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Abstract. There is a commutative algebra of differential-difference operators, with two
parameters, associated to any dihedral group with an even number of reflections. The
intertwining operator relates this algebra to the algebra of partial derivatives. This paper
presents an explicit form of the action of the intertwining operator on polynomials by use
of harmonic and Jacobi polynomials. The last section of the paper deals with parameter
values for which the formulae have singularities.
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1 Introduction

The dihedral group of type I (2s) acts on R?, contains 2s reflections and the rotations through
angles of ™% for 1 < m < 25 — 1, and is of order 4s, where s is a positive integer. It is the
symmetry group of the regular 2s-gon and has two conjugacy classes of reflections (the mirrors
passing through midpoints of pairs of opposite edges and those joining opposite vertices). There
is an associated commutative algebra of differential-difference (“Dunkl”) operators with two
parameters, denoted by kg, k1. It is convenient to use complex coordinates for R?, that is,
z = w1 + iwe, Z = x1 — iza. Notations like f(z) will be understood as functions of z, Z;
except that f(Z,z) will be used to indicate the result of interchanging z and z. Let N, Ny, Q
denote the sets of positive integers, nonnegative integers and rational numbers, respectively. Let
w = el™/5 then the reflections in the group are (2,2) = (Zw™, zw™™), 0 < m < 2s and the
rotations are (z,%Z) — (zw™,Zw™"™,), 1 < m < 2s. Note that f (Zw™) is the abbreviated form of
f (Zw™, zw™™). The differential-difference operators are defined by

1 1 S20+1
zw J J )
Tf (z) = ZO szj ZU z— Zw2]+1 ’
— 0 f) = fEY) o S f(R) - f (R
— _ J 2j+1
Ti(e) =gzl (2) = o, c—zwu oM Z P e B
7=0 7=0
for polynomials f (). (The second formula implicitly uses the relation —~2—% = =———.) The

key fact is that T and T commute. The explicit action of T and T on monomials is given by

[(a—b-1)/s]
T29%" = a2z 12" + 5 Z (ko + (—1) m)za_l_jsfl’ﬂs, (1.1)
=0
- L(a—b)/s] ' ‘
T2 = b292" 1 — 5 Z (ko + (1) /{1) Za7dszb—14is (1.2)

J=1
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for a > b; the relations remain valid when both (z,Z) and (T, T) are interchanged. The Laplacian
is 4TT. These results are from [2, Section 3]. The harmonic polynomials and formulae (1.1)
and (1.2) also appear in Berenstein and Burman [1, Section 2]. The aim of this paper is to find
an explicit form of the intertwining operator V. This is the unique linear transformation that
maps homogeneous polynomials to homogeneous polynomials of the same degree and satisfies

TVf(z)zVaazf(z), TVf(z):Vif(z), Vi=1

The operator was defined for general finite reflection groups in [4]. Rosler [8] proved that V is
a positive operator when kg, k1 > 0; this roughly means that if a polynomial f satisfies f (y) > 0
for all y with ||y|| < R (for some R) then V' f (y) > 0 on the same set. The present paper does
not shed light on the positivity question since the formulae are purely algebraic. In Section 5 the
special case — (ko + k1) € N is considered in more detail. These values of (ko, k1) are apparent
singularities in the expressions for V 2%z% which are found in Section 4. The book by Y. Xu and
the author [7] is a convenient reference for the background of this paper.

In a way, to find V 2%2° only requires to solve a set of equations involving V 2/z* for 0 < j < a,
0 < k <b. This can be implemented in computer algebra for small a, b but it is not really an
explicit description. For example, by direct computation we find that

Va2 (ko 4+ k1 + 1) 22 + (kg — K1) 22 7 s=2,
(2%0 + 1) (2%1 + 1) (2/4‘,0 + 2K1 + 1)
222

V= , 5§ > 2.
(sko + sk1 + 1) (sko + sk1 + 2)

The idea is to find the harmonic expansion of Vz%2%; suppose f (z) is (real-) homogeneous of
[n/2] ,

degree n then there is a unique expansion f(z) = Y. (22)’ fn—2; (2) where f,_9; is homo-
j=0

geneous of degree n — 2j and is harmonic, that is, TT f,,—o; = 0, for 0 < j < n/2. There is

some more information easily available for the expansion of V29zZ?. Let n = a + b and suppose

V207 = Z cj2" %0 for certain coefficients ¢;. Because V commutes with the action of the

7=0
group we deduce that

V (o) @ )—wabzcﬂw an

thus ¢; # 0 implies n — 2j = a — bmod (2s) or j = bmod s. Further

(7‘1 b) Zc VI,

so it will suffice to determine V 29z for a > b. We will use the Poisson kernel to calculate
the polynomials denoted K, (z,y) := V* (rlb, (x1y1 —I—xgyg)n) (see [5, p. 1219]), where y € R?
and V? acts on the variable z. Thus V! Jw% is j!(n — j)! times the coefficient of y?_jy%
in K, (z,y). This is adapted to complex coordinates by setting w = y; + iye, in which case

T1Y1 + Toys = (zw + Zw).

2 The Poisson kernel

Actually it is only the series expansion of this kernel that is used. For now we assume kg, k1 > 0.
The measure on the circle T := {e?: —m < § < 7} associated to the group I (2s) and the
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operators T, T is

0y ._ 1 2 _p\KO 2 g\t
du(e ) =g (Ho n %,/ﬂ n %) (sm 39) (Cos 39) de.

Suppose g is a function of ¢ = cos 2s6 then

) 27 ! o \ko—1/2 k1—1/2
Low@an) = grtos [ 000 ey

The inner product in L? (T, ) is
(19) = [ 1(2)5du ()
T

and ||f]| :== (f, f)l/ 2. Throughout the polynomials under consideration have real coefficients
so that g (2,Z) = g (%, 2). By the group invariance of x the integral [, 29%%dy (2)is real-valued
when a = bmod (2s) and vanishes otherwise. There is an orthogonal decomposition L? (T, u) =

o0

> @®Hy; for n > 0 each H,, is of dimension two and consists of the polynomials in z,Z (real-)
n=0

homogeneous of degree n and annihilated by 77T (the harmonic property), while Hy consists of
the constant functions. The Poisson kernel is the reproducing kernel for harmonic polynomials
(for more details see [3, 5]). Xu [10] investigated relationships between harmonic polynomials,
the intertwining operator and the Poisson kernel for the general reflection group. The paper
of Scalas [9] concerns boundary value problems for the dihedral groups. The projection of the
kernel onto H,, is denoted by P, (z,w) and satisfies

/T Po (z,w) g (w) dya () = g (2)
for each polynomial g € H,,. There is a formula for P, in terms of {Kn,gj :0< 5 < %} (see [5,

p. 1224]) which can be inverted. In the present case

Ln/2]

P, (z,w) = Z

J=0

(70),,

- 2721 (zzww) Kp_a; (z,w),

where vy = skg + sk1 + 1. The inverse relation is

(/2]
Ky (w) =27 Y ]'(7;) (zZww) Po_sj (2,0). (2.1)
j=0 7" n—j

This is a consequence of the following:

Proposition 1. Suppose there are two sequences {&, : n € No} and {n, : n € No} in a vector
space over Q (vo) where o is transcendental, then

L (70)
n — . L n—27 nec N 5
¢ ;) A2 —n—n), "% ’

if and only if

[n/2]

1
Mn = Z .7.57#2]', n € Np.

= 7' ()0
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Proof. Consider the matrices A and B defined by &, = > ; Ajunj, mn = >_; Bjngj; these
matrices are triangular and the diagonal entries are nonzero, hence they are nonsingular. It
suffices to show B is a one-sided inverse of A; this is actually finite-dimensional linear algebra,
since one can truncate to the range 0 < n,j < M for any M € N. Indeed

[n/2] (70) [n/2—j]

1
Z ) Z 2'(77571 25—21

=0 j!(2_n_70 J im0 : O)n 2j—1
L"fg i (—k); (1 =n =50+ k),
n— 2k .
O n—=k j:0 ]'(2_7?/_70)]
Ln/2J
" 0)p—k (2—=1—70)y v

using the substitution ¢ = k — j we obtain (70)n72j7i = (’Yo)nfkfj = % and % =

(—1) (7:!)3' ; the sum over j is found by the Chu—Vandermonde formula. [ |
Set &, = = Palzw) ang g, = ZEa0) oo e Ny to prove equation (2.1)
n (zzww)™ 2 Mn = (zzww)"™/? 0 T

Suppose for each n € N there exist a basis {hp1,hn2} and a biorthogonal basis {gn1, gn2}
for H,, with real coefficients in z,% (so hpn1 (2,%) = hn1 (%, 2), for example). Thus (hp;, gn;) =
0ij /Ani,with structural constants A\,;. Then

2

P, (z,w) = Z Anihni (2, %) gni (0, w) . (2.2)
i=1

Once this is made sufficiently explicit we can compute K, (z, w) and V2" 7%/, The description of
harmonic polynomials is in terms of the case s = 1 (corresponding to the group Iy (2) = Zg X Zs2).
In terms of Jacobi polynomials the polynomials annihilated by T are:

fon (rew) =r 2"P(I{O r173) (cos20) + 3 (r sin 20) 2"~ 2P(H MM )(00529), (2.3)

: 1 1l
fon+t1 (7"619) = (n + ko + 2) rcos 0 TZ”P,gHO 21%3) (cos 26) (2.4)

HO+27/€1

1
+i <n + K1+ 2> rsinf TQ”P( 2) (cos20);
where the subscript indicates the degree of homogeneity, (clearly f,, is a polynomial with real
coefficients in z, z; cos20 = (22 +22) /(22%) and 4 (r?sin20) = 7 (22 —z%)). The real and
imaginary parts form a basis for the harmonic polynomials. Specifically let

f(z):=Refal(2),  fal(z):=1ilmfo(2).

This implies that both f0 and f! have real coefficients in z,Z and f9 (2, 2) = f0(2,2), f} (2, 2) =
—fa(2,%Z). When s > 1 and 1 <t < s it is known [2, p. 182] that {z'f, (2%),z'f, (z°)} is
an orthogonal basis for H,sy; for n > 0. Henceforth we denote hpgir1(2) = Gnstt,1 (2) =

tfn( ) = hns—i—t 2 = Gns+t,2 and )\ns—i-t 1= )\ns—i-t 2= anH_ The integral <thn (ZS) ,thn (Zs)>
reduces to the case s = 1 and t = 0. When s > 1 { £o(2%), fr(z 3)} is an orthogonal basis

for Hps and z°f,,_1 (2°) is orthogonal to f, (2°). By orthogonality ||f,|* = Hf,?HQ + Hf}LHQ and
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the latter two norms are standard Jacobi polynomial facts. The associated structural constants
are denoted by labeled A\’s. Thus

0 . HfSnH_Q _ n! (/<a01+ K1+ 1),11 (ko + K1 + 2n) 7 (2.5)
(ko +3), (k1 +35), (ko + K1 +n)
A%n :: Hf21nH72 _ (n—1)! (620—:_2)—: (lliqf iﬂ%)—:m + 271)7 (2.6)
don = ™ = (“0; VET)) 27)
and

Nt o= [ |2 = (Z'j‘)oil)*(ljf())tl(* i’”)lj 28)
e = | = T s T et o 29
Aomsr = [l fansa |72 = — o bt Dy (2.10)

RCE NN CES N

From this point on we no longer need the measure p on the circle. Only the algebraic expressions
are used. The condition kg, k1 > 0 is replaced by the requirement that none of —xg+ %, —Kk1+ %,
—s (ko + K1) equal a positive integer. The exceptional case — (kg + k1) € N is taken up in the
last section. In the next section we compute the structural constants for the biorthogonal bases
{fn (z%), fn (Z°)} and {2°fr—1 (2°),2° fn—1 (Z°)} for Hps (see [3, p. 461]. It is easier to carry this
out with material developed in the next section.

3 Expressions for coefficients

This is a detailed study of the coefficients of f, (z) in terms of powers of z, Z. The expressions
are in the form of a single sum of hypergeometric 3F5-type, and can not be simplified any
further. For a polynomial f in z, Z define ¢ (f;a,b) to be the coefficient of 222° in f, that is,

f(z,z)= Z c(f;a,b) 272"

a,b>0

Since we restrict to polynomials with real coefficients the equation c(f (2);a, b) =c(f;b,a) is
valid. Further ¢ (f (2%);as,bs) = c(f;a,b). Recall

1

K, (z,w) := S

V(2w +Zw)")

thus V2" 7727 is 275! (n — j)! times the coefficient of w/w" 7 in K, (z,w). To adapt the notation
from equation (2.2) for Py set ho1 = go1 = Ao1 = 1 and hga = go2 = A2 = 0. Then

Ln/2]
K, (z,w)=2"" Z

J=0

1
g'(sko +sk1+1),_
2

x (2ZwB) > An—9jihn—2ji (2, %) gn-2; (T, w).
i=1

(3.1)
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Proposition 2. For 0 < m < n,

Ln/2]
V (2"7"zZ™) = m! (n —m)! Z

=0

1
JH(sko + sk1+1),,_;

x (2%)’ Z An—2jiC(Gn—2jisn —m — j,m — j) hn_2j; (2,%) .
i1

The nonzero terms appear at increments (in j) of 2s. We start by finding ¢ ( Vn —j, j) and
c ( frn—j, j). This is straightforward and will serve as motivation for introducing a specific
useful 3 Fy-series. Consider f9 (z) and recall that

n! a+1 2

When z = re'’ we have £ (1 — cos20) = — (z — 7)%/ (42%) so

r2n (ro—3:m1-3)
Py (cos2t9)

_ Iio + Z": Z n + /i() + H1) (.2l)!272lzn+lfiznfl+i (_1)l+i
1=0 i=0 (Ko +3), 8 (2 = 0)!
_ (mo+ f)" i (—1)7 iz ni:] (=) i (04 Ko+ K1) 14 (3) 44
nt e i) R0+ 3) 5, (25 +10)!

(substituting l =i+ j,s0 0 < i+ j <mand 0 <i < 2i 4 2j are the ranges of the summation)

by the (z,%)-symmetry it suffices to consider 7 > 0. Thus

(ko +3),, (=n); (n + Ko + K1); (%)]

(ko + %)J (25)!n!

i j—n); (n+ro+ k1 +34); (3 +4),

= it (ko + 3 +4), (27 +1);

:(n+/<co+f£1) (no-i— +j) 3F2 j_n,n+,@0+m+j,j+%‘1 .
2251 (n — 5)! ko+3+52i+1 )

_1)j

this used (2j)! = 225! (%)] and (Kio + %)n/ (/fo + %)] = (Ho + % +j)n_j. The sum, which
appears to be a mysterious combination of the parameters, actually has a nice form revealing
more useful information.

Definition 1. For n € Ny and parameters a, b, c1, co let

—n,b
E, (a,b;c1,c2) == M 3% ( ™0 '1>

n'(cl—|—02) l-n—a,1—cy—n’

= (c1 +c2),, Z (b)j (Cl)j (62)n—j‘

=0

Observe the symmetry Ey, (a,b;c1,c2) = (—1)" E, (b,a;c,¢1). This follows from manipula-
tions such as (a),,_; = (=1)’ (a),, / (1 = n — a);. The following transformation is relevant to the
calculation of coefficients.
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Proposition 3. Forn € Ny and parameters a, b, c1, ca

— b -1
En(a,b;cl,CQ):M3F2< n,n+a+b+c+cy ,Cl;l>.

n! a—+cp,c1+ o

Proof. Use the transformation

-n,A,B \ (D-DB), -n,C—-A,B
3F2< C,D ’1)_ (D), 3F2(C’,1+B—D—n’1)'

First set A=b,B=c¢;,C=1—n—a,D=1—n—cy then
(a), (c2), T —-n,b, c1 1) = (a), Py —n,l—n—a—b,cl;l .
nl(c1 + c2),, l-n—a,l—co—n n! l-n—a,c1+c
Set A=1-n—a—b, B=c,C=c1+co, D=1—n—a to obtain the stated formula. In the
calculation the reversal such as (1 —n —a), = (—1)" (a),, is used several times. [

We arrive at a pleasing formula:
(n+ Ko + K1), 11
Tj!En—j (HO,M;J + §a] + 2) .

It is useful because it clearly displays the result of setting one or both parameters equal to zero (or

a negative integer). That is E,, (ko,0;c1,c2) = LGP P > 1 implies E, (0,0;c1,c2) = 0.

n!(c1+c2),

(When kg = k1 = 0 the polynomial fJ is a multiple of the Chebyshev polynomial of the
first kind, that is f9 (2) = (), (22" +z?), a fact obvious from the definition of f3,.) The

nl22n
remaining basis polynomials can all be expressed in terms of the function E.

Proposition 4. Forn € N

n

o |
0 _ +jzn— —jgn+
fon (2) _Z;(z” 72+ 2 IE) 92j 1

j:

R TS A 11
X (n+ ko + k1) Enj | K0, K10+ 505+ 5 ) + 22 En { Ko k1 505 )
= 1
(2 Higni _ pneiznti

fou (2) =D ("7 ) o (-1t

7=1

1 1
(n+f€0+/€1+1)] 1 En ]<H07517]+27]+2>'

Proof. The expansion for fJ has already been determined. Next %7“2 sin 20 = % (z2 — ?2) SO
i +1 4 Ko+ 3
Lr2sin20 ) r2n- ZP("i Fri+3) (cos 20) = 7( 2)”_1
2 (n—1)!

(1—=n);(n+ Ko+ K1+
l'(“0+§)l

1), 222 (_1) (z 4 7) (z — 2)2H (z2)" 1,

||M

and

9—21-2 (2 + E) ( . 7)2l+1 (Zg)n—l—l
20+2 .
B @+ @ +2-2), o
—9 20—2 -1 v ntl+l—izn—Il—1+1
Z il (20 4+ 2 — 1) (=) :
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214-2 l —
_ Z 2 l+1 l+ 1 ) (_1)i Zn+l+lfi§nfl71+i,
il (2042 —4)! ’

substitute [ = j+i—1. By the symmetry f (2) = —f4, () it suffices to find c (f21n; n+j,n— j)
for 1 < j < n. Indeed
j (ko + %)n,l (I=n);y(n+kKo+k1+1); 4 (%)]
(Ko + %)j_l (2)! (n —1)!
i j—n), n+/<co+f<;1+j)<(l+j)i
il (ko + 5 +4), (27 + 1),
( + Ko+ K1+ 1)

C(f21n7n+]7n_]) = (_1)j_1

1 101
I- En—j</€07/€1;J+,.7+>-

225 (j —1)! 2 2
This completes the proof. |
Proposition 5. Forn € Ny
n A _ A ) 1
fong1 (2) = <n + ko + ) Z (2 HHHIZn T g i) 92j+11
7=0

1 .3
X (n+ko+ k1 + 1)]- E,_; (HO,FMSJ + 507 + 2) )
1\ <& ) ) ) . 1
fania (2) = (n + K1+ 2) Z (" H1IFIgn=d _ prmizntia) SR

J=0

.3 1
X (n+ko+K1+1); Eny (no,ﬁl;j+2,j+2>.

Proof. The second equation is straightforward:

3
Fani1 (2) = ; <n~|—m1 + ;) (»—7%) yon plrotsm—3 )(c0520) (n+/€1 . 1> (o +3),

2 n!
n 2l+1
y Z Z (n+ Ko + K1+ 1), (25. + 1)!2—2l—1zn+1+l—i§n—l+i (1)t
o /‘60+ )z'(2l 1—a)!

(fi0+) o L
= <n—|—/<;1+2> n!jz(:)(znﬂﬂzn J _ yn—jzntl J)
j( n); (0 o+ k1 + 1), (;)ng(j n); (n+ ko +r1+37+1); (3 +4),

= (0 +3); (27 +1)! it (mo + 3 +4), (25 +2);

)

i=0

(substituting | = j + 4 for 0 < j < n) thus
c(fipipn+1+jdn—37)=—c(fappin—jin+1+7)

1 (n+no+/<c1+1)jE 31

2 j1227 11 AR Y

Note that (25 + 1)! = 2%+15! (%)jJrl and (ko + %)n/ (Ko + %)J = (ko+3 +J')n,j' For f3,,
reverse the parameters, that is,

= (n—l—m—l—

ko—L gyl TS B
P,g 0m3mit3) (cos 20) = (—1)”P,§ rhgmo=3) (—cos26),
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and note 3 (1 + cos26) = (z + 7)? / (42%) and rcosf = 3 (2+7%). Thus

43
Bua () = 1" (4 v+ 5 ) s

20+1
x En: Z (_n)l (n +hoF K1t 1)l (2l + 1)!2—2l—1zn+1+l—i§n—l+i
I (k1 + 3) 4l (20 + 1 — )
1\ (k1 +3) & o ‘ ,
. =0
(—n)j (n+ Ko+ K1+ 1)j (%)j—&-l g (j—n);(n+ro+rK1+j+1), (% +j)i
(H1+%)j (25 +1)! 7! (f@l+%+j)i(2j+2)i

=0 =0

X

)

1=0

thus

C(fgn+1’n+1+]7n_]) :C(fgn+1,n—],n+1+])

1\ (n+ko+K1+1), _ 031
== <TL+K§0+2> j!22j+1 (_l)n jEn—j /‘ilw‘%;]"’ §7J+§ .
The symmetry relation E,, (b,a;c2,c1) = (—=1)" Ep, (a,b; ¢1, ¢2) finishes the computation. |

To find the coefficients of f,, we use contiguity relations satisfied by E,,.

Lemma 1. For m € Ny and parameters a, b, ¢

(m+a+c)Ey,(a,bje,e+1)—(m+b+c¢) Ep (a,b;e+1,¢) (3.3)
=2(m+1) Epnt(a,b;e,c),
(m+a+c)Ey,(a,bje,e+1)+ (m+b+4c¢) Ep (a,b;c+1,¢) (3.4)
m+2c+1

= ﬁ(m—i‘a—i‘b‘i‘QC)Em(a,b,C‘i‘ 1,C+ 1)
Proof. We compute the coefficient of (b); for 0 < j < m + 1 in the two identities. Note that
(m+b+c)(b); = (b);41 + (m+c—j)();, then replace j by j — 1 for the first term. The
coefficient of (b), in (m +b+c) Ep, (a,b;¢+1,¢) is

1
X{ (_m)j (m+c—j) (a’)m—j (C)m—j (c+ 1)j +J (_m)j—l (a)m+1—j (C)m+1—j (c+ 1)j—1 }
= Wm (@ (@ppr—j (e + 1y {=m+j =D (e +]) +j (a+m—j)}.

The coefficient of (b); in the left side of (3.3) is

(_m)j_
AT 1 @y (0 €+ Dy
) {(m+a+e)(=m+j—1) = (-m+j—1)(c+j)—jlat+m—j)
(_m)j— ‘
= m'(Tl);]' (a)m—j (C)j (c+ l)m_j (a+m—j)(—m—1)
2(-1-m);

@0y 3t D1 O Oy
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This proves equation (3.3). For the right side of (3.4) the coefficient of (b); is found similarly as
before ((m +a+b+2c) (b); = (m +a+2c—j) (b);+(b);,1, and so on). The coefficient of (b),
in the left side is

rm (@) (0); (e 1)y {(m+a+2e) (=m+j—1)+j(a—1)},

and in the right side

(m+a+2c—j)(a),_;(c+1);(c+1), .,

m+42c+1 (_m)j
m!(2c+1)(2c+2), J!

- (_W]L')J_lj (@mp1—j (e Djor (€ Dy }
(=m);_
= m&z)m jlet 1)y (et 1),

x{(=m+j-1)(m+a+2c—j)(ct+i)+jla+m—j)(c+m+1-7)};
the expression in {-} equals ¢ (m +a + 2¢) (—m + j — 1) + ¢j (a — 1) which proves (3.4). [ |

Proposition 6. Forn € Ny

n
fon (2) = 3 ((n+ o + 1 + ) 227 + (n + g + 1y — j) 2" IEH)
j=1

11
X 2] (n+ Ko+ K1+ 1)j,1 E,_; </€07f€1;J + 507 + 2>

11 _
+En <K'07K'1;272) anna

n+1
font1 (2) =D ((n+145) 2" 2T 4 (n 41— j) 2720+
j=1

11
22] '(n+mo+m+1) Ent1-j <HO,H1;]+2,]+2)

11
+(n+1)E,4 (Ho, K1; > 2> gzt

Proof. Recall f, = fO + f1. For 0 < j < n from Proposition 4 we find

(n+ro+r1+1);_ ) 11
= 2271 L ((n+KO+Kl)+])Enj<’{OaK1§]+231+2>7
. . N 0. . . 1. . .
c(fonin—jin+j4) =c(foun+in—7j)—c(fosn+j,n—j)
nm+rko+r1+1),

_ j—1 . P S|
= I (ot ) = ) B (o 4 i+ g ).

It remains to compute ¢ (fopt1;n+ 1+ j,n—j) and ¢(fops1;n —jy,n+1—7) for 0 < 5 < n.
Write the arguments as (n + % +e (j + %) ,n+ % —€ (j + %)) with € = +1. Then, by Proposi-
tion 9,

c 2n41;M 2 el 2 y 2 elJ 9
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=c(fyin+1+j,n—j)+ec(fain+1+75n—5)

(n+ Ko + K1 +1); 1 .13
- n+l€0+§ E,_ | ko,k130+ =+ =

j122+1 2 2

1 o3 1
+8<H+H1+2>En_j<I€0,I€1;j+2,]+2)}.

When € = 1 by (3.4) we obtain

(n+/€0+/€1+l)j+l
G+ D2

. . ) 3 .3
c(fonyin+1+jn—j) = (n+J+2)En—j<n07ﬂ1;3+2,3+2>,

and when € = —1 by (3.3) we obtain

(n+f€o+/€1+1)j
51223

. . . o1 1
c(fonyr;m—jyn+1—7) = (n—]+1)En—j+1<507’fl;]+271+2>'

The stated formula for fo,+1 uses ¢(fop+1;n + j,n+ 1 — j) explicitly (j is shifted by 1). [

For ‘H,s with n > 0 we intend to use both the orthogonal basis { f0 (z%), f1 (2°)} as well as
the biorthogonal bases { fn (2°), fn (2°)} and {2° f—1 (2*) , 7% fa—1 (2%) }. For the latter we need
the value of v, := (f, (2°),2°fn—1(2%)). Instead of doing the integral directly we use the two
formulae for P, (z,w), that is,

Pos (2,0) = Ay f (2°) i) (0®) + A fn (2°) 1 (w?)
= vy (fu ()0 frm1 (@°) + fu (2°) W frnm1 (w°)).
From the coefficients of @w"™® in the equation we obtain
A (f:0,m) £ (2°) + Ane (£, 0) fo (2°) = v e (fam15m = 1,0) f (27) -

But f, = f2 + f! so by the linear independence of { 19, fﬁ} there are two equations for ¢, (one
is redundant). Thus

5 _c(fa-in—1,0)  c(fa-13n—1,0)
o Xe(f9:0,n)  Ahe(flin,0)

The calculation has two cases depending on n being even or odd:

2 (ko +3) (k143
Von = ( 0 Q)n( ! 2)77, ) TLZ 17 (35)
(n — 1)! (Ho + K1+ 1)n71 (/i() + K1+ 2n)
1 1
2 (%O + §)n+1 (Kl + §)n+1
n! (ko + K1+ 1), (ko + K1 +2n+1)’

Vop+1 = n > 0. (36)

4 The intertwining operator

We describe V292% for a > b. It is helpful to consider the representations of I (2s) since V
commutes with the group action on polynomials. Since zZ is invariant it suffices to consider
(zE)b 27b or 2™. The residue of mmod 2s is the determining factor. Suppose m = j mod 2s and
j # 0,s. The representation of Iy (2s) on span {z™,z™} is irreducible and isomorphic to the one
on span {zj, Ej} if 1 < j < s, and to the one on span {223*5', zQS*j} ifs <j <2s. If m=0mod2s
then span {z™,Z™} is the direct sum of the identity and determinant representations (on C1 and
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C (2% — z**) respectively). If m = smod2s then span {z™,z™} is the direct sum of the two

representations realized on C(z° —Z°) and C(z° 4+ Z°) (these are relative invariants). Recall
2
P, (z,w) = Y Amihimi (2,Z) gmi (W, w) and equation (3.2) shows that the nonzero terms in the
i=1
expansion of V 2%z occur only when the condition

c(Gayb—2ji50 — 3,0 —3) #0 (4.1)

is satisfied. If m = Omod s then g¢,,; (W, w) is a polynomial in w®, w*® thus (4.1) is equivalent to
a—j=b—7j=0mods, in particular a = bmod s. In this case suppose a =us+r>b=vs+r
with0 <r <s. Setb—j = (v—k)sthenj=ks+r,a—j=(u—k)s,a+b—2j = (u+v — 2k) s,
and 0 <k < v < wu. We see that the nonzero terms occur for P, o), With 0 <k < wv.

If m = tmods and 1 < ¢t < s then gm1 (w,W) = W' fm_y)/s (w*,@*) and (4.1) implies
a—j =tmods, b—j = 0mod s; further g2 (w, W) = g1 (W, w) and (4.1) implies a—j = 0 mod s,
b—j=tmods.

Theorem 1. Suppose a —b =tmods, 1 <t < s anda >b. Let b =vs+r withv > 0 and
0<r<sanda=us+r-+t, then

v

1
Vv Zafb = qalb! Autv—2k
( ) kzz:o (ks +r)! (sko + sk1 + 1)a+(v7k)s +
xXc (fu-i—v—?k‘; U — ]{3, v = k) (zz)ks-i-r thu+v—2k (ZS)
- 1
+ alb! Z )‘u+v+172k

k1Lt 0)/s] (k—=1)s+r+1t)!(sko+ sk1 + D (bt 1)s

X C (fu+v+1—2k:; (U k‘, u—k+ 1) (Zg)(k—l)s—i-r—&-t

ZS_tfu—H)—&-l—Qk (ZS) .

Proof. Since 0 < a —b = (u—v)s +t we have v > v. For the first part of the series,
corresponding to i = 1 in Pys¢ let b—j = (v — k) s with k < wv; then j =b— (v —k)s =ks+r,
implying k& > 0. Further a —j = (u—k)s+t, a+b—2j = (u+v—2k)s+t =a+b—
2r—2ks (and a+b—j=a+ (b—j) =a+ (v—k)s). Also c(z' furvok(2°);a—74,b—j) =
¢ (futv—2k;u — k,v — k). This proves the first part. For the second part, with i = 2 in P,s_;
let b—j=(v—Fk)s+ (s—t), thus k <wv. Then j = (k—1)s+ r +t. The requirement j > 0
implies 1 — k < ”T‘”, thatisk >1— LTTHJ (if 0 <r+t < sthen k > 1, otherwise s < r+t < 2s
and £ > 0). Alsoa—j = (u—k+1)sanda+b—2j = (ut+v+1-2k)s+ (s—t) (and
a+b—j = b+(a — j) = b+(u — k + 1) s). In this case we use ¢ (z° " futvr1-2k (%) 50 — 4, b — j) =
¢ (furvri-2k30 — kyu—k +1). u

Note that the degrees of f,;, have the same parity as u + v in the first sum, and the opposite
in the second sum. By Proposition 6 we can find the coefficients explicitly. If u+ v is even then

1 u—+v
C(fu+v—2k:§u_k7v_k) = - ( _k‘i‘KO"‘Hl)
e ()t 2 use
u—v+1 u—v+1
XEU—k Ko, R1; 9 ) 9 )

and

c(fu+v+172k;v_kau_k+1): B
2

u—v+1 u—v+1
2 ’ 2 '

(v—Fk-+1) <u+v

2u_v(%)! 5 —]C-i—lio—i—/ﬂ—i—l)

X Ey_ky1 (Fﬂo, K1;
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If w4+ v is odd then

(u—k+1) u+v+1

C(fu—i—v—Qk;u - k;’v - k) = qu—v+1 (u—U"rl)l 2 —k+ fio K1 u—v+1

2 : T2

u—"v u—"v
X Ev—k <KJQ,I€1; 9 + 1, 9 + 1> s
and
(v—Fk+1) u+v+3

C(fu+v+172k;v —ku—k+ 1) = Qu—v+1 (ungrl)! 9 —k+ro+r w—v—1

2

X By (no,m;“g”+1,“;”+1).

Theorem 2. Suppose a =bmods, anda >b. Leta=us+r>b=vs+r with 0 <r < s and
v>0. Ifa>b then

Z 1
V (22z%) = alb!
( ) k;z:o (]{S—}—’I")!(SK,O—‘—SKQ+1)b+(u_k)s
X (Zz)ks-i—r {C (fquvakfl; u—k— 17 v — k) fu+v72k (ZS)

+ C(fu—l—v—?k—l;v —k— Lu - k) fu+v—2k (Es)}a

1 - 1
% ( 297° — 2bz° ) = alb! Aok
2( ) k;o (ks +r)! (sko + sk1 + 1)b+(u7k)s L

—1
Vu+v—2k

xXc (f&-i—v—Qk:; u— kv U — k) (Zz)k3+7' ’i-‘r’U—Qk (zs) .

If a > b then

v

1

1
Vv ( 297 + bz ) = alb! Nuto-
9 ( ) kgo (ks +r)! (sko + sk1 + 1)b+(ufk)s o

xXc (f3+v—2k; u— kv U — k) (Zz)k3+7' 19—{—1)—2]9 (Zs) :

Proof. The three different expansions for z%z?, % (zaéb — zbE“) and % (zaéb + zbéa) use the
bases {fj,Tj}, {fjl} and {fjo} respectively. Suppose a =us+r >b=vs+r with 0 <r < s.
Set b—j = (v—k)sthen j =ks+r,a—j = (u—=k)s,a+b—2j = (u+v—2k)s, and
0 < k <wv < u. Consider the case a > b, that is, v > v. For arbitrary m > 1 the basis

{fm (2°,2°), fm (Z°,2°)} for Hgp, has the biorthogonal set {z°f,,,—1 (2%,2%) ,Z° firn—1 (Z°, 2°) } and

C(zsfnﬁrnz*l (Zs’zs) ;n157n25) = C(fTLlJrnz*l;nl -1, nQ) )

C(zsf’fh-i-nz—l (zs’ Zs) ;’I’L]_S,TLQS) - C(fn1+n2—1;n2 - ]-a nl) .

The constants v,, are given in equations (3.5) and (3.6). This demonstrates the first series. The
remaining two follow from Proposition 3.2. |

Observe that in the series for V' (z“?b) the lowest-degree term with £ = v < u reduces to
one summand since ¢ (fy—y—1;—1,u —v) = 0. Each term in V (z“Eb — zbE“) is of the same
representation type, C (z* — z%) when a — b = smod 2s or C (zZS — 225) when a — b = Omod 2s.
Similarly each term in V (292 + 2b2%) is of the representation type C (z2* +z*) or C1 (depending
on the parity of %b) The coefficients can be found from Propositions 4 and 5.
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For a > b consider 29z as (%) times the (ordinary) harmonic polynomial z¢~°. The fact
that V (zafb) is L2 (T, ju)-orthogonal to H,, for n < a — b, equivalently, that the above series for
V (2%2%) contain no terms involving H,, with n < a—b (that is, a term like c,, (22)@T/2p (2)
with p, € H,), is a special case of a result of Xu [10]. This paper also has formulae for V22"
when s = 2, that is, the group I (4).

5 Singular values

The term “singular values” refers to the set K* of pairs (g, k1) € C? for which V is not defined
on all polynomials in z,Z. Let

Ky := {(Ho,/ﬂ]l) eC?: {/i(],/il} N (—% — No) #* @},

(at least one of kg, k1 is in {—%, —%, .. }) It was shown by de Jeu, Opdam and the author [6,
p. 248] that K* = Ky U {(/ﬁo,m) DKo+ k1 = —%,j € N,% ¢ N}. To illustrate how the singular
values appear in the formulae for V consider V2z2"**! (for s > 1, > 1) which has only one term
in the formula from Theorem 1. In particular

(2ns+ 1) (ko + k1 + 1)y, (n+ Ko+ K1 +1),

Vz2nstlons 11 0) = '
(VT L0 = G (g + 1), G 1), (50 & 591 + D

The denominator vanishes for kg, K1 = —%, —%, ceey —2”2_1 and kg+kK1 = —% for1 <k <2ns+1.
There appear to be singularities at ko + k1 = —k for 1 < k < 2n but the term (ko + k1 + 1),,
in the numerator cancels these zeros. The same cancellation occurs for arbitrary V (z“Eb) in

a more complicated way. The formula for Ky, (z,w) has the factors (s (ko + 1) + 1),,_; in the

denominators thus the individual terms can have simple poles at kg + k1 = —% for k € N.
We will show directly that the singularities at kg + k1 = —m are removable when K, (z,w) is
expressed as a quotient of polynomials in kg, x1. It turns out that the terms with poles can be
paired in such a way that the sum of each pair has a removable singularity. The pairs correspond
to {Pg, Posm—r} for certain values of k.

Throughout we assume that (ko, k1) ¢ Ko.

We use an elementary algebraic result: suppose a rational function F' («, 3) (with coefficients
in the ring Q|[z,z, w,w|) vanishes for a countable set of values {a = 0,8 =, : n € Ny} (which
are not poles) then F' («, 3) is divisible by «; indeed the numerator of F (0, 3) is a polynomial
in B vanishing at all 8 = 7, hence is zero. This result will be applied with o = k¢ + k1 + m,
8 =Ko — K1.

Most of the section concerns the proof of the following result: let k9 + k1 = —m then
Py (z,w) = 0 for N > 2sm and Py (z,w) + (22w@)Y ™™ Pyepp_n (z,w) = 0 for 0 < N < 2sm.
The Poisson kernels P, were described in equation (2.2). There are a number of cases, roughly
corresponding to the representations of I (2s).

Proposition 7. Suppose — (kg + k1) = m € N then
(ko + %)n (m —n)!
(K0 + 3) ™
(ko + %)n(m—n— 1)!
(/@0 + %)m_n (n—1)!

Proof. The argument uses the Jacobi polynomials directly. Recall z=re'?. Then for 0 <n < m

1
0 gn(“0+§)n —n,n—m 1— cos20
f2n(2') T nl 2 1< li(]"‘% ) 2 5

(22)*" " oo (2),  0<n<m,

fan (2) =

(ZE)Qnim f21m—2n (Z) ) 1 S n S m— 1.

fan (2) =
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1

0 2m72n(/€0—i-§)m_n —(m—n),(m—n)—m 1—cos20
— - 2/m-n @ Lo e e

fom—on (Z) r (m —n)! 241 < Ko +% ) 2 )

while for 1 <n<m-1

Ko+ 3 1—n,n— 11— cos20
fan (2) = ir*"sin 20 2)"_1 2F1< mn-mt+l 1ot ),

(n—1)! Ko+ 3 T2
3
1 . 9m—0n . (Ho—i'g)m_n_l —(m—-n—-1),1-n 1—cos26
= 20— = G T — .
Fom—zn (2) = ir i (m—mn—1)! 21 Ko+ % ’ 2
This proves the formulae. n

Proposition 8. Suppose — (kg + k1) =m € N and 0 < n < m then

(K0 +3),p (M —n—1)

fgn—l—l (Z) = (HO + %) n‘ (22)2n_m+1 fgm—Qn—l (Z) )
+ 1 —n—1)!
() = BT D o e,
m—n—1""

Proof. Similarly to the even case we have

(/40-1-%%Jrl P <—n,n—m+1. 1—00829>

0 2n+1
I zZ)=T COS 9
2n+1 ( ) n! Ko + % ’ 2

1
0 2m—2n—1 (,{O+§) — —(m—n—1)7—n.1_00529
fom—on—1(2) = r="7" COS@(m_in_mlﬁ oIy v —I-% )
and
1 3
1 sp2ntl (H’1+n+§)(’i0+§) —n,n—m+1 1— cos26
Song1 (2) =ir*" T sing = nooFy il )
oo 1 . (Hl‘i‘m—n—%)(ﬁo—f—%) o
Som—on—1 (2) =ir*" "> sing TR m-—n
—(m—-—n—-1),—m 1—cos26
X 2k < ( 3 ) ;) )
HO+§ 2
Thus
1 1
M — pAn—2m+2 (m —n- 1)! (/{O + §)n+1 (_m —Kko+n+ 5)
f21m—2n—1 (Z) n! (Eo—i_%)mfn (_’10 —-_n — %)
1
_ An—2m+2 (m—n—1)! (%0+§)n .
= - ‘
’I’L' ("{0 + i)m—n—l

Proposition 9. Suppose — (ko + k1) =m € N and 0 < n < m then

(ko+3), (m—n—1)
o+ D,

m—-n

(Zz)Qn—m

fon (2) =

Z fom—2n—1(Z) .

Proof. We use the expressions from Proposition 6. First we show for 0 < j < min (n,m —n)
that

1 1 (ko+3), _ (n—j) 1 1
E,_j|koki;j+5.0+=) = T Emn—j| ko kiii+=,0+= |-
n](O 157 2] 2) (50+%)n(m_n—j)! m—n—j 0, R15] 2] 92
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Indeed by Proposition 3

1 11 (ko +3) j—nn—m+jj+3
Ko + = E'(Ho,HU]—i—,]—l—):ARSFb . . i1,
(ro3) B 37 73) = ) kot b2 1

and
AR L1 Om+5m%/F n—m+$j—mj+%1
K — —n—i | kKo, K1; -, - =7 . . R E
Let
m—mn—1)! o -
0 (D)= @), ()= T e (3),
(Ho+ 3 (Ko + %) mn

and for 7 > 0 let

1 n_m"i_juj_nvj_‘_%
bj3:?3F2 P I
2]]! Ko+]+§,2j+1

Then
n n! N i
g1(z) = Z (n—m=+1);_4 mbm (n—m+j)2"tz"7,
j=—n '
— (minil)! —n+j  n— ]
gpz)= > (—n)U'—(m_n_',')'bm( —n+j)z"z
j=n—m T

Thus ¢ (g1;n,n) = by = c¢(g2;m,n). Suppose |j| > 1, then
clgin+imn—3)=n—m+1);_y (=n); (=1 (n —m+ )by
for [j| < n, and the equation remains valid if n < [j| < m—n because (—n);; = 0 for |j| > n. Also
c(gzsn+j,n—7) = (—n); (n+1—m);_4 (- 17 (m —n —j) bjj|, and the equation remains

valid if m—n < |j] < n (thatisn—m+]j|—1 > 0). Thus c¢(g1;n + j,n —j) = c(g2;n + j,n — j)
for |j| < max (n,m —n) and g; = go. [

Note that if £ =0,1,2,... then (—k)j = 0 for j > k. Recall the structural constants for the
Poisson kernel P, from equations (2.5)—(2.10). These are rational functions of kg, x; defined
for all (ko, k1) ¢ Ko.

Proposition 10. Suppose — (kg + K1) =m €N, 1<n<m—1, andn # 5 then

)‘gm 2n:_<(/€0+;)n(m_n)!>2 )‘%m72n: ((HO‘F ) ( _n_l))2

n
A9, (ko + %)m_ n! A (ko + ) (n—1)!

n

2
!
VAN (R S, Y )
2m ((ﬁ0+é)m> 2m

Proof. Recall \), = n!(ROJ(r:;:i))"*(;(l'TJr;ﬁQn) (for n € N). Also (/@1 + %)n = (— — Ko + )n
2)n
n n (Ho+ )m .. m-—n (“0+l)m
(-1) (I‘&o + % +m — n)n = (-1 Tt D) and similarly (/<c1 + %)min =(-1) 7(“%2%)71'

Thus

DV — (—1)™ <( (ko + %)n )2 (m—n)(1-m),,_,_ 4 (m— 2n)'

Ay, Ko + %)m—n n! (1 —=m),_, (—m+2n)
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But Umenst — (—q)m (oDt (note (—k); = (—1)7 kb for kb € No). Next A, =
(n—1)!(ko+rK1+1),, (ko+K1+2n)

(ro+3), (m1+3),,

)‘%m—2n _ (_1)m (K‘0+ %)n ’ (m_n_ 1)!(1_m)m—n (m_2n)
N, (ko + 1) (=1L —m), (—m+2n)

. Similarly we find

m—n

and % = (=" % The special case A3, follows from setting n = 0 in the

first formula. The term (kg + #1 + 1),, shows A}, = 0. |
The following two propositions are proven by similar calculations.

Proposition 11. Suppose — (ko + k1) =m €N, 0<n<m—1, and n # mT_l then

2
)‘gm—2n—1 _ ((I{O + %)n—l—l (m —n- 1)')

(0t 1), 0!

m—-n

0
)‘2n+1

Mozt _ <("00+§)n(m—n—1)!>2

(F&o + %) n!

1
)\2"+1 m—n—1""

Proposition 12. Suppose — (kg + k1) =m €N, 0<n <m—1 then

A2m—2n—1 _ <(“0 + %)n(m—n— 1)!>2.

)\Qn (Iﬁ?o + %)m—n n!

Proposition 13. Suppose — (kg +r1) =m € N then X)) =0 = AL. Ifn > 2m then \) =0 =
AL Ifn > 2m then A\, = 0.

Proof. Since both \) and A} contain the factor (ko + #1 + n) for n even or odd, it follows that
A =0 = )\l. The term (kg + k1 + 1); vanishes for j > m, and j = k — 1 for Ay, 7 =k for
each of /\gk, )\2k+17 A%k’ )‘gk—i-l’ )\%k—&-l'

Theorem 3. Suppose — (ko + k1) = m € N then Py (z,w) = 0 for N > 2sm and Py (z,w) +
(zzww)N "™ Pygm_n (z,w) = 0 for 0 < N < 2sm.

Proof. If N = sk > 2sm then Py (2,w) = M f9(2%) f2 (w®) + ALfE(2°) £} (w®) and A}
)\,{; = 0 by Proposition 13. If N = sk + ¢ with 1 < ¢t < s and N > 2sm then Py ¢ (z,w) =
e (200 fi (2%) fio (@%) + 2P0t fi (2°) fie (w*)), k > 2sm and Ay = 0. If N = sm then \), = A}, =
0. Suppose N =2ns and 0 < N < 2sm (so 0 < n < m), then

(ko + %)n (m —n)!
(ko + 3
(ko + %)n (m—n-—1)!

(Iio + %)min (n - 1)!

2
s (5,10) = X3 < ) (20) T () o ()

2
> (zgwm)@n—m)s f21m72n (ZS) f2lm72n (ES> ’

thus by Propositions 7 and 10

(Zzww>(m—2n)s Pops (Z, w) + Poms—ons (Z, w)

1 2 0
_ 10 ('%0 + E)n (m B TL)' )‘2m72n 0 s 0 s
- )‘Qn ( (HO + %)m_n nl + )\gn f2m—2n (Z ) f2m—2n (w )
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2
1 ((/ﬂo—l-%)n(m—n—l)') _i_)‘%m—Zn

1
)‘Qn

f21m—2n (zs) f21m—2n (ws) = 0.

1) 2
For the special case N = 2sm we have Pagp, (z,w) = \J,, (“0;7,2)’”) (zzww)™ = — (zzww)™ Py

2
because A}, = 0,P =1 and A, = — <<m_":'1)) . Similarly by use of Propositions 8 and 11
2)m

we show the result holds for N = (2n + 1) s for 0 < n < m and 2n+1 # m. Suppose N = sk+t
with 1 <t < sand 0 < N < 2sm, then 2sm—N =s(2m —k — 1)+ (s —t). Oneof k,2m—k—1
is even so assume k = 2n with 0 < n < m (otherwise replace N by 2sm — N and ¢ by s —t). By
Propositions 9 and 12

Aon 20 fon (2°) fon (W°) +A2m—2n—1 (Zzww)@n—m)sﬁ 205 fom—on—1 (Z°) fom—2n-1 (0°)

= Aoy, (20) BT () CrmmA DS £ o 1 () famean1 (w°)

((”0"‘%)”(7”—”—1)!) )\Qm 2n—1

(0 + 5, ! o

Add this equation to its complex conjugate to show
P2ns+t (Zv U)) + (Z?U)E) (Bn—m)s+t P(2m—2n)s—t (Zv 'LU) = 0. u
Theorem 4. Forn,meN equation (3.1) for K, (z,w) has a removable singularity at ko+r1=—m.

Proof. Consider the series

(/2]
1 .
K 2y Zww) Pp_a; .
n (W) S jsko+ sk + 1), (2w} Pogj (2 w)

The possible poles occur at n — j > sm (that is, (1 — sm),,_; = 0) and the multiplicities do not
exceed 1. Thus there are no poles if n < sm. If n —2j > 2sm then P,_o; (z,w) is divisible
by (ko + k1 +m), by Theorem 3, and the singularity is removable. It remains to consider
the case n — 25 < 2sm and n — j > sm. Suppose j = jo satisfies these inequalities and let
j1 =mn—jo — sm. Then j; > 0 and n — 2j; = 2sm — n + 2jy > 0, hence j = j; appears in the
sum. But 2sm — (n — 2jy) = n — 2j; so Theorem 3 applies. We can assume j; < jg. Consider
the following subset of the sum for K, (z,w):

(zZw)° P,_aj, (z,w)  (220)7 P,_aj, (z,w) B (zzww)” 4
jo! (sko +sk1+ 1), Jil(sko+ sk +1), 5 Jol(sko+ski+1), ;7
with
i (zzww)r 0 P .
o! (zZww —2j, (z,w
Cn,jo = P,_2j, (z,w) 14— { ( ) n—ajl ( ) )
Jil(sko + sk1+14+n—jo)j, i
The expression C, j, has no pole at kg + k1 = —m since 1 — sm +n — jo > 1. Indeed

(L—sm+n—jo)j_;, = Ur+1);,_; = Jjo!/i!. In the special case n — 2jo = ms, and
jo = j1 = (n—sm) /2 we replace Cy,_j, by P,—2j, (2,w). By Theorem 3 C,;, = 0 when
ko + K1 = —m, thus Cy, j, is divisible by (ko + x1 + m) s. The sum of the two terms (j = jo and
j = 71) has a removable singularity there. |
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The expressions for V (29z) are derived from the series (3.1) for K, (z,w) thus the result
about singularities at kg + k1 = —m being removable by grouping the expansion into certain
pairs applies. Note that in the above proof the paired terms are P,_;, and P,_o;, with jo+7j1 =
n—sm. To analyze V (z“?b) it suffices to identify the pairs. For the case a = bmod s and a > b
let a =us+r, b=vs+r and 0 <r < s. The paired indices in the sum from Theorem 2 consist
of {(k,K):0<k <k <v,k+k =u+v—m} . Indeed for k, ¥’ with 0 < k, k" < v define j
by a+b—2j = (u+v—2k)s so that j = ks + r and similarly set j' := k’s + r. The pairing
condition 7 + j' = a + b — sm is equivalent to k + k' = u +v —m. Thus k, k' are paired exactly
when k+k' =u+v—mand 0 <k, K <w.

For the case a —b=tmods, and witha=us+r+t>b=vs+r,0<r <s,1<t<sthe
pairing in the formula from Theorem 1 combines terms from the first sum with corresponding
terms in the second. For the first sum suppose 0 < k <wv and j := ks +r so that a +b — 2j =
t+ (u+v—2k)s. For the second sum let 1 — |“2| < k' < v and let j' := (K —1)s+r+t
so that a +b—2j' = (s —t) + (u+v — 2k + 1) s. The pairing condition j + j' = a+b— sm is
equivalent to k + k' = u + v + 1 — m. To remove the singularities at kg + k1 = —m combine
the term in the first sum of index k& with the term in the second of index k' for all pairs (k, k')
satisfying k + k' =u+v+1-m, 0<k <v, 1 — || <k <.
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