

i
α.

Thus,

∂G

∂żα
=

∂S

∂żα
−Ai ψ

i
α.

Due to the Gauss principle (Theorem 4.1), this proves
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Theorem 5.1. The Gauss principle is equivalent to equations

∂S

∂żα
= Aα, (5.2)

where the function

S(q, z, ż) .=
1
2

∑
ν

mν a2
ν (5.3)

is determined by the expression (3.3) of the accelerations, and

Aα
.= Aiψ

i
α. (5.4)

Remark 5.1. Equations (5.2) are the celebrated Gibbs–Appell equations. The equivalence
between these equations and the Gauss principle is highlighted within the framework of the
parametric representation (2.1) of the constraints.

Remark 5.2. The quantities Aα can be computed by writing the the virtual power of the
active forces:

W
.=

∑
ν

Aν ·wν =
∑

ν

Aν · ∂irν ψ
i
α ż

α = Ai ψ
i
α ż

α = Aα ż
α. (5.5)

6 The explicit form of the Gibbs–Appell equations

Both sides of the Gibbs–Appell equations (5.2) are functions of (q, z, ż). Let us solve them w.r.to
the variables żα. To this end, it is crucial to observe that by using the second equations (3.3)
we get for the function S (5.3) the expression

S =
1
2
gij ψ

i
αψ

j
β ż

αżβ +
∑

ν

mν ∂ijrν · ∂krν ψ
iψjψk

α ż
α + S0,

where S0 is a function dependent on (q, z) only. Then, this function is not involved by the
Gibbs–Appell equations and S can be replaced by

S∗ =
1
2
gij ψ

i
αψ

j
β ż

αżβ +
∑

ν

mν ∂ijrν · ∂krν ψ
iψjψk

α ż
α. (6.1)

Now we show that this new function S∗ assumes a very interesting expression. Let us introduce
the functions

ξijk(q)
.=

∑
ν

mν ∂ijrν · ∂krν .

Since

ξijk =
∑

ν

mν ∂i(∂jrν · ∂krν)−
∑

ν

mν (∂jrν · ∂ikrν) = ∂igjk − ξikj ,

by a cyclic permutation of the indices we get

ξijk + ξikj = ∂igjk, ξjki + ξjik = ∂jgki, ξkij + ξkji = ∂kgij .

By summing the first two equations and subtracting the third one, since ξijk is symmetric in
the first two indices, we get ξijk = Γijk, where

Γijk
.=

1
2

(∂igjk + ∂jgki − ∂kgij)
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are the Christoffel symbols of the metric tensor gij (the coefficients of the Levi-Civita connec-
tion). As a consequence, if we recall the definition (4.3) of Gαβ , the function S∗ (6.1) can be
written as

S∗ =
1
2
Gαβ ż

αżβ + Γijk ψ
iψjψk

α ż
α,

and the Gibbs–Appell equations (5.2) assume the form

Gαβ ż
β + Γijk ψ

iψjψk
α = Aα. (6.2)

Then we can prove

Theorem 6.1. The Gibbs–Appell equations (5.2) are equivalent to equations

żα = Gαβ(Aβ − Γijk ψ
iψjψk

β), (6.3)

where [Gαβ ] the inverse matrix of [Gαβ ].

Proof. Indeed, as we remarked in Section 4, the matrix [Gαβ ] is regular. If we apply the inverse
matrix [Gαβ ] to equations (6.2), then we get equations (6.3). �

Equations (6.3) are the explicit form (or normal form) of the Gibbs–Appell equations (5.2).

7 The dynamical equations of the first kind

By setting

żα =
dzα

dt
,

equations (6.3) together with the constraint equations (2.1) build up a first-order differential
system, in normal form, in the unknown functions qi(t) and zα(t):

dqi

dt
= ψi(q, z),

dzα

dt
= Gαβ (Aβ − Γijk ψ

iψjψk
β). (7.1)

Hence, we can summarize the results so far obtained in the following

Theorem 7.1. Let Q be the configuration n-manifold of a mechanical system, with local La-
grangian coordinates q = (qi). Let TQ be the tangent bundle of Q with canonical coordinates
(q, q̇) = (qi, q̇i). Let C ⊂ TQ be a submanifold representing kinematical time-independent con-
straints. Assume that the constraint submanifold C is locally described by parametric equations
q̇i = ψi(q, z) with m < n parameters z = (zα), such that the n×m matrix

[ψi
α] .=

[
∂ψi

∂zα

]
has maximal rank m. If the constraints are ideal, then the actual motions are represented
by functions qi = qi(t) satisfying the differential system (7.1)3, where Γijk are the Christoffel
symbols of the metric tensor gij associated with the kinetic energy K = 1

2 gij q̇
iq̇j and Aα = Ai ψ

i
α,

where Ai are the Lagrangian active forces.
3Any solution of the differential system (7.1) is of course a set of functions qi(t) and zα(t). But, after the

integration, we can get rid of the functions zα(t).



Dynamical Equations of Non-Holonomic Systems 11

Remark 7.1. The dynamical system (7.1) is the first-order system associated with the vector
field Z on the constraint submanifold C, whose components (Zi, Zα) w.r.to the coordinates
(q, z) are given by

Zi = ψi(q, z),

Zα = Gαβ (Aβ − Γijk ψ
iψjψk

β). (7.2)

The Zα are the ‘vertical components’ of Z w.r.to the projection onto Q. The actual motions are
the projections onto Q of the integral curves of Z.

Remark 7.2. This theorem provides a first ‘recipe’ for writing the dynamical equations for
non-holonomic systems with linear or non-linear ideal constraints:

1. Choose Lagrangian coordinates (qi), write the kinetic energy of the system K = 1
2 gij q̇

iq̇j ,
and extract the n× n matrix [gij ].

2. Choose parametric equations q̇i = ψi(q, z) of the constraints, compute the m × n ma-
trix [ψi

α], and check its rank. If the constraints are initially expressed by implicit equations,
then use (for instance) the method illustrated in Remark 7.3 below for finding parametric
equations.

3. Compute the m×m matrix [Gαβ ] = [gijψ
i
αψ

j
β], and the inverse matrix [Gαβ ] = [Gαβ ]−1.4

4. Write the Lagrange equations of the free motions (i.e., with only active forces Ai) in the
form

gij q̈
j = Li(q, q̇) (7.3)

(note that the formal expression of Li is Li = Ai(q, q̇)− Γhki q̇
h q̇k) and compute

Z̄i(q, z) = Li(q, ψ) = Ai(q, ψ)− Γhki(q)ψhψk. (7.4)

5. Compute Zα = Z̄iψ
i
α and Zα = Gαβ Zβ.

6. Write the dynamical system

dqi

dt
= ψi(q, z),

dzα

dt
= Zα(q, z). (7.5)

Remark 7.3. When the constraint submanifold C ⊂ TQ is described by a system of implicit
independent equations of the kind

Ca(q, q̇) = 0, a = 1, . . . , r, r = n−m, (7.6)

then we have to transform these equations into parametric equations. The choice of the pa-
rameters zα is completely free and it is only a matter of convenience, depending on the explicit
concrete form of the dynamical equations (7.5) we get. Anyway, since the matrix [ψi

α] does not
have the maximal rank, equations (7.6) can be solved w.r.to m of the n Lagrangian velocities q̇i,
say – up to a reordering – w.r.to q̇α, α = 1, . . . ,m. This process leads to considering as param-
eters these Lagrangian velocities: zα = q̇α. It works very well for linear or affine constraints,
where equations (7.6) have the form

Ca
i (q) q̇i − bi(q) = 0.

Another possible choice of the parameters, for the linear constraints only, is that related to the
use of quasi-velocities or quasi-coordinates – see for instance [9].

4Note that according to this recipe we do not have to compute the inverse n× n-matrix of [gij ], but only the
inverse of [Gαβ ], whose dimension is m < n.
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Remark 7.4. For the analysis of the qualitative (or quantitative) behavior of a non-holonomic
mechanical system (like stability, equilibrium states, small oscillations, numerical integration,
etc.) we can apply to Z all the known theorems about dynamical systems. For instance, a f irst
integral is a function F (q, z) such that

ψi(q, z)
∂F

∂qi
+ Zα(q, z)

∂F

∂zα
= 0. (7.7)

Remark 7.5. The singular points of the dynamical system (7.1) are the solutions (q, z) of the
simultaneous equations

ψi(q, z) = 0,

Zα(q, z) .= Z̄i ψ
i
α = 0. (7.8)

In the case of a homogeneous quadratic constraint, ψi(q, z) = 1
2 ψ

i
αβ(q) zαzβ , equations (7.8)

become

ψi
αβ(q) zαzβ = 0,

Z̄i ψ
i
αβ z

β = 0, (7.9)

being ψi
α = ψi

αβ(q) zβ. This shows that, whatever q and Z̄i, singular points are given by zα = 0.
But for zα = 0 the matrix [ψi

α] does not have the maximal rank, since all its elements vanish.
Hence, at these singular points the constraint C is not regular.

Remark 7.6. The geometrical picture of the above results gives an intrinsic meaning of the
objects we have introduced. Any vector v ∈ TC can be represented by a sum

v = vi ∂i + vα ∂α,

where ∂i = ∂/∂qi and ∂α = ∂/∂zα are interpreted as pointwise independent vector fields on TC:
at each point x of C they span the tangent space TxC. The vectors ∂α are ‘vertical ’ i.e., they are
tangent to the fibers Fq of C. Hence, we call vα the vertical components of v, while we call vi

the basic components. For instance, the basic components of Z are Zi = ψi(q, z) and the
vertical components are Zα. The functions ψi

α have the role of transforming Latin components,
labeled by Latin indices h, i, j, k, . . ., into Greek components, labeled by Greek indices α, β, . . ..
For instance, when it is applied to a one-form (covariant vector) Z̄i dq

i, we get a vertical one
form Zα dz

α, and when it is applied to the covariant metric tensor gij , we get a metric tensor Gαβ

on the fibers of C, so that, by raising the indices of Zα by the contravariant metric Gαβ , we get
a vertical vector field Zα ∂α.

Note 7.1. I did not find equations (7.1) in the recent and old articles I have consulted. In fact,
it is rather surprising that the simple idea of considering the parametric representation of the
constraints as a part of the dynamical equations does not appear in the major textbooks and
treatises on non-holonomic mechanics. Only recently this idea appeared in a paper of Massa and
Pagani [8]. Their general approach, which is based on the jet-bundle theory and deals with time-
dependent constraints, leads to the introduction of the vector field Z. The elementary approach
presented here is of course quite different and leads, for instance, to different expressions of the
vertical part of Z. Our equations (7.1) should be compared with equations (3.5b) and (3.15)
of [8]. The difference is that the second equation (7.1) is written in terms of the Euclidean
vectors Fν , vν , while equation (3.15) of [8] Z is written in terms of the Lagrange equations, but
still in an implicit form.
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Remark 7.7. For linear constraints, the approach presented here is more general than that
of Čaplygin – see [9], Ch. III, § 3, where the coordinates qi are divided into two groups, say
(qa, qα), with a = 1, . . . ,m and α = m + 1, . . . , n. The constraint equations are assumed to be
of the form

q̇α =
∑

a

bαa q̇
a,

where the coefficients bαa and the Lagrangian L are assumed to be independent from the coor-
dinates (qa).5

8 The dynamical equations of the second kind

About the method for writing the dynamical equations of a non-holonomic mechanical system
so far illustrated two remarks are in order:

• It lies on a parametric representation of the constraint C (however, the vector field Z does
not depend on the chosen parametrization).

• It does not give any information about the reactive forces.

Here, we propose an alternative method for writing the dynamical equations which is based
on any implicit representation of C by a system of independent equations

Ca(q, q̇) = 0,

and which provides a way for evaluating the reactive forces.
The Lagrange equations (3.14) – see Remark 3.4 – are equivalent to the dynamical system

Xλ =


dqi

dt
= q̇i,

dq̇i

dt
= − Γi

hk q̇
h q̇k +Ai +Ri

λ,

(8.1)

on the tangent bundle TQ of the configuration manifold Q. Here, Ai = gijAj and Ri
λ = gij λaC

a
j

are the contravariant components of the Lagrangian active and reactive forces, respectively.
The label λ points out that the reactive Lagrangian forces depend on the a priori unknown
Lagrangian multipliers λ = (λa), according to Theorem 3.1 and equation (3.11).

For a better understanding of what we are going to do, it is useful to consider the following

Definition 8.1. We say that a vector V on TQ is vertical if it is tangent, at each point where
it is defined, to the corresponding fiber of TQ. This is equivalent to say that it has the form

V = V i ∂

∂q̇i
. (8.2)

As a consequence, the vertical part of the vector Xλ is given by(
Ai +Ri

λ − Γi
hk q̇

h q̇k
) ∂

∂q̇i
,

5In the history of the non-holonomic systems we can find the famous equations of Maggi, Volterra, Voronec
and Čaplygin, dealing with linear constraints. The comparison of these equations with our approach is left to the
reader, who can find a detailed discussion in in [9], Ch. 3. A neat illustration of the non-holonomic dynamical
equations, with the essential classical and recent bibliography, can be found in the book [2].
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where the active and reactive forces are represented by the vertical vectors

A = Ai ∂

∂q̇i
, Rλ = Ri

λ

∂

∂q̇i
,

Hence, the vector Xλ is decomposed into the sum

Xλ
.= XG + A + Rλ, (8.3)

where XG represents the geodesic f low,

XG =


dqi

dt
= q̇i,

dq̇i

dt
= − Γi

hk q̇
h q̇k.

(8.4)

We can consider Xλ = XG+A+Rλ as a family of vector fields, depending on the Lagrangian
multipliers. However, it is a remarkable fact that we can obtain an explicit form of them, as
functions of the kinematical states (q, q̇) only.

Theorem 8.1. Let [Gab] be the symmetric matrix defined by

Gab .= gij Ca
i C

b
j . (8.5)

Let [Gab] = [Gab]−1 be its inverse, and Cai .= gij Ca
j . If the constraints are ideal, then the

Lagrangian multipliers and the Lagrangian reactive forces are well determined functions of (q, q̇):

λa(q, q̇) = Gab

(
Cb

i (Γi
hk q̇

h q̇k −Ai)− q̇i ∂iC
b
)
, (8.6)

Ri(q, q̇) = GabC
ai

(
Cb

j (Γj
hk q̇

h q̇k −Aj)− q̇j ∂jC
b
)
. (8.7)

Proof. First of all, we observe that the matrix [Gab] is regular, since the vector fields Ca are
independent. Hence, the inverse matrix [Gab] is well defined. In order to satisfy the constraints,
the vector field Xλ must be tangent to the constraint submanifold C. This condition is expressed
by equations

〈Xλ, dC
a〉 = 0, (8.8)

to be satisfied at least on C. In components, these equations read

q̇i ∂iC
a + (Ai − Γi

hk q̇
h q̇k +Ri)Ca

i = 0,

i.e.,

RiCa
i = Ca

i (Γi
hk q̇

h q̇k −Ai)− q̇i ∂iC
a.

Note that the right hand side

Λa(q, q̇) .= Ca
i (Γi

hk q̇
h q̇k −Ai)− q̇i ∂iC

a (8.9)

is a known function of (q, q̇). Then equation RiCa
i = Λa assumes the form λbC

a
i C

b
j g

ij = Λa, i.e.,
λbG

ab = Λa. By applying the inverse matrix [Gab] we get equation (8.6) and equation (8.7). �

The explicit form (8.7) of the reactive forces allows us to state
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Theorem 8.2. The actual motions of a mechanical system with regular and ideal non-holonomic
constraints represented by a submanifold C ⊂ TQ are the integral curves based on C of the vector
field

D .= XG + A + R, (8.10)

where the components Ri of the vertical vector R are defined by (8.7). If we introduce the symbols

πij .= GabC
aiCbj , Cai .= gij Ca

j , Ci
a
.= GabC

bi, (8.11)

then the explicit expressions of the first-order differential system associated with D and of the
reactive forces are

D =


dqi

dt
= q̇i,

dq̇i

dt
= (gij − πij) (Aj − Γhkj q̇

h q̇k)− q̇j ∂jC
aCi

a,

(8.12)

and

Ri = πij (Γhkj q̇
h q̇k −Aj)− q̇j ∂jC

aCi
a, (8.13)

respectively.

Remark 8.1. This last theorem provides a second ‘recipe’ for writing the dynamical equations
for non-holonomic systems with linear or non-linear ideal constraints:

1. Choose Lagrangian coordinates (qi), write the kinetic energy of the system K = 1
2 gij q̇

iq̇j ,
extract the n× n matrix [gij ], and compute the inverse matrix [gij ].

2. Take the constraint equations Ca(q, q̇) = 0 and compute, in the order, the following ma-
trices:

[Ca
i ] .=

[
∂Ca

∂q̇i

]
(seek the singular states),

[Cai] .= [gij Ca
j ],

[Gab] = [Gba] .= [gij Ca
i C

b
j ] = [CaiCb

i ],

[Gab]
.= [Gab]−1,

[Ci
a]
.= [GabC

bi],

[πij ] = [πji] .= [CaiCj
a],

[gij − πij ],

[∂iC
a] .=

[
∂Ca

∂qi

]
,

[∂jC
aCi

a].

3. Write the Lagrange equations for the free motions in the form

gij q̈
j = Ai − Γhki q̇

h q̇k,

and keep in evidence the functions

Li(q, q̇)
.= Ai − Γhki q̇

h q̇k.
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4. Compute the vector

Di .= (gij − πij)Lj − q̇j ∂jC
aCi

a.

5. Write the differential system (8.12),

D =


dqi

dt
= q̇i,

dq̇i

dt
= Di.

6. Its solutions qi(t), q̇i(t), with initial conditions belonging to C, describe the actual motions
of the system.

7. Evaluate the reactive forces along any actual motion by means of equation (8.13),

Ri = − πij Lj − q̇j ∂jC
aCi

a. (8.14)

Remark 8.2. The case of single constraint equation C(q, q̇) = 0. In this case the above-
given recipe can be applied by setting a = b = 1. Items 1 and 2 of the general recipe still hold.
However, since some of the above matrices reduces to scalar functions or to vectors, the index 1
can be omitted or replaced by ∗:

[Ci]
.=

[
∂C

∂q̇i

]
,

[Ci] .= [gij Cj ],

G
.= [gij CiCj ] = CiCi,

Ci
∗
.= G−1Ci,

[πij ] .= [CiCj
∗ ] = G−1 [CiCj ],

[gij − πij ],

∂iC
.=
∂C

∂qi
,

[∂jC C
i
∗].

Then, follows items 3–7 of the general recipe.

9 Illustrative examples

As shown above, for writing the dynamical equations of a non-holonomic system we can apply
two methods: the first method is established by Theorem 7.1 and the corresponding recipe is il-
lustrated in Remark 7.2; the second method is established by Theorem 8.2 and the corresponding
recipe is illustrated in Remark 8.1.

Let us see how these two methods work by concrete examples. We begin with two paradig-
matic and simple examples of linear non-holonomic constraints, the ‘skate’ and the ‘vertical
rolling disc’. Then, we shall consider two more demanding examples: ‘two co-axial rolling discs’
and ‘two points with parallel velocities’. This last one is a genuine non-linear non-holonomic
system.

In illustrating examples of application of a theory it is not customary, in general, to provide
detailed calculations – which usually are left to the reader. Here, however, it is worthwhile to
disregard such a custom in order to compare the effectiveness of the two methods (mainly the
length of the calculations) applied to a same mechanical system.
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9.1 The skate

This mechanical system is made of a homogeneous rod (material segment) sliding without friction
on a plane6. The configurations of the skate are determined by the Cartesian coordinates (x, y)
of the center of mass (i.e., of the segment) G and by the angle θ of the rod w.r.to the x-
axis. The configuration manifold Q is R × S1 and natural ordered Lagrangian coordinates are
(q1, q2, q3) = (x, y, θ). The velocity vG = [ẋ, ẏ] of the mass-center is constrained to be parallel
to the rod. This constraint is then represented by a single equation:

ẋ sin θ − ẏ cos θ = 0. (9.1)

The kinetic energy is given by K = 1
2 m (ẋ2 + ẏ2) + 1

2 I θ̇, where m and I are the mass and the
moment of inertia w.r.to G (i.e., w.r.to the line orthogonal to the plane through G), respectively.

(i) First method. Since dim(TQ) = 6 and dim(C) = 3, we need two parameters (z1, z2) for
describing C. We can consider the parametric equations

ẋ = z1 cos θ, ẏ = z1 sin θ, θ̇ = z2.

Then, we compute the necessary matrices and vectors:

[gij ] =

 m 0 0
0 m 0
0 0 I

 ,
[ψi] = [z1 cos θ , z1 sin θ , z2], [ψi

α] =
[

cos θ sin θ 0
0 0 1

]
.

This matrix has maximal rank everywhere: the constraint is regular.

[Gαβ ] =
[
m 0
0 I

]
, [Gαβ ] =

[
1
m 0
0 1

I

]
.

Since,[
∂K

∂q̇i

]
= [mẋ , m ẏ , I θ̇],

[
∂K

∂qi

]
= [0 , 0 , 0],

the Lagrange equations for the free motions gij q̈
j = Ai − Γhki q̇

h q̇k read

mẍ = A1, m ÿ = A2, I θ̈ = A3.

Hence, Li = Ai(q, q̇), Z̄i = Ai(q, ψ) and

[Zα] = [ψi
α Z̄i] =

[
A1 cos θ +A2 sin θ

A3

]
.

The dynamical equations are

dx

dt
= z1 cos θ,

dy

dt
= z1 sin θ,

dθ

dt
= z2,

dz1

dt
=

1
m

(A1 cos θ +A2 sin θ),

dz2

dt
=
A3

I
.

6Quite similar classical examples are that of two material points linked by a massless rigid segment [5], p. 23
and 63, and the Čaplygin sleigh [9], Ch. III, § 3, Examples 2 & 5, and Ch. V, § 4. Another example of this kind
is examined in [4], § 4.1 & § 4.2.
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(ii) Second method, for a single constraint equation – Remark 8.2: C .= ẋ sin θ − ẏ cos θ = 0.

[gij ] =

 1
m 0 0
0 1

m 0
0 0 1

I

 ,
[Ci]

.=
[
∂C

∂q̇i

]
= [sin θ , − cos θ , 0] ,

[Ci] .= [gij Cj ] =
[
sin θ
m

, − cos θ
m

, 0
]
,

G
.= CiCi =

1
m
,

[Ci
∗]
.= G−1[Ci] = [sin θ , − cos θ , 0] = [Ci],

[πij ] .= G−1[CiCj ] =
1
m

 sin2 θ − sin θ cos θ 0
− sin θ cos θ cos2 θ 0

0 0 0

 ,
[gij − πij ] =

1
m

 cos2 θ sin θ cos θ 0
sin θ cos θ sin2 θ 0

0 0 m
I

 ,
[∂iC] .=

[
∂C

∂qi

]
= [0 , 0 , ẋ cos θ + ẏ sin θ] ,

[q̇j ∂jC C
i
∗] = θ̇ (ẋ cos θ + ẏ sin θ) [Ci

∗].

Since [
∂K

∂q̇i

]
= [mẋ , m ẏ , I θ̇],

[
∂K

∂qi

]
= [0 , 0 , 0],

the Lagrange equations read

mẍ = A1, m ÿ = A2, I θ̈ = A3.

Hence, Li = Ai. We have all the ingredients for computing the vector Di .= (gij − πij)Lj −
q̇j ∂jC C

i
∗:

D1 =
cos θ
m

(A1 cos θ +A2 sin θ)− θ̇ (ẋ cos θ + ẏ sin θ) sin θ,

D2 =
sin θ
m

(A1 cos θ +A2 sin θ) + θ̇ (ẋ cos θ + ẏ sin θ) cos θ,

D3 =
1
I
A3,

and the differential system (8.12) reads

dx

dt
= ẋ,

dy

dt
= ẏ,

dθ

dt
= θ̇,

dẋ

dt
=

cos θ
m

(A1 cos θ +A2 sin θ)− θ̇ (ẋ cos θ + ẏ sin θ) sin θ,

dẏ

dt
=

sin θ
m

(A1 cos θ +A2 sin θ) + θ̇ (ẋ cos θ + ẏ sin θ) cos θ,

dθ̇

dt
= I−1A3.
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9.2 The vertical rolling disc

A material disc of radius R running on a plane is kept perpendicular to it by massless and
frictionless devices. The configuration manifold is Q4 = R2 × S1 × S1, with coordinates
(q1, q2, q3, q4) = (x, y, θ, ψ), where (x, y) are Cartesian coordinates of the center P of the disc
(i.e., of the point C in contact with the plane), θ a rotation angle of the disk around its axis,
and ψ an angle giving the orientation of the axis (see Figure 4, with θ = θ1). Constraint: the
disc rolls on the plane without sliding. Let (i, j,k) be the unitary vectors associated with the
(x, y, z)-axes. The unitary vector k is associated with the oriented angle ψ. Let u be the unitary
vector associated with the oriented angle θ. Then, u = cosψ j − sinψ i. The angular velocity
ω is given by ω = θ̇ u + ψ̇ k. The velocity vC of the point C is given by vC = vP + ω × PC,
where PC = −Rk. Hence,

vC = ẋ i + ẏ j− (θ̇ u + ψ̇ k)×Rk = ẋ i + ẏ j−R θ̇ u× k.

Since u× k = cosψ j× k− sinψ i× k, we get

vC = ẋ i + ẏ j−R θ̇ (cosψ j× k− sinψ i× k) = ẋ i + ẏ j−R θ̇ (cosψ i + sinψ j)

= (ẋ−R θ̇ cosψ) i + (ẏ −R θ̇ sinψ) j.

The kinematical constraint vC = 0 is then represented by the following two linear equations

C1 .= ẋ−R cosψ θ̇ = 0,

C2 .= ẏ −R sinψ θ̇ = 0. (9.2)

(i) First method. Assume that the center of mass of the disc coincides with its geometrical
center. Then the kinetic energy is given by

K = 1
2 m(ẋ2 + ẏ2) + 1

2 (Aθ̇2 +Bψ̇2), (9.3)

where m is the mass, A and B are the moments of inertia w.r.to the axis of rotation and
a diameter, respectively. Thus,

[gij ] =


m 0 0 0
0 m 0 0
0 0 A 0
0 0 0 B

 .
From the constraint equations (9.2) we get the parametric equations

ẋ = R cosψ z1,

ẏ = R sinψ z1,

θ̇ = z1,

ψ̇ = z2.
(9.4)

Thus,

[ψi] = [R cosψ z1 , R sinψ z1 , z1 , z2],

[ψi
α] =

[
R cosψ R sinψ 1 0

0 0 0 1

]
(α = 1, 2, index of line).

This matrix has maximal rank, thus the constraint is regular. It follows that

Gαβ = gijψ
i
αψ

j
β = mψ1

αψ
1
β +mψ2

αψ
2
β +Aψ3

αψ
3
β +B ψ4

αψ
4
β ,

G11 = mψ1
1ψ

1
1 +mψ2

1ψ
2
1 +Aψ3

1ψ
3
1 +B ψ4

1ψ
4
1 = mR2 cos2 ψ +mR2 sin2 ψ +A = mR2+A,
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G12 = mψ1
1ψ

1
2 +mψ2

1ψ
2
2 +Aψ3

1ψ
3
2 +B ψ4

1ψ
4
2 = 0,

G22 = mψ1
2ψ

1
2 +mψ2

2ψ
2
2 +Aψ3

2ψ
3
2 +B ψ4

2ψ
4
2 = B,

[Gαβ ] =
[
mR2 +A 0

0 B

]
,

[Gαβ ] =

 1
mR2 +A

0

0
1
B

 .
Since,[

∂K

∂q̇i

]
= [mẋ , m ẏ , A θ̇ , B ψ̇],

[
∂K

∂qi

]
= [0 , 0 , 0 , 0],

the Lagrange equations for the free motions gij q̈
j = Ai − Γhki q̇

h q̇k read

mẍ = A1, m ÿ = A2, A θ̈ = A3, B ψ̈ = A4.

This shows that Li = Ai. Hence, Z̄i = Ai(q, ψ), and

[Zα] = [Z̄i ψ
i
α] =

[
A1R cosψ +A2R sinψ +A3

A4

]
,

[Zα] = [Gαβ Zβ ] =


A1R cosψ +A2R sinψ +A3

mR2 +A

A4

B

 .
Thus, the dynamical equations are

dx

dt
= R cosψ z1,

dy

dt
= R sinψ z1,

dθ

dt
= z1,

dψ

dt
= z2,

dz1

dt
= (mR2 +A)−1 (A1R cosψ +A2R sinψ +A3),

dz2

dt
= B−1A4.

(9.5)

(ii) Second method. Recall the constraint equations (9.2). Then,

[Ca
i ] .=

[
∂Ca

∂q̇i

]
=

[
1 0 −R cosψ 0

0 1 −R sinψ 0

]
,

[Cai] .=
[
gij Ca

j

]
=

[ 1
m 0 − R

A cosψ 0

0 1
m − R

A sinψ 0

]
,

[Gab] .=
[
CaiCb

i

]
=

 1
m + R2

A cos2 ψ R2

A sinψ cosψ

R2

A sinψ cosψ 1
m + R2

A sin2 ψ

 ,
G

.= det[Gab] =
1
m2

+
R2

mA
, G−1 =

m2A

mR2 +A
,

[Gab] = G−1

 1
m + R2

A sin2 ψ − R2

A sinψ cosψ

− R2

A sinψ cosψ 1
m + R2

A cos2 ψ

 ,



Dynamical Equations of Non-Holonomic Systems 21

[Ci
a] = [GabC

bi] = G−1

[
1
m ( 1

m + R2

A sin2 ψ) − R2

mA sinψ cosψ ∗C3
1 0

− R2

mA sinψ cosψ 1
m ( 1

m + R2

A cos2 ψ) ∗C3
2 0

]
,

where

∗C3
1 =

(
1
m

+
R2

A
sin2 ψ

) (
−R
A

cosψ
)

+
(
−R

2

A
sinψ cosψ

) (
−R
A

sinψ
)

= − R

mA
cosψ − R3

A2
sin2 ψ cosψ +

R3

A2
sin2 ψ cosψ = − R

mA
cosψ,

∗C3
2 =

(
−R

2

A
sinψ cosψ

) (
−R
A

cosψ
)

+
(

1
m

+
R2

A
cos2 ψ

) (
−R
A

sinψ
)

=
(
−R

2

A
sinψ cosψ

) (
−R
A

cosψ
)

+
(

1
m

+
R2

A
cos2 ψ

) (
−R
A

sinψ
)

= − R

mA
sinψ.

Hence,

[Ci
a] = G−1

 1
m ( 1

m + R2

A sin2 ψ) − R2

mA sinψ cosψ − R
mA cosψ 0

− R2

mA sinψ cosψ 1
m ( 1

m + R2

A cos2 ψ) − R
mA sinψ 0

 .
Let us compute πij .= CaiCj

a = πji. Let us set ∗πij .= Gπij . Then,

[πij ] = G−1



1
m2 ( 1

m + R2

A sin2 ψ) − R2

m2A
sinψ cosψ ∗π14 0

− R2

m2A
sinψ cosψ 1

m2 ( 1
m + R2

A cos2 ψ) ∗π24 0

∗π31 ∗π32 ∗π33 0

∗π41 ∗π42 0 0


,

where

∗π13 =
1
m

(
1
m

+
R2

A
sin2 ψ

) (
−R
A

cosψ
)

+
(
− R2

mA
sinψ cosψ

) (
−R
A

sinψ
)

=
1
m

(
1
m

+
R2

A
sin2 ψ

) (
−R
A

cosψ
)

+
R3

mA2
sin2 ψ cosψ = − R

m2A
cosψ,

∗π23 =
(
− R2

mA
sinψ cosψ

) (
−R
A

cosψ
)

+
1
m

(
1
m

+
R2

A
cos2 ψ

) (
−R
A

sinψ
)

= − R

m2A
sinψ.

It follows that

[πij ] = G−1



1
m2 ( 1

m + R2

A sin2 ψ) − R2

m2A
sinψ cosψ − R

m2A
cosψ 0

− R2

m2A
sinψ cosψ 1

m2 ( 1
m + R2

A cos2 ψ) − R
m2A

sinψ 0

− R
m2A

cosψ − R
m2A

sinψ R2

mA2 0

0 0 0 0


,
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[gij − πij ] = G−1



G
m − 1

m2 ( 1
m + R2

A sin2 ψ) R2

m2A
sinψ cosψ R

m2A
cosψ 0

R2

m2A
sinψ cosψ G

m − 1
m2 ( 1

m + R2

A cos2 ψ) R
m2A

sinψ 0

R
m2A

cosψ R
m2A

sinψ G
A − R2

mA2 0

0 0 0 G
B



=
m2A

mR2 +A



G
m − 1

m2 ( 1
m + R2

A sin2 ψ) R2

m2A
sinψ cosψ R

m2A
cosψ 0

R2

m2A
sinψ cosψ G

m − 1
m2 ( 1

m + R2

A cos2 ψ) R
m2A

sinψ 0

R
m2A

cosψ R
m2A

sinψ G
A − R2

mA2 0

0 0 0 G
B



=
1

mR2 +A



R2 cos2 ψ R2 sinψ cosψ R cosψ 0

R2 sinψ cosψ R2 sin2 ψ R sinψ 0

R cosψ R sinψ 1 0

0 0 0 mR2+A
B


.

Recall once more equations (9.2). Then,

[∂iC
a] .=

[
∂Ca

∂qi

] 0 0 0 R sinψ θ̇

0 0 0 −R cosψ θ̇

 , [q̇i ∂iC
a] =

 R sinψ θ̇ ψ̇

−R cosψ θ̇ ψ̇

 .
Let us set Xi .= q̇j ∂jC

aCi
a. Then,

GX1 = (R sinψ θ̇ ψ̇)
(

1
m

(
1
m

+
R2

A
sin2 ψ

))
+ (−R cosψ θ̇ ψ̇)

(
− R2

mA
sinψ cosψ

)
=

R

m2
sinψ θ̇ ψ̇ +

R3

mA
sinψ θ̇ ψ̇ =

R

m2
sinψ θ̇ ψ̇

(
1 +

mR2

A

)
=
R (mR2 +A)

m2A
sinψ θ̇ ψ̇,

GX2 = (R sinψ θ̇ ψ̇)
(
− R2

mA
sinψ cosψ

)
+ (−R cosψ θ̇ ψ̇)

(
1
m

(
1
m

+
R2

A
cos2 ψ

))
= − R

m2
cosψ θ̇ ψ̇ − R3

mA
cosψ θ̇ ψ̇ = −R (mR2 +A)

m2A
cosψ θ̇ ψ̇,

GX3 = (R sinψ θ̇ ψ̇)
(
− R

mA
cosψ

)
+ (−R cosψ θ̇ ψ̇)

(
− R

mA
sinψ

)
= 0,

GX4 = (R sinψ θ̇ ψ̇)(0) + (−R cosψ θ̇ ψ̇)(0) = 0.

Since G−1 = m2A
mR2+A

, we get

[Xi] = [q̇j ∂jC
aCi

a] = G−1

[
R (mR2 +A)

m2A
sinψ θ̇ ψ̇ , −R (mR2 +A)

m2A
cosψ θ̇ ψ̇ , 0 , 0

]
= R θ̇ ψ̇ [sinψ , − cosψ , 0 , 0] .
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Now we are able to compute the components Di .= (gij − πij)Lj − q̇j ∂jC
aCi

a of the vector D:

D1 =
1

mR2 +A

(
A1R

2 cos2 ψ +A2R
2 sinψ cosψ +A3R cosψ

)
−R θ̇ ψ̇ sinψ

=
R cosψ
mR2 +A

(A1R cosψ +A2R sinψ +A3)−R θ̇ ψ̇ sinψ,

D2 =
1

mR2 +A

(
A1R

2 sinψ cosψ +A2R
2 sin2 ψ +A3R sinψ

)
+R θ̇ ψ̇ cosψ

=
R sinψ
mR2 +A

(A1R cosψ +A2R sinψ +A3) +R θ̇ ψ̇ cosψ,

D3 =
1

mR2 +A
(A1R cosψ +A2R sinψ +A3)

=
1

mR2 +A
(A1R cosψ +A2R sinψ +A3) ,

D4 =
A4

B
.

The resulting dynamical system (8.12) is

dx

dt
= ẋ,

dy

dt
= ẏ,

dθ

dt
= θ̇,

dψ

dt
= ψ̇,

dẋ

dt
=

R cosψ
mR2 +A

(A1R cosψ +A2R sinψ +A3)−R θ̇ ψ̇ sinψ,

dẏ

dt
=

R sinψ
mR2 +A

(A1R cosψ +A2R sinψ +A3) +R θ̇ ψ̇ cosψ,

dθ̇

dt
=

1
mR2 +A

(A1R cosψ +A2R sinψ +A3) ,

dψ̇

dt
=
A4

B
.

(9.6)

By introducing the new variables

X
.=
mR2 +A

R
x, Y

.=
mR2 +A

R
y, Θ .= (mR2 +A) θ,

it assumes the more compact form

dX

dt
= Ẋ,

dY

dt
= Ẏ ,

dΘ
dt

= Θ̇,

dψ

dt
= ψ̇,

dẊ

dt
= cosψ (A1R cosψ +A2R sinψ +A3)− Θ̇ ψ̇ sinψ,

dẎ

dt
= sinψ (A1R cosψ +A2R sinψ +A3) + Θ̇ ψ̇ cosψ,

dΘ̇
dt

= (A1R cosψ +A2R sinψ +A3) ,

dψ̇

dt
=
A4

B
.

(9.7)

Note that in these new variables, by considering also

Z1 .= (mR2 +A) z1,

the differential system (9.5) obtained by the first method reads

dX

dt
= cosψ Z1,

dY

dt
= sinψ Z1,

dΘ
dt

= Z1,

dψ

dt
= z2,

dZ1

dt
= A1R cosψ +A2R sinψ +A3,

dz2

dt
= B−1A4.

(9.8)
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The two systems (9.7) and (9.8) are in perfect agreement.
The above detailed calculations show that for the rolling disc the first method is much shorter

than the second one.

9.3 Two co-axial rolling discs

Two identical material discs of radius R running on a plain are joined by a massless common
axis, along with they can slide without friction. The configuration manifold is Q6 = R2 × S1 ×
S1 × S1 × R, with Lagrangian coordinates (q1, q2, q3, q4, q5, q6) = (x, y, θ1, θ2, ψ, a), where (x, y)
are Cartesian coordinates of the center P1 of one of the two discs, θ1 and θ2 are the angles of
rotations around the common axis, ψ is the angle giving the orientation of the axis, and a is the
distance between the centers (see Fig. 4).

Figure 4. Co-axial rolling discs.

Constraint: the discs roll on the plane without sliding. For each disc this constraint is
represented by linear equations of the kind (9.2),

ẋ1 −R cosψ θ̇1 = 0,

ẏ1 −R sinψ θ̇1 = 0,

ẋ2 −R cosψ θ̇2 = 0,

ẏ2 −R sinψ θ̇2 = 0.
(9.9)

However, the coordinates of the two centers are related by equations

x2 = x1 + a sinψ, y2 = y1 − a cosψ.

By differentiating these equations we get the link between the velocities,

ẋ2 = ẋ1 + a cosψ ψ̇ + sinψ ȧ, ẏ2 = ẏ1 + a sinψ ψ̇ − cosψ ȧ. (9.10)

By inserting these relations into equations (9.9), with x1 = x and y1 = y, we get the final
constraint equations

ẋ−R cosψ θ̇1 = 0,

ẏ −R sinψ θ̇1 = 0,

ẋ+ a cosψ ψ̇ + sinψ ȧ−R cosψ θ̇2 = 0,

ẏ + a sinψ ψ̇ − cosψ ȧ−R sinψ θ̇2 = 0.

(9.11)

Since for a single rolling disc the first method is faster, we limit ourselves to apply the first
method to the case of two discs.
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Equations (9.11) show that the constraint submanifold C ⊂ TQ6 has dimension 12− 4 = 8.
Hence, we need two parameters zα for the parametric representation. Let us choose z1 = θ̇1 and
z2 = θ̇2. This means to solve the linear system (9.11) w.r.to (ẋ, ẏ, ψ̇, ȧ). The result is

ẋ = R cosψ z1,

ẏ = R sinψ z1,

ψ̇ =
R

a
(z2 − z1),

ȧ = 0,

θ̇1 = z1,

θ̇2 = z2.

Equation ȧ = 0, a = constant, exhibits the intuitive fact that, under the pure-rolling con-
dition, the distance a between the two discs remains constant. Hence, we can reduce the
configuration manifold Q6 to Q5 = R2 × S1 × S1 × S1, with coordinates (q1, q2, q3, q4, q5) =
(x, y, θ1, θ2, ψ). The last equations reduce to

ẋ = R cosψ z1,

ẏ = R sinψ z1,

ψ̇ =
R

a
(z2 − z1),

θ̇1 = z1,

θ̇2 = z2,
(9.12)

with a = constant. Then,

[ψi] =
[
R cosψ z1 , R sinψ z1 ,

R

a
(z2 − z1) , z1 , z2

]
and

[ψi
α] .=

[
∂ψ

∂zα

]
=

[
R cosψ R sinψ − R

a 1 0

0 0 R
a 0 1

]
. (9.13)

This matrix has maximal rank, thus the constraint submanifold C is regular. The kinetic energy
of the system is the sum of the kinetic energies of the two discs. According to equations (9.3)
and (9.10),

K = 1
2 m(ẋ2

1 + ẏ2
1) + 1

2 (Aθ̇2
1 +Bψ̇2) + 1

2 m(ẋ2
2 + ẏ2

2) + 1
2 (Aθ̇2

2 +Bψ̇2)

= 1
2 m(ẋ2

1 + ẏ2
1 + ẋ2

2 + ẏ2
2) + 1

2 (Aθ̇2
1 +Bψ̇2) + 1

2 (Aθ̇2
2 +Bψ̇2)

= 1
2 m

(
ẋ2

1 + ẏ2
1 + (ẋ1 + a cosψ ψ̇)2 + (ẏ1 + a sinψ ψ̇)2

)
+ A

2 (θ̇2
1 + θ̇2

2) +Bψ̇2

= 1
2 m

(
ẋ2

1 + ẏ2
1 + ẋ2

1 + a2 cos2 ψ ψ̇2 + 2a ẋ1 cosψ ψ̇ + ẏ2
1 + a2 sin2 ψ ψ̇2

+ 2a ẏ1 sinψ ψ̇
)

+ A
2 (θ̇2

1 + θ̇2
2) +Bψ̇2

= 1
2 m

(
2ẋ2

1 + 2ẏ2
1 + a2 ψ̇2 + 2a ψ̇ (ẋ1 cosψ + ẏ1 sinψ)

)
+ A

2 (θ̇2
1 + θ̇2

2) +Bψ̇2

= m (ẋ2 + ẏ2) + A
2 (θ̇2

1 + θ̇2
2) + (1

2 ma2 +B) ψ̇2 +ma ψ̇ (ẋ cosψ + ẏ sinψ).

Thus,

[gij ] =


2m 0 0 0 ma

2 cosψ
0 2m 0 0 ma

2 sinψ
0 0 A 0 0
0 0 0 A 0

ma
2 cosψ ma

2 sinψ 0 0 ma2 + 2B

 .
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Moreover,

Gαβ = gij ψ
i
α ψ

j
β = g11 ψ

1
α ψ

1
β + g22 ψ

2
α ψ

2
β + g33 ψ

3
α ψ

3
β + g44 ψ

4
α ψ

4
β + g55 ψ

5
α ψ

5
β

+ 2g12 ψ
1
α ψ

2
β + 2g13 ψ

1
α ψ

3
β + 2g14 ψ1

α ψ
4
β + 2g15 ψ1

α ψ
5
β + 2g23 ψ2

α ψ
3
β + 2g24 ψ2

α ψ
4
β

+ 2g25 ψ
2
α ψ

5
β + 2g34 ψ

3
α ψ

4
β + 2g35 ψ3

α ψ
5
β + 2g45 ψ4

α ψ
5
β

= 2mψ1
α ψ

1
β + 2mψ2

α ψ
2
β +Aψ3

α ψ
3
β +Aψ4

α ψ
4
β + (ma2 + 2B)ψ5

α ψ
5
β

+ma cosψ ψ1
α ψ

5
β +ma sinψ ψ2

α ψ
5
β ,

G11 = 2mψ1
1 ψ

1
1 + 2mψ2

1 ψ
2
1 +Aψ3

1 ψ
3
1 +Aψ4

1 ψ
4
1 + (ma2 + 2B)ψ5

1 ψ
5
1

+ma cosψ ψ1
1 ψ

5
1 +ma sinψ ψ2

1 ψ
5
1

= 2mR2 cos2 ψ + 2mR2 sin2 ψ +A
R2

a2
+A = 2mR2 +A

(
1 +

R2

a2

)
,

G22 = 2mψ1
2 ψ

1
2 + 2mψ2

2 ψ
2
2 +Aψ3

2 ψ
3
2 +Aψ4

2 ψ
4
2 + (ma2 + 2B)ψ5

2 ψ
5
2

+ma cosψ ψ1
2 ψ

5
2 +ma sinψ ψ2

2 ψ
5
2 = A

R2

a2
+ma2 + 2B,

G12 = 2mψ1
1 ψ

1
2 + 2mψ2

1 ψ
2
2 +Aψ3

1 ψ
3
2 +Aψ4

1 ψ
4
2 + (ma2 + 2B)ψ5

1 ψ
5
2

+ma cosψ ψ1
1 ψ

5
2 +ma sinψ ψ2

1 ψ
5
2

= −A
R2

a2
+ma cosψR cosψ +ma sinψR sinψ = maR−A

R2

a2
,

and we obtain

[Gαβ ] =

 2mR2 +A
(
1 + R2

a2

)
maR−AR2

a2

maR−AR2

a2 A R2

a2 +ma2 + 2B

 .
It follows that

G
.= det[Gαβ ] =

[
2mR2 +A

(
1 +

R2

a2

)] [
A
R2

a2
+ma2 + 2B

]
−

[
maR−A

R2

a2

]2

= 2mA
R4

a2
+ 2m2R2a2 + 4mR2B +A2 R

2

a2
+ma2A+ 2AB +A2R

4

a4
+ma2A

R2

a2

+ 2AB
R2

a2
−m2a2R2 −A2R

4

a4
+ 2mA

R3

a

=
R2

a2

(
2mAR2 +A2 +ma2A+ 2AB + 2mAaR−m2a4 + 2m2a4 + 4ma2B

)
+A (ma2 + 2B)

=
R2

a2

(
2mAR2 +A2 +ma2A+ 2AB + 2mAaR+m2a4 + 4ma2B

)
+A (ma2 + 2B)

=
R2

a2

(
m (2AR2 + a2A+ 2AaR+ 4a2B +ma4) +A2 + 2AB

)
+A (ma2 + 2B).

We observe that the determinant G is a constant. The inverse matrix is

[Gαβ ] = G−1

 A R2

a2 +ma2 + 2B AR2

a2 −maR

AR2

a2 −maR 2mR2 +A
(
1 + R2

a2

)
 .

From the expression of the kinetic energy,

K = m (ẋ2 + ẏ2) + A
2 (θ̇2

1 + θ̇2
2) + (1

2 ma2 +B) ψ̇2 +ma ψ̇ (ẋ cosψ + ẏ sinψ),
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we obtain

[
∂K

∂q̇i

]
=


2mẋ+ma cosψ ψ̇
2mẏ +ma sinψ ψ̇

Aθ̇1
Aθ̇2

(ma2 + 2B)ψ̇ +ma(ẋ cosψ + ẏ sinψ)


and

[
∂K

∂qi

]
=


0
0
0
0

maψ̇ (ẏ cosψ − ẋ sinψ)

 .

The Lagrange equations for the free motions are

2mẍ+ma cosψ ψ̈ −ma sinψ ψ̇2 = A1,

2mÿ +ma sinψ ψ̈ +ma cosψ ψ̇2 = A2,

Aθ̈1 = A3,

Aθ̈2 = A4,

(ma2 + 2B)ψ̈ +ma(ẍ cosψ + ÿ sinψ)−ma(ẋ sinψ − ẏ cosψ)ψ̇

= maψ̇(ẏ cosψ − ẋ sinψ) +A5.

They show that

L1 = A1 +ma sinψ ψ̇2,

L2 = A2 −ma cosψ ψ̇2,

L3 = A3,

L4 = A4,

L5 = A5 +maψ̇ (ẏ cosψ − ẋ sinψ) +ma(ẋ sinψ − ẏ cosψ) ψ̇ = A5.

Thus, due to the parametric equations (9.12),

Z̄1 = A1 + mR2

a (z2 − z1)2 sinψ, Z̄2 = A2 − mR2

a (z2 − z1)2 cosψ,
Z̄3 = A3, Z̄4 = A4, Z̄5 = A5.

Let us compute Zα = Z̄i ψ
i
α – recall (9.13):

Z1 = (A1 + mR2

a (z2 − z1)2 sinψ)R cosψ + (A2 − mR2

a (z2 − z1)2 cosψ)R sinψ

− R
a A3 +A4

= A1R cosψ +A2R sinψ − R
a A3 +A4 = R (A1 cosψ +A2 sinψ − 1

a A3) +A4,

Z2 = R
a A3 +A5.
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Thus, the dynamical equations (7.5) associated with the vector field Z are

dx

dt
= R cosψ z1,

dx

dt
= R sinψ z1,

dψ

dt
=
R

a
(z2 − z1),

dθ1
dt

= z1,

dθ2
dt

= z2,

dz1

dt
= R (A1 cosψ +A2 sinψ − 1

a A3) +A4,

dz2

dt
= R

a A3 +A5.

9.4 Two points with parallel velocities

Two material points P1 = (x1, y1) and P2 = (x2, y2) running on the Cartesian plane R2 = (x, y)
are constrained to have parallel vector-velocities v1 and v2. This is an example of non-linear
non-holonomic constraint, since it is expressed by the quadratic homogeneous equation

C = ẋ1 ẏ2 − ẋ2 ẏ1 = 0. (9.14)

The configuration manifold is Q4 = R4 with ordered Lagrangian coordinates

(q1, q2, q3, q4) = (x1, y1, x2, y2).

The kinetic energy is K = 1
2 m1 (ẋ2

1 + ẏ2
1) + 1

2 m2 (ẋ2
2 + ẏ2

2). Hence,

[gij ] =


m1 0 0 0
0 m1 0 0
0 0 m2 0
0 0 0 m2

 .
(i) First method. Since dim(Q) = 4 and dim(C) = 7, for a parametric representation of the
constraint ẋ1 ẏ2−ẋ2 ẏ1 = 0 we need three parameters (z1, z2, z3). Let us consider the parameters
(zα) = (z1, z2, z3) = (ρ, σ, θ) and the parametric equations

ẋ1 = ρ cos θ,
ẏ1 = ρ sin θ,

ẋ2 = σ cos θ,
ẏ2 = σ sin θ.

(9.15)

The meaning of the parameters is the following: ρ2 = v2
1 = ẋ2

1 + ẏ2
1, σ

2 = v2
2 = ẋ2

2 + ẏ2
2, and θ is

the angle of the two vector velocities w.r.to the x-axis. Then we find:

[ψi
α] =

 cos θ sin θ 0 0
0 0 cos θ sin θ

− ρ sin θ ρ cos θ − σ sin θ σ cos θ

 (α index of line),

[Gαβ ] .= [gij ψ
i
αψ

j
β] =

 m1 0 0
0 m2 0
0 0 m1ρ

2 +m2σ
2

 ,

[Gαβ ] =


1
m1

0 0

0
1
m2

0

0 0
1

m1ρ2 +m2σ2

 .
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Since,[
∂K

∂q̇i

]
= [m1ẋ1 , m1ẏ1 , m2ẋ2 , m2ẏ2],

[
∂K

∂qi

]
= [0 , 0 , 0 , 0],

the Lagrange equations for the free motions gij q̈
j = Ai − Γhki q̇

h q̇k read

m1 ẍ1 = A1, m1 ÿ1 = A2, m2 ẍ2 = A3, m2 ÿ2 = A4. (9.16)

They show that Z̄i = Ai. Hence,

[Zα] .= [ψi
αZ̄i] =

 A1 cos θ +A2 sin θ
A3 cos θ +A4 sin θ

ρ (A2 cos θ −A1 sin θ) + σ (A4 cos θ −A3 sin θ)

 ,

[Zα] .= [Gαβ Zβ ] =


A1 cos θ +A2 sin θ

m1
A3 cos θ +A4 sin θ

m2
ρ (A2 cos θ −A1 sin θ) + σ (A4 cos θ −A3 sin θ)

m1ρ2 +m2σ2

 ,
and the differential system associated with Z is

dx1

dt
= ρ cos θ,

dy1

dt
= ρ sin θ,

dx2

dt
= σ cos θ,

dy2

dt
= σ sin θ,

dρ

dt
=
A1 cos θ +A2 sin θ

m1
,

dσ

dt
=
A3 cos θ +A4 sin θ

m2
,

dθ

dt
=
ρ (A2 cos θ −A1 sin θ) + σ (A4 cos θ −A3 sin θ)

m1ρ2 +m2σ2
,

(9.17)

where the Lagrangian active forces are in general known functions of (x1, y1, x2, y2) and (ρ, σ, θ).
In the special case of an inclined plane we have A1 = m1 g, A3 = m2 g, A2 = A4 = 0, and

the system (9.17) becomes

dx1

dt
= ρ cos θ,

dy1

dt
= ρ sin θ,

dx2

dt
= σ cos θ,

dy2

dt
= σ sin θ,

dρ

dt
= g cos θ,

dσ

dt
= g cos θ,

dθ

dt
= − g sin θ

m1 ρ+m2 σ

m1ρ2 +m2σ2
.

(9.18)

Note that the last three equations are separated from the first four. This occurs in general
when the Lagrangian active forces do not depend on the position of the point, but only on their
velocities. For equal masses m1 = m2, we have a further simplification:

dx1

dt
= ρ cos θ,

dy1

dt
= ρ sin θ,

dx2

dt
= σ cos θ,

dy2

dt
= σ sin θ,

dρ

dt
= g cos θ,

dσ

dt
= g cos θ,

dθ

dt
= − g sin θ

ρ+ σ

ρ2 + σ2
.

(9.19)
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(ii) Second method for the single constraint equation (9.14). In this case,

[Ci] = [ẏ2 , − ẋ2 , − ẏ1 , ẋ1]

does not have the maximal rank for v1 = v2 = 0. This is a singular state for whatever
configuration (see Remark 7.3); the set of the singular states is the zero-section of TQ. Moreover,
since

[gij ] =


1

m1
0 0 0

0 1
m1

0 0
0 0 1

m2
0

0 0 0 1
m2

 ,
we have:

[Ci] .= [gij Cj ] =
[
ẏ2

m1
, − ẋ2

m1
, − ẏ1

m2
,
ẋ1

m2

]
,

G =
ẋ2

2 + ẏ2
2

m1
+
ẋ2

1 + ẏ2
1

m2
=

2K
m1m2

, G−1 =
m1m2

2K
,

[Ci
∗] = G−1

[
ẏ2

m1
, − ẋ2

m1
, − ẏ1

m2
,
ẋ1

m2

]
,

[πij ] = G−1



ẏ2
2

m2
1

− ẋ2ẏ2

m2
1

− ẏ1ẏ2

m1m2

ẋ1ẏ2

m1m2

− ẋ2ẏ2

m2
1

ẋ2
2

m2
1

ẋ2ẏ1

m1m2
− ẋ1ẋ2

m1m2

− ẏ1ẏ2

m1m2

ẏ1ẋ2

m1m2

ẏ2
1

m2
2

− ẋ1ẏ1

m2
2

ẋ1ẏ2

m1m2
− ẋ1ẋ2

m1m2
− ẋ1ẏ1

m2
2

ẋ2
1

m2
2


,

[gij − πij ] =



1
m1

0 0 0

0
1
m1

0 0

0 0
1
m2

0

0 0 0
1
m2



− m1m2

2K



ẏ2
2

m2
1

− ẋ2ẏ2

m2
1

− ẏ1ẏ2

m1m2

ẋ1ẏ2

m1m2

− ẋ2ẏ2

m2
1

ẋ2
2

m2
1

ẋ2ẏ1

m1m2
− ẋ1ẋ2

m1m2

− ẏ1ẏ2

m1m2

ẏ1ẋ2

m1m2

ẏ2
1

m2
2

− ẋ1ẏ1

m2
2

ẋ1ẏ2

m1m2
− ẋ1ẋ2

m1m2
− ẋ1ẏ1

m2
2

ẋ2
1

m2
2


,

g11 − π11 =
1
m1

− m2

2K
ẏ2
2

m1
=

1
m1

(
1− m2 ẏ

2
2

2K

)
=

2K −m2 ẏ
2
2

2m1K
=
m1 (ẋ2

1 + ẏ2
1) +m2 ẋ

2
2

2m1K
,

g12 − π12 =
m1m2

2K
ẋ2ẏ2

m2
1

=
m2 ẋ2ẏ2

2m1K
,
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g13 − π13 =
m1m2

2K
ẏ1ẏ2

m1m2
=
ẏ1ẏ2

2K
,

g14 − π14 = − m1m2

2K
ẋ1ẏ2

m1m2
= − ẋ1ẏ2

2K
,

g22 − π22 =
1
m1

− m2

2K
ẋ2

2

m1
=

1
m1

(
1− m2 ẋ

2
2

2K

)
=

2K −m2 ẋ
2
2

2m1K
=
m1 (ẋ2

1 + ẏ2
1) +m2 ẏ

2
2

2m1K
,

g23 − π23 = − m1m2

2K
ẋ2ẏ1

m1m2
= − ẋ2ẏ1

2K
,

g24 − π24 =
m1m2

2K
ẋ1ẋ2

m1m2
=
ẋ1ẋ2

2K
,

g33 − π33 =
1
m2

− m1

2K
ẏ2
1

m2
=

1
m2

(
1− m1 ẏ

2
1

2K

)
=

2K −m1 ẏ
2
1

2m2K
=
m2 (ẋ2

2 + ẏ2
2) +m1 ẋ

2
1

2m2K
,

g34 − π34 =
m1m2

2K
ẋ1ẏ1

m2
2

=
m1 ẋ1ẏ1

2m2K
,

g44 − π44 =
1
m2

− m1

2K
ẋ2

1

m2
=

1
m2

(
1− m1 ẋ

2
1

2K

)
=

2K −m1 ẋ
2
1

2m2K
=
m2 (ẋ2

2 + ẏ2
2) +m1 ẏ

2
1

2m2K
,

[∂iC] = [0 , 0 , 0 , 0], [∂jC C
i
∗] = [0].

As in this case Li = Ai, we have

Di .= (gij − πij)Lj − q̇j ∂jC C
i
∗ = (gij − πij)Lj = (gij − πij)Aj ,

D1 =
1

2K

(
A1
m1 (ẋ2

1 + ẏ2
1) +m2 ẋ

2
2

m1
+A2

m2 ẋ2ẏ2

m1
+A3 ẏ1ẏ2 −A4 ẋ1ẏ2

)
,

D2 =
1

2K

(
A1
m2 ẋ2ẏ2

m1
+A2

m1 (ẋ2
1 + ẏ2

1) +m2 ẏ
2
2

m1
−A3 ẋ2ẏ1 +A4 ẋ1ẋ2

)
,

D3 =
1

2K

(
A1ẏ1ẏ2 −A2ẋ2ẏ1 +A3

m2 (ẋ2
2 + ẏ2

2) +m1 ẋ
2
1

m2
+A4

m1 ẋ1ẏ1

m2

)
,

D4 =
1

2K

(
−A1ẋ1ẏ2 +A2ẋ1ẋ2 +A3

m1 ẋ1ẏ1

m2
+A4

m2 (ẋ2
2 + ẏ2

2) +m1 ẏ
2
1

m2

)
.

Then the dynamical system (8.12) reads

dx1

dt
= ẋ1,

dy1

dt
= ẏ1,

dx2

dt
= ẋ2,

dy2

dt
= ẏ2,

dẋ1

dt
=

1
2K

(
A1
m1 (ẋ2

1 + ẏ2
1) +m2 ẋ

2
2

m1
+A2

m2 ẋ2ẏ2

m1
+A3 ẏ1ẏ2 −A4 ẋ1ẏ2

)
,

dẏ1

dt
=

1
2K

(
A1
m2 ẋ2ẏ2

m1
+A2

m1 (ẋ2
1 + ẏ2

1) +m2 ẏ
2
2

m1
−A3 ẋ2ẏ1 +A4 ẋ1ẋ2

)
,

dẋ2

dt
=

1
2K

(
A1ẏ1ẏ2 −A2ẋ2ẏ1 +A3

m2 (ẋ2
2 + ẏ2

2) +m1 ẋ
2
1

m2
+A4

m1 ẋ1ẏ1

m2

)
,

dẏ2

dt
=

1
2K

(
−A1ẋ1ẏ2 +A2ẋ1ẋ2 +A3

m1 ẋ1ẏ1

m2
+A4

m2 (ẋ2
2 + ẏ2

2) +m1 ẏ
2
1

m2

)
.

For two points running on an inclined plane,

D1 = g
m1 (ẋ2

1 + ẏ2
1) +m2 (ẋ2

2 + ẏ1ẏ2)
m1 (ẋ2

1 + ẏ2
1) +m2 (ẋ2

2 + ẏ2
2)

,

D2 = g
m2ẋ2 (ẏ2 − ẏ1)

m1 (ẋ2
1 + ẏ2

1) +m2 (ẋ2
2 + ẏ2

2)
,

D3 = g
m2 (ẋ2

2 + ẏ2
2) +m1 (ẋ2

1 + ẏ1ẏ2)
m1 (ẋ2

1 + ẏ2
1) +m2 (ẋ2

2 + ẏ2
2)

,

D4 = g
m1 ẋ1 (ẏ1 − ẏ2)

m1 (ẋ2
1 + ẏ2

1) +m2 (ẋ2
2 + ẏ2

2)
.
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For equal masses, m1 = m2,

D1 = g
ẋ2

1 + ẏ2
1 + ẋ2

2 + ẏ1ẏ2

ẋ2
1 + ẏ2

1 + ẋ2
2 + ẏ2

2

,

D2 = g
ẋ2 (ẏ2 − ẏ1)

ẋ2
1 + ẏ2

1 + ẋ2
2 + ẏ2

2

,

D3 = g
ẋ2

2 + ẏ2
2 + ẋ2

1 + ẏ1ẏ2

ẋ2
1 + ẏ2

1 + ẋ2
2 + ẏ2

2

,

D4 = g
ẋ1 (ẏ1 − ẏ2)

ẋ2
1 + ẏ2

1 + ẋ2
2 + ẏ2

2

.

Note 9.1. It is easy (and obvious) to propose examples of non-linear constraints: it is sufficient
to choose any set of non-linear independent equations Ca(q, q̇) = 0. However, any example
of a non-linear constraint remains meaningless unless we know how to realize it physically by
means of realizable devices. The famous Appell–Hamel example gives a matter of discussion
(see [9], Ch. 4, § 2). Indeed, in order to be really a non-linear device, a certain distance of the
Appell–Hamel device must be infinitesimally small. This fits with the thought of Hertz: non-
linear constraints can be realized by passing to the limit x→ 0 of certain physical quantities x
(masses, lengths, etc.) in devices realizing linear constraints.

The same kind of problem arises in trying to ‘realize’ two mass-points moving with parallel
velocities. A tentative project has been presented in [1]. In fact, for an effective project, we
have to invent devices for

1. Realizing a mass-point.

2. Realizing a parallel transport on the plane.

3. Transforming the direction of the velocity of a point into a solid segment.

4. Applying forces of special kind to the points (the weight is of course always present).

This research is a work in progress. Updated information will be found on my personal web-page.
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