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Abstract. Physical systems with symmetries are described by functions containing kine-
matical and dynamical parts. We consider the case when kinematical symmetries are de-
scribed by a noncompact semisimple real Lie group G. Then separation of kinematical parts
in the functions is fulfilled by means of harmonic analysis related to the group G. This
separation depends on choice of a coordinate system on the space where a physical system
exists. In the paper we review how coordinate systems can be chosen and how the corre-
sponding harmonic analysis can be done. In the first part we consider in detail the case
when G is the de Sitter group SO0(1, 4). In the second part we show how the corresponding
theory can be developed for any noncompact semisimple real Lie group.
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1 Introduction

A symmetry is mathematically described by some group G. If a system (a system of particles in
quantum mechanics, a system of differential equations, a system of particles in macrophysics etc)
admits a symmetry that is given by a group G, then a function (functions) that describes this
system (wave functions, scattering amplitudes, solutions of a system of differential equations,
functions describing a motion in macrophysics etc) contains a part (parts), that is determined by
the symmetry (and is independent of a concrete system), and a part (parts) that characterizes
a concrete system.

For example, if a system A of differential equations admits a symmetry group G, then, using
the symmetry, very often one can reduces this system A to simpler system B that does not have
a symmetry described by the group G. In fact, the system B is obtained from the system A by
excluding the symmetry (see, for example, [1]).

As another example, we cite scattering theory (see, for example, [2]). A scattering amplitude
decomposes into series in spherical functions Y l

m(θ, ϕ) that characterize a symmetry with respect
to the rotation group SO(3). Coefficients of this decomposition are called partial amplitudes.
Partial amplitudes depend on smaller number of variables and they characterize the scattering
under consideration. There are different collections of partial amplitudes corresponding to
different types of scatterings, whereas the functions Y l

m(θ, ϕ) are the same for all types of
scatterings.

Separation in the functions, characterizing a system, of a part (parts) depending on symmetry
and of a part (parts) characterizing a concrete system is in fact separation of kinematic and
dynamical parts. Essential part for studying of a concrete system is a dynamical one. For
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this reason, separation of a dynamical part in a function (in functions), characterizing a given
physical system, is a very important procedure. For example, a dynamical part in scattering
theory is represented by partial amplitudes which can be directly compared with experimental
data.

In a simplest case, separation of kinematic and dynamical parts is a representation of func-
tions, characterizing a system, as a product of kinematic and dynamical parts. It is a degenerate
case.

In a more general case (when a symmetry group is compact), functions describing a system
are represented as a sum of products of kinematic and dynamical parts (it is a case in the
scattering theory).

A main aim of this paper is separation of kinematic parts in functions, describing a system,
and studying these parts. The first step in separation of parts, depending on symmetries, is
choosing variables in such a way that a part of these variables corresponds to the symmetries
(kinematical variables) and remaining ones correspond to dynamics of the system. Further on,
one studies harmonic analysis of the kinematical part. Under such analysis, functions describing
a physical system are considered as functions depending only on kinematical variables, that is,
one pays no attention to dynamical variables.

In the framework of the harmonic analysis of the kinematical part, the functions are expanded
into basis functions which are common eigenfunctions of a collection of self-adjoint operators
that are determined by the symmetry group. It is clear that coefficients of such expansion
depend on dynamical variables.

Such collection of self-adjoint operators is not determined uniquely. This collection depends
on kinematical variables. Kinematical variables are not determined uniquely too. As a rule,
choice of kinematical variables depends on a dynamical problem that has to be solved.

There exists a one-to-one correspondence between the following collections:

(a) a collection of kinematical variables;

(b) a chain of subgroups of the symmetry group G;

(c) a collection of self-adjoint differential operators that are, as a rule, Casimir operators of
the group G and of members of the chain of subgroups. These Casimir operators are very
often Laplace operators expressed in the corresponding coordinate systems.

A description of such triples for an example of the sphere Sn−1 in the n-dimensional Euclidean
space with the symmetry group SO(n) is given in [3, 4]. Coordinates (kinematical variables)
in this case are polyspherical. There are different types of polyspherical coordinates. Laplace
operators on the corresponding manifolds of Sn−1 expressed in the corresponding polyspherical
coordinates serve as a collection of self-adjoint operators. Subgroups of the rotation group SO(n)
(corresponding to the chosen type of polyspherical coordinates) with successive inclusions serve
as a chain of subgroups of SO(n). Note that harmonic analysis of functions given on quotient
spaces of the group SO(n) is used extensively in nuclear physics (see [5, 6] and references therein).

In this paper we review the case when a symmetry group G is a simple noncompact Lie
group (for example, the Lorentz group, the de Sitter group, the conformal group etc). The case
when G coincides with the motion group SO0(1, 2) of the upper sheet of the hyperboloid in the
3-dimensional Minkowski space-time is simple and well-known (see, for example, [7, Chapter 7]
and [8]). The case when G = SO0(1, 3) is also well-studied (see, for example, [9, 10, 11]). In the
relativistic physics, the groups SO(3), SO0(1, 2), ISO(3) and SO0(1, 3) appear as little groups
for the Poincaré group ISO0(1, 3) (see [12, 13, 14]).

As an example, in the first part of the paper we consider in detail the case when G is the de
Sitter group SO0(1, 4) that is a motion group of the 5-dimensional Minkowski space-time. This
space is a base space for the Caluza–Klein theory.
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In the second part of the paper we consider the case when G is a generic linear simple
noncompact real Lie group. Then G is a group of n × n matrices, where n is some positive
integer. We define a hyperboloid and a cone with motion group G and consider how different
coordinate systems can be determined on them. Then we perform harmonic analysis of functions
given on these general hyperboloids and cones in these coordinate systems. For this purpose, the
general harmonic analysis on semisimple noncompact Lie groups [15] and on the corresponding
homogeneous spaces [16] is used. Different coordinate systems on a hyperboloid and on a cone
with a motion group G are connected to different decompositions of the group G into products
of its subgroups (the Iwasawa decomposition, the Cartan decomposition, the generalized Cartan
decomposition etc).

The basis for this review is our books [3, 17]. Our consideration is closely related to spe-
cial functions and orthogonal polynomials, especially with those special functions which admit
orthogonality relations. In [3, 17] and also in [7, 18, 19] one can find a detailed description of
the relation between the group representation and special functions. The basic information on
special functions and orthogonal polynomials may be found in [20, 21].

2 The de Sitter group SO0(1, 4) and its representations

The de Sitter group SO0(1, 4) consists of all real 5 × 5 matrices g with det g = 1 which leave
invariant the quadratic form

x2
0 − x2

1 − x2
2 − x2

3 − x2
4.

The Lie algebra so(1, 4) of SO0(1, 4) consists of all real matrices
0 a01 a02 a03 a04

a01 0 −a12 −a13 −a14

a02 a12 0 −a23 −a24

a03 a13 a23 0 −a34

a04 a14 a24 a34 0

 . (2.1)

Thus, the Lie algebra so(1, 4) is spanned upon the basis elements

Lrs = −ers + esr, s, r = 1, 2, 3, 4, s < r, (2.2)
L0r = e0r + er0, r = 1, 2, 3, 4, (2.3)

where ers is a matrix with matrix elements (ers)pq = δrpδsq. The basis elements (2.2) and (2.3)
satisfy the commutation relations

[Lµν , Lρδ] = gνρLµδ + gµδLνρ − gµρLνδ − gνδLµρ, ρ, µ, ν, δ = 0, 1, 2, 3, 4, (2.4)

where gk0 = g0k = δ0k, gks = −δks, k, s = 1, 2, 3, 4. The maximal compact subgroup K of
SO0(1, 4) is isomorphic to the group SO(4) and consists of matrices(

1 0
0 k

)
, k ∈ SO(4).

In construction of representations of the group SO0(1, 4) one uses the Cartan decomposition
of the Lie algebra so(1, 4) and the Iwasawa decomposition of SO0(1, 4). In the Cartan decompo-
sition so(1, 4) = so(4)+p the subspace p is spanned by basis elements (2.3). Let a be a maximal
commutative subalgebra in p. This subalgebra is one-dimensional. The matrix L04 can be taken
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as a basis element of a. The subgroup A = exp a is important in the representation theory of
the group SO0(1, 4). This subgroup consists of matrices

coshα 0 0 0 sinhα
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0

sinhα 0 0 0 coshα

 , 0 6 α <∞. (2.5)

Using the commutation relations (2.4), one directly checks that the Lie subalgebra n of so(1, 4)
with the basis L01 + L14, L02 + L24, L03 + L34 is nilpotent and, moreover, commutative. The
subgroup N = exp n of SO0(1, 4) consists of the matrices

1 + (r2 + s2 + t2)/2 t r s −(r2 + s2 + t2)/2
t 1 0 0 −t
r 0 1 0 −r
s 0 0 1 −s

(r2 + s2 + t2)/2 t r s 1− (r2 + s2 + t2)/2

 (2.6)

with t, r, s ∈ R. The subgroups K ≡ SO(4), A and N determine the Iwasawa decomposition

SO0(1, 4) = SO(4) ·NA

of SO0(1, 4). The subgroup M of SO(4) ⊂ SO0(1, 4), whose elements commute with elements
of A, is isomorphic to the group SO(3). The subgroup

P = SO(3) ·NA

is called a parabolic subgroup of SO0(1, 4). This subgroup is used for construction of irreducible
unitary representations of SO0(1, 4).

Now we construct representations πδλ of the principal nonunitary series (and, consequently,
of the principal unitary series) of the group SO0(1, 4). These representations are constructed
by means of irreducible unitary representations δ of the subgroup SO(3) and of complex linear
forms λ on the subalgebra a. Since irreducible unitary representations δ of the subgroup SO(3)
are given by a non-negative integer or half-integer l and a linear form λ is given by a com-
plex number σ = λ(L04), then the representations πδλ are determined by the numbers l and σ.
For this reason, we use the notation πlσ for the representations πδλ. We shall use only those
representations πlσ for which l = 0. These representations will be denoted by πσ. The represen-
tations πσ are characterized by the property that the restriction πσ↓SO(4) contains the trivial
(one-dimensional) representation of the subgroup SO(4). Moreover, they exhaust all principal
nonunitary series representations of SO0(1, 4) with this property. These representations are
called representations of class 1 with respect to SO(4).

For σ = iρ− 3
2 , ρ ∈ R, the representations πσ are unitary and belong to the principal unitary

series.
The group SO0(1, 4) has two independent Casimir operators

F = L2
12 + L2

13 + L2
14 + L2

23 + L2
24 + L2

34 − L2
01 − L2

02 − L2
03 − L2

04, (2.7)

W = (L12L24 − L13L24 + L14L23)2

− (L02L34 − L03L24 + L04L23)2 − (L01L34 − L03L14 + L04L13)2

− (L01L24 − L02L14 + L04L12)2 − (L01L23 − L02L13 + L03L12)2. (2.8)
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It is known (see, for example, [22]) that the Casimir operator W vanishes on the represen-
tations πσ of SO0(1, 4). The Casimir operator F takes on the representations πσ the values
−σ(σ + 3).

Under restriction to the subgroup K = SO(4), the representation πσ decomposes into a direct
sum of irreducible representations of SO(4) with highest weights (m, 0), m = 0, 1, 2, . . . . The
group SO(4) is locally isomorphic to the group SO(3)× SO(3). The irreducible representation
of SO(4) with the highest weight (m, 0), as a representation of SO(3)× SO(3), is given by the
numbers m

2 and m
2 .

Let us consider representations of SO0(1, 4) realized on functions on the upper sheet of the
two-sheeted hyperboloid and on functions on the upper sheet of the cone. The upper sheet H4

+

of the two-sheeted hyperboloid H4 can be obtained as a quotient space SO0(1, 4)/SO(4). In
order to show this, we consider the upper sheet H4

+,

H4
+ : x2

0 − x2
1 − x2

2 − x2
3 − x2

4 = 1, x0 > 0, (2.9)

and the point x0 = (1, 0, 0, 0, 0) on it. Elements of SO0(1, 4) transform the hyperboloid H4
+

into H4
+. Besides, for any two points x′ and x′′ of H4

+ there exists an element g ∈ SO0(1, 4)
such that gx′ = x′′, that is, the group SO0(1, 4) acts transitively on H4

+. A set of points
of SO0(1, 4), leaving the point x0 invariant, coincides with the subgroup SO(4). Therefore,
H4

+ can be identified with SO0(1, 4)/SO(4). Note that on H4
+ the 4-dimensional Lobachevsky

space L4 is realized, which is also called the de Sitter space. As to the spherical functions on
this space, see in [23].

One constructs on functions f(x) given on H4
+ the quasi-regular representation of the group

SO0(1, 4). Let L2(H4
+) be the Hilbert space of functions on H4

+ with the scalar product

〈f1, f2〉 =
∫

H4
+

f1(x)f2(x) dµ(x), (2.10)

where dµ(x) is an invariant (with respect to SO0(1, 4)) measure on H4
+. This measure is deter-

mined by the formula

dµ(x) = d4x/x0 = dx1dx2dx3dx4/x0.

The quasi-regular representation π of SO0(1, 4) is given on L2(H4
+) by the formula

π(g)f(x) = f(g−1x), x ∈ H4
+. (2.11)

It is easy to show that this representation is unitary. However, this representation is reducible
and decomposes [24] into a direct integral of irreducible unitary representations πσ (σ = −3

2 +iρ,
0 ≤ ρ <∞).

The quasi-regular representation of SO0(1, 4) on the Hilbert space L2(C4
+) of functions on

the upper sheet C4
+ of the cone C4,

C4
+ : x2

0 − x2
1 − x2

2 − x2
3 − x2

4 = 0, x0 > 0,

is constructed analogously:

π(g)f(x) = f(g−1x), x ∈ C4
+. (2.12)

The cone C4
+ can be identified with the homogeneous space SO0(1, 4)/(SO(3)×N). In order

to check this we have to take the point x0 = (1, 0, 0, 0, 1) ∈ C4
+ and to verify that SO(3) × N

is a subgroup of SO0(1, 4) whose elements leave x0 invariant. The subgroup SO(3) × N is
isomorphic to the group ISO(3) of motions of the 3-dimensional Euclidean space.
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The representation (2.12) is unitary with respect to the scalar product

〈f1, f2〉 =
∫

C4
+

f1(x)f2(x) dµ(x) (2.13)

on L2(C4
+). Here dµ(x) = d4x/x0 is an invariant (with respect to SO0(1, 4)) measure on C4

+.
This representation is also reducible. Irreducible unitary representations of SO0(1, 4) can be
constructed on spaces of homogeneous functions on the cone (see, for example, [25]). Repre-
sentations of the group SO0(1, 4) (as well as of the group SO0(1, p)) are well investigated (see
[26, 27, 28, 29, 30]).

Under exposition of harmonic analysis of functions on the homogeneous space H4
+ of the

group SO0(1, 4) we shall use the method developed by Vilenkin and Smorodinsky [9] for the
Lorentz group SO0(1, 3) and the results of the paper [24] related to the integral geometry.

The de Sitter group SO0(1, 4) is used in different branches of contemporary physics [31]. This
is a group of motions of a symmetric Riemannian space-time, which generalizes the Poincaré
group ISO0(1, 3) [32]. The de Sitter group SO0(1, 4) is known as a group of invariance of
non-relativistic hydrogen atom since it contains the dynamical group SO0(1, 3) (continuous
spectrum) and the dynamical group SO(4) (discrete spectrum) [33, 34]. There exist also other
directions of applications of the de Sitter group [35].

3 Subgroups of the group SO0(1, 4)

Below we shall construct different bases of the space L2(H4
+) and shall derive formulas for

expansion of functions of L2(H4
+) in these bases. However, we shall consider not arbitrary bases

of L2(H4
+) but only those of them which correspond to chains of subgroups of the group SO0(1, 4).

These bases can be constructed also by means of collections of commuting self-adjoint operators.
Basis functions on H4

+ consist of common eigenfunctions of these collections of operators. Bases
of the space L2(C4

+) are constructed analogously.
A standard way for construction of a collection of self-adjoint operators is to construct the

corresponding chain of subgroups G′ ⊃ G′′ ⊃ G′′′ ⊃ · · · of SO0(1, 4). Then one creates com-
muting self-adjoint operators, consisting of Casimir operators of the subgroups of the chain. To
each such chain there corresponds a collection of self-adjoint operators.

We consider these collections of operators as differential operators on homogeneous spaces of
the group SO0(1, 4) (on the hyperboloid H4

+ or on the cone C4
+). For obtaining these differential

operators, we construct coordinate systems such that the corresponding variables can be sepa-
rated in the differential equations for eigenvalues and eigenfunctions of the collection of oper-
ators. To each chain of subgroups (and, therefore, to each collection of self-adjoint operators)
there corresponds such coordinate system.

In this section we determine subgroups of the group SO0(1, 4) that will be used for construc-
tion of chains of subgroups.

In order to deal with self-adjoint operators, we shall use the elements Jµν = iLµν of so(1, 4)
instead of elements Lµν . For 10 generators Jµν of the group SO0(1, 4) we introduce the notations

M = (M1 ≡ J23, M2 ≡ J31, M3 ≡ J12), (3.1)
P = (P1 ≡ J14, P2 ≡ J24, P3 ≡ J34), (3.2)
N = (N1 ≡ J01, N2 ≡ J02, N3 ≡ J03), (3.3)
P0 = J04. (3.4)

In these notations we have the following expressions for Casimir operators:

F = (P 2
0 + N2)− (P2 + M2),
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W = (M ·P)2 − (P0M−P×N)2 − (M ·N)2.

Commutation relations for the generators M, P, N and P0 are of the form

[Mk,Ml] = iεklmMm, [Nk, Nl] = −iεklmMm, [Pk, Pl] = iεklmMm,

[Mk, Nl] = iεklmNm, [Mk, Pl] = iεklmPM ,

[Mk, Nk] = [Mk, Pk] = [Mk, P0] = 0,
[P0, Nk] = iPk, [P0, Pk] = iNk, [Pk, Nl] = iδklP0, (3.5)

where εklm, k, l,m = 1, 2, 3, is the antisymmetric tensor of the third order equal to 0 or ±1.
Using the generators M, P, N and P0 we construct subgroups of the group SO0(1, 4).

Subgroup SO(3). This subgroup corresponds to the generators M = (M1,M2,M3) of the
Lie algebra so(1, 4):

[Mk,Ml] = iεklmMm. (3.6)

Subgroup SO(4). There are the generators M = (M1,M2,M3) and P = (P1, P2, P3) of the
Lie algebra so(1, 4) corresponding to this subgroup:

[Mk,Ml] = iεklmMm, [Mk, Pl] = iεklmPm, [Pk, Pl] = iεklmMm. (3.7)

Taking the linear combinations V = (M+P)/2, V′ = (M−P)/2, we obtain instead of (3.7)
the relations

[Vk, Vl] = iεklmVm, [V ′
k, V

′
l ] = iεklmV

′
m, [Vk, V

′
l ] = 0, (3.8)

that is, triples of the operators V and V′ constitute bases of two independent Lie algebras so(3).
This means that the group SO(4) is locally isomorphic to SO(3)⊗ SO(3).

Subgroup SO0(1, 3). It is the Lorentz group which is generated by M = (M1,M2,M3) and
N = (N1, N2, N3). We have the commutation relations

[Mk,Ml] = iεklmMm, [Mk, Nl] = iεklmNm, [Nk, Nl] = −iεklmMm. (3.9)

If we introduce the generators L(1) = (M + iN)/2 and L(2) = (M− iN)/2, then we obtain the
commutation relations for the generators of the Lie algebra so(3):

[L(τ)
k , L

(τ ′)
l ] = iεklmL

(τ)
m δττ ′ , τ, τ ′ = 1, 2. (3.10)

Subgroup SO0(1, 1)⊗ SO(3). This subgroup is generated by the generators M = (M1,M2,
M3), P0. We have

[Mk,Ml] = iεklmMm, [Mk, P0] = 0. (3.11)

Subgroup SO0(1, 2)⊗SO′(2). This subgroup is generated by the generators N1, N2, M3, P3.
They satisfy the commutation relations

[N1, N2] = −iM3, [M3, N1] = iN2, [M3, N2] = −iN1,

[M3, P3] = [N1, P3] = [N2, P3] = 0. (3.12)

The subgroup SO′(2) of the group SO0(1, 2)⊗ SO′(2) is generated by the generator P3.
Subgroup ISO(3). We create from the generators P1, P2, P3 and N1, N2, N3 of the Lie

algebra so(1, 4) the following linear combinations:

E1 = P1 +N1, E2 = P2 +N2, E3 = P3 +N3. (3.13)
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It is easy to show that two triples of generators E = (E1, E2, E3) and M = (M1,M2,M3) satisfy
the commutation relations for the basis generators of the Lie algebra ISO(3), which is the Lie
algebra of the group of motions of the 3-dimensional Euclidean space R3. These relations are

[Mk,Ml] = iεklmMm, [Mk, El] = iεklmEm, [Ek, El] = 0. (3.14)

This group is a semidirect product of the group SO(3) and the group T (3) of shifts in R3,
ISO(3) = SO(3)× T (3). Note that T (3) coincides with the subgroup N .

Subgroup ISO(2). Three operators

E1 = E1, E2 = E2, E3 = E3 +M3 (3.15)

generate the Lie algebra of the group ISO(2) such that ISO(2) ⊂ ISO(3). We have

[E1, E2] = 0, [E1, E3] = −iE2, [E2, E3] = iE1. (3.16)

Subgroup ISO(2)⊗ T⊥. The set of generators E1, E2, M3, E3 satisfying the commutation
relations

[Ek, Ej ] = 0, [M3, E3] = 0, [M3, E2] = −iE1, [M3, E1] = iE2 (3.17)

generate a Lie algebra of the group ISO(2)⊗T⊥ belonging to the group ISO(3). The group T⊥
is a group of shifts along of the direct line, which is perpendicular to the plane with the group
of motion ISO(2). The generators M3 and E3 generate the subgroup SO(2)⊗ T⊥ of the group
ISO(2)⊗ T⊥ and we have [M3, E3] = 0.

Subgroup T (3). A basis of the Lie algebra of the group T (3) ⊂ ISO(3) consists of the
generators E1, E2, E3. Each of the generators Ek generates a one-parameter subgroup Tk ⊂ T (3)
of shifts along the corresponding coordinate axes.

4 Coordinate systems on hyperboloid H4
+

and generators of the group SO0(1, 4)

In this section we consider coordinate systems on the hyperboloid H4
+ and find differential form

of generators of the de Sitter group SO0(1, 4) in an explicit form. Points of the hyperboloid H4
+

are characterized by 5 orthogonal coordinates xµ, µ = 0, 1, 2, 3, 4, such that

H4
+ : [x, x] := x2

0 − x2
1 − x2

2 − x2
3 − x2

4 = 1, x0 > 0.

These coordinates are called homogeneous. Since [x, x] = 1, then the numbers xµ, giving a point
x of the space H4

+ ≡ L4, are in fact its projective coordinates.
New coordinates on H4

+ will be given by means of relations connecting them with the coor-
dinates xµ, µ = 0, 1, 2, 3, 4.

Spherical coordinate system S (coordinates a, β, θ, ϕ):

x0 = cosh a, x1 = sinh a sinβ sin θ cosϕ, x2 = sinh a sinβ sin θ sinϕ,
x3 = sinh a sinβ cos θ, x4 = sinh a cosβ, (4.1)
0 6 a <∞, 0 6 β, θ < π, 0 6 φ < 2π.

Hyperbolic coordinate system H (coordinates a, b, θ, ϕ):

x0 = cosh a cosh b, x1 = cosh a sinh b sin θ cosϕ,
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x2 = cosh a sinh b sin θ sinϕ, x3 = cosh a sinh b cos θ, x4 = sinh a, (4.2)
−∞ < a <∞, 0 6 b <∞, 0 6 θ < π, 0 6 ϕ < 2π.

Orispherical coordinate system O (coordinates a, r, θ, ϕ):

x0 − x4 = ea, x0 + x4 = e−a + r2ea,

x1 = ear sin θ cosϕ, x2 = ear sin θ sinϕ, x3 = ear cos θ, (4.3)
−∞ < a <∞, 0 6 r <∞, 0 6 θ < π, 0 6 ϕ < 2π.

Orispherically-cylindric coordinate system OC (coordinates a, ξ, z, ϕ):

x0 − x4 = ea, x0 + x4 = e−a + (ξ2 + z2)ea,
x1 = eaξ cosϕ, x2 = eaξ sinϕ, x3 = eaξ, (4.4)
−∞ < a <∞, 0 6 ξ <∞, −∞ < z <∞, 0 6 ϕ < 2π.

Orispherically-translational coordinate system OT (coordinates a, y1, y2, y3):

x0 − x4 = ea, x0 + x4 = e−a+y2ea,

x1 = eay1, x2 = eay2, p3 = eay3, (4.5)

y2 = y2
1 + y2

2 + y2
3, −∞ < a <∞, −∞ < yi <∞.

Cylindric coordinate system C (coordinates a, b, θ, ϕ):

x0 = cosh a cosh b, x1 = sinh a sin θ cosϕ, x2 = sinh a sin θ sinϕ,
x3 = sinh a cos θ, x4 = cosh a sinh b, (4.6)
0 6 a <∞, −∞ < b <∞, 0 6 θ < π, 0 6 ϕ < 2π.

Spherically-hyperbolic coordinate system SH (coordinates a, b, ϕ, Φ):

x0 = cosh a cosh b, x1 = cosh a sinh b cosϕ, x2 = cosh a sinh b sinϕ,
x3 = sinh a cos Φ, x4 = sinh a sinΦ, (4.7)
0 6 a, b <∞, 0 6 ϕ,Φ < 2π.

Now we go to the representation (2.11) of the group SO0(1, 4) realized on the space L2(H4
+).

This representation gives in fact a realization of this group on the hyperboloid H4
+. Functions of

the space L2(H4
+) can be considered as functions of parameters of any of the coordinate systems

on H4
+. We shall give a differential form of infinitesimal operators of the representation (2.11)

or, equivalently, a differential form of generators of the group SO0(1, 4), realized on H4
+.

Let I be an infinitesimal generator of the group SO0(1, 4), realized on H4
+. Then exp tI is

a one-parameter subgroup of SO0(1, 4). The operator π(exp tI) acts on L2(H4
+) as

π(exp tI)f(x) = f((exp tI)−1x).

Since π(I) = d
dtπ(exp tI)t=0, then

π(I)f(x) = lim
t→0

f((exp tI)−1x)− f(x)
t

. (4.8)

Thus, in the homogeneous coordinates xµ we have

Jrs = −i
(
xr

∂

∂xs
− xs

∂

∂xr

)
, J0s = −i

(
x0

∂

∂xs
+ xs

∂

∂x0

)
. (4.9)
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(Here and below we write down the operators π(I) as I.) Substituting into (4.9) the expressions
for xµ, µ = 0, 1, 2, 3, 4, in terms of the corresponding coordinates we find a differential form of
the generators I in these coordinates. Let us give the result of such calculation.
S-system:

M1 = −i
(
− sinϕ

∂

∂θ
− cot θ cosϕ

∂

∂ϕ

)
, M2 = −i

(
cosϕ

∂

∂θ
− cot θ sinϕ

∂

∂ϕ

)
,

M3 = −i
∂

∂ϕ
, P0 = −i

(
cosβ

∂

∂a
− coth a sinβ

∂

∂β

)
,

P1 = −i
(
− sin θ cosϕ

∂

∂β
− cotβ cos θ cosϕ

∂

∂θ
+ cotβ

sinϕ
sin θ

∂

∂ϕ

)
,

P2 = −i
(
− sin θ sinϕ

∂

∂β
− cotβ cos θ sinϕ

∂

∂θ
− cotβ

cosϕ
sin θ

∂

∂ϕ

)
,

P3 = −i
(
− cos θ

∂

∂β
+ cotβ sin θ

∂

∂θ

)
,

N1 = −i
(

sinβ sin θ cosϕ
∂

∂a
+ coth a cosβ sin θ cosϕ

∂

∂β

+ coth a
cos θ cosϕ

sinβ
∂

∂θ
− coth a

sinϕ
sinβ sin θ

∂

∂ϕ

)
,

N2 = −i
(

sinβ sin θ sinϕ
∂

∂a
+ coth a cosβ sin θ sinϕ

∂

∂β

+ coth a
cos θ sinϕ

sinβ
∂

∂θ
+ coth a

cosϕ
sinβ sin θ

∂

∂ϕ

)
,

N3 = −i
(

sinβ cos θ
∂

∂a
+ coth a cosβ cos θ

∂

∂β
− coth a

sin θ
sinβ

∂

∂θ

)
.

H-system:

M1 = −i
(
− sinϕ

∂

∂θ
− cot θ cosϕ

∂

∂ϕ

)
, M2 = −i

(
cosϕ

∂

∂θ
− cot θ sinϕ

∂

∂ϕ

)
,

M3 = −i
∂

∂ϕ
, P0 = −i

(
cosh b

∂

∂a
− tanh a sinh b

∂

∂b

)
,

P1 = −i
(

sinh b sin θ cosϕ
∂

∂a
− tanh a cosh b sin θ cosϕ

∂

∂b

− tanh a
cos θ cosϕ

sinh b
∂

∂θ
+ tanh a

sinϕ
sinh b sin θ

∂

∂ϕ

)
,

P2 = −i
(

sinh b sin θ sinϕ
∂

∂a
− tanh a cosh b sin θ sinϕ

∂

∂b

− tanh a
cos θ sinϕ

sinh b
∂

∂θ
− tanh a

cosϕ
sinh b sin θ

∂

∂ϕ

)
,

P3 = −i
(

sinh b cos θ
∂

∂a
− tanh a cosh b cos θ

∂

∂b
+ tanh a

sin θ
sinh b

∂

∂θ

)
,

N1 = −i
(

sin θ cosϕ
∂

∂b
+ coth b cos θ cosϕ

∂

∂θ
− coth b

sinϕ
sin θ

∂

∂ϕ

)
,

N2 = −i
(

sin θ sinϕ
∂

∂b
+ coth b cos θ sinϕ

∂

∂θ
+ coth b

cosϕ
sin θ

∂

∂ϕ

)
,

N3 = −i
(

cos θ
∂

∂b
− coth b sin θ

∂

∂θ

)
.
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O-system:

M1 = −i
(
− sinϕ

∂

∂θ
− cot θ cosϕ

∂

∂ϕ

)
, M2 = −i

(
cosϕ

∂

∂θ
− cot θ sinϕ

∂

∂ϕ

)
,

M3 = −i
∂

∂ϕ
, P0 = −i

(
− ∂

∂a
+ r

∂

∂r

)
,

P1 = −i
{
−r sin θ cosϕ

∂

∂a
+
e−a

2
[−e−a + (r2 + 1)ea] sin θ cosϕ

∂

∂r

− e−a

2r
[e−a + (r2 − 1)ea] cos θ cosϕ

∂

∂θ
+
e−a

2r
[e−a + (r2 − 1)ea]

sinϕ
sin θ

∂

∂ϕ

}
,

P2 = −i
{
−r sin θ sinϕ

∂

∂a
+
e−a

2
[−e−a + (r2 + 1)ea] sin θ sinϕ

∂

∂r

− e−a

2r
[e−a + (r2 − 1)ea] cos θ sinϕ

∂

∂θ
− e−a

2r
[e−a + (r2 − 1)ea]

cosϕ
sin θ

∂

∂ϕ

}
,

P3 = −i
{
−r cos θ

∂

∂a
+
e−a

2
[−e−a + (r2 + 1)ea] cos θ

∂

∂r

+
e−a

2r
[e−a + (r2 − 1)ea] sin θ

∂

∂θ

}
,

N1 = −i
{
r sin θ cosϕ

∂

∂a
− e−a

2
[−e−a + (r2 − 1)ea] sin θ cosϕ

∂

∂r

+
e−a

2r
[e−a + (r2 + 1)ea] cos θ cosϕ

∂

∂θ
− e−a

2r
[e−a + (r2 + 1)ea]

sinϕ
sin θ

∂

∂ϕ

}
,

N2 = −i
{
r sin θ sinϕ

∂

∂a
− e−a

2
[−e−a + (r2 − 1)ea] sin θ sinϕ

∂

∂r

+
e−a

2r
[e−a + (r2 + 1)ea] cos θ sinϕ

∂

∂θ
+
e−a

2r
[e−a + (r2 + 1)ea]

cosϕ
sin θ

∂

∂ϕ

}
,

N3 = −i
{
r cos θ

∂

∂a
− e−a

2
[−e−a + (r2 − 1)ea] cos θ

∂

∂r

− e−a

2r
[e−a + (r2 + 1)ea] sin θ

∂

∂θ

}
.

OC-system:

M1 = −i
(
−z sinϕ

∂

∂ξ
+ ξ sinϕ

∂

∂z
− z

cosϕ
ξ

∂

∂ϕ

)
,

M2 = −i
(
z cosϕ

∂

∂ξ
− ξ cosϕ

∂

∂z
− z

sinϕ
ξ

∂

∂ϕ

)
, M3 = −i

∂

∂ϕ
,

P0 = −i
(
− ∂

∂a
+ ξ

∂

∂ξ
+ z

∂

∂z

)
,

P1 = −i
{
−ξ cosϕ

∂

∂a
+
e−a

2
[−e−a + (ξ2 − z2 + 1)ea] cosϕ

∂

∂ξ

+ ξz cosϕ
∂

∂z
+
e−a

2ξ
[e−a + (ξ2 + z2 − 1)ea] sinϕ

∂

∂ϕ

}
,

P2 = −i
{
−ξ sinϕ

∂

∂a
+
e−a

2
[−e−a + (ξ2 − z2 + 1)ea] sinϕ

∂

∂ξ

+ ξz sinϕ
∂

∂z
− e−a

2ξ
[e−a + (ξ2 + z2 − 1)ea] cosϕ

∂

∂ϕ

}
,
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P3 = −i
{
−z ∂

∂a
+ zξ

∂

∂ξ
+
e−a

2
[e−a − (z2 − ξ2 + 1)ea]

∂

∂z

}
,

N1 = −i
{
ξ cosϕ

∂

∂a
+
e−a

2
[e−a + (z2 − ξ2 + 1)ea] cosϕ

∂

∂ξ

− zξ cosϕ
∂

∂z
− e−a

2ξ
[e−a + (ξ2 + z2 + 1)ea] sinϕ

∂

∂ϕ

}
,

N2 = −i
{
ξ sinϕ

∂

∂a
+
e−a

2
[e−a + (z2 − ξ2 + 1)ea] sinϕ

∂

∂ξ

− zξ sinϕ
∂

∂z
+
e−a

2ξ
[e−a + (ξ2 + z2 + 1)ea] cosϕ

∂

∂ϕ

}
,

N3 = −i
{
z
∂

∂a
− zξ

∂

∂ξ
+
e−a

2
[e−a + (ξ2 − z2 + 1)ea]

∂

∂z

}
.

OT -system:

M1 = −i
(
y2

∂

∂y3
− y3

∂

∂y2

)
, M2 = −i

(
y3

∂

∂y1
− y1

∂

∂y3

)
,

M3 = −i
(
y1

∂

∂y2
− y2

∂

∂y1

)
, P0 = −i

(
− ∂

∂a
+ y1

∂

∂y1
+ y2

∂

∂y2
+ y3

∂

∂y3

)
,

P1 = −i
{
−y1

∂

∂a
− e−a

2
[e−a + (y2 − 1)ea]

∂

∂y1
+ y1(y1

∂

∂y1
+ y2

∂

∂y2
+ y3

∂

∂y3
)
}
,

P2 = −i
{
−y2

∂

∂a
− e−a

2
[e−a + (y2 − 1)ea]

∂

∂y2
+ y2(y1

∂

∂y1
+ y2

∂

∂y2
+ y3

∂

∂y3
)
}
,

P3 = −i
{
−y3

∂

∂a
− e−a

2
[e−a + (y2 − 1)ea]

∂

∂y3
+ y3(y1

∂

∂y1
+ y2

∂

∂y2
+ y3

∂

∂y3
)
}
,

N1 = −i
{
y1
∂

∂a
− e−a

2
[e−a + (y2 + 1)ea]

∂

∂y1
− y1(y1

∂

∂y1
+ y2

∂

∂y2
+ y3

∂

∂y3
)
}
,

N2 = −i
{
y2
∂

∂a
− e−a

2
[e−a + (y2 + 1)ea]

∂

∂y2
− y2(y1

∂

∂y1
+ y2

∂

∂y2
+ y3

∂

∂y3
)
}
,

N3 = −i
{
y3
∂

∂a
− e−a

2
[e−a + (y2 + 1)ea]

∂

∂y3
− y3(y1

∂

∂y1
+ y2

∂

∂y2
+ y3

∂

∂y3
)
}
,

C-system:

M1 = −i
(
− sinϕ

∂

∂θ
− cot θ cosϕ

∂

∂ϕ

)
,

M2 = −i
(

cosϕ
∂

∂θ
− cot θ sinϕ

∂

∂ϕ

)
, M3 = −i

∂

∂ϕ
, P0 = −i

∂

∂b
,

P1 = −i
(
− sinh b sin θ cosϕ

∂

∂a
+tanh a cosh b sin θ cosϕ

∂

∂b

− coth a sinh b cos θ cosϕ
∂

∂θ
+ coth a sinh b

sinϕ
sin θ

∂

∂ϕ

)
,

P2 = −i
(
− sinh b sin θ sinϕ

∂

∂a
+ tanh a cosh b sin θ sinϕ

∂

∂b

− coth a sinh b cos θ sinϕ
∂

∂θ
− coth a sinh b

cosϕ
sin θ

∂

∂ϕ

)
,

P3 = −i
(
− sinh b cos θ

∂

∂a
+ tanh a cosh b cos θ

∂

∂b
+ coth a sinh b sin θ

∂

∂θ

)
,
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N1 = −i
(

cosh b sin θ cosϕ
∂

∂a
− tanh a sinh b sin θ cosϕ

∂

∂b

+ coth a cosh b cos θ cosϕ
∂

∂θ
− coth a cosh b

sinϕ
sin θ

∂

∂ϕ

)
,

N2 = −i
(

cosh b sin θ sinϕ
∂

∂a
− tanh a sinh b sin θ sinϕ

∂

∂b

+ coth a cosh b cos θ sinϕ
∂

∂θ
+ coth a cosh b

cosϕ
sin θ

∂

∂ϕ

)
,

N3 = −i
(

cosh b cos θ
∂

∂a
− tanh a sinh b cos θ

∂

∂b
− coth a cosh b sin θ

∂

∂θ

)
.

SH-system:

M1 = −i
(

sinh b sinϕ cos Φ
∂

∂a
− tanh a cosh b sinϕ cos Φ

∂

∂b

− tanh a
cosϕ cos Φ

sinh b
∂

∂ϕ
− coth a sinh b sinϕ sinΦ

∂

∂Φ

)
,

M2 = −i
(
− sinh b cosϕ cos Φ

∂

∂a
+ tanh a cosh b cosϕ cos Φ

∂

∂b

− tanh a
sinϕ cos Φ

sinh b
∂

∂ϕ
+ coth a sinh b cosϕ sinΦ

∂

∂Φ

)
,

M3 = −i
∂

∂ϕ
, P3 = −i

∂

∂Φ
,

P1 = −i
(

sinh b cosϕ sinΦ
∂

∂a
− tanh a cosh b cosϕ sinΦ

∂

∂b

+ tanh a
sinϕ sinΦ

sinh b
∂

∂ϕ
+ coth a sinh b cosϕ cos Φ

∂

∂Φ

)
,

P2 = −i
(

sinh b sinϕ sinΦ
∂

∂a
− tanh a cosh b sinϕ sinΦ

∂

∂b

− tanh a
cosϕ sinΦ

sinh b
∂

∂ϕ
+ coth a sinh b sinϕ cos Φ

∂

∂Φ

)
,

N1 = −i
(

cosϕ
∂

∂b
− coth b sinϕ

∂

∂ϕ

)
, N2 = −i

(
sinϕ

∂

∂b
+ coth b cosϕ

∂

∂ϕ

)
,

N3 = −i
(

cosh b cos Φ
∂

∂a
− tanh a sinh b cos Φ

∂

∂b
− coth a cosh b sinΦ

∂

∂Φ

)
,

P0 = −i
(

cosh b sinΦ
∂

∂a
− tanh a sinh b sinΦ

∂

∂b
+ coth a cosh b cos Φ

∂

∂Φ

)
.

Below the corresponding expressions for the infinitesimal generators Ei, i = 1, 2, 3, in O-,
OC- and OT -systems will be used. They have the form
O-system:

E1 = −i
(

sin θ cosϕ
∂

∂r
+

1
r

cos θ cosϕ
∂

∂θ
− 1
r

sinϕ
sin θ

∂

∂ϕ

)
,

E2 = −i
(

sin θ sinϕ
∂

∂r
+

1
r

cos θ sinϕ
∂

∂θ
+

1
r

cosϕ
sin θ

∂

∂ϕ

)
,

E3 = −i
(

cos θ
∂

∂r
− 1
r

sin θ
∂

∂θ

)
.
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OC-system:

E1 = −i
(

cosϕ
∂

∂ξ
− sinϕ

ξ

∂

∂ϕ

)
, E2 = −i

(
sinϕ

∂

∂ξ
+

cosϕ
ξ

∂

∂ϕ

)
, E3 = −i

∂

∂z
.

OT -system:

E1 = −i
(

∂

∂y1

)
, E2 = −i

(
∂

∂y2

)
, E3 = −i

(
∂

∂y3

)
.

5 Invariant operators on hyperboloid and their eigenfunctions

5.1 Introduction

For each coordinate system on the hyperboloid H4
+ we shall find basis functions of the space

L2(H4
+). They are constructed as common eigenfunctions of a full collection of commuting self-

adjoint operators. Casimir operators of the group SO0(1, 4) and of its subgroups are included
into these collections. We shall see that the coordinate systems, considered above, are determined
by the corresponding chains of subgroups of the group SO0(1, 4).

As we have seen, the Casimir operators

F = (P 2
0 + N2)− (P2 + M2), (5.1)

W = (M ·P)2 − (P0M−P×N)2 − (M ·N)2 (5.2)

are independent invariants of the Lie algebra so(1, 4). The second operator vanishes on the
space L2(H4

+). We include the operator F into full collections of commuting self-adjoint opera-
tors.

The quasi-regular representation (2.11) is reducible. Since it is unitary, it decomposes into
a direct integral of irreducible unitary representations [24]. Since H4

+ ≡ SO0(1, 4)/SO(4)
and SO(4) is a compact subgroup, this decomposition can be obtained from the Fourier trans-
form and the Plancherel formula for the regular representation of the group SO0(1, 4) [36]. The
result of the decomposition of the quasi-regular representation π of SO0(1, 4) on L2(H4

+) is the
following. The representation π on the space L2(H4

+) decomposes into the direct integral of the
principal unitary representations πσ, σ = iρ − 3

2 , 0 6 ρ < ∞, and each of these irreducible
representations is contained in the decomposition only once.

The spectrum of the Casimir operator F on L2(H4
+) is determined by this decomposition,

since on the representations πσ, σ = iρ − 3
2 , 0 6 ρ < ∞, this operator is multiple to the unit

operator.
Since on the representation πσ the operator F takes the value −σ(σ + 3), its spectrum on

L2(H4
+) consists of the points

−(iρ− 3/2)(iρ+ 3/2) = ρ2 + 9/4, 0 6 ρ <∞.

The operator −F on L2(H4
+) coincides with the Laplace operator ∆(H4

+) in the corresponding
coordinate system (see [37]).

If we have a collection of commuting self-adjoint operators for each of coordinate systems
(4.1)–(4.7), we can find their common eigenfunctions, which constitute a basis of the space
L2(H4

+). It is not a basis in the usual sense. It is rather a “continuous” basis (corresponding to
continuous spectra of commuting operators). A strict mathematical meaning to such bases can
done by using the results of [38]. Eigenfunctions of collections of self-adjoint operators will be
found by means of the corresponding differential equations [9].

A differential form of commuting operators, which are contained in a collection, is found by
means of differential form of the infinitesimal operators calculated above.
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5.2 H-system

The operator ∆(H4
+) = −F in the coordinates a, b, θ, ϕ has the form

∆(H4
+) =

1
cosh3 a

∂

∂a
cosh3 a

∂

∂a
+

1
cosh2 a sinh2 b

[
∂

∂b
sinh2 b

∂

∂b

+
1

sin θ

(
∂

∂θ
sin θ

∂

∂θ
+

1
sin θ

∂2

∂ϕ2

)]
. (5.3)

The operators

N2 −M2 ≡ N2
1 +N2

2 +N2
3 −M2

1 −M2
2 −M2

3

= − 1
sinh2 b

(
∂

∂b
sinh2 b

∂

∂b
+

1
sin θ

∂

∂θ
sin θ

∂

∂θ
+

1
sin2 θ

∂2

∂ϕ2

)
, (5.4)

M2 = −
(

1
sin θ

∂

∂θ
sin θ

∂

∂θ
+

1
sin2 θ

∂2

∂ϕ2

)
, M3 = −i

∂

∂ϕ
(5.5)

commute with the operator ∆(H4
+).

The operators ∆(H4
+), N2 − M2, M2, M2

3 are quadratic Casimir operators for the groups
SO0(1, 4), SO0(1, 3), SO(3) and SO(2), respectively.

Let us find spectra and common eigenfunctions of self-adjoint operators ∆(H4
+), N2−M2, M2

and M2
3 on the space L2(H4

+). (If the operators (5.3) and (5.4) are considered as a product of the
infinitesimal operators of the quasi-regular representation π, then they are symmetric operators
and have self-adjoint extensions. If we speak about self-adjoint operators (5.3) and (5.4), then
we understand that they are these self-adjoint extensions. This remark concerns also to other
collections of operators considered below.)

The spectrum of the operator ∆(H4
+) is described above. Let us discuss the spectrum of

the operator −(N2 −M2). Its form coincides with the Laplace operator ∆(H3
+) on the space

L2(H3
+) in the spherical coordinate system onH3

+, whereH3
+ is the upper sheet of the two-sheeted

hyperboloid in 4-dimensional Minkowski space, that is, H3
+ ≡ SO0(1, 3)/SO(3). However, we

have to consider H3
+ as a subset of H4

+. Let us take the hyperbolic coordinate system H
on H4

+. The operator N2 −M2 does not depend on the coordinate a. At each fixed a a point
(x0, x1, x2, x3, x4 = sinh a) ∈ H4

+ runs over the upper sheet of two-sheeted hyperboloid x2
0 −

x2
1− x2

2− x2
3 = cosh2 a in the 4-dimensional space of points (x0, x1, x2, x3, x4). The coordinate a

runs over the real line R. It is evident that there are identical 3-dimensional hyperboloids
x2

0 − x2
1 − x2

2 − x2
3 = cosh2 a with different values of the coordinate x4: x4 = sinh a and x4 =

− sinh a corresponding to the points a and −a respectively.
The above reasoning shows that the operator M2−N2 leads to two Laplace operators ∆(H3

+)
on L2(H4

+). One of them corresponds to the value a ∈ (−∞, 0) and the other to the value
a ∈ (0,∞).

Thus, in order to find a whole spectrum of eigenvalues and the corresponding eigenfunctions
of the operators (5.3)–(5.5) it is necessary to solve two systems of equations

∆(H4
+)Φε

ρνlm(a, b, θ, ϕ) = −(ρ2 +9 /4)Φε
ρνlm(a, b, θ, ϕ),

∆(H3
+)Φε

ρνlm(a, b, θ, ϕ) = −(ν2 + 1)Φε
ρνlm(a, b, θ, ϕ),

M2Φε
ρνlm(a, b, θ, ϕ) = l(l + 1)Φε

ρνlm(a, b, θ, ϕ), (5.6)

M3Φε
ρνlm(a, b, θ, ϕ) = mΦε

ρνlm(a, b, θ, ϕ).

One system corresponds to ε = + and the other to ε = −.
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We try to find solutions of the system (5.6) in the form of products of functions of each
variables a, b, θ, ϕ:

Φε
ρνlm(a, b, θ, ϕ) ≡ 〈a, b, θ, ϕ | ρ, ν, l,m〉ε = 〈a | ρ, ν〉ε〈b | ν, l〉〈θ | l,m〉〈ϕ | m〉. (5.7)

According to (5.3)–(5.5) the functions 〈a | ρ, ν〉ε, 〈b | ν, l〉, 〈θ | l,m〉 and 〈ϕ | m〉 satisfy the
equations(

∂2

∂a2
+

3
coth a

∂

∂a
− ν2 + 1

cosh2 a
+ ρ2 +

9
4

)
〈a | ρ, ν〉ε = 0, (5.8)(

1
sinh2 b

∂

∂b
sinh2 b

∂

∂b
− l(l + 1)

sinh2 b
+ ν2 + 1

)
〈b | ν, l〉 = 0, (5.9)(

1
sin θ

∂

∂θ
sin θ

∂

∂θ
− m2

sin2 θ
+ l(l + 1)

)
〈θ | l,m〉 = 0, (5.10)(

i
∂

∂ϕ
+m

)
〈ϕ | m〉 = 0. (5.11)

The equations (5.9)–(5.11) give a system of equations for eigenvalues and eigenfunctions for the
collection of self-adjoint operators on the space L2(H3

+). A solution of this problem is given
in [9]. Therefore, solutions of the system of equations (5.8)–(5.11) are the functions

〈a | ρ, ν〉ε = (cosh a)−3/2P−iρ
−1/2+iν(ε tanh a), ε = ±, 0 6 ρ <∞,

〈b | ν, l〉 = (sinh b)−1/2P
−1/2−l
−1/2+iν(cosh b), 0 6 ν <∞,

〈θ | l,m〉 = Pm
l (cos θ), 〈ϕ | m〉 = eimϕ, l = 0, 1, 2, . . . , −l 6 m 6 l,

where Pµ
ν (z) are associated Legendre functions and Pm

l (cos θ) are associated Legendre functions
on the cut. Thus, the functions

〈a, b, θ, ϕ | ρ, ν, l,m〉ε = (cosh a)−3/2(sinh b)−1/2P−iρ
−1/2+iν(ε tanh a)

× P
−1/2−l
−1/2+iν(cosh b)Pm

l (cos θ)eimϕ, (5.12)

ε = ±, 0 6 ρ, ν <∞, l = 0, 1, 2, . . . , −l 6 m 6 l,

constitute a basis (not normed) of the space L2(H4
+) in the H-coordinate system. This basis

corresponds to the chain of subgroups

SO0(1, 4) ⊃ SO0(1, 3) ⊃ SO(3) ⊃ SO(2).

Remark. The operators (5.3)–(5.5) do not constitute a full collection of commuting self-adjoint
operators in the space L2(H4

+). For obtaining a full collection of such operators we have to
add to the collection (5.3)–(5.5) an operator, which separates eigenfunctions with different
values of ε. However, we have found the whole system of eigenfunctions without use of this
operator. Collections of self-adjoint operators, considered below for other coordinate systems,
will constitute a full collections of self-adjoint operators.

5.3 O-system

In this coordinate system, the Laplace operator is of the form

∆(H4
+) =

∂2

∂a2
+ 3

∂

∂a
+ e−2a

[
∂2

∂r2
+

2
r

∂

∂r
+

1
r2

(
∂2

∂θ2
+ cot θ

∂

∂θ
+

1
sin2 θ

∂2

∂ϕ2

)]
.
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If we introduce the variable b = e−a, then ∆(H4
+) can be written in the form

∆(H4
+) = b2

∂2

∂b2
− 2b

∂

∂b
+ b2

[
∂2

∂r2
+

2
r

∂

∂r
+

1
r2

(
∂2

∂θ2
+ cot θ

∂

∂θ
+

1
sin2 θ

∂2

∂ϕ2

)]
. (5.13)

The operators

−E2 ≡ ∆(R3) =
∂2

∂r2
+

2
r

∂

∂r
+

1
r2

(
∂2

∂θ2
+ cot θ

∂

∂θ
+

1
sin2 θ

∂2

∂ϕ2

)
, (5.14)

M2 = −
(

1
sin θ

∂

∂θ
sin θ

∂

∂θ
+

1
sin2 θ

∂2

∂ϕ2

)
, M3 = −i ∂

∂ϕ
(5.15)

commute with the operator (5.13). The operators E2, M2 and M2
3 are Casimir operators for

the subgroups ISO(3), SO(3) and SO(2), respectively. Therefore, a basis of the space L2(H4
+)

in the O-coordinate system, which will be found below, corresponds to the chain of subgroups

SO0(1, 4) ⊃ ISO(3) ⊃ SO(3) ⊃ SO(2). (5.16)

The operator ∆(R3) coincides with the 3-dimensional Laplace operator on the Euclidean
space R3 in the spherical coordinate system. The space R3 is obtained from H4

+ by cutting this
hyperboloid by the hyperplane e−a = const. At each fixed a, functions f(a, r, θ, ϕ) of L2(H4

+)
lead to functions of L2(R3). This means that the space L2(H4

+) is a direct integral over values
of a of the spaces L2

a(R3) ≡ L2(R3). Eigenfunctions and eigenvalues of the operator ∆(R3) on
the space L2(R3) are known. Since R3 ≡ ISO(3)/SO(3), they can be obtained, for example,
from the Fourier transform and Plancherel formula for the regular representation of the group
ISO(3).

The system of differential equations for eigenfunctions and eigenvalues of the operators
(5.13)–(5.15) in the O-coordinate system is of the form

∆(H4
+)Φρκ

lm(b, r, θ, ϕ) = −(ρ2 + 9/4)Φρκ
lm(b, r, θ, ϕ),

∆(R3) Φρκ
lm(b, r, θ, ϕ) = −κ2 Φρκ

lm(b, r, θ, ϕ),

M2Φρκ
lm(b, r, θ, ϕ) = l(l + 1)Φρκ

lm(b, r, θ, ϕ), (5.17)
M3 Φρκ

lm(b, r, θ, ϕ) = mΦρκ
lm(b, r, θ, ϕ).

We try to find solutions in the form of separated variables:

Φρκ
lm(b, r, θ, ϕ) ≡ 〈b, r, θ, ϕ | ρ, κ, l,m〉 = 〈b | ρ, κ〉〈r | κ, l〉〈θ | l,m〉〈ϕ | m〉.

For these solutions the system (5.17) take the form(
∂2

∂b2
− 2
b

∂

∂b
+

(
−κ2 +

ρ2 + 9/4
b2

))
〈b | ρ, κ〉 = 0, 0 6 ρ <∞, (5.18)(

∂2

∂r2
+

2
r

∂

∂r
+ κ2 − l(l + 1)

r2

)
〈r | κ, l〉 = 0, 0 6 κ <∞, (5.19)(

1
sin θ

∂

∂θ
sin θ

∂

∂θ
− m2

sin2 θ
− l(l + 1)

)
〈θ | l,m〉 = 0, l = 0, 1, 2, . . . , (5.20)(

i
∂

∂ϕ
+m

)
〈ϕ | m〉 = 0, −l 6 m 6 l. (5.21)

The functions

〈b | ρ, κ〉 = (κb)3/2Kiρ(κb), 〈r | κ, l〉 = (κr)−1/2Jl+1/2(κr),



18 I. Kachuryk and A. Klimyk

〈θ | l,m〉 = Pm
l (cosθ), 〈ϕ | m〉 = eimϕ,

are solutions of the equations (5.18)–(5.21), where Kiρ(κb) is the Macdonald function and
Jl+1/2(κr) is the Bessel function.

Thus, the functions

〈b, r, θ, ϕ | ρ, κ, l,m〉 = (κb)3/2(κr)−1/2Kiρ(κb) Jl+1/2(κr)P
m
l (cos θ) eimϕ, (5.22)

0 6 ρ, κ <∞, l = 0, 1, 2, . . . , −l 6 m 6 l, b = e−a,

constitute a basis of the space L2(H4
+) in the O-system of coordinates.

5.4 OC-system

In the OC-coordinate system, the Laplace operator is of the form

∆(H4
+) = b2

∂2

∂b2
− 2b

∂

∂b
+ b2

(
∂2

∂ξ2
+

1
ξ

∂

∂ξ
+

1
ξ2

∂2

∂ϕ2
+

∂2

∂z2

)
. (5.23)

The operators

E2 = −∆(R3) = −
(
∂2

∂ξ2
+

1
ξ

∂

∂ξ
+

1
ξ2

∂2

∂ϕ2
+

∂2

∂z2

)
, (5.24)

E3 = −i ∂
∂z
, M3 = −i ∂

∂ϕ
, (5.25)

Ẽ2 = E2
1 + E2

2 = −∆(R2) = −
(
∂2

∂ξ2
+

1
ξ

∂

∂ξ
+

1
ξ2

∂2

∂ϕ2

)
(5.26)

commute with the operator (5.23). The operator ∆(R3) is the Laplace operator on the space R3

in the cylindric coordinates. The operators Ẽ2 and E2
3 are Casimir operators of the group

ISO(2)⊗ T⊥, and the operators E2
3 and M2

3 are Casimir operators of SO(2)⊗ T⊥. Eigenvalues
of the operators (5.24)–(5.26) in L2(H4

+) are

ν(E2) = κ2, ν(E3) = q, ν(M3) = m, ν(Ẽ2) = η2,

κ2 = q2 + η2, −∞ < q <∞, 0 6 η <∞, m = 0,±1,±2, . . . .

We have the following system of differential equations for eigenfunctions:

∆(H4
+)Φm

ρηq(b, ξ, z, ϕ) = −(ρ2 + 9/4)Φm
ρηq(b, ξ, z, ϕ), 0 6 ρ <∞,

∆(R2)Φm
ρηq(b, ξ, z, ϕ) = −η2 Φm

ρηq(b, ξ, z, ϕ), 0 6 η <∞, (5.27)

E3Φm
ρηq(b, ξ, z, ϕ) = qΦm

ρηq(b, ξ, z, ϕ), −∞ < q <∞,

M3Φm
ρηq(b, ξ, z, ϕ) = mΦm

ρηq(b, ξ, z, ϕ), m = 0,±1,±2, . . . .

Solutions of this system can be represented in the form of separated variables:

Φm
ρηq(b, ξ, z, ϕ) ≡ 〈b, ξ, z, ϕ | ρ, η, q,m〉 = 〈b | ρ, κ〉〈ξ | η,m〉〈z | q〉〈ϕ | m〉,

where κ2 = η2 + q2. After separation of variables the system (5.27) takes the form(
∂2

∂b2
− 2
b

∂

∂b
+
ρ2 + 9/4

b2
− κ2

)
〈b | ρ, κ〉 = 0, (5.28)(

∂2

∂ξ2
+

1
ξ

∂

∂ξ
− m2

ξ2
+ η2

)
〈ξ | η,m〉 = 0, (5.29)
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i
∂

∂z
+ q

)
〈q | z〉 = 0,

(
i
∂

∂ϕ
+m

)
〈ϕ | m〉 = 0. (5.30)

Solutions of these equations are of the form

〈b | ρ, κ〉 = (κb)3/2Kiρ(κb), 〈ξ | η,m〉 = Jm(ηξ), η2 = κ2 − q2,

〈z | q〉 = eiqz, 〈ϕ | m〉 = eimϕ.

Therefore, the functions

〈b, ξ, z, ϕ | ρ, η, q,m〉 = (κb)3/2Kiρ(κb)Jm(ηξ)eiqzeimϕ, (5.31)

η2 = κ2 − q2, 0 6 ρ, η <∞, −∞ < q <∞, m = 0,±1,±2, . . . ,

constitute a basis of the space L2(H4
+) in the OC-coordinate system. This basis corresponds to

the chain of subgroups

SO0(1, 4) ⊃ ISO(3) ⊃ ISO(2)⊗ T⊥ ⊃ SO(2)⊗ T⊥.

5.5 OT -system

In this coordinate system

∆(H4
+) = b2

∂2

∂b2
− 2b

∂

∂b
+ b2

(
∂2

∂y2
1

+
∂2

∂y2
2

+
∂2

∂y2
3

)
, b = e−a. (5.32)

The operators

E2 = ∆(R3) = −
(
∂2

∂y2
1

+
∂2

∂y2
2

+
∂2

∂y2
3

)
, Ej = −i ∂

∂yj
, j = 1, 2, 3, (5.33)

commute with ∆(H4
+). The operator ∆(R3) is an invariant for the group ISO(3). It is

the Laplace operator on the 3-dimensional Euclidean space in the homogeneous coordina-
tes y1, y2, y3. The ISO(3) is a motion group of this Euclidean space. Eigenvalues of the
operators (5.33) are

ν(E2) = κ2, ν(Ej) = κj , −∞ < κj <∞, 0 6 κ <∞, κ2
1 + κ2

2 + κ2
3 = κ2.

The spectrum of the collection of operators (5.32) and (5.33) is simple. We represent eigen-
functions 〈b,y | ρ,κ〉, κ = (κ1, κ2, κ3), y = (y1, y2, y3, ), of this collection of operators in the
form

〈b,y | ρ,κ〉 = 〈b | ρ, κ〉〈y | κ〉, κ = |κ|.

For 〈b | ρ, κ〉 and 〈y | κ〉 we have the equations(
∂2

∂b2
− 2
b

∂

∂b
+
ρ2 + 9/4

b2
− κ2

)
〈b | ρ, κ〉 = 0,

(
i
∂

∂y
+ κ

)
〈y | κ〉 = 0. (5.34)

Solutions of these equations are

〈b | ρ, κ〉 = (κb)3/2Kiρ(κb), 〈y | κ〉 = eiκy, b = e−a,

where κy = κ1y1 + κ2y2 + κ3y3. Therefore, the functions

〈b,y | ρ,κ〉 = (κb)3/2Kiρ(κb)eiκy, b = e−a, (5.35)

κ2 = κ2
1 + κ2

2 + κ2
3, 0 6 ρ, κ <∞, −∞ < κj <∞,

constitute a basis of the space L2(H4
+) in the OT -coordinate system.
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5.6 C-system

In this coordinate system the Laplace operator on H4
+ is of the form

∆(H4
+) =

1
cosh a sinh2 a

∂

∂a
cosh a sinh2 a

∂

∂a
+

1
cosh2 a

∂2

∂b2

+
1

sinh2 a

(
1

sin θ
∂

∂θ
sin θ

∂

∂θ
+

1
sin2 θ

∂2

∂ϕ2

)
. (5.36)

The operators

M2 = − 1
sin θ

∂

∂θ
sin θ

∂

∂θ
− 1

sin2 θ

∂2

∂ϕ2
,

M3 = −i
∂

∂ϕ
, P0 = −i

∂

∂b
(5.37)

commute with ∆(H4
+). They are invariants of the subgroups SO(3), SO(2) and SO0(1, 1) of the

group SO0(1, 1)⊗ SO(3). Their eigenvalues are

ν(M2) = l(l + 1), ν(M3) = m, ν(P0) = τ, (5.38)
−∞ < τ <∞, l = 0, 1, 2, . . . , −l 6 m 6 l.

We try to find eigenfunctions of the operators (5.36) and (5.37) in the form

〈a, b, θ, ϕ | ρ, τ, l,m〉 = 〈a | ρ, τ, l〉〈b | τ〉〈θ | l,m〉〈ϕ | m〉. (5.39)

The functions on the right hand side satisfy the equations{
∂2

∂a2
+ (tanh a+ 2 coth a)

∂

∂a
+ ρ2 +

9
4
− τ2

cosh2 a
− l(l + 1)

sinh2 a

}
〈a | ρ, τ, l〉 = 0, (5.40){

1
sin θ

∂

∂θ
sin θ

∂

∂θ
− m2

sin2 θ
+ l(l + 1)

}
〈θ | l,m〉 = 0, (5.41)(

i
∂

∂b
+ τ

)
〈b | τ〉 = 0,

(
i
∂

∂ϕ
+m

)
〈ϕ | m〉 = 0. (5.42)

These equations have solutions

〈a | ρ, τ, l〉 = tanhl a(cosh a)iρ−3/2
2F1

(
l − iρ+ iτ + 3/2

2
,
l − iρ− iτ + 3/2

2
; l +

3
2
; tanh2 a

)
,

〈θ | l,m〉 = Pm
l (cos θ), 〈b | τ〉 = eiτb, 〈ϕ | m〉 = eimϕ,

where 2F1 is a Gauss hypergeometric function. Thus, the functions

〈a, b, θ, ϕ | ρ, τ, l,m〉 = tanhl a(cosh a)iρ−3/2

× 2F1

(
l − iρ+ iτ + 3/2

2
,
l − iρ− iτ + 3/2

2
; l+

3
2
; tanh2 a

)
Pm

l (cos θ)eiτbeimϕ, (5.43)

0 6 ρ <∞, −∞ < τ <∞, l = 0, 1, 2, . . . , −l 6 m 6 l,

constitute a basis of the space L2(H4
+) in the C-coordinate system. This basis corresponds to

the chain of subgroups

SO0(1, 4) ⊃ SO0(1, 1)⊗ SO(3) ⊃ SO(2).
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5.7 SH-system

In this coordinate system the Laplace operator on H4
+ is of the form

∆(H4
+) =

1
cosh2 a sinh a

∂

∂a
cosh2 a sinh a

∂

∂a
+

1
sinh2 a

∂2

∂Φ2

+
1

cosh2 a

(
∂2

∂b2
+ coth b

∂

∂b
+

1
sinh2 b

∂2

∂ϕ2

)
. (5.44)

The operators

M2
3 −N2

1 −N2
2 = ∆(H2

+) =
∂2

∂b2
+ coth b

∂

∂b
+

1
sinh2 b

∂2

∂ϕ2
,

M3 = −i
∂

∂ϕ
, P3 = −i

∂

∂Φ
(5.45)

commute with the operator ∆(H4
+). They are invariants of the subgroups SO0(1, 2), SO(2)

and SO′(2) of the group SO0(1, 2) ⊗ SO′(2), where SO′(2) v SO(2). The subgroup SO′(2)
is generated by the generator P3. The operator ∆(H2

+) is the Laplace operator on H2
+ ≡

SO0(1, 2)/SO(2) in the spherical coordinates. Eigenvalues of the above operators are

ν(∆(H4
+)) = −(ρ2 + 9/4), ν(∆(H2

+)) = −(ω2 + 1/4), ν(M3) = m, ν(P3) = m′,

0 6 ρ <∞, 0 6 ω <∞, m,m′ = 0,±1,±2, . . . .

We represent solutions of the system of equations (5.44) and (5.45) in the form

〈a, b,Φ, ϕ | ρ, ω,m′,m〉 = 〈a | ρ, ω〉〈b | ω,m〉〈Φ | m′〉〈ϕ | m〉.

Then this separation of variables leads to the equations{
∂2

∂a2
+ (2 tanh a+ coth a)

∂

∂a
− ω2 + 1/4

cosh2 a
− mp2

sinh2 a
+ ρ2 +

9
4

}
〈a | ρ, ω,m′〉 = 0, (5.46)(

∂2

∂b2
+ coth b

∂

∂b
− m2

sinh2 b
+ ω2 + 1/4

)
〈b | ω,m〉 = 0, (5.47)(

i
∂

∂Φ
+m′

)
〈Φ | m′〉 = 0,

(
i
∂

∂ϕ
+m

)
〈ϕ | m〉 = 0. (5.48)

Solutions of these equations are the functions

〈a | ρ, ω,m′〉 = (tanh a)m′
(cosh a)iρ−3/2

× 2F1

(
m′ − iρ+ iω + 1

2
,
m′ − iρ− iω + 1

2
;m′ + 1; tanh2 a

)
,

〈b | ω,m〉 = Pm
iω−1/2(cosh b), 〈Φ | m′〉 = eim

′Φ, 〈ϕ | m〉 = eimϕ.

Thus, the functions

〈a, b,Φ, ϕ | ρ, ω,m′,m〉 = (tanh a)m′
(cosh a)iρ−3/2Pm

iω−1/2(cosh b)eim
′Φeimϕ (5.49)

× 2F1

(
m′ − iρ+ iω + 1

2
,
m′ − iρ− iω + 1

2
; m′ + 1; tanh2 a

)
,

0 6 ρ, ω <∞, m,m′ = 0,±1,±2, . . . ,

constitute a basis of the space L2(H4
+) in the SH-coordinate system. This basis corresponds to

the chain of subgroups

SO0(1, 4) ⊃ SO0(1, 2)⊗ SO′(2) ⊃ SO(2).
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5.8 S-system

The problem of finding basis functions of the Hilbert space L2(H4
+) in the spherical coordinates

is solved in [25] (see also [3]). The Laplace operator in this coordinate system has the form

∆(H4
+) =

1
sinh3 a

∂

∂a
sinh3 a

∂

∂a

+
1

sin2 β

(
∂

∂β
sin2 β

∂

∂β
+

1
sin θ

∂

∂θ
sin θ

∂

∂θ
+

1
sin2 θ

∂2

∂ϕ2

)
. (5.50)

The following operators commute with ∆L(H4
+):

J2 ≡ M2 + P2 = −∆(S3)

= − 1
sin2 β

(
∂

∂β
sin2 β

∂

∂β
+

1
sin θ

∂

∂θ
sin θ

∂

∂θ
+

1
sin2 θ

∂2

∂ϕ2

)
, (5.51)

M2 = −
(

1
sin θ

∂

∂θ
sin θ

∂

∂θ
+

1
sin2 θ

∂2

∂ϕ2

)
, M3 = −i

∂

∂ϕ
. (5.52)

They are invariants of the groups SO(4), SO(3) and SO(2), respectively. The operator ∆(S3)
in (5.51) is the Laplace operator on the sphere S3 in the 3-dimensional Euclidean space. Eigen-
values ν(I) of the operators (5.50)–(5.52) are

ν(∆(H4
+)) = −(ρ2 + 9/4), ν(J2) = j(j + 2), ν(M2) = l(l + 1), ν(M3) = m,

0 6 ρ <∞, j = 0, 1, 2, . . . , 0 6 l 6 j, −l 6 m 6 l,

and the spectrum of this collection of operators is simple. Eigenfunctions of the collection
(5.50)–(5.52) are [25]

〈a, β, θ, ϕ|ρ, j, l,m〉 = sinh−1a sin−1/2 βP−j−1
iρ−1/2(cosh a)P−l−1/2

j+1/2 (cosβ)Pm
l (cos θ)eimϕ. (5.53)

They form a basis of the space L2(H4
+) in the S-coordinate system. This basis corresponds to

the chain of subgroups

SO0(1, 4) ⊃ SO(4) ⊃ SO(3) ⊃ SO(2).

6 The method of orispherical transforms

Now we consider another problem – expansion of functions ψ(x) ∈ L2(H4
+) in eigenfunctions

of a full collection of self-adjoint operators. Derivation of the inverse formulas will allow us to
represent these eigenfunctions in a normed form. Since functions ψ(x) are determined on the
hyperboloid H4

+, then for construction of expansion we can use the method of orispheres, which
was worked out by Gel’fand and Graev on the base of integral geometry [24]. This method
allows us to go from studying functions ψ(x) on H4

+ to studying corresponding functions h(k)
on the upper sheet C4

+ of the cone C4. Consideration of functions on the cone is convenient,
since we can expand them in functions Ψ(k, σ) homogeneous in the set of the homogeneous
coordinates k = (k0, k1, k2, k3, k4). Under shifts ψ(x) → ψ(g−1x), g ∈ SO0(1, 4), the functions
Ψ(k, σ) transform under irreducible representations πσ of the group SO0(1, 4). Let us give an
information on the method of orispheres [24, 25].

An orisphere of the hyperboloid H4
+ is a cut of H4

+ by the plane

[x, k] ≡ x0k0 − x1k1 − x2k2 − x3k3 − x4k4 = 1,
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where k is a fixed point of the cone C4
+ given by the equation

[k, k] ≡ k0k0 − k1k1 − k2k2 − k3k3 − k4k4 = 0, k0 > 0.

Thus, an orisphere on H4
+ is given by a point k ∈ C4

+. Then the set of orispheres can be
considered as the set of all points of C4

+.
According to the method of orispheres, to each finite function ψ(x) on H4

+ there corresponds
a function h(ω), determined on the set of orispheres ω of H4

+. This correspondence is given by
the Gel’fand–Graev formula

h(ω) =
∫

ω
dω ψ(x), (6.1)

where the integral of the function ψ(x) on the orisphere ω : [x, k] = 1 is defined by the formula∫
ω
dω ψ(x) =

∫
H4

+

d4x

x0
ψ(x)δ([x, k]− 1). (6.2)

Here d4x/x0 = dx1dx2dx3dx4/x0 is an invariant (with respect to SO0(1, 4)) measure on H4
+.

Under shifts of points x and k by an element g ∈ SO0(1, 4) the bilinear form [x, k] and the
measure d4x/x0 are conserved. For this reason, the measure dω, determined by formula (6.2),
is conserved under shifts ω → gω. This means that∫

ω
dω ψ(gx) =

∫
gω
dωgψ(x), g ∈ SO0(1, 4),

where dωg is a measure on the orisphere gω. In particular, if a shift g leaves an orisphere ω
invariant, then∫

ω
dω ψ(gx) =

∫
ω
dω ψ(x).

Since there exists a one-to-one correspondence between points of the set of orispheres ω of H4
+

and points k ∈ C4
+, the functions h(ω) can be considered as functions on C4

+. Instead of h(ω)
we shall write h(k). Then according to (6.1) and (6.2) we have

h(k) =
∫

H4
+

d4x

x0
ψ(x)δ([x, k]− 1). (6.3)

This transform, turning a function ψ(x) into a function h(k), is called Gel’fand–Graev integral
transform.

It is proved in [39] that if ψ(x) is infinitely differentiable finite function on H4
+, then the

function h(k) on C4
+ is infinitely differentiable, finite, and vanishes inside of some neighborhood

of the point k = 0 of the cone C4
+.

The inverse formula for the integral transform (6.3) is of the form [39]

ψ(x) =
Γ(4)
(2π)4

∫
C4

+

d4k

k0
h(k)([x, k]− 1)−4, (6.4)

where d4k/k0 = dk1dk2dk3dk4/k0 is an invariant (with respect to SO0(1, 4)) measure on the
cone C4

+. Here the integral is understood in the sense of a value, regularized by analytic conti-
nuation in a power:∫

C4
+

d4k

k0
h(k)([x, k]− 1)−4 =

∫
C4

+

d4k

k0
h(k)([x, k]− 1)τ |τ→−4.
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We wish to know a form of the operator π(g) of the quasi-regular representation (2.11) of
SO0(1, 4) (restricted onto the space of infinitely differentiable finite functions on H4

+) under the
transform (6.3). It is easy to see that this transform turns the function π(g)ψ(x) = ψ(g−1x)
on H4

+ into the function hg(k) ≡ h(g−1k) on C4
+. Therefore, to the shift operators π(g) on H4

+

there corresponds shift operators π̂(g) on the space of functions h(k) on C4
+:

π̂(g)h(k) = h(g−1k), g ∈ SO0(1, 4).

This equality determines the quasi-regular representation of SO0(1, 4) on the space of infinitely
differentiable functions h(k) on the cone C4

+, satisfying an additional symmetry condition [39].
A function h(k) on C4

+ can be expanded in functions on the cone C4
+ homogeneous in coor-

dinates k = (k0, k1, k2, k3, k4):

Ψ(k, σ) =
∫ ∞

0
dt h(tk)t−σ−1, σ ∈ C. (6.5)

These functions have homogeneity degrees σ:

Ψ(ak, σ) = aσΨ(k, σ), a > 0.

This expansion has the form (see, for example, [25])

h(k) =
1

2πi

∫ δ+i∞

δ−i∞
dσ tσΨ(k, σ), (6.6)

where a value δ is taken in such a way that the function Ψ(k, σ) does not have poles on the strip
0 6 Re σ 6 δ.

It is easy to check that to the function hg(k) = π̂(g)h(k) = h(g−1k) on the cone C4
+ there

corresponds a homogeneous function Ψg(k, σ) = Ψ(g−1k, σ), σ ∈ C, on C4
+. Thus, to the quasi-

regular representation π̂ on the space of functions h(k) on C4
+ there corresponds a collection of

representations T σ, σ ∈ C, and T σ acts on the space of homogeneous functions Ψ(k, σ) on C4
+

by the formula

T σ(g)Ψ(k, σ) = Ψ(g−1k, σ), g ∈ SO0(1, 4).

The representation T σ is irreducible for all values of σ except for the case when σ or −σ − 3
is a non-negative integer. Therefore, the representations T σ are irreducible components of the
representation π̂ or of the representation π, equivalent to π̂. Note that for σ = iρ− 3/2, ρ ∈ R,
the representation T σ is unitary.

The representation T σ, σ ∈ C, in fact, coincides with the representation πσ considered in
Section 2. To show this, we note that the representation πσ acts in the space of functions f(g)
on SO0(1, 4) such that

f(gmnh) = exp(−λ(log h))f(g), m ∈M = SO(3), n ∈ N, h ∈ A = exp a,

where λ is a linear form on the commutative subalgebra a of the Lie algebra so(1, 4), determined
by the number σ (see Section 2). This representation is given by the formula

πσ(g0)f(g) = f(g−1
0 g).

The product mnh, m ∈ M , n ∈ N , h ∈ A, has the property mnh = hm′n′, m′ ∈ M , n′ ∈ N .
Thus, the functions f(g), on which the representation πσ is defined, satisfy the condition

f(ghmn) = exp(−λ(log h))f(g), m ∈M, n ∈ N, h ∈ A.
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This means that the representation πσ can be realized on functions f(x) on the space X =
SO0(1, 4)/MN , satisfying the condition f(xh) = exp(−λ(log h))f(x). Since MN = SO(3) ×
T (3), then X = C4

+. Besides, the latter condition is the condition of homogeneity (of degree σ)
of the function f(x) with respect to the collection of variables k0, k1, k2, k3, k4. This shows
that the representations T σ and πσ are equivalent.

Using the formulas (6.4)–(6.6) we can find a connection between the functions ψ(x) and
Ψ(k, σ) [9]:

ψ(x) =
i

2(2π)4

∫ δ+i∞

δ−i∞

Γ(σ + 3)
Γ(σ)

cotπσ
∫

Γ
dµ(k′)Ψ(k′, σ)[x, k′]−σ−3, (6.7)

Ψ(k′, σ) =
∫

H4
+

d4x

x0
ψ(x)[x, k′]σ, (6.8)

where −3<δ<1 (this condition for δ is connected with poles of the function Γ(σ+3) cotπσ/Γ(σ)).
Integration contour Γ in the formula (6.7) is any surface on the cone C4

+ intersecting once each
generator of the cone, and dµ(k′) is an invariant measure on Γ determined by means of the
invariant measure d4k/k0 on the cone C4

+ using the equality

d4k/k0 = t2dtdµ(k′),

where k ∈ C4
+ and k′ ∈ Γ are connected by k = tk′.

Below we shall consider cuts of the cone by the surfaces k4 = ±1, k0 − k4 = 1, k2
0 − k2

4 = 1,
k2

0 − k2
1 − k2

2 = 1, k0 = 1. To these choices of Γ there will correspond expansions of the
function ψ(x) in basis functions in the respective coordinate systems on H4

+. In order to obtain
an expansion of ψ(x) in basis functions on H4

+, we use formulas (6.7) and (6.8). First we expand
the functions Ψ(k′, σ) in basis functions on Γ and then take the corresponding integrals over Γ.
Let us consider expansions of ψ(x) for each of the cuts, given above.

7 Expansion of functions on the hyperboloid

7.1 Expansion in H-coordinate system

The cone C4
+ is determined by the relations

C4
+ : [k, k] = k2

0 − k2
1 − k2

2 − k2
3 − k2

4 = 0, k0 > 0.

We consider the cut of C4
+ by the surfaces k4 = ±1. We obtain the contour Γ coinciding with

upper sheets of two hyperboloids

H3
ε : k2

0 − k2
1 − k2

2 − k2
3 = 1, k4 = ε = ±1.

The motion group of the hyperboloid k2
0 − k2

1 − k2
2 − k2

3 = 1 is isomorphic to the Lorentz group
SO0(1, 3) (see [25]). We denote points of this hyperboloid by k′ : k

′2
0 − k

′2
1 − k

′2
2 − k

′2
3 = 1. If

k4 = +1 we have the hyperboloid H3
+, and if k4 = −1 then we have the hyperboloid H3

−. Thus,
the contour Γ consists of two parts: Γ = Γ+ ∪ Γ−.

Expansion of functions given on the 3-dimensional hyperboloid in different coordinate systems
is derived in [9]. In the spherical coordinate system, corresponding to the reduction SO0(1, 3) ⊃
SO(3) ⊃ SO(2), the expansion is of the form

φ(k′)=
i
2

∞∑
l=0

l∑
m=−l

∫ γ+i∞

γ−i∞
dτClm(τ)

Γ(−τ+1)
Γ(−τ−l−1)

(sinh c)−1/2P
−l−1/2
τ+1/2 (cosh c)Ylm(Θ,Φ),
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Clm(τ) =
Γ(τ + 1)

Γ(τ − l + 1)

∫
H3

+

dk′φ(k′)(sinh c)−1/2P
−l−1/2
−τ−3/2(cosh c)Ylm(Θ,Φ), (7.1)

where Ylm(θ,Φ) is the SO(3)-spherical function

Ylm(Θ,Φ) =
[
2l + 1

4π
(l −m)!
(l +m)!

]1/2

Pm
l (cos Θ)eimΦ

and

k′0 = cosh c, k′1 = sinh c sinΘ cos Φ, k′2 = sinh c sinΘ sinΦ, k′3 = sinh c cos Θ,

0 6 c <∞, 0 6 Θ < π, 0 ≤ Φ < 2π, dk′ ≡ sinh2 c sinΘ dc dΘ dΦ.

Applying this decomposition to the functions Ψ+(k′, σ) (with k′ ∈ Γ+ ≡ H3
+) and Ψ−(k′, σ) (with

k′ ∈ Γ− ≡ H3
−), substituting this expressions into (6.7) and permuting an order of integrals, we

obtain

ψ(x) = − 1
4(2π)4

∑
l,m,ε

∫ δ+i∞

δ−i∞
dσ(σ+2)(σ+1)σ cotπσ

∫ γ+i∞

γ−i∞
dτ

Γ(−τ + 2)
Γ(−τ−l−1)

Cε
lm(τ, σ)

×
∫

Γε

dk′[x, k′]−σ−3(sinh c)−1/2P
−l−1/2
τ+1/2 (cosh c)Ylm(Θ,Φ). (7.2)

Note that the point x belongs to H4
+, and c, Θ, Φ parametrize points of the hyperboloids H3

ε .
Let us calculate the integrals over the contours Γε in (7.2):

Jε
στlm(x) =

∫
Γε

dk′[x, k′]−σ−3(sinh c)−1/2P
−l−1/2
τ+1/2 (cosh c)Pm

l (cos Θ)eimΦ. (7.3)

First we calculate the integrals for the point x0 = (cosh a, 0, 0, 0, sinh a) corresponding to the
hyperbolic rotation g04(a) ∈ SO0(1, 4), and then, by means of transformations of the subgroup
SO0(1, 3), we go from x0 to x. For x0 we have

Jε
στ (a) = 4π

∫ ∞

1
d(cosh c)(cosh a cosh c− ε sinh a)−σ−3 sinh1/2 c× P

−1/2
τ+1/2(cosh c),

where Jε
στ (a) ≡ Jε

στ00(x
0). We calculate the integral

Jστ (u) =
∫ ∞

1
dy (y2 − 1)1/4P

−1/2
τ+1/2(y)(y + u)−σ−3, u ≡ −ε tanh a. (7.4)

For this we substitute into (7.4) the expression

P
−1/2
τ+1/2(y) =

(y2 − 1)−1/4

√
π

∫ y

1
dt(y − t)−1/2Pτ+1/2(t)

(see formula 3.7(29) in [40]) for P−1/2
τ+1/2(y):

Jστ (u) =
1√
π

∫ ∞

1
dy

∫ y

1
dt(y + u)−σ−3(y − t)−1/2Pτ+1/2(t).

The following integral representation holds for the function Pτ+1/2(t):

Pτ+1/2(t) =
2−τ−1/2

2πi

∫
C
dt′

(t
′2 − 1)τ+1/2

(t′ − t)τ+3/2
,
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where the contour C is a closed curve in the plane of complex variable t′, containing inside the
points 1 and t; integration is in the counter-clockwise direction. Therefore,

Jστ (u) =
2−τ−3/2

iπ3/2

∫ ∞

1
dy(y + u)−σ−3

∫ y

1
dt(y − t)−1/2

∫
C
dt′(t

′2 − 1)τ+1/2(t′ − t)−τ−3/2.

Making some transformations (see [17]) we reduce this expression for Jστ (u) to the form

Jστ (u) = λ

∫ ∞

1
dy

∫ y

1
dt′

(t
′2 − 1)τ+1/2

(y − t′)τ+1(y + u)σ+3

= λ

∫ ∞

1
dt′ (t

′2 − 1)τ+1/2

∫ ∞

t′
dy (y − t′)−τ−1(y + u)−σ−3,

where λ = 2−τ−1/2 cosπτ Γ(−τ − 1/2)/πΓ(−τ). Using the formula 3.196(2) from [40], we get

Jστ (u) = λ
Γ(−τ)Γ(σ + τ + 3)

Γ(σ + 3)

∫ ∞

1
dt′

(t
′2 − 1)τ+1/2

(t′ + u)σ+τ+3
.

Since

2−τ−1/2

∫ ∞

1
dt′

(t
′2−1)τ+1/2

(t′+u)σ+τ+3
=

Γ(σ − τ + 1)
[Γ(τ+3/2)]−1

(1−u2)−(σ+3/2)/2P
−σ−3/2
τ+1/2 (u),

then

Jστ (u) = −Γ(σ + τ + 3)Γ(σ − τ + 1)
Γ(σ + 3)

(1− u2)−(σ+3/2)/2P
−σ−3/2
τ+1/2 (u), (7.5)

where the equality Γ(−τ + 1/2)Γ(τ + 1/2) = π cos−1(πτ) was used. Thus, we have

Jε
στ (a) = −4π

Γ(σ + τ + 3)Γ(σ − τ + 1)
Γ(σ + 3)

(cosh a)−3/2P
−σ−3/2
τ+1/2 (−ε tanh a).

For any x = x(a, b, θ, ϕ), where a, b, θ, ϕ are the parameters from (4.2), the integral Jε
στlm(x)

is easily calculated as in [9] and we have

Jε
στlm(x) = −(2π)3/2 Γ(σ + τ + 3)Γ(σ − τ + 1)

Γ(σ + 3)
(cosh a)−3/2(sinh b)−1/2

× P
−σ−3/2
τ+1/2 (−ε tanh a)P−l−1/2

τ+1/2 (cosh b)Pm
l (cos θ)eimϕ.

Thus, according to the formula (7.2) we get

ψ(x) =
1

4(2π)5/2

∞∑
l=0

l∑
m=−l

∫ δ+i∞

δ−i∞
dσ

cotπσ
Γ(σ)

×
∫ γ+i∞

γ−i∞
dτ (τ+1)τΓ(σ−τ+1)Γ(σ+τ+3)Vτlm(b, θ, ϕ)

×
[
C+

lm(τ, σ)P−σ−3/2
τ+1/2 (− tanh a) + C−lm(τ, σ)P−σ−3/2

τ+1/2 (tanh a)
]
(cosh a)−3/2, (7.6)

where

Vτlm(b, θ, ϕ) =
Γ(−τ − 1)

Γ(−τ − l − 1)
(sinh b)−1/2P

−l−1/2
τ+1/2 (cosh b)Ylm(θ, ϕ). (7.7)

The functions (7.7) coincide in a form with the functions from (7.1).
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The formula (7.6) expresses the functions ψ(x) in terms of the functions C±lm(τ, σ). Let us
find an expression for C±lm(τ, σ) in terms of ψ(x). Using the expansions (6.8) and (7.1) we have

Cε
lm(τ, σ) =

Γ(τ + 1)
Γ(τ − l + 1)

∫
H4

+

d4x

x0
ψ(x)

×
∫

Γε

dk′[x, k′]σ(sinh c)−1/2P
−l−1/2
−τ−3/2(cosh c)Ylm(Θ,Φ).

Integration over k′ is fulfilled in the same way as in the case of the integral (7.3). We obtain

Cε
lm(τ, σ) = (2π)3/2 Γ(τ+1)Γ(−σ−τ−2)Γ(τ−σ)

Γ(τ−l+1)Γ(−σ)

∫
H4

+

d4x

x0
ψ(x)(cosh a)−3/2(sinh b)−1/2

× P
σ+3/2
−τ−3/2(−ε tanh a)P−l−1/2

−τ−3/2(cosh b)Ylm(θ, φ), (7.8)

where the measure d4x/x0 in the coordinates a, b, θ, ϕ has the form

d4x/x0 = cosh3 a sinh2 b sin θ da db dθ dϕ.

For the unitary case when σ = iρ− 3/2 (that is, δ = −3/2) and τ = iν − 1 (that is γ = −1),
where ρ and ν are real numbers, we receive

ψ(x) =
1

(2π)5/2

∞∑
l=0

l∑
m=−l

∫ ∞

0
dρ(ρ2 + 1/4)ρ tanhπρ

∫ ∞

0
dν ν2

× Γ(iρ+ iν + 1/2)Γ(iρ− iν + 1/2)
Γ(iρ+ 3/2)

Vνlm(b, θ, ϕ)(cosh a)−3/2

×
[
C+

lm(ν, ρ)P−iρ
iν−1/2

(− tanh a) + C−lm(ν, ρ)P−iρ
iν−1/2

(tanh a)
]
, (7.9)

Cε
lm(ν, ρ) = (2π)3/2 Γ(−iρ− iν + 1/2)Γ(−iρ+ iν + 1/2)

Γ(−iρ+ 3/2)

×
∫

H4
+

d4x

x0
ψ(x)(cosh a)−3/2P iρ

−iν−1/2(−ε tanh a)Vνlm(b, θ, φ), (7.10)

where

Vνlm(b, θ, ϕ) =
Γ(iν)

Γ(iν − l)
(sinh b)−1/2P

−l−1/2
iν−1/2 (cosh b)Ylm(θ, φ). (7.11)

Here we have taken into account that

τ(τ + 1)dτ = −ν(iν − 1)dν, cotπσ = −i tanhπρ,

(σ + 2)(σ + 1)σdσ = −i(ρ2 + 1/4)(iρ− 3/2)dρ,∫ ∞

−∞
dρΩ(ρ)(· · · ) =

∫ 0

−∞
dρΩ(ρ)(· · · ) +

∫ ∞

0
dρΩ(ρ)(· · · )

= 2i
∫ ∞

0
dρρ(ρ2 + 1/4) tanhπρ (· · · ),

where Ω(ρ) = (ρ2 + 1/4)(iρ − 3/2) tanhπρ and (· · · ) is the expression under the sign of the
integral over ρ in (7.9).

The formula (7.9) is an expansion of the function ψ(x) in basis functions (5.12). It follows
from the expansions (7.9)–(7.11) that the functions (5.12) have the following normed form:

Φε
ρνlm(a, b, θ, ϕ) =

|Γ(iρ+ iν + 1/2)Γ(iρ− iν + 1/2)Γ(iν)|√
2π |Γ(iρ+ 3/2)Γ(iν − l)|

(cosh a)−3/2
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× P−iρ
iν−1/2(ε tanh a)(sinh b)−1/2P

−l−1/2
iν−1/2 (cosh b)Ylm(θ, φ). (7.12)

This functions are normed by the formula

〈Φε′
ρ′ν′l′m′ ,Φε

ρνlm〉 =
∫

H4
+

d4x

x0
Φε

ρνlm(a, b, θ, ϕ)Φε′
ρ′ν′l′m′(a, b, θ, ϕ)

=
δ(ρ− ρ′)

ρ(ρ2 + 1/4) tanhπρ
δ(ν − ν ′)

ν2
δll′δmm′δεε′ . (7.13)

The Plancherel formula for the transforms (7.9)–(7.10) is of the form∫
H4

+

d4x

x0
|ψ(x)|2 =

1
(2π)4

∞∑
l=0

l∑
m=−l

∫ ∞

0
dρ(ρ2 + 1/4)ρ tanhπρ

×
∫ ∞

0
dνν2

[
|C+

lm(ν, ρ)|2 + |C−lm(ν, ρ)|2
]
. (7.14)

7.2 Expansion in O-coordinate system

In this case, the cut of C4
+ by the plane k0−k4 = 1 is considered as a contour Γ. We parametrize

this contour Γ ≡ ΓO by the coordinates ζ,Θ,Φ:

k′0 = (1 + ζ2)/2, k′1 = ζ sinΘ cos Φ, k′2 = ζ sinΘ sinΦ,

k′3 = ζ cos Θ, k′4 = (−1 + ζ2)/2, (7.15)
0 6 ζ <∞, 0 6 Θ < π, 0 6 Φ < 2π.

We expand the function Ψ(k′, σ), considered on this contour Γ0, in the spherical Bessel functions

jl(κζ) =
(

π

2κζ

)1/2

Jl+1/2(κζ)

and spherical harmonics Ylm(Θ,Φ). Then

Ψ(k′, σ) =
∞∑
l=0

l∑
m=−l

∫ ∞

0
dκκ2Alm(κ, σ)Ψκlm(k′), (7.16)

where Ψκlm(k′) = jl(κζ)Ylm(Θ,Φ). The inverse transform is of the form

Alm(κ, σ) =
2
π

∫
ΓO

dk′Ψ(k′, σ)Ψκlm(k′), (7.17)

where dk′ = ζ2 sinΘ dζ dΘdΦ. Now we have

ψ(x) =
i

2(2π)4

∞∑
l=0

l∑
m=−l

∫ δ+i∞

δ−i∞
dσ

Γ(σ + 3)
Γ(σ)

cotπσ
∫ ∞

0
dκκ2Alm(κ, σ)

×
∫

ΓO

dk′[x, k′]−σ−3Ψκlm(k′). (7.18)

We have to calculate the integral

Jκσ
lm (x ≡=

∫
ΓO

dk′[x, k′]−σ−3

(
π

2κζ

)1/2

Jl+1/2(κζ)Ylm(Θ,Φ).
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Due to orthogonality of the Legendre functions Pm
l (cos Θ) and orthogonality of the exponential

functions exp imΦ, for the point x0 = x0(a) = (cosh a, 0, 0, 0,− sinh a) we have Jκσ
lm (x0) = 0 for

l 6= m, m 6= 0, and

Jκσ
00 (x0) = π(2e−a)σ+3

∫ ∞

0
dζ ζ2(e−2a + ζ)−σ−3

(
2
κζ

)1/2

J1/2(κζ).

Setting e−a = b and using the formula 6.565(4) in [40], we get

Jκσ
00 (x0) = (2b)3/2πκσ+3/2 1

Γ(σ + 3)
Kσ+3/2(κb).

For arbitrary x we have (see [9])

Jκσ
lm (x) =

√
4π Jκσ

00 (x0(a))Ψκlm(r, θ, ϕ).

Thus,

ψ(x) =
ib3/2

(2π)5/2

∞∑
l=0

l∑
m=−l

∫ δ+i∞

δ−i∞
dσ

cotπσ
Γ(σ)

∫ ∞

0
dκAlm(κ, σ)

× κσ+7/2Kσ+3/2(κb)Ψκlm(r, θ, ϕ), b = e−a, (7.19)

where Ψκlm is such function as in (7.16) but determined for other variables.
In order to express Alm(κ, σ) in terms of Ψ(k′, σ), we substitute the expression (6.8) into

(7.17):

Alm(κ, σ) =
2
π

∫
H4

+

d4x

x0
ψ(x)

∫
Γ0

dk′[x, k′]σΨκlm(k′).

Integrating over k′ we obtain

Alm(κ, σ) =
8(2π)1/2κ−σ−3/2

Γ(−σ)

∫
H4

+

d4x

x0
ψ(x)b3/2Kσ+3/2(κb)Ψκlm(r, θ, ϕ), (7.20)

where

d4x/x0 = e3ar2 sin θ da dr dθ dϕ.

For the unitary case, when σ = iρ − 3/2, ρ ∈ R, δ = −3/2, the relations (7.19) and (7.20)
take the form

ψ(x) =
b3/2

π(2π)3/2

∞∑
l=0

l∑
m=−l

∫ ∞

0
dρ (ρ2 + 1/4)ρ

tanhπρ
Γ(iρ+ 3/2)

×
∫ ∞

0
dκκ2Alm(κ, ρ)κiρKiρ(κb)Ψκlm(r, θ, ϕ), (7.21)

Alm(κ, ρ) =
8(2π)1/2κ−iρ

Γ(−iρ+ 3/2)

∫
H4

+

d4x

x0
ψ(x)b3/2Kiρ(κb)Ψκlm(r, θ, ϕ). (7.22)

The formula (7.21) is an expansion of the function ψ(x) in basis elements (5.22). The formulas
(7.21) and (7.22) show that the functions (5.22) in a normed form have the form

Φρκ
lm(b, r, θ, ϕ) =

(2/πκr)1/2b3/2

|Γ(iρ+ 3/2)|
Kiρ(κb)Jl+1/2(κr)Ylm(θ, ϕ). (7.23)
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The normalization condition is

〈Φρ′κ′

l′m′ ,Φρκ
lm〉 =

δ(ρ− ρ′)
ρ(ρ2 + 1/4) tanhπρ

δ(κ− κ′)
κ2

δll′δmm′ . (7.24)

The Plancherel formula for the transforms (7.21)–(7.22) is∫
H4

+

d4x

x0
|ψ(x)|2= 1

4(2π)3

∞∑
l=0

l∑
m=−l

∫ ∞

0
dρ

(
ρ2+

1
4

)
ρ tanhπρ

∫ ∞

0
dκκ2|Alm(κ, ρ)|2. (7.25)

7.3 Expansion in OC-coordinate system

We leave in this case the contour ΓO of the previous subsection and introduce on it the coordi-
nates ζ, s, Φ:

k′0 = (ζ2 + s2 + 1)/2, k′1 = ζ cos Φ, k′2 = ζ sinΦ, k′3 = s,

k′4 = (ζ2 + s2 − 1)/2, 0 6 ζ <∞, −∞ < s <∞, 0 6 Φ < 2π. (7.26)

We expand the function Ψ(k′, σ) in basis functions on ΓO,

Ψm
ηq(k

′) ≡ Ψm
ηq(ζ, s,Φ) =

1
2π
Jm(ηζ)eiqseimΦ. (7.27)

This expansion is of the form

Ψ(k′, σ) =
∞∑

m=−∞

∫ ∞

0
dηη

∫ ∞

−∞
dqAm(η, q, σ)Ψm

ηq(k
′), (7.28)

Am(η, q, σ) =
∫

ΓO

dk′Ψ(k′, σ)Ψm
ηq(k′), (7.29)

where dk′ = ζ dζ ds dΦ. Substituting the expression (7.28) into (6.7), we get

ψ(x) =
i

2(2π)4

∞∑
m=−∞

∫ δ+i∞

δ−i∞
dσ

Γ(σ + 3)
Γ(σ)

cotπσ
∫ ∞

0
dηη

∫ ∞

−∞
dq Am(η, q, σ)

×
∫

ΓO

dk′[x, k′]−σ−3Ψm
ηq(k

′). (7.30)

The integral

Jηqσ
m (x) =

∫
ΓO

dk′[x, k′]−σ−3Ψm
ηq(k

′)

for x = x0(a) = (cosh a, 0, 0, 0,− sinh a) and m = 0 takes the form

Jηqσ
0 (x0(a)) = (2b)σ+3

∫ ∞

0
dζ ζJ0(ηζ)

∫ ∞

−∞
ds eiqs(ζ2 + s2 + b2)−σ−3,

where e−a ≡ b. Using the formula∫ ∞

−∞
dy(1 + y2)λeiyt =

2
√
π

Γ(−λ)

(
|t|
2

)−λ−1/2

K−λ−1/2(|t|),

by means of the relation 6.596(7) in [40] we get

Jηqσ
0 (a) = 2(2π)1/2b3/2 κσ+3/2

Γ(σ + 3)
Kσ+3/2(κb),
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where κ2 = η2 + q2 and b = e−a. Then

Jηqσ
m (x) = 2(2π)3/2b3/2 κσ+3/2

Γ(σ + 3)
Kσ+3/2(κb)Ψ

m
ηq(ξ, z, ϕ).

It follows from (7.30) that

ψ(x) =
ib3/2

(2π)5/2

∞∑
m=−∞

∫ δ+i∞

δ−i∞
dσ

cotπσ
Γ(σ)

∫ ∞

0
dηη

∫ ∞

−∞
dqAm(η, q, σ)

× κσ+3/2Kσ+3/2(κb)Ψ
m
ηq(ξ, z, ϕ), (7.31)

where κ2 = η2 + q2, e−a = b, and Ψm
ηq(ξ, z, ϕ) is such function as in (7.27) but determined for

other variables.
We have from (7.29) and (6.8) that

Am(η, q, σ) =
∫

H4
+

d4x

x0
ψ(x)

∫
ΓO

dk′[x, k′]σΨm
ηq(k′).

Integrating over k′ we get

Am(η, q, σ) = 2(2π)3/2κ
−σ−3/2

Γ(−σ)

∫
H4

+

d4x

x0
ψ(x)b3/2Kσ+3/2(κb)Ψm

ηq(ξ, z, ϕ), (7.32)

where

dx4/x0 = e3ada ξdξ dz dϕ.

For the unitary case, when σ = iρ − 3/2 and δ = −3/2, formulas (7.31) and (7.32) take the
form

ψ(x) =
1
π

(
b

2π

)3/2 ∞∑
m=−∞

∫ ∞

0
dρ (ρ2 + 1/4)

ρ tanhπρ
Γ(iρ+ 3/2)

×
∫ ∞

0
dηη

∫ ∞

−∞
dqAm(η, q, ρ)κiρKiρ(κb)Ψm

ηq(ξ, z, ϕ), (7.33)

Am(η, q, ρ) =
2(2π)3/2κ−iρ

Γ(−iρ+ 3/2)

∫
H4

+

d4x

x0
ψ(x)b3/2Kiρ(κb)Ψm

ηq(ξ, z,Φ). (7.34)

The formula (7.33) is an expansion of the function ψ(x) in basis elements (5.31). The formu-
las (7.33) and (7.34) show that the functions (5.31) in a normed form have the form

Φm
ρηq(b, ξ, z, ϕ) =

1
π
√

2π
1

|Γ(iρ+ 3/2)|
b3/2Kiρ(κb)Jm(ηξ)eiqzeimϕ. (7.35)

The normalization condition is

〈Φm′
ρ′η′q′ ,Φ

m
ρηq〉 =

δ(ρ− ρ′)
ρ(ρ2 + 1/4) tanhπρ

δ(η − η′)
η

δ(q − q′)δmm′ . (7.36)

The Plancherel formula for the transforms (7.33)–(7.34) is∫
H4

+

d4x

x0
|ψ(x)|2 =

1
(2π)4

∞∑
m=−∞

∫ ∞

0
dρ (ρ2+1

4)ρ tanhπρ
∫ ∞

0
dηη

∫ ∞

−∞
dq|Am(η, q, ρ)|2. (7.37)
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7.4 Expansion in OT -coordinate system

We leave in this case the contour ΓO of two previous subsections and introduce on it the coor-
dinates χ1, χ2, χ3:

k′0 = (1 + χ2)/2, k′1 = χ1, k′2 = χ2, k′3 = χ3, k′4 = (−1 + χ2)/2,

χ2 = χ2
1 + χ2

2 + χ2
3, −∞ < χi <∞, i = 1, 2, 3.

We consider the expansion of the function Ψ(k′, σ) on this contour in functions

Ψκ(k′) ≡ Ψκ(χ) = (2π)−3/2eiκχ, κ = (κ1, κ2, κ3), χ = (χ1, χ2, χ3),

and have

Ψ(k′, σ) =
∫

R3

dκA(κ, σ)Ψκ(k′). (7.38)

The inverse transform is

A(κ, σ) =
∫

ΓO

dk′Ψ(k′, σ)Ψκ(k′), (7.39)

where dk′ = dχ. Substituting the expression (7.38) into (6.7) we get

ψ(x) =
i

2(2π)4

∫ δ+i∞

δ−i∞
dσ

Γ(σ + 3)
Γ(σ)

cotπσ
∫

R3

dκA(κ, σ)
∫

ΓO

dk′[x, k′]−σ−3Ψκ(k′).

We have to calculate the integral

Jκσ(x) =
∫

ΓO

dk′[x, k′]−σ−3Ψκ(k′).

First we consider the integral

Jκσ(a) ≡ Jκσ(x0(a)) = (2π)−3/2(2e−a)σ+3

∫
R3

dχ (e−2a + χ2)−σ−3eiκχ.

We use the spherical coordinates. Taking into account that∫ π

0
dθ sin θeiκχ cos θ =

(
2π
κχ

)1/2

J1/2(κχ),

where θ is an angle between κ and χ, we have

Jκσ(a) = (2e−a)σ+3κ−1/2

∫ ∞

0
dχχ3/2(e−2a + χ2)−σ−3J1/2(κχ),

where κ = (κ2
1 + κ2

2 + κ2
3)

1/2. Using formula 6.565(4) in [40], one receives

Jκσ(a) = 2κσ+3/2b3/2 1
Γ(σ + 3)

Kσ+3/2(κb), b = e−a.

Since x = x(a,y) is obtained from x0(a) by means of the shift from the subgroup T (3), we get

Jκσ(x) = 2(2π)3/2b3/2κσ+3/2 1
Γ(σ + 3)

Kσ+3/2(κb)Ψκ(y).
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Thus, we have the following formula for an expansion of the function ψ(x):

ψ(x) =
ib3/2

(2π)5/2

∫ δ+i∞

δ−i∞
dσ

cotπσ
Γ(σ)

∫
R3

dκA(κ, σ)κσ+3/2Kσ+3/2(κb)Ψκ(y), (7.40)

where b = e−a. In order to express A(κ, σ) in terms of ψ(x) we substitute the expression (6.8)
for Ψ(k′, σ) into (7.39). Then

A(κ, σ) =
∫

H4
+

d4x

x0
ψ(x)

∫
ΓO

dk′ [x, k′]σΨκ(k′).

Performing integration in k′ over the contour ΓO, we find

A(κ, σ) =
2(2π)3/2

Γ(−σ)
κ−σ−3/2

∫
H4

+

d4x

x0
ψ(x)b3/2Kσ+3/2(κb)Ψκ(y), (7.41)

where

d4x/x0 = e3ada dy = e3ada dy1 dy2 dy3.

For the unitary case (when σ = iρ− 3/2 and δ = −3/2) one gets

ψ(x) =
1
π

(
b

2π

)3/2 ∫ ∞

0
dρ

(
ρ2 +

1
4

)
ρ tanhπρ
Γ(iρ+ 3

2)

∫
R3

dκA(κ, ρ)κiρKiρ(κb)Ψκ(y), (7.42)

A(κ, ρ) =
2(2π)3/2

Γ(−iρ+ 3/2)
κ−iρ

∫
H4

+

d4x

x0
ψ(x)b3/2Kiρ(κb)Ψκ(y). (7.43)

The formula (7.42) gives an expansion of the function ψ(x) in the basis functions (5.35).
A normed form of these basis functions is

Φρκ(b,y) =
1

2π2

1
|Γ(iρ+ 3/2)|

b3/2Kiρ(κb)eiκy. (7.44)

The normalization condition is

〈Φρ′κ′
,Φρκ〉 =

δ(ρ− ρ′)
(ρ2 + 1/4)ρ tanhπρ

δ(κ− κ′). (7.45)

The Plancherel formula for the transforms (7.42)–(7.43) is∫
H4

+

d4x

x0
|ψ(x)|2 =

1
(2π)4

∫ ∞

0
dρ

(
ρ2+1

4

)
ρ tanhπρ

∫
R3

dκ |A(κ, ρ)|2. (7.46)

7.5 Expansion in C-coordinate system

In this case we take a cut of the cone C4
+ by the cylinder k2

0 − k2
4 = 1. This contour is denote

by ΓC . We parametrize this contour by the coordinates c, Θ, Φ such that

k′0 = cosh c, k′1 = sinΘ cos Φ, k′2 = sinΘ sinΦ, k′3 = cos Θ, k′4 = sinh c,
−∞ < c <∞, 0 < Θ 6 π, 0 6 Φ < 2π. (7.47)

We expand the function Ψ(k′, σ) in the spherical functions Ylm(Θ,Φ) and fulfil the Fourier
transform in the parameter c. As a result, we get

Ψ(k′, σ) =
∞∑
l=0

l∑
m=−l

∫ ∞

−∞
dτClm(τ, σ)eiτcYlm(Θ,Φ). (7.48)
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The coefficients Clm(τ, σ) are given by

Clm(τ, σ) =
1
2π

∫
ΓC

dk′Ψ(k′, σ)e−iτcYlm(Θ,Φ), (7.49)

where dk′ = sinΘ dc dΘ dΦ. Substituting this expression for the coefficients Clm(τ, σ) into (6.7)
one has

ψ(x) =
i

2(2π)4

∞∑
l=0

l∑
m=−l

∫ δ+i∞

δ−i∞
dσ

Γ(σ + 3)
Γ(σ)

cotπσ
∫ ∞

−∞
dτ Clm(τ, σ)

×
∫

ΓC

dk′ [x, k′]−σ−3eiτcYlm(Θ,Φ). (7.50)

We have to calculate the integral

Jστ
lm(x) =

∫ ∞

−∞
dc eiτc

∫ π

0
dΘ sin Θ

∫ 2π

0
dΦ [x, k′]−σ−3Ylm(Θ,Φ). (7.51)

We do this first for the point x0 = (cosh a, 0, 0, sinh a, 0). The problem is reduced to calculation
of the integral

Jστ
l (a) = λ

∫ ∞

−∞
dc eiτc

∫ π

0
dΘsinΘ(cosh a cosh c− cos Θ sinh a)−σ−3Pl(cos Θ), (7.52)

where λ =
√

(2l + 1)π. Using the relation

Pl(x) =
(−1)l

2ll!
dl

dxl
[(1− x2)l], x = cos θ,

and integrating l times by parts, one gets

Jστ
l (a) = λ

(−1)lΓ(−σ − 2) sinhl a

Γ(−σ − l − 2)2ll!

∫ ∞

−∞
dc eiτc

∫ π

0
dΘ(sinΘ)2l+1

× (cosh a cosh c− cos Θ sinh a)−σ−l−3.

Decomposing (cosh a cosh c−cos Θ sinh a)−σ−l−3 into series by using the formula for the Newton
binomial and performing termwise integration we find

Jστ
l (a) =

π(2l + 1)1/22σ+2Γ(A)Γ(B) tanhl a

Γ(σ + 3)Γ(D) coshσ+3 a
2F1(A,B;D; tanh2 a), (7.53)

where

A = (σ + l + iτ + 3)/2, B = (σ + l − iτ + 3)/2, D = l + 3/2.

For arbitrary value of x we get

Jστ
lm(x) =

2σ+3π3/2

Γ(σ + 3)
Γ(A)Γ(B) tanhl a

Γ(D) coshσ+3 a
2F1(A,B;D; tanh2 a)Ylm(θϕ)eiτb. (7.54)

Now we obtain the following expansion of the function ψ(x):

ψ(x) =
i

(4π)5/2

∞∑
l=0

l∑
m=−l

tanhl a

∫ ∞

−∞
dτ eiτb

∫ δ+i∞

δ−i∞
dσ

cotπσ
Γ(σ)

(
2

cosh a

)σ+3
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× Clm(τ, σ)
Γ(A)Γ(B)

Γ(D) 2F1(A,B;D; tanh2 a)Ylm(θ, ϕ). (7.55)

In order to express the coefficients Clm(τ, σ) in terms of ψ(x), we substitute the expres-
sion (6.8) for Φ(k′, σ) into (7.49):

Clm(τ, σ) =
1
2π

∫
H4

+

d4x

x0
ψ(x)

∫
ΓC

dk′ [x, k′]σe−iτcYlm(Θ,Φ). (7.56)

Integrating in c, Θ and Φ one obtains

Clm(τ, σ) =
π1/2Γ(A′)Γ(B′)
2Γ(D′)Γ(−σ)

∫
H4

+

d4x

x0
ψ(x) tanhl a

(
2

cosh a

)−σ

× e−iτb
2F1(A′, B′;D′; tanh2 a)Ylm(θ, ϕ), (7.57)

where

A′ = (l − σ + iτ)/2, B′ = (l − σ − iτ)/2, D′ = D = l + 3/2,

d4x/x0 = sinh3 a sin θ da db dθ dϕ.

For the unitary case (when σ = iρ− 3/2 and δ = −3/2) we have

ψ(x) =
1

(2π)5/2

∞∑
l=0

l∑
m=−l

tanhl a

∫ ∞

0
dρ (ρ2 + 1/4)ρ tanhπρ 2iρ(cosh a)−iρ−3/2

×
∫ ∞

−∞
dτeiτbClm(τ, ρ)

Γ
(

iρ+iτ+l+3/2
2

)
Γ

(
iρ−iτ+l+3/2

2

)
Γ(iρ+ 3/2)Γ(l + 3/2)

× 2F1

(
iρ+ iτ + l + 3/2

2
,
iρ− iτ + l + 3/2

2
; l +

3
2
; tanh2 a

)
Ylm(θ, ϕ), (7.58)

and

Clm(τ, ρ) = (2π)1/2
Γ

(
−iρ+iτ+l+3/2

2

)
Γ

(
−iρ−iτ+l+3/2

2

)
Γ(l + 3/2)Γ(−iρ+ 3/2)

2−iρ

×
∫

H4
+

d4x

x0
ψ(x) tanhl a (cosh a)iρ−3/2e−iτbYlm(θ, ϕ)

× 2F1

(
−iρ+ iτ + l + 3/2

2
,
−iρ− iτ + l + 3/2

2
; l +

3
2
; tanh2 a

)
. (7.59)

It follows from these formulas that the function ψ(x) expands in the basis (5.43) and the
normed basis functions are of the form

Ψρτ
lm(a, b, θ, ϕ) =

1
2π

∣∣∣Γ (
iρ+iτ+l+3/2

2

)
Γ

(
iρ−iτ+l+3/2

2

)∣∣∣
Γ(iρ+ 3/2)Γ(l + 3/2)

(cosh a)−3/2−iρ tanhl a (7.60)

× 2F1

(
iρ+ iτ + l + 3/2

2
,
iρ− iτ + l + 3/2

2
; l +

3
2
; tanh2 a

)
eiτbYlm(θ, ϕ).

The normalization condition is

〈Ψρ′τ ′

l′m′ ,Ψρτ
lm〉 =

δ(ρ− ρ′)
ρ(ρ2 + 1/4) tanhπρ

δ(τ − τ ′)δll′δmm′ .

The Plancherel formula holds:∫
H4

+

d4x

x0
|ψ(x)|2 =

1
(2π)3

∞∑
l=0

l∑
m=−l

∫ ∞

0
dρ (ρ2 + 1/4)ρ tanhπρ

∫ ∞

−∞
dτ |Clm(τ, ρ)|2.
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7.6 Expansion in SH-coordinate system

In this case we take the cut ΓSH of C4
+ by the cylinder k2

3 + k2
4 = 1 as the contour Γ . This

contour is a product of a circle and the higher sheet of the two-sheeted hyperboloid H2
+. We

choose on ΓSH the coordinates c, α, β, where

k′0 = cosh c, k′1 = sinh c cosα, k′2 = sinh c sinα, k′3 = cosβ, k′4 = sinβ,
0 6 c <∞, 0 6 α, β < 2π. (7.61)

Let us perform the Fourier transform of the function ψ(k′, σ) in the parameter β. One can
consider coefficients of this expansion as functions on H2

+, parametrized by spherical coordinates
c and α. We expand these coefficients in basis functions on H2

+ in spherical coordinates (they
correspond to the reduction SO0(1, 2) ⊃ SO(2)) using the formulas

φ(c, α) =
1

4πi

∞∑
m=−∞

∫ ε+i∞

ε−i∞
dλλ cotπλ

Γ(−λ)
Γ(−λ+m)

Bm(λ)Pm
−λ−1(cosh c)eimα,

Bm(λ) =
Γ(λ+ 1)

Γ(λ−m+ 1)

∫ ∞

0
dc

∫ 2π

0
dαφ(c, α)P−m

λ (cosh c)e−imα.

As a result, the formulas (6.7)–(6.8) take the form

ψ(x) =
1

4(2π)5

∞∑
m,m′=−∞

∫ δ+i∞

δ−i∞
dσ

Γ(σ + 3)
Γ(σ)

cotπσ
∫ ε+i∞

ε−i∞
dλλ cotπλ

Γ(−λ)
Γ(−λ+m)

×Bmm′(λ, σ)
∫

ΓSH

dk′ [x, k′]−σ−3Pm
−λ−1(cosh c)eimαeim

′β,

Bmm′(λ, σ) =
1
2π

Γ(λ+ 1)
Γ(λ+m+ 1)

∫
H4

+

d4x

x0

∫
ΓSH

dk′[x, k′]σPm
λ (cosh c)e−imαe−im′β,

where dk′ = sinh c dc dα dβ. One integrates over ΓSH in the same way as in the previous cases.
We give a final formula for expansion of the function ψ(x) in basis functions related to unitary
representations (σ = iρ− 3

2 , λ = iω − 1
2 , 0 6 ρ, ω <∞):

ψ(x) =
1

π(4π)5/2

∞∑
m′=−∞

∞∑
m=−∞

∫ ∞

0
dρ

(
ρ2+1

4

)
ρ tanhπρ

(
2

cosh a

)iρ+3/2

×
∫ ∞

0
dω ω tanhπω

Γ
(
−iω + 1

2

)
Γ

(
iρ−iω+m′+1

2

)
Γ

(
iω+iρ+m′+1

2

)
m′!Γ

(
iρ+ 3

2

)
Γ

(
−iω +m+ 1

2

) Bm′m(ω, ρ) (7.62)

× Pm
−iω−1/2(cosh b)eimϕeim

′Φ
2F1

(
iρ+iω+m′+1

2
,
iρ−iω+m′+1

2
;m′+1; tanh2 a

)
,

where

Bm′m(ω, ρ) =

√
πΓ

(
iω + 1

2

)
Γ

(
−iρ+iω+m′+1

2

)
Γ

(
−iρ−iω+m′+1

2

)
2Γ

(
−iρ+ 3

2

)
Γ(m′ + 1)Γ

(
iω +m+ 1

2

)
×

∫
H4

+

d4x

x0
ψ(x)

(
2

cosh a

)−iρ+3/2

tanhm′
aPm

iω−1/2(cosh b)e−imϕe−im′Φ

× 2F1

(
−iρ− iω +m′ + 1

2
,
iω − iρ+m′ + 1

2
; m′ + 1; tanh2 a

)
, (7.63)
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and

d4x/x0 = sinh3 a sinh b da db dϕ dΦ.

It follows from these formulas that the function ψ(x) expands in the basis (5.49) and the
normed basis functions are of the form

Ψ ˜ρωmm(a, b, ϕ,Φ) =
1

(2π)3/2

∣∣∣Γ (
iρ+iω+m̃+1

2

)
Γ

(
iρ−iω+m̃+1

2

)∣∣∣
Γ(m̃+ 1)|Γ(iρ+ 3/2)|

|Γ(iω + 1/2)|
|Γ(iω +m+ 1/2)|

× tanhm̃ a(cosh a)−iρ−3/2ei(mϕ+m̃Φ)Pm
iω−1/2(cosh b)

× 2F1

(
iρ+ iω + m̃+ 1

2
,

iρ− iω + m̃+ 1
2

; m̃+ 1; tanh2 a

)
. (7.64)

The normalization condition is〈
Ψ ˜ρ′ω′m′m′ ,Ψ ˜ρωmm

〉
=

δ(ρ− ρ′)
ρ(ρ2 + 1/4) tanhπρ

δ(ω − ω′)
ω tanhπω

δm̃m̃′δmm′ . (7.65)

The Plancherel formula for the expansion (7.62)–(7.63) is of the form∫
H4

+

d4x

x0
|ψ(x)|2 =

1
(2π)4

∞∑
m,m′=−∞

∫ ∞

0
dρ

(
ρ2+1

4

)
ρ tanhπρ

×
∫ ∞

0
dω ω tanhπω |Bmm′(ω, ρ)|2.

7.7 Expansion in S-coordinate system

In this case, we take the cut ΓS of C4
+ by the plane k0 = 1 as a contour Γ. This contour is

the three-dimensional sphere S3. We choose on ΓS the spherical coordinates determined by the
formulas

k′1 = sin γ sinΘ cos Φ, k′2 = sin γ sinΘ sinΦ, k′3 = sin γ cos Θ, k′4 = cos γ,

0 6 γ,Θ < π, 0 6 Φ < π, dk′ = sin2 γ sinΘ dγ dΘ dΦ.

This case is well-studied (see, for example, [3]). We formulate only the result. The expansion
of the function ψ(x) is of the form

ψ(x) =
1

(2π)2

∞∑
j=0

j∑
l=0

l∑
m=−l

∫ ∞

0
dρ

(
ρ2 +

1
4

)
ρ tanhπρAjlm(ρ)

(−1)jΓ(−iρ− 1
2)

Γ(−iρ− j − 1
2)

× (sinh a)−1P−j−1

iρ− 1
2

(cosh a)Yjlm(β, θ, ϕ), (7.66)

where

Ajlm(ρ) =
(2π)2(−1)jΓ

(
iρ− 1

2

)
Γ

(
iρ− j − 1

2

) ∫
H4

+

d4x

x0
ψ(x)(sinh a)−1P−j−1

iρ−1/2(cosh a)Yjlm(β, θ, ϕ).

Here Yjlm(β, θ, ϕ) is the spherical function on S3,

Yjlm(β, θ, ϕ) =
[
(j + 1)Γ(j + l + 2)

Γ(j − l + 1)

]1/2

(sinβ)−1/2P
−l−1/2
j+1/2 (cosβ)Ylm(θ, ϕ)
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and

d4x/x0 = sinh3 a sin2 β sin θ da dβ dθ dϕ.

Therefore, the functions

Φρjlm(α, β, θ, ϕ) =
| Γ(iρ− 1

2) |
| Γ(iρ− j − 1

2) |
sinh−1 aP−j−1

iρ−1/2(cosh a)Yjlm(β, θ, ϕ) (7.67)

constitute a normed basis in the space L2(H4
+) and normalization condition is

〈Φρ′j′l′m′ ,Φρjlm〉 =
δ(ρ− ρ′)

ρ(ρ2 + 1/4) tanhπρ
δjj′δll′δmm′ .

The Plancherel formula is of the form∫
H4

+

d4x

x0
| ψ(x) |2= (2π)−4

∞∑
j=0

j∑
l=0

l∑
m=−l

∫ ∞

0
dρ

(
ρ2 + 1/4

)
ρ tanhπρ|Ajlm(ρ)|2.

8 Coordinate systems and generators of SO0(1, 4) on the cone

In this section we consider coordinate systems on the upper sheet C4
+ of the cone C4 in the

4-dimensional Minkowski space, which is determined by the equations

[x, x] = x2
0 − x2

1 − x2
2 − x2

3 − x2
4 = 0, x0 > 0.

The group SO0(1, 4) is a transitive group of transformations of C4
+. We take the point x0 =

(1, 0, 0, 0, 1) of C4
+. A maximal subgroup of SO0(1, 4), whose elements leave this point invariant,

is the subgroup SO(3)× T (3), where T (3) is generated by Ei = Pi +Ni, i = 1, 2, 3 (see (3.13)).
Thus, the cone C4

+ is homeomorphic to the coset space SO0(1, 4)/(SO(3)× T (3)).
As in the case of the hyperboloid H4

+, coordinate systems will be determined by expressions
of homogeneous coordinates xµ, µ = 0, 1, 2, 3, 4, in terms of corresponding angles of a coordinate
system under consideration. We restrict ourselves by 7 coordinate systems. They correspond to
the same subgroup chains of SO0(1, 4) as in the case of the hyperboloid. Coordinate systems
on C4

+ will be denoted by the same symbols as for the hyperboloid H4
+.

Spherical coordinate system S (coordinates a, β, θ, ϕ):

x0 = ea/2, x1 = (ea/2) sinβ sin θ cosϕ, x2 = (ea/2) sinβ sin θ sinϕ,
x3 = (ea/2) sinβ cos θ, x4 = (ea/2) cosβ, (8.1)
−∞ < a <∞, 0 6 β, θ < π, 0 6 ϕ < 2π.

Hyperbolic coordinate system H (coordinates a, b, θ, ϕ):

x0 = (ea/2) cosh b, x1 = (ea/2) sinh b sin θ cosϕ, x2 = (ea/2) sinh b sin θ sinϕ,
x3 = (ea/2) sinh b cos θ, x4 = ε(ea/2), (8.2)
−∞ < a <∞, 0 6 b <∞, 0 6 θ < π, 0 6 ϕ < 2π, ε = sign x4 = ±.

Orispherical coordinate system O (coordinates a, r, θ, ϕ):

x0 = ea(r2 + 1)/2, x1 = ear sin θ cosϕ, x2 = ear sin θ sinϕ,

x3 = ear cos θ, x4 = ea(r2−1)/2, (8.3)
−∞ < a <∞, 0 6 r <∞, 0 6 θ < π, 0 6 ϕ < 2π.
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Cylindric coordinate system C (coordinates a, b, θ, ϕ):

x0 = (ea/2) cosh b, x1 = (ea/2) sin θ cosϕ, x2 = (ea/2) sin θ sinϕ,
x3 = (ea/2) cos θ, x4 = (ea/2) sinh b, (8.4)
−∞ < a <∞, −∞ < b <∞, 0 6 θ < π, 0 6 ϕ < 2π.

Spherically-hyperbolic coordinate system SH (coordinates a, b, Φ, ϕ):

x0 = (ea/2) cosh b, x1 = (ea/2) sinh b cosϕ, x2 = (ea/2) sinh b sinϕ,
x3 = (ea/2) cos Φ, x4 = (ea/2) sinΦ, (8.5)
−∞ < a <∞, 0 6 b <∞, 0 6 ϕ,Φ < 2π.

Orispherically-cylindric coordinate system OC (coordinates a, ξ, z, ϕ):

x0 = ea(ξ2+z2+1)/2, x1 = eaξ cosϕ, x2 = eaξ sinϕ,

x3 = eaξ, x4 = ea(ξ2+z2−1)/2, (8.6)
−∞ < a <∞, 0 6 ξ <∞, −∞ < z <∞, 0 6 ϕ < 2π.

Orispherically-translational coordinate system OT (coordinates a, y1, y2, y3):

x0 = ea(y2 + 1)/2, x1 = eay1, x2 = eay2, x3 = eay3,

x4 = ea(y2 − 1)/2, y2 = y2
1 + y2

2 + y2
3, (8.7)

−∞ < a <∞, −∞ < yi <∞, i = 1, 2, 3.

Since the cone C4
+ is an asymptotical surface for the hyperboloid H4

+, the coordinate systems
on C4

+ are asymptotically (at a → ∞) obtained from the corresponding coordinate systems
on H4

+.
We can write down a differential form of infinitesimal operators Jµν , µ, ν = 0, 1, 2, 3, 4, µ < ν,

on the cone C4
+. For this we use the formulas

Jrs = −i
(
xr

∂

∂xs
−xs

∂

∂xr

)
, J0s = −i

(
x0

∂

∂xs
+xs

∂

∂x0

)
,

where r, s = 1, 2, 3, 4. We substitute into these formulas the expressions for xµ, µ = 0, 1, 2, 3, 4,
in terms of coordinates of the corresponding system. The results of such calculations can be
found in [17], section 2.6. As an example, we give here a differential form for generators of
SO0(1, 4) in the hyperbolic coordinate system.
H-system:

M1 = −i
(
− sinϕ

∂

∂θ
− cot θ cosϕ

∂

∂ϕ

)
, M2 = −i

(
cosϕ

∂

∂θ
− cot θ sinϕ

∂

∂ϕ

)
,

M3 = −i
∂

∂ϕ
, P0 = −iε

(
cosh b

∂

∂a
− sinh b

∂

∂b

)
,

P1 = −iε
(

sinh b sin θ cosϕ
∂

∂a
− cosh b sin θ cosϕ

∂

∂b
−cos θ cosϕ

sinh b
∂

∂θ
+

sinϕ
sinh b sin θ

∂

∂ϕ

)
,

P2 = −iε
(

sinh b sin θ sinϕ
∂

∂a
− cosh b sin θ sinϕ

∂

∂b
−cos θ sinϕ

sinh b
∂

∂θ
− cosϕ

sinh b sin θ
∂

∂ϕ

)
,

P3 = −iε
(

sinh b cos θ
∂

∂a
− cosh b cos θ

∂

∂b
+

sin θ
sinh b

∂

∂θ

)
,

N1 = −i
(

sin θ cosϕ
∂

∂b
+coth b cos θ cosϕ

∂

∂θ
− coth b

sinϕ
sin θ

∂

∂ϕ

)
,
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N2 = −i
(

sin θ sinϕ
∂

∂b
+coth b cos θ sinϕ

∂

∂θ
+coth b

cosϕ
sin θ

∂

∂ϕ

)
,

N3 = −i
(

cos θ
∂

∂b
− coth b sin θ

∂

∂θ

)
.

9 Invariant operators and their eigenfunctions on the cone

Our aim in this section is to find basis functions on the cone C4
+ corresponding to different

coordinate systems. As in the case of the hyperboloid H4
+, these functions are constructed as

eigenfunctions of a full system of self-adjoint differential operators on the cone C4
+, including the

Casimir operator F (see formula (2.7)) of SO0(1, 4) and Casimir operators of the corresponding
chain of subgroups.

In all coordinate systems on the cone C4
+ the Casimir operator F is of the form

F = − ∂2

∂a2
− 3

∂

∂a
. (9.1)

This expression can be obtained from the differential form of the operator F in any coordinate
system on H4

+ by the asymptotic limit a→∞.
Let us give the rest of self-adjoint operators of a full system in each coordinate system on C4

+.
S-system.

M2 + P2 = − 1
sin2 β

(
∂

∂β
sin2 β

∂

∂β
+

1
sin θ

∂

∂θ
sin θ

∂

∂θ
+

1
sin2 θ

∂2

∂ϕ2

)
,

M2 = −
(

1
sin θ

∂

∂θ
sin θ

∂

∂θ
+

1
sin2 θ

∂2

∂ϕ2

)
, M3 = −i ∂

∂ϕ
.

These operators correspond to the chain of subgroups

SO0(1, 4) ⊃ SO(4) ⊃ SO(3) ⊃ SO(2).

H-system.

N2 −M2 = − 1
sinh2 β

(
∂

∂b
sinh2 b

∂

∂b
+

1
sin θ

∂

∂θ
sin θ

∂

∂θ
+

1
sin2 θ

∂2

∂ϕ2

)
,

M2 = −
(

1
sin θ

∂

∂θ
sin θ

∂

∂θ
+

1
sin2 θ

∂2

∂ϕ2

)
, M3 = −i ∂

∂ϕ
.

These operators correspond to the chain of subgroups

SO0(1, 4) ⊃ SO0(1, 3) ⊃ SO(3) ⊃ SO(2).

O-system.

E2 = −
[
∂2

∂r2
+

2
r

∂

∂r
+

1
r2

(
∂2

∂θ2
+ cot θ

∂

∂θ
+

1
sin2 θ

∂2

∂ϕ2

)]
,

M2 = −
(

1
sin θ

∂

∂θ
sin θ

∂

∂θ
+

1
sin2 θ

∂2

∂2ϕ

)
, M3 = −i ∂

∂ϕ
.

These operators correspond to the chain of subgroups

SO0(1, 4) ⊃ ISO(3) ⊃ SO(3) ⊃ SO(2).
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OC-system.

E2 = −
(
∂2

∂ξ2
+

1
ξ

∂

∂ξ
+

1
ξ2

∂2

∂ϕ2
+

∂2

∂z2

)
, E3 = −i ∂

∂z
,

M3 = −i ∂
∂ϕ

, Ẽ2 ≡ E2
1 + E2

2 = −
(
∂2

∂ξ2
+

1
ξ

∂

∂ξ
+

1
ξ2

∂2

∂ϕ2

)
.

These operators correspond to the chain of subgroups

SO0(1, 4) ⊃ ISO(3) ⊃ ISO(2)⊗ T⊥ ⊃ SO(2)⊗ T⊥.

OT -system.

E2 = −
(
∂2

∂y2
1

+
∂2

∂y2
2

+
∂2

∂y2
3

)
, Ej = −i ∂

∂yj
, j = 1, 2, 3.

The corresponding chain of subgroups is

SO0(1, 4) ⊃ ISO(3) ⊃ T (1)⊗ T (2)⊗ T (3).

C-system.

M2 = −
(

1
sin θ

∂

∂θ
sin θ

∂

∂θ
+

1
sin2 θ

∂2

∂2ϕ

)
, M3 = −i ∂

∂ϕ
, P0 = −i ∂

∂b
.

These operators correspond to the chain of subgroups

SO0(1, 4) ⊃ SO0(1, 1)⊗ SO(3) ⊃ SO(2).

SH-system.

N2
1 +N2

2 −M2
3 = −

(
∂2

∂b2
+ coth b

∂

∂b
+

1
sinh2 b

∂2

∂2ϕ

)
,

M3 = −i ∂
∂ϕ

, P3 = −i ∂
∂Φ

.

The corresponding chain of subgroups is

SO0(1, 4) ⊃ SO0(1, 2)⊗ SO′(2) ⊃ SO(2), SO(2) ∼ SO′(2),

(the subgroup SO(2) is embedded into SO0(1, 2)).
As we see from the expressions for invariant operators in each coordinate system given above

their differential form (except for the operator F ) coincides with the corresponding differential
form in the corresponding coordinate system on the hyperboloid H4

+.
It is known (see [3], Chapter 10) that the quasi-regular representation of SO0(1, 4) on the

Hilbert space L2(C4
+) decomposes into a direct integral of irreducible unitary representations of

this group, and each of these irreducible representations is contained in the decomposition twice.
(Let us recall that the quasi-regular representation of SO0(1, 4) on the Hilbert space L2(H4

+)
decomposes into a direct integral of irreducible unitary representations of this group, and each of
them is contained in the decomposition once.) Therefore, the spectrum of each full collection of
self-adjoint operators in L2(C4

+) given above differs from the corresponding spectrum on L2(H4
+)

only by the fact that multiplicity of each eigenvalue is doubled.
As in the case of functions on the hyperboloid, we try to find eigenfunctions of the collections

of self-adjoint differential operators on C4
+ in the form of separated variables. As we have said,
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differential forms of invariant operators (except for the operator F ) for H4
+ and for C4

+ coincide
in the same type of coordinate systems. For this reason, the corresponding solutions for them
are the same. Thus, in order to find eigenfunctions of full collections of self-adjoint operators
we have to solve the equation(

∂2

∂a2
+ 3

∂

∂a

)
〈a | σ〉′ = σ(σ + 3)〈a | σ〉′,

corresponding to the operator F . For each fixed complex value of σ, there are two corresponding
linearly independent solutions of this equation:

〈a | σ〉′1 = expσa, 〈a | σ〉′2 = exp(−σ − 3)a.

In particular, for values of σ, corresponding to the principal unitary series representations of
SO0(1, 4) (that is, for σ = iρ− 3

2 , ρ ∈ R), we have the solutions

〈a | ρ〉 ≡
〈
a

∣∣−3
2 + iρ

〉′ = exp
(
−3

2 ± iρ
)
a. (9.2)

Thus, a full system of eigenfunctions of a collection of self-adjoint operators, corresponding
to a fixed coordinate system, is given by the formula

Φργ(a, α) ≡ 〈a, α | ρ, γ〉 = 〈a | ρ〉〈α | γ〉, (9.3)

where α is a collection of all coordinates except for the coordinate a, γ are eigenvalues of all
operators except for the operator F , and 〈α | γ〉 are eigenfunctions of these operators.

It is evident that the function (9.2) is homogeneous in ea of homogeneity degree (−3/2± iρ).
Therefore, the basis functions (9.3) are homogeneous in ea.

The orispherical transform (6.3) maps L2(H4
+) not upon the whole space L2(C4

+), but rather
upon its subspace (we denote it by L2

0(C
4
+)). Indeed, if this transform would map L2(H4

+) upon
the whole space L2(C4

+), then multiplicities of irreducible representations of SO0(1, 4) in L2(C4
+)

would exceed those in L2(H4
+); this cannot be true.

Basis functions of the space L2(C4
+), corresponding to a fixed coordinate system, can be found

in different ways. One of these ways is making orispherical transform of the corresponding basis
functions of L2(H4

+). However, for most coordinate systems this transform leads to divergent
integrals (let us remind that our basis functions are normed to the delta-function). For this
reason, we choose another way. As we have said, in the homogeneous coordinates on H4

+ and
on C4

+ coordinates and differential operators of the operator F and other operators coincide in
the asymptotics a → ∞. The corresponding basis functions on H4

+ and on C4
+ also coincide in

this asymptotics. The part Φρ(a) of a basis function of L2
0(C

4
+), which depends on a, is a linear

combination of the functions expσa and exp(−σ − 3)a, σ = iρ− 3/2:

Φρ(a) = C1 expσa+ C2 exp(−σ − 3)a, (9.4)

where C1 and C2 are independent of a. The coefficients C1 and C2 can be found using the fact
that the function Φρ(a) and the corresponding basis function on the hyperboloid H4

+ coincide
in the asymptotics a→∞. As an example, let us consider the case of the spherical coordinate
system.

We take the function (sinh a)−1P−j−1
iρ−1/2(cosh a) of a, entering into the expression for the basis

function Φρjlm(a, β, θ, ϕ) of the space L2(H4
+) (see formula (7.67)). Expressing the function

P−j−1
iρ−1/2(cosh a) in terms of the Gauss hypergeometric function and using the formula (15.3.6)

in [41], we find that for large a the following asymptotics holds:

(sinh a)−1P−j−1
iρ−1/2(cosh a) ' 2√

π

[
Γ(iρ) exp(−3/2 + iρ)a

Γ(iρ+ j + 3/2)
+

Γ(−iρ) exp(−3/2− iρ)a
Γ(−iρ+ j + 3/2)

]
.
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Therefore, for large a the function Φρjlm(a, β, θ, ϕ) has the form

Φρjlm(a, β, θ, ϕ) ' 2 | Γ(iρ− 1/2) |√
π | Γ(iρ− j − 1/2) |

Yjlm(β, θ, ϕ)

×
[
Γ(iρ) exp(−3/2 + iρ)a

Γ(iρ+ j + 3/2)
+

Γ(−iρ) exp(−3/2− iρ)a
Γ(−iρ+ j + 3/2)

]
. (9.5)

Then

C1,2 ≡ C± =
2√
π

∣∣Γ (
iρ− 1

2

)∣∣∣∣Γ (
iρ− j − 1

2

)∣∣ Γ(±iρ)
Γ

(
±iρ+ j + 3

2

) .
Thus, in the S-coordinate system the basis functions of the space L2

0(C
4
+), corresponding to the

basis functions on L2(H4
+), are of the form

Φ′
ρjlm(a, β, θ, ϕ) =

2√
π

| Γ(iρ− 1/2) |
| Γ(iρ− j − 1/2) |

Yjlm(β, θ, ϕ)

×
[

Γ(iρ)
Γ(iρ+ j + 3/2)

e(−3/2+iρ)a +
Γ(−iρ)

Γ(−iρ+ j + 3/2)
e(−3/2−iρ)a

]
.

The domains of definition for the indices ρ, j, l, m are the same as in the case of the space
L2(H4

+). This remark is true for other coordinate systems considered below.
An explicit form of basis functions in other coordinate systems can be found analogously.

Let us write down basis functions on the cone C4
+ in all the coordinate systems, normed by

a delta-function.

S-system.

Φρjlm(a, β, θ, ϕ) ≡ 〈a, β, θ, ϕ | ρ, j, l,m〉 = (C+
S e

(iρ−3/2)a +C−S e
(−iρ−3/2)a)Yjlm(β, θ, ϕ), (9.6)

where

C±S =
√

2 |Γ(iρ+ j + 3/2)|Γ(±iρ)√
π |Γ(iρ+ 3/2)|Γ(±iρ+ j + 3/2)

.

The orthogonality relation has the form

〈Φρ′j′l′m′ ,Φρjlm〉 =
∫

C4
+

d4x

x0
Φρ′j′l′m′(a, β, θ, ϕ)Φρjlm(a, β, θ, ϕ) =

δ(ρ− ρ′)δjj′δll′δmm′

ρ(ρ2 + 1/4) tanhπρ
,

where d4x/x0 = 1
8e

3a sin2 β sin θ da dβ dθ dϕ.
H-system.

Φ±
ρνlm(a, β, θ, ϕ) ≡ 〈a, β, θ, ϕ | ρ, ν, l,m〉

= (C+
H±
e(−3/2+iρ)a + C−H±

e(−3/2−iρ)a)Vνlm(β, θ, ϕ), (9.7)

where

Vνlm(β, θ, ϕ) =
| Γ(iν) |

| Γ(iν − l) |
(sinh b)−1/2P

−l−1/2
iν−1/2 (cosh b)Ylm(θ, ϕ),

C+
H±

=
√

2 | Γ(iρ+ iν + 1/2)Γ(iρ− iν + 1/2) | Γ(iρ)√
π | Γ(iρ+ 3/2) | Γ(iρ+ iν + 1/2)Γ(iρ− iν + 1/2)

,

C−H±
=
√

2 | Γ(iρ+ iν + 1/2)Γ(iρ− iν + 1/2) |√
π | Γ(iρ+ 3/2) |

(
coshπρ
π

Γ(−iρ)± 1
Γ(iρ+ 1)

)
.
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The orthogonality relation for the functions (9.7) is

〈Φ±
ρ′ν′l′m′ ,Φ±

ρνlm〉 =
∫

C4
+

d4x

x0
Φ±

ρ′ν′l′m′(a, β, θ, ϕ)Φ±
ρνlm(a, β, θ, ϕ)

=
δ(ρ− ρ′)

ρ(ρ2 + 1/4) tanhπρ
δ(ν − ν ′)

ν2
δll′δmm′ ,

〈Φ±
ρ′ν′l′m′ ,Φ∓

ρνlm〉 = 0,

where d4x/x0 = (e3a/8) sinh2 b sin θ da db dθ dϕ.

O-system.

Φρκ
lm(a, r, θ, ϕ) ≡ 〈a, r, θ, ϕ | ρ, κ, l,m〉 = (C+

Oe
(−3/2+iρ)a + C−Oe

(−3/2−iρ)a)Jκlm(r, θ, ϕ), (9.8)

where

Jκlm(r, θ, ϕ) = (κr)−1/2Jl+1/2(κr)Ylm(θ, ϕ), C±O =
(κ/2)∓iρΓ(±iρ)

2
√
π | Γ(iρ− 3/2) |

.

The orthogonality relation for the functions (9.8) is

〈Φρ′κ′

l′m′ ,Φρκ
lm〉 =

∫
C4

+

d4x

x0
Φρ′κ′

l′m′(a, r, θ, ϕ)Φρκ
lm(a, r, θ, ϕ)

=
δ(ρ− ρ′)

ρ(ρ2 + 1/4) tanhπρ
δ(κ− κ′)

κ2
δll′δmm′ ,

where d4x/x0 = e3ar2 sin θ da dr dθ dϕ.
OC-system.

Φm
ρηq(a, ξ, z, ϕ)≡〈a, ξ, z, ϕ | ρ, η, q,m〉=(C+

OCe
(−3/2+iρ)a + C−OCe

(−3/2−iρ)a)Ψm
ηq(ξ, z, ϕ), (9.9)

where q2 + η2 = κ2 and

Ψm
ηq(ξ, z, ϕ) =

1
2π
Jm(ηξ)eiqzeimϕ, C±OC = C±O =

(κ/2)∓iρΓ(±iρ)
2
√
π|Γ(iρ+ 3/2)|

.

The orthogonality relation for the functions (9.9) is

〈Φm′
ρ′η′q′ ,Φ

m
ρηq〉 =

∫
C4

+

d4x

x0
Φm′

ρ′η′q′(a, ξ, z, ϕ)Φm
ρηq(a, ξ, z, ϕ)

=
δ(ρ− ρ′)

ρ(ρ2 + 1/4) tanhπρ
δ(η − η′)

η
δ(q − q′)δmm′ ,

where d4x/x0 = e3aξ da dξ dz dϕ.

OT -system.

Φρκ(a,y)≡〈a,y, | ρ,κ〉=(C+
OT e

(−3/2+iρ)a + C−OT e
(−3/2−iρ)a)Ψκ(y), (9.10)

where

Ψκ(y) = (2π)−3/2 exp(iκy),

C±OT = C±O =
(κ/2)∓iρΓ(±iρ)

2
√
π | Γ(iρ+ 3/2) |

, κ = |κ|.



46 I. Kachuryk and A. Klimyk

The orthogonality relation for the functions (9.10) is

〈Φρ′κ′
,Φρκ〉 =

∫
C4

+

d4x

x0
Φρ′κ′

(a,y)Φρκ(a,y) =
δ(ρ− ρ′)δ(κ− κ′)
ρ(ρ2 + 1/4) tanhπρ

,

where d4x/x0 = e3ada dy.
C-system.

Ψρτ
l,m(a, b, θ, ϕ)≡〈a, b, θ, ϕ | ρ, τ, l,m〉=(C+

C e
(−3/2+iρ)a + C−C e

(−3/2−iρ)a)Y τ
lm(b, θ, ϕ), (9.11)

where

Y τ
lm(b, θ, ϕ) = (2π)−1/2 exp(iτb)Ylm(θ, ϕ),

C±C =
√

2 | Γ[(iρ+ iτ + l + 3/2)/2]Γ[(iρ− iτ + l + 3/2)/2] | 2∓iρΓ(±iρ)√
π | Γ(iρ+ 3/2) | Γ[(±iρ+ iτ + l + 3/2)/2]Γ[(±iρ− iτ + l + 3/2)/2]

.

The orthogonality relation for the functions (9.11) is

〈Ψρ′τ ′

l′m′ ,Ψρτ
lm〉 =

∫
C4

+

d4x

x0
Ψρ′τ ′

l′m′(a, b, θ, ϕ)Ψρτ
lm(a, b, θ, ϕ)

=
δ(ρ− ρ′)

ρ(ρ2 + 1/4) tanhπρ
δ(τ − τ ′)δll′δmm′ ,

where d4x/x0 = 1
8e

3a sin θ da db dθ dϕ.
SH-system.

Ψρωmm̃(a, b, ϕ,Φ) ≡ 〈a, b, ϕ,Φ | ρ, ω,m, m̃〉
= (C+

SHe
(−3/2+iρ)a + C−SHe

(−3/2−iρ)a)Wω
mm̃(b, ϕ,Φ),

where

Wω
mm̃(b, ϕ,Φ) =

1
2π

| Γ(iω + 1/2) |
| Γ(iω +m+ 1/2) |

Pm
iω−1/2(cosh b)ei(mϕ+m̃Φ),

C±SH =
√

2 | Γ[(iρ+ iω + m̃+ 1)/2]Γ[(iρ− iω + m̃+ 1)/2] | 2∓iρΓ(±iρ)√
π | Γ(iρ+ 3/2) | Γ[(±iρ+ iω + m̃+ 1)/2]Γ[(±iρ− iω + m̃+ 1)/2]

.

The orthogonality relation for these basis functions is

〈Ψρ′ω′m′m̃′ ,Ψρωmm̃〉 =
∫

C4
+

d4x

x0
Ψρ′ω′m′m̃′(a, b, ϕ,Φ)Ψρωmm̃(a, b, ϕ,Φ)

=
δ(ρ− ρ′)

ρ(ρ2 + 1/4) tanhπρ
δ(ω − ω′)
ω tanhπω

δmm′δm̃m̃′ ,

where d4x/x0 = 1
8e

3a sinh b da db dϕ dΦ.
Transition coeff icients. In applications of harmonic analysis on the hyperboloid and on

the cones, it is necessary sometimes to go from expansion of functions ψ(x), x ∈ H4
+ (or x ∈ C4

+),
in basis elements in a certain coordinate system to expansion of this function in basis elements
in another coordinate system. This transition is fulfilled by means of matrix elements (kernels)
of the corresponding transition operator. These matrix elements (kernels) are called coefficients
of the transition.
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If we denote a basis function in a coordinate system A by 〈x|γ〉 and in a coordinate system
B by 〈x|µ〉, where x ∈ H4

+ (or x ∈ C4
+), then 〈x|γ〉 and 〈x|µ〉 are connected by the formula

〈x|µ〉 =
∫

dν(γ)〈x|γ〉 〈γ|µ〉,

where dν(γ) is the measure in continuous parameters and a sum in discrete parameters in γ (this
measure coincides with the measure with respect to which the expansion of the function ψ(x)
in basis functions 〈x|γ〉 is made. If 〈γ|µ〉 is continuous function in variables γ, then according
to orthogonality properties of the functions 〈x|γ〉 we have

〈γ|µ〉 =
∫

d4x

x0
〈γ|x〉 〈x|µ〉, 〈γ|x〉 = 〈x|γ〉, (9.12)

where integration is over the hyperboloid or the cone.
The quasi-regular representations of the group SO0(1, 4) are realized on the spaces L2(H4

+)
and L2

0(C
4
+). These representations are unitary equivalent and the equivalence is given by the

orispherical transform (6.3). Besides, for each coordinate system there exist basis functions of
these spaces, which are also connected by the orispherical transform (6.3). Therefore, coefficients
of transition from one basis to another in L2(H4

+) coincide with the corresponding coefficients
of transition in the space L2

0(C
4
+),∫

H4
+

d4x

x0
〈γ|x〉 〈x|µ〉 =

∫
C4

+

d4x

x0
(O〈γ|x〉)(O〈x|µ〉),

where O is the operator of the orispherical transform. Thus, we do not need to derive coefficients
of transition in L2(H4

+) and in L2
0(C

4
+). Since basis functions on L2

0(C
4
+) are simpler than basis

functions on L2(H4
+), these coefficients usually derive for the space L2

0(C
4
+).

10 Information on semisimple Lie groups and Lie algebras

Let G be a connected linear (matrix) noncompact real semisimple Lie group and let g be its
Lie algebra. Let K be a maximal compact subgroup in G and let k be the Lie subalgebra in g

corresponding to K. Then one has a Cartan decomposition g = k+p, where p is a linear subspace
of g. This sum is direct. The Cartan decomposition is characterized by the inclusions

[k, k] ⊂ k, [p, p] ⊂ k, [k, p] ⊂ p. (10.1)

The formula

B(X,Y ) = Tr ((ad X)(ad Y )), X, Y ∈ g, (10.2)

determines a symmetric bilinear form on g, which is called a Killing–Cartan form. Here ad X is
the operator on g acting as (ad X)Y = [X,Y ], Y ∈ g. The fact that a Lie algebra g is semisimple
means that the bilinear form B(X,Y ) is non-degenerate. If g = k+ p is a Cartan decomposition
of g, then B(X,X) < 0 for X ∈ k and B(X,X) > 0 for X ∈ p.

Let θ be the involutive Cartan automorphism on g. Then θ leaves elements of k invariant and
multiplies elements of p by −1. We introduce on g the bilinear form

〈X,Y 〉 = −B(X, θY ). (10.3)

This form determines a positive scalar product on g. The algebra g with this scalar product
turns into a finite dimensional Hilbert space.
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Let a be a maximal commutative subalgebra in p. A dimension of a is called a real rank of
the Lie algebra g. We consider the set of operators ad H, H ∈ a, acting on the space g. It is
easy to see that

〈(ad H)X,Y 〉 = 〈X, (ad H)Y 〉, X, Y ∈ g,

that is, adH is a self-adjoint operator on g. Thus, if g is supplied by the scalar product (10.3),
then the operators ad H, H ∈ a, constitute a commuting collection of self-adjoint operators.
For this reason, g decomposes into an orthogonal sum of eigenspaces of these operators:

g = g0 +
∑

γ

gγ , (10.4)

where g0 is an eigenspace with zero eigenvalue for all operators ad H, H ∈ a, and gγ are
eigenspaces with eigenvalues γ(H), H ∈ a (γ are linear forms on a).

It is evident that elements of different eigenspaces gγ are orthogonal with respect to the scalar
product (10.3). Linear forms γ on a in (10.4) are called restricted roots of the algebra g with
respect to a (or restricted roots of the pair (g, a)). The subspaces gγ are called root subspaces.

Restricted roots are split into two sets: a set of positive restricted roots and a set of nega-
tive restricted roots. In order to determine a sign of a restricted root we have to fix a basis
H1,H2, . . . ,Hl of the subalgebra a. If the first non-zero number in the set γ(H1), γ(H2), . . .,
γ(Hl) is positive (negative), then the root γ is positive (negative). The set α1, α2, . . . , αl of
restricted positive roots is called a system of simple roots if each restricted positive root is a
linear combination of α1, α2, . . . , αl with non-negative integral coefficients.

Restricted roots and root subspaces possess the following properties:

(a) if γ1, γ2 and γ1 +γ2 are restricted roots of the pair (g, a), then [gγ1 , gγ2 ] ⊂ gγ1+γ2 ; if γ1 +γ2

is not a restricted root, then [gγ1 , gγ2 ] = 0;

(b) if γ is a restricted root, then −γ is also a restricted root, that is, to each positive root γ
there corresponds a negative root −γ;

(c) root subspaces gγ may be more than one-dimensional;

(d) only the roots 2γ, γ, −γ, −2γ or the roots γ, γ/2, −γ/2, γ can be roots multiple to a re-
stricted root γ; in particular, if a semisimple Lie algebra is of rank 1, then the subalgebra a

is one-dimensional and all restricted roots are linearly dependent, that is, in this case there
are only two restricted roots γ, −γ or 4 restricted roots 2γ, γ, −γ, −2γ.

A dimension of a root subspace gγ is called a multiplicity of the restricted root γ, which is
denoted by m(γ).

Let γ1, γ2, . . . , γn be a set of all positive restricted roots of the pair (g, a). The linear form

ρ =
1
2

n∑
i=1

m(γi)γi (10.5)

is called a half-sum of positive restricted roots of the pair (g, a). This form is important in the
representation theory of semisimple Lie groups.

Let n =
∑
γ>0

gγ , where summation is over positive restricted roots of the pair (g, a). Then n

is a maximal nilpotent subalgebra in g and the Iwasawa decomposition

g = k + a + n

holds, where the sum is direct.
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Let m be the centralizer of the subalgebra a in k (that is, the set of all elements of k which
commute with all elements of a). Then m is a subalgebra in g. Moreover, m is a reductive Lie
algebra (that is, it is a direct sum of a semisimple subalgebra of g and a center of m). It is clear
that m belongs to the subalgebra g0 from (10.4). Moreover, the subalgebra g0 coincides with
the sum a + m.

LetN be a closed subgroup inG with a Lie algebra n and let A be a subgroup inG with the Lie
algebra a. Then G = ANK. Moreover, each element g ∈ G decomposes uniquely as a product
g = hnk, h ∈ A, n ∈ N , k ∈ K. The mapping (h, n, k) → hnk is an analytic diffeomorphism of
the manifold A×N ×K onto G. The decomposition of elements of the group G into a product
of elements of the subgroups A, N and K is called its Iwasawa decomposition. It is a global
analogue of the Iwasawa decomposition g = k + a + n of the Lie algebra g. This decomposition
is extensively used in the representation theory.

The Iwasawa decomposition of G can be written in another form. Since G = G−1 =
(ANK)−1 = K−1N−1A−1 = KNA, then G = KNA. Each element g ∈ G decomposes uniquely
as a product g = knh, k ∈ K, n ∈ N , h ∈ A.

Let M be the centralizer of the subgroup A in K, that is, M consists of all elements of K
commuting with all elements of A. Then the subalgebra m is a Lie algebra for M . The sub-
group M may be not connected. It can be represented in the form M = ZM0, where M0

is a connected component of M , containing the unit element, and Z is a finite group. The
subgroup P = ANM = MNA of the group G is called a minimal parabolic subgroup of G.
A subgroup of G, containing a minimal parabolic subgroup, is called a parabolic subgroup of G.
Below we shall consider representations of the group G, induced by irreducible representations
of a minimal parabolic subgroup.

Let us consider a connection of compact and noncompact Lie groups and a connection of
their Lie algebras. Let G and g be as above. Since G is a linear group, it has a complexification;
let us denote it by [G]. Let [g] be a complexification of the Lie algebra g. Let Gk be a compact
real form of the complex group [G], and let gk be a compact real form of the Lie algebra [g]. If
g = k + p is a Cartan decomposition of the Lie algebra g, then for the Lie algebra gk we have
the decomposition

gk = k + ip, i =
√
−1, (10.6)

(see, for example, [16]).There exists also a connection between decompositions of the groups G
and Gk. For G, the decomposition G = KAK (the Cartan decomposition) holds. The sub-
group A is commutative and noncompact. Moreover, it is a direct product of l copies of the
group R+ of positive real numbers with the usual multiplication as a group operation. Un-
der complexification of G the subgroup A ⊂ G turns into the commutative subgroup [A] ⊂ [G].
Then Ak = [A]

⋂
Gk is a commutative subgroup in Gk. Thus, the subgroup Ak ⊂ Gk is obtained

by analytic continuation of the parameters of the subgroup A ⊂ G to the corresponding compact
domain. To the decomposition G = KAK there corresponds the decomposition Gk = KAkA of
the compact group Gk. This fact is used in consideration of finite dimensional representations
of semisimple Lie groups. It is known that finite dimensional representations of the groups G
and Gk are obtained by analytic continuation in group parameters [42]. It follows from the de-
compositions G = KAK and Gk = KAkK that it is enough to make an analytical continuation
only for parameters of the subgroups A and Ak.

More details on the structure of semisimple Lie groups and Lie algebra can be found in [15, 16]
and [43].
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11 Representations of semisimple Lie groups and Lie algebras

We consider representations of the principal nonunitary series of a noncompact real semisimple
Lie group G. These representations are constructed by means of irreducible finite dimensional
representations of a minimal parabolic subgroup P = MNA. Let δ be a unitary irreducible
representation of the compact subgroup M on a finite dimensional Hilbert space V, and let λ
be a complex linear form on a. Then the mapping h→ exp(λ(log h)), h ∈ A, is a representation
of the commutative subgroup A. Here log denotes the mapping of the group A onto its Lie
algebra a, which is inverse to the exponential mapping exp : a → A. The correspondence

mnh→ exp(λ(log h))δ(m), h ∈ A, n ∈ N, m ∈M, (11.1)

is an irreducible representation of the group P = MNA.
By means of the representations (11.1) of P one constructs (induces) representations of the

group G. Let us first construct Hilbert spaces on which these representations of G act. Let f
be a function from G to the finite dimensional Hilbert space V satisfying the relation

f(gmnh) = δ(m−1) exp(−λ(log h))f(g), m ∈M, n ∈ N, h ∈ A. (11.2)

These functions are uniquely determined by their values on representatives of cosets in G/P =
G/MNA. Indeed, each element g ∈ G is uniquely decomposed into a product g = xp = xmnh,
p = mnh ∈ P = MNA, where x denotes representatives of G/P . Then

f(g) = f(xmnh) = δ(m−1) exp(−λ(log h))f(x). (11.3)

Thus, if we have f(x), then f(g), g ∈ G, are uniquely determined.
Since G/P = KNA/MNA ∼ K/M , then instead of representatives of G/P we can take

representatives of cosets in K/M . If we extend the set of the latter representatives to the whole
subgroup K, then instead of functions f(g) on G, satisfying the condition (11.2), we obtain
functions on K, satisfying the condition

f(km) = δ(m−1)f(k), m ∈M. (11.4)

Now we construct a Hilbert space of functions f(k) on K with values in V, satisfying the
condition (11.4) and the conditio∫

K
‖f(k)‖2

V dk <∞,

where dk is an invariant measure on K and ‖f(k)‖V is a norm on V. Namely, we define a scalar
product in the space of such functions by the formula

〈f1, f2〉 =
∫

K
〈f1(k), f2(k)〉V dk (11.5)

and close this space by means of this scalar product. Note that this scalar product can be
introduced both in the space of functions on G, satisfying the condition (11.2), and in the space
of functions on K, satisfying the condition (11.4). In the first case the Hilbert space is denoted
by Hδλ and in the second case by L2

δ(K,V). Now the formula

πδλ(g0)f(g) = f(g−1
0 g), g0 ∈ G, (11.6)

determines a linear representation of the group G on the space Hδλ which is denoted by πδλ.
Going from functions given on G to functions given on K we obtain

πδλ(g)f(k) = exp(−λ(log h))f(kg), g ∈ G, (11.7)
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where h ∈ A and kg ∈ K are determined by the Iwasawa decomposition of the element g−1k:

g−1k = kgnh, n ∈ N.

Thus, in L2
δ(K,V) the representation πδλ is given by formula (11.7). The representations

(11.6) and (11.7), realized on the spaces Hδλ and L2
δ(K,V), respectively, are in fact different

realizations of the same representation. One says that this representation is induced by the
representation (11.1) of the subgroup P .

If δ runs over all non-equivalent irreducible unitary representations of the subgroup M and λ
runs over all complex linear forms on a, then πδλ constitute the principal nonunitary series of
representations of G.

The restriction of the representation πδλ to the subgroup K acts on L2
δ(K,V) by the formula

πδλ(k0)f(k) = f(k−1
0 k).

Since the functions f satisfy the condition f(km) = δ(m−1)f(k), m ∈ M , the space L2
δ(K,V)

decomposes into orthogonal sum of linear finite dimensional subspaces, on which irreducible
unitary representations (we denote them by ν) of the subgroup K are realized. Moreover, each
such representation ν is contained in the decomposition of the representation πδλ ↓K of K with
multiplicity bνδ , where bνδ is the multiplicity of the representation ν of M in the representation δ
of K.

The representation πδλ of the group G determines the corresponding representation of the
Lie algebra g, which is denotes also by πδλ. To noncompact elements of the Lie algebra g there
correspond unbounded operators of this representation. For this reason, these operators are not
defined on the whole Hilbert space L2

δ(K,V). However, each of these operators is determined on
differentiable functions from L2

δ(K,V). Moreover, on the set of infinitely differentiable functions
of L2

δ(K,V) an action of products of such operators is determined. In particular, an action of
Casimir operators is determined on such functions. Note that the linear space of infinitely
differentiable functions of L2

δ(K,V) is dense in this Hilbert space.

12 Hyperboloids and cones for semisimple noncompact
Lie groups and coordinate systems on them

12.1 Hyperboloids and cones

Let us construct analogues of upper sheet of the hyperboloid H4
+ of the two-sheeted hyper-

boloid and the upper sheet C4
+ of the cone constructed in the previous sections. The motion

group of H4
+ and of C4

+ is the de Sitter group SO0(1, 4). The hyperboloid H4
+ is identified

with the homogeneous space SO0(1, 4)/SO(4), where SO(4) is a maximal compact subgroup in
SO0(1, 4), and the cone C4

+ with the homogeneous space SO0(1, 4)/ISO(3), where ISO(3) is
the subgroup MN (see the previous section) for SO0(1, 4). Taking into account these facts, we
define a hyperboloid and a cone for an arbitrary connected linear semisimple noncompact Lie
group G as follows. An analogue of the upper sheet H4

+ of the two-sheeted hyperboloid is the
homogeneous space G/K, where K is a maximal compact subgroup of G. The space G/K is
a noncompact Riemannian symmetric space (see [16]). In order to have an analogy with the
case of the group SO0(1, 4), we call this space a hyperboloid. A cone (an analogue of the upper
sheet C4

+ of the cone) with a motion group G is the homogeneous space G/MN , where N is
a maximal nilpotent subgroup (see the previous section) and M is a subgroup of K, which is
a centralizer of the subgroup A = exp a in K. A list of classical simple noncompact real Lie
groups G and their subgroups K and M is given in Table 1.
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Table 1
G Gk K M

SL(n,C) SU(n)× SU(n) SU(n) D

SO(n,C) SO(n)× SO(n) SO(n) D

Sp(n,C) Sp(n)× Sp(n) Sp(n) D

SL(n,R) SU(n) SO(n) (Z2)n−1

SU∗(2n) SU(2n) Sp(n) (Z2)n−1

SU(p, q) SU(p+ q) S(U(p)× U(q)) S(U(p− q)× U(1)× · · · × U(1))
U(p, q) U(p+ q) U(p)× U(q) U(p− q)× U(1)× · · · × U(1)
SO0(p, q) SO(p+ q) SO(p)× SO(q) SO(p− q)× (Z2)q

SO∗(2n) SO(2n) U(n) SU(2)× · · · × SU(2)
if n = 2k

SU(2)× · · · × SU(2)× U(1)
if n = 2k + 1

Sp(n,R) Sp(n) U(n) (Z2)n−1

Sp(p, q) Sp(p+ q) Sp(p)× Sp(q) Sp(p− q)× Sp(1)× · · · × Sp(1)

Complex groups SL(n,C), SO(n,C) and Sp(n,C) in Table 1 are understood as real groups
with double number of real parameters. The subgroups D in these groups coincide with maximal
torus in K. Z2 denotes a group consisting of two elements and (Z2)m is a direct product of m
copies of the group Z2.

The nilpotent subgroup N of G is obtained by exponential mapping from the nilpotent
subalgebra n of the Lie algebra g. The subalgebra n is constructed by means of the system of
restricted roots of the pair (g, a). In [44], examples of construction of subalgebras n are given.
The subgroup N for the group SO0(1, n) is constructed in [3], Chapter 9. The subgroup N of
the group SU(1, n) is given in [44].

12.2 Cartan decomposition and S-coordinate system on G/K

The Cartan decomposition of the group G is given by the formula G = KAK. This means that
each element g ∈ G can be represented in the form of a product khk′, k, k′ ∈ K, h ∈ A. However
the decomposition g = khk′ is not unique since kmhk′ = khmk′, m ∈ M . Therefore, taking
a decomposition of elements of K in the form k = k̃m, m ∈ M , where k̃ are representatives of
cosets of the homogeneous space K/M , we obtain from the Cartan decomposition g = khk′ of
g ∈ G the decomposition

g = k̃hk or g = khk̃. (12.1)

The set of elements k̃ of K, parametrizing the space K/M , is denoted by (K/M). An ambigu-
ousness of the decomposition (12.1) is determined by the relation

k̃hmk = k̃mhk, m ∈M∗/M ≡W,

where M∗ is a normalizer of the subgroup A in K. The quotient group W is finite and is called
a Weyl group of the pair (g, a). Thus, the decomposition (12.1) will be unique almost for each
g ∈ G if h is taken from the part A+ of the subgroup A, where A+ is a closure of the set A+.
The set A+ is characterized by the property that there are no two elements h and h′ in A+

such that h = mh′m−1 for some m ∈M∗. The set A+ can be constructed in the following way.
The set A+ is the set of all elements h = expH, H ∈ a, satisfying the conditions αi(H) > 0,
i = 1, 2, . . . , l, where αi, i = 1, 2, . . . , l, are simple restricted roots of the pair (g, a). The set A+

coincides with the closure of the set A+ in A. Thus, starting from the decomposition

G = (K/M)A+K, (12.2)
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we obtain the decomposition g = k̃hk, k̃ ∈ (K/M), h ∈ A+, k ∈ K, of elements of the group G.
According to the formula (12.2), there exists a set (G/K) of representative of cosets of G/K,

(G/K) = (K/M)A+, (12.3)

such that to each element of (G/K) there corresponds only one coset in G/K and vise versa.
If l is a real rank of the group G, then for elements h ∈ A we have

h = expH = exp(t1H1 + t2H2 + · · ·+ tlHl) =
l∏

i=1

exp tiHi, (12.4)

where H1,H2, . . . ,Hl is a basis of the subalgebra a. The part A+ of the subgroup A is charac-
terized by the condition that the parameters t1, t2, . . . , tl of elements h = expH ∈ A+ satisfy
the conditions αi(H) ≡ αi(t1H1 + t2H2 + · · · + tlHl) ≥ 0, i = 1, 2, . . . , l. It follows from (12.3)
that for obtaining a parametrization of the space G/K we have to determine a parametrization
of the “sphere” K/M . It is clear that the space K/M is compact. The numbers t1, t2, . . . , tl
together with parameters, determining K/M , parametrize the set (G/K).

A parametrization of the space K/M is not unique. It can be received as follows. Let G′k
and G′ be compact and noncompact connected semisimple real Lie groups with the same com-
plexification [G]. The pairs (G′, G′k), corresponding to simple Lie groups G′, are given in Table 1.
Let K ′ be a maximal compact subgroup in G′ and let G′ = K ′A′K ′ be a Cartan decomposition
of the group G′. The group G′k is obtained from the group G′ by an analytic continuation (in
the framework of the complexification [G′] of G′) of noncompact parameters of the group G′ to
the corresponding compact parameters of the group G′k. It follows from the Cartan decompo-
sition G′ = K ′A′K ′ that we have to make only an analytical continuation of parameters of the
subgroup A′. As a result of this continuation, we obtain the decomposition G′k = K ′A′kK

′ of
the group G′k with the commutative subgroup (torus) A′k. If elements of the subgroup A′ are of
the form (12.4), then elements of the subgroup A′k are of the form

l∏
i=1

exp iϕiHi, 0 6 ϕj < 2π. (12.5)

The decomposition G′k = K ′A′kK
′ is not unique. The reason is that elements of the subgroup

M ′ ⊂ K ′ permute with elements of A′k. Therefore, as in the case of noncompact simple real Lie
groups, we have the decomposition G′k = (K ′/M ′)A′kK

′. This decomposition is not unique, since
elements from M ′∗/M ′ ≡ W ′, as well as elements from the set J = K ′ ⋂A′k, permute with A′k
(for a noncompact group G′ the set J = K ′ ⋂A′ consists of one (unit) element). Restricting
(in an appropriate manner) values of the parameters ϕ1, ϕ2, . . . , ϕl in (12.5), we obtain the
decomposition G′k = (K ′/M ′)A′k

+K ′. This decomposition leads to the decomposition of the set
(G′k/K

′):

(G′k/K
′) = (K ′/M ′)A′k

+. (12.6)

Now we set here G′k = K and K ′ = M and find

(K/M) = (M/M ′)Ak
+, (12.7)

where Ak is a commutative subgroup (torus) in K and M ′ is a subgroup in K and in M . Note
that the subgroup M can be nonconnected. Then it is a product of a connected subgroup M0

with a finite subgroup Z. In this case the decomposition (12.6) must be applied to the space



54 I. Kachuryk and A. Klimyk

K/M0 (not to the space K/M). Then for transition from K/M0 to K/M we have to perform
an identification of the corresponding values of parameters.

The relation (12.7) leads a parametrization of the space K/M to a parametrization of the
space M/M ′ such that dimM/M ′ < dimK/M . We may apply decomposition (12.6) to the
set M/M ′ and reduce its parametrization to a parametrization of a space which has smaller di-
mension than that of M/M ′. Continuing this procedure, after a finite number of steps we obtain
a parametrization of the whole space K/M , and therefore of the space G/K. A parametriza-
tion, obtained in this way, corresponds to the chain of subgroups G ⊃ K ⊃ M ⊃ M ′ ⊃ · · · .
Such coordinate system is an analogue of the spherical system (S-system) of coordinates for the
hyperboloid H+

4 . For this reason, we call such set of coordinates on G/K a spherical coordinate
system or an S-system of coordinates.

Thus, a parametrization of the space G/K was obtained by using the Cartan decompositions
of the semisimple Lie group G and of the corresponding compact Lie groups G′k. By using
these decompositions we can receive a G-invariant measure on G/K, expressed in terms of
the corresponding parameters. If f is a continuous function on G with compact support and
g = k1(expH)k2, k1, k2 ∈ K, h = expH ∈ A, then the following formula holds (see [16]):∫

G
f(g)dg = c

1
|W |

∫
a

∣∣∣∣∣∏
α>0

sinhα(H)

∣∣∣∣∣ dH
∫

K

∫
K
f(k1(expH)k2)dk1dk2, (12.8)

where dg and dk are invariant measures on G and K, respectively; the product is over the set of
positive restricted roots of the pair (g, a) (and each root α appears in the product the number of
times equal to multiplicity of this root), dH is the Lebesgue measure on the space a, |W | is an
order of the Weyl group W of the pair (g, a), and c is a constant, depending on a normalization
of measures on G, a and K.

The formula∫
G
f(g)dg =

∫
G/K

(∫
K
f(xk)dk

)
dx

determines an invariant measure dx on G/K. Applying this formula to the relation (12.8) we
obtain∫

G/K
f(x)dx = c1

1
|W |

∫
a

∣∣∣∣∣∏
α>0

sinhα(H)

∣∣∣∣∣ dH
∫

(K/M)
f(y(expH))dy, (12.9)

where dy is an invariant (with respect to K) measure on K/M . In order to obtain integration
over A+ instead of integration over A = exp a, it is necessary to restrict the integral over a to an
integral over a+. The set a+ consists of elements H ∈ a such that αi(H) > 0 for any restricted
simple root αi of the pair (g, a). The complete algebra a is obtained from a+ by action by
elements of the Weyl group W (with a subsequent closure). (Note that for any w1, w2 ∈W the
sets w1a

+ and w2a
+ do not intersect if w1 6= w2.) Then∫

G/K
f(x)dx = c1

∫
a+

∣∣∣∣∣∏
α>0

sinhα(H)

∣∣∣∣∣ dH
∫

(K/M)
f(y(expH))dy. (12.10)

This relation reduces a G-invariant measure on G/K to a K-invariant measure on K/M . In
order to obtain the latter measure we use the integral relation for G′k, which is an analogue of
the formula (12.8) (see [16]):∫

G′
k

f(g)dg = c

∫
A′

k

|D(h)| dh
∫

K′

∫
K′
f(k1hk2)dk1dk2. (12.11)
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The function D(h) ≡ D(exp iH), H ∈ a, h ∈ A′k, is determined by the relation

D(exp iH) =
∏
α>0

sinα(H).

The relation (12.11) can be easily reduced to the relation similar to (12.10). This gives a possi-
bility to determine a K-invariant measure on K/M if we set G′K = K and K ′ = M .

Remark. The formulas (12.10) and (12.11) contain products over restricted positive roots of
the pair (g, a). Systems of simple restricted roots (including their multiplicities) of pairs (g, a)
for all simple noncompact Lie algebras g are given in [15] (see also Table 3 in [44]). A system of
simple roots determines uniquely a system of the corresponding positive roots.

12.3 Iwasawa decomposition and T -coordinate system on G/K

Let G = NAK be an Iwasawa decomposition of the group G. It gives a possibility to parametrize
the space G/K by means of elements of the subgroup NA. The formula (12.4) gives a para-
metrization of the subgroup A by numbers t1, t2, . . . , tl. In order to obtain a parametrization of
the subgroup N , it is necessary to represent N in the form of a product of the one-parameter
subgroups exp sαXα corresponding to root elements Xα of the algebra g with positive restricted
roots α. In an analogy with the group SO0(1, 4), this parametrization of G is called a trans-
lational system of coordinates on G/K, which is also called a T -system of coordinates. Note
that for a generic semisimple Lie group G the subgroup N is not commutative. The subgroup
N = exp n is commutative if and only if the corresponding Lie algebra n is commutative. A com-
mutativity of the algebra n is determined by means of a root system of the pair (g, a). If along
with roots α and β there exists a root α + β (or along with a root α there exists a root 2α),
then for the corresponding root subspaces we have [gα, gβ ] ⊂ gα+β. This leads to a violation of
commutativity in n and, therefore, in N . Analyzing systems of simple restricted roots of simple
real Lie algebras (see, for example, [44]), we conclude that a subgroup N is commutative only
for the groups SO0(1, n).

Using the Iwasawa decomposition G = NAK, it is possible to find a G-invariant measure
on G/K, expressed in the T -coordinate system. If f is a continuous function with a compact
support and g = nhk, n ∈ N , h ∈ A, k ∈ K, then (see, for example, [16])∫

G
f(g)dg =

∫
K

∫
A

∫
N
f(nhk)e2ρ(log h)dn dh dk,

where dg, dn, dh and dk are invariant measures on G, N , A and K, respectively, and ρ = 1
2

∑
α>0

α.

Therefore, if an element x ∈ G/K is represented by an element nh ∈ NA, then∫
G/K

f(x)dx =
∫

A

∫
N
f(nh)e2ρ(log h)dn dh, (12.12)

where dx is a G-invariant measure on G/K.

12.4 Iwasawa decomposition and O-coordinate system on G/K

Using the Iwasawa decomposition G = NAK of the group G, we represent G in the form

G = (NM)AK, (12.13)

where NM is a closed subgroup of G. Since MNM−1 ⊂ N , then the subgroup NM is a semidi-
rect product of the subgroup M and the normal subgroup N . The most interesting case is when
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NM is a semidirect product of the compact subgroup M and the commutative subgroup N . As
we know this is the case when G = SO0(1, n). For this group the subgroup NM is isomorphic
to the group ISO(n− 1) (see, for example, [3], Chapter 9).

The decomposition (12.13) is not unique. Indeed, elements of the subgroup A commute with
elements of M . In order to obtain non-ambiguous decomposition we have to take the space
NM/M instead of the space NM . Then for (G/K) we have the decomposition

(G/K) = (NM/M)A, (12.14)

where (NM/M) is the set of representatives of cosets of the quotient space NM/M . We take
a parametrization of the subgroup A by the numbers t1, t2, . . . , tl. Choosing a parametrization
of the quotient space NM/M we obtain, according to the formula (12.4), a parametrization of
the space G/K. This parametrization is called orispherical. It is also called an O-coordinate
system on G/K. Note that one of possibilities for parametrization of (NM/M) is given by the
T -system of coordinates.

If we choose (according to a parametrization of the space NM/M) representatives y ∈ NM
of cosets of NM/M and set x = yh ∈ (G/K), then we have the integral relation∫

G/K
f(x)dx =

∫
NM/M

dy

∫
A
f(yh)e2ρ(log h)dh, (12.15)

where dh is an invariant measure on A, dx is a G-invariant measure on G/K, and dy is a NM -
invariant measure on NM/M .

12.5 Generalized Cartan decomposition

Let G be a semisimple noncompact connected linear real Lie group and let g be its Lie algebra.
There exists an involutive Cartan automorphism θ on g such that g decomposes into a direct sum
of eigenspaces of θ as g = k+p (the Cartan decomposition), where k corresponds to eigenvalue +1
and p corresponds to eigenvalue −1. Under transition from g to G, to the automorphism θ of g

there corresponds the automorphism Θ of G. The set of points of G, which are invariant with
respect to Θ, coincides with the maximal compact subgroup K of G. The homogeneous space
G/K is a Riemannian symmetric space, which is called a hyperboloid. Thus, we associate
a Riemannian symmetric space with the involutive Cartan automorphism θ of g.

However, the Lie algebra g can have other involutive automorphisms, that is, automorphisms
with noncompact stationary subgroup. Let τ be such an automorphism of g. Then g decomposes
into a direct sum of eigenspaces of τ with eigenvalues ±1 (since τ2 = 1, other eigenvalues cannot
exist). Let this decomposition be of the form

g = b + q, (12.16)

where b belongs to eigenvalue +1 and q to eigenvalue −1. Since τ is an automorphism, then the
eigenvalues show that

[b, b] ⊂ b,

that is, b is a subalgebra of g. Let T be an automorphism of the group G, corresponding to the
automorphism τ of g, and let Gτ be a closed subgroup of G consisting of all points of G invariant
under T . A connected component of the unit element in Gτ will be denoted by G0

τ . If H is
a subgroup of G such that G0

τ ⊂ H ⊂ Gτ , then the homogeneous space G/H is called symmetric.
Since the subgroup H is not compact, a quotient space G/H is called pseudo-Riemannian or
affine symmetric space. The group G is a motion group of the pseudo-Riemannian symmetric
space G/H. A classification of pseudo-Riemannian symmetric spaces is given in [45].
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With a pseudo-Riemannian symmetric space with the transitive motion group G a generalized
Cartan decomposition of G is connected. For simplicity, we shall consider only those pseudo-
Riemannian symmetric spaces for which the automorphism τ is determined by a signature of
the set of restricted roots of the pair (g, a) (see [46]).

Let Σ be a set of all restricted roots of the pair (g, a). A mapping ε of roots of Σ to the set
{+1,−1} is called a signature of Σ if

(a) ε(α) = ε(−α), α ∈ Σ;

(b) if α, β, α+ β are restricted roots, then ε(α+ β) = ε(α)ε(β).

The Lie algebra g can be represented in the form

g = m + a +
∑
α∈Σ

gα,

where gα is a root subspace corresponding to a root α ∈ Σ. Using a signature ε, we give an
automorphism θε on g such that

(a) θε(X) = ε(α)θ(X), X ∈ gα, where θ is the involutive Cartan automorphism, introduced
above;

(b) θε(X) = X for X ∈ m + a.

It is easy to show that θε is an involutive automorphism of g such that θε 6= θ for a nontrivial
signature ε on Σ.

We write down the decomposition (12.16) for the automorphism θε in the form

g = tε + pε, (12.17)

where tε is a Lie subalgebra (noncompact) in g. We have m ⊂ tε and a ⊂ pε.
If the automorphism θε can be continued to an automorphism of G, we denote this automor-

phism of G by Θε. Let (Kε)0 be an analytical subgroup of G with the Lie algebra tε. We set
Kε = (Kε)0M . Since the connected component M0 of the unit element in the subgroup M is
contained in (Kε)0 (since m ⊂ kε), then Kε = (Kε)0Z, where Z is a discrete subgroup such that
M = M0Z. The subgroups (Kε)0 and Kε have the following properties (see [46]:

(a) for each m ∈M we have m(Kε)0m−1 ⊂ (Kε)0;

(b) Kε is a closed subgroup of G and Θεk = k for each k ∈ Kε.

Let us give a classification of pairs (G,Kε) for simple Lie groups G. A pair (G,Kε) is
determined by the corresponding pair (g, kε) for the Lie algebra g. In order to classify pairs
(g, kε) with a simple Lie algebra g, we consider signatures of the corresponding root system Σ.
These signatures can be easily described as follows. Let α1, α2, · · · , αl be simple restricted roots
of the pair (g, a). Each restricted root α ∈ Σ can be represented uniquely in the form

α =
l∑

i=1

miαi. (12.18)

Let εj (j = 1, 2, . . . , l) be a signature of Σ such that εj(α) = (−1)mj , where mj is determined
by the decomposition (12.18). Then any signature ε of the root system Σ reduces to some
signature εj , namely, for any signature ε there exists an element w of the Weyl group W and



58 I. Kachuryk and A. Klimyk

an integer j (1 6 j 6 l) such that for each α ∈ Σ we have ε(α) = εj(wα) (see [47]). Thus, any
signature ε can be transformed to some signature εj .

Let us describe signatures εj and the corresponding systems of roots Σε, where Σε is a set of
roots α from Σ for which ε(α) = 1.

Let a root system Σ coincide with the root system Al, l > 1. We have signatures

εj , 2j < l + 1.

The corresponding Σεj coincide respectively with the root systems

Al−j +Aj−1.

Let a root system Σ coincide with the root system Bl, l > 2. We have signatures

εj , j 6 l.

The corresponding Σεj coincide respectively with the root systems

Bl−j +Dj .

Let Σ coincide with the root system BCl, l > 1. We have signatures

εj , j 6 l.

The corresponding Σεj coincide respectively with the root systems

BCl−j + Cj .

Let Σ coincide with the root system Cl, l > 3. We have signatures

εj , 2j 6 l, εl.

The corresponding Σεj coincide respectively with the root systems

Cl−j + Cj if 2j 6 l

and

Al for εl.

Let Σ coincide with the root system Dl, l > 4. Then we have signatures

εj , 2j 6 l, εl−1, εl.

The corresponding Σεj coincide respectively with the root systems

Dl−j +Dj if 2j 6 l

and

Al for εl−1 and εl.

Let Σ coincide with the root system E6. We have signatures

ε1 and ε2.
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Then the corresponding Σεj coincide respectively with the root systems

D5 for ε1

and

A1 +A5 for ε2.

Let a root system Σ coincide with the root system E7. We have signatures

εj , j = 1, 2, 7.

The corresponding Σεj coincide respectively with the root systems

A1 +D6 for ε1,

A7 for ε2,

E6 for ε7.

Let Σ coincide with the root system E8. We have signatures

εj , j = 1, 8.

The corresponding Σεj coincide respectively with the root systems

D8 for ε1

and

A1 + E7 for ε8.

Let Σ coincide with the root system F4. We have signatures

εj , j = 1, 4.

The corresponding Σεj coincide respectively with the root system

A1 + C3 for ε1

and with root system

B4 for ε4.

Let a root system Σ coincide with the root system G2. Then we have only one signature ε = 1.
The corresponding Σεj is the root system of

A1 +A1.

For a fixed Σ, there can be several corresponding pairs (g, kε). Let us give a list of possible
subalgebras kε for classical simple real Lie algebras:

g = sl(l + 1,C) : kε = su(l − j + 1, j), 0 6 2j 6 l;
g = sl(l + 1,R) : kε = so(l − j + 1, j), 0 6 2j 6 l;
g = su∗(2l + 2) : kε = sp(l − j + 1, j), 0 6 2j 6 l;
g = su(l +m, l) : kε = su(l +m− j, j) + su(l − j, j) + so(2), m > 1, 0 6 j 6 l;
g = su(l, l) : kε = su(l − j, j) + su(l − j, j) + so(2), 0 6 2j 6 l;
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g = su(l, l) : kε = sl(l,C) + R;
g = so(2l + 1,C) : kε = so(2l − 2j + 1, 2j), 0 6 j 6 l;
g = so(2l,C) : kε = so(2l − 2j, 2j), 0 6 j 6 l;
g = so(2l,C) : kε = so∗(2l);
g = so(l +m, l) : kε = so(l − j +m, j) + so(l − j, j), m > 1, 0 6 j 6 l;
g = so(l, l) : kε = so(l − j, j) + so(l − j, j), 0 6 2j 6 l;
g = so(l, l) : kε = so(l,C);
g = so∗(4l + 2) : kε = u(2l − 2j + 1, 2j), 0 6 2j 6 l;
g = so∗(4l) : kε = u(2l − 2j, 2j), 0 6 2j 6 l;
g = so∗(4l) : kε = su∗(2l) + so(1, 1);
g = sp(l,C) : kε = sp(l − j, j), 0 6 2j 6 l;
g = sp(l,C) : kε = sp(l,R);
g = sp(l,R) : kε = u(l − j, j), 0 6 2j 6 l;
g = sp(l,R) : kε = gl(l,R);
g = sp(l +m, l) : kε = sp(l +m− j, j) + sp(l − j, j), m > 1, 0 6 j 6 l;
g = sp(l, l) : kε = sp(l − j, j) + sp(l − j, j), 0 6 2j 6 l;
g = sp(l, l) : kε = sp(l,C).

A generalized Cartan decomposition of the Lie group G with respect to a pair of subgroups
(Kε,K) has a form

G = KεAK (12.19)

(see [46]). If

k1h1k
′
1 = k2h2k

′
2, k1, k2 ∈ Kε, h1, h2 ∈ A, k′1, k

′
2 ∈ K,

then

k′1k
′
2
−1 = k−1

1 k2 ∈ K
⋂
Kε, h1 = (k−1

1 k2)h2(k−1
1 k2)−1.

12.6 Generalized Cartan decomposition and H-coordinate systems on G/K

The decomposition (12.19) does not give a unique decomposition g = khk′ of elements g ∈ G
into a product of elements of Kε, A and K. In order to have a unique decomposition we use
the following procedure. Let a+

ε denote the set of all elements H ∈ a for which α(H) > 0 for
each α ∈ Σ+

ε , where Σ+
ε is the set of positive roots in Σε. Let A+

ε = exp a+
ε . We denote a set

of representatives of cosets of Kε/M by (Kε/M). Then almost each element g ∈ G decomposes
uniquely as a product

g = yhk, y ∈ (Kε/M), h ∈ A+
ε , k ∈ K (12.20)

(see [46]). Note that the set A+
ε does not coincide with the set A+ in (12.2). Moreover, the

set A+
ε is a union of the sets wA+, where w runs over a part of elements (including the unit

element) of the Weyl group W of the pair (g, a).
Taking into account the unique decomposition (12.20), we can state that the space G/K is

parametrized almost everywhere by elements from (Kε/M)A+
ε . A parametrization of A+

ε can
be obtained from (12.4), if we introduce necessary restrictions upon values of the parameters
t1, t2, . . . , tl.
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Thus, a parametrization of the space G/K (by using the generalized Cartan decomposition)
is reduced to a parametrization of the space Kε/M . Generally speaking, it is possible to choose
many coordinate systems on Kε/M . To each of such coordinate systems on Kε/M there corre-
sponds a coordinate system on G/K. These coordinate systems on G/K are called hyperbolic
or H-systems.

A group G may have many subgroups Kε. To each of these subgroups there corresponds its
coordinate systems on G/K.

Remark. The generalized Cartan decomposition (12.19) can be written in the form G = KAKε.
This form of the decomposition can be used for parametrization of the pseudo-Riemannian sym-
metric spaceG/Kε. This space is an analogue of the one-sheeted hyperboloid SO0(1, 4)/SO0(1, 3)
in the 5-dimensional Minkowski space-time. The space G/Kε can be parametrized by elements
from (K/M)A+

ε ; then the corresponding parametrization gives an analogue of the spherical
coordinate system on SO0(1, 4)/SO0(1, 3).

12.7 Iwasawa decomposition and S-coordinate systems on G/MN

Let G = KAN be an Iwasawa decomposition of the group G. We represent elements of K in the
form of the product k = k̃m, m ∈M , where k̃ is an element of K representing a coset of K/M
containing the element k. The set of elements k̃ is denoted as (K/M). Then the decomposition
G = KAN can be written as G = (K/M)MAN = (K/M)AMN . Therefore,

(G/MN) = (K/M)A, (12.21)

where (G/MN) is a set of representatives of cosets in G/MN . The relation (12.4) gives
a parametrization of elements h ∈ A by the parameters t1, t2, . . . , tl. Thus, according to (12.21)
a parametrization of the space G/MN is reduced to a parametrization of the space K/M . A pro-
cedure of the latter parametrization was described above. In analogy with the parametrization
of the upper sheet of the cone C+

4 (related to the group G = SO0(1, 4)), we call the coordinate
system given by this parametrization of G/MN spherical or the S-coordinate system.

Comparing the relations (12.3) and (12.21), we see that S-coordinate systems on G/K and
on G/MN almost coincide. A difference consists in the fact that for the parametrization of
G/MN the whole subgroup A is used, whereas for the parametrization of the space G/K we
used only its part A+.

In order to obtain a G-invariant measure on G/MN we use the integral relation∫
G
f(g)dg =

∫
K

∫
A

∫
N
f(khn)e2ρ(log h)dn dh dk, (12.22)

where dg, dk, dh and dn are invariant measures on G, K, A and N , respectively. If k = k̃m,
m ∈M , k̃ ∈ (K/M), then∫

K
f(k)dk =

∫
(K/M)

∫
M
f(k̃m)dmdk̃,

where dk̃ is a K-invariant measure on (K/M). It follows from (12.22) that for (G/K) 3 x =
k̃h ∈ (K/M)A we have∫

G/K
f(x)dx =

∫
(K/M)

∫
A
f(k̃h)e2ρ(log h)dh dk̃, (12.23)

where dx is a G-invariant measure on G/K.
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12.8 Gelfand–Naimark–Bruhat decomposition
and T -coordinate systems on G/MN

The decomposition of the Lie algebra g into root subspaces is of the form

g = m + a +
∑
α∈Σ

gα,

where Σ is the set of restricted roots of the pair (g, a). We separate here the subspace n̄ =
∑
α<0

gα,

where the summation is over all negative restricted roots of the pair (g, a). It is easy to see that
n̄ is a nilpotent subalgebra in g. Besides, n̄ is obtained from n by acting by the involutive Cartan
automorphism θ: θn = n̄. We denote by N the analytical subgroup in G with the Lie algebra n̄.
The set NAMN is everywhere dense in G and almost each element g ∈ G decomposes uniquely
as a product g = ñhmn, ñ ∈ N̄ , h ∈ A, m ∈ M , n ∈ N (see [48]). This decomposition of G is
called the Gelfand–Naimark–Bruhat decomposition. We have

(G/MN) = N̄A. (12.24)

The equality here is understood in the sense that N̄A is everywhere dense in (G/MN). The
relation (12.4) gives a parametrization of the subgroup A by numbers t1, t2, . . . , tl.

Thus, a parametrization of the space G/MN is reduced to a parametrization of the sub-
group N̄ . This subgroup can be parametrized by representing N̄ in a form of a product of one
parameter subgroups exp gα. This parametrization is called translational (T-system of coordi-
nates on G/MN). The most interesting case is when the subgroup N̄ is commutative. It is
a case when G = SO0(1, n).

As we have seen, the T -coordinate system onG/K is introduced by means of the subgroupNA
which differs from the subgroup N̄A in (12.24). However, it can be done that parametrizations of
the corresponding subgroups N and N̄ (by means of which T -coordinate systems are introduced
on G/K and G/MN) will coincide with each other. For this aim we parametrize the set G/K
starting from the Iwasawa decomposition G = N̄AK of G. Then parametrizations of G/K and
G/MN are fulfilled by means of parameters of the same set N̄A.

A G-invariant measure dx on G/MN in the T -coordinate system is determined by the relation∫
G/MN

f(x)dx =
∫

N̄

∫
A
f(n̄h)e2ρ(log h)dh dn̄,

where x represents the element n̄h ∈ N̄A, and dn̄ and dh are invariant measures on N̄ and A,
respectively.

12.9 Gelfand–Naimark–Bruhat decomposition
and O-coordinate systems on G/MN

Let G = N̄AMN be the Gelfand–Naimark–Bruhat decomposition of the group G, where the
equality is understood on a dense subspace in G. It can be represented in the form

G = (N̄M)AMN, (12.25)

where N̄M is a closed subgroup in G. This decomposition is not unique. Since elements of the
subgroup A commute with elements of M , then for obtaining a unique decomposition we have
to take a set of representatives y of cosets of N̄M/M instead of the subgroup N̄M . We denote
the set of these representative by (N̄M/M). It follows from (12.25) that G = (N̄M/M)AMN ,
where the equality is understood on a dense subspace of G. Thus,

(G/MN) = (N̄M/M)A. (12.26)
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The relation (12.4) gives a parametrization of the subgroup A by numbers t1, t2, . . . , tl. The
relation (12.26) reduces a parametrization of the space G/MN to a parametrization of the space
(N̄M/M). A parametrization of the cone G/MN , obtained in this way, is called orispherical (O-
coordinate system). The O-coordinate system on the cone C+

4 for G = SO0(1, 4) was considered
in Section 8.

The most interesting case is when the subgroup N̄ is commutative, that is, when G =
SO0(1, n). In this case, the subgroup N̄M is isomorphic to the group ISO(n − 1) (see [3],
Chapter 9).

Comparing the parametrizations (12.14) and (12.26) of the spaces G/K and G/MN , we see
that they differ by appearing different nilpotent subgroups N and N̄ . Replacing the Iwasawa
decomposition G = NAK by the decomposition G = N̄AK we obtain the relation

(G/K) = (N̄M/M)A (12.27)

instead of the relation (12.14). Then the spaces G/K and G/MN are parametrized by the same
sets.

A G-invariant measure dx on G/MN in the O-coordinate system is determined by the integral
relation∫

G/MN
f(x)dx =

∫
(N̄M/M)

∫
A
f(yh)e2ρ(log h)dh dy,

where dy is an N̄M -invariant measure on (N̄M/M).

12.10 Generalized Iwasawa decomposition

The generalized Iwasawa decompositions are constructed by means of subgroups of G used for
construction of the generalized Cartan decomposition of G.

Let M∗ be a normalizer of the subgroup A in K. We set M∗
ε = Kε

⋂
M∗ and Wε = M∗

ε /M .
Then Wε is a symmetry group for the system of roots Σε (see [46]).

Elements of the quotient space Wε\W can be represented by elements w1 ≡ 1, w2, . . . , wr of
the subgroup M∗ which do not belong to M∗

ε . The integer r is equal to the order of the quotient
space Wε\W .

We create the sets KεwiAN , i = 1, 2, . . . , r. Then

(a) if kwihn = k′wjh
′n′ with k, k′ ∈ Kε, h, h′ ∈ A, n, n′ ∈ N , then k = k′, i = j, h = h′,

n = n′;

(b) the mapping (k, h, n) → kwihn is an analytic diffeomorphism of the manifold Kε×A×N
onto KεwiAN (i = 1, 2, . . . , r);

(c) the set
⋃r

i=1KεwiAN is open and everywhere dense in G (see [46]). Thus,

G =
r⋃

i=1

KεwiAN. (12.28)

This equality is true on a dense manifold of G.

According to these assertions, almost each element g ∈ G can be uniquely decomposed into
a product

g = kwihn, k ∈ Kε, 1 6 i 6 r, h ∈ A, n ∈ N.

The equality (12.28) is called a generalized Iwasawa decomposition of the group G. This decom-
position is written for those pseudo-Riemannian symmetric spaces G/Kε, which are associated
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with the corresponding signatures ε of the root system Σ. These symmetric spaces do not exhaust
all pseudo-Riemannian symmetric spaces (see [45]). However, the decomposition (12.28) can be
generalized to any pseudo-Riemannian symmetric space [49]. We consider the decomposition
(12.28) only for spaces determined by signatures ε of the root system Σ.

Integral relations for the usual Iwasawa decomposition of the group G can be generalized to
generalized Iwasawa decompositions. We have∫

G
f(g)dg =

r∑
i=1

∫
Kε

∫
A

∫
N
f(kwihn)e2ρ(log h)dn dh dk, (12.29)

where f is a continuous function on G with a compact support, and dg, dk, dh, dn are invariant
measures on G, Kε, A and N , respectively. This relation is true for an appropriate normalization
of the measures. In another case, the right hand side must be multiplied by a constant.

12.11 Generalized Iwasawa decomposition
and H-coordinate systems on G/MN

Let us write down the relation (12.28) in the form

G =
r⋃

i=1

KεwiAMN,

where the equality is understood on a dense manifold inG. Since AM = MA and wiMw−1
i = M ,

it can be represented as

G =
r⋃

i=1

(Kε/M)wiAMN, (12.30)

where (Kε/M) is a set of representatives of cosets of the quotient space Kε/M . The decompo-
sition (12.30) obeys the following property: If

ywihmn = y′wjh
′m′n′, y, y′ ∈ (Kε/M), h, h′ ∈ A, m,m′ ∈M, n, n′ ∈ N,

then y = y′, i = j, h = h′, m = m′, n = n′. By other words, almost every element g ∈ G can be
uniquely decomposed as a product

g = ywihmn, y ∈ (Kε/M), 1 6 i 6 r, h ∈ A, m ∈M, n ∈ N.

We obtain from the decomposition (12.30) that

(G/MN) =
r⋃

i=1

(Kε/M)wiA, (12.31)

where the equality is understood on a dense (in G/MN) set. The relation (12.4) gives a para-
metrization of the subgroup A by the numbers t1, t2, . . . , tl. Therefore, the relation (12.31)
reduces a parametrization of the space G/MN to a parametrization of the quotient space Kε/M .
A parametrization of the cone G/MN , obtained in this way, is called hyperbolic. The correspon-
ding coordinate system is called H-system of coordinates. Clearly, to different subgroups Kε

there corresponds different coordinate systems on G/MN .

Remark. The generalized Iwasawa decomposition (12.28) can be written as

G =
r⋃

i=1

NAwiKε.

This relation can be used for parametrization of the pseudo-Riemannian symmetric space G/Kε

by elements of the set NA
⋃
NAw2

⋃
· · ·

⋃
NAwr. As a result, one obtains a T -coordinate

system on G/Kε.
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13 Spectra of quasi-regular representations of G

on functions on G/K and on G/MN

13.1 Quasi-regular representations of G

We consider the Hilbert space L2(G/K) of functions on the hyperboloid G/K and the Hilbert
space L2(G/MN) of functions on the cone G/MN with respect to G-invariant measures on G/K
and G/MN , respectively. The group G acts on G/K and G/MN as a transitive motion group.
To each element g ∈ G there corresponds transformation x → g−1x of points of G/K and
of points of G/MN . If some coordinate system is introduced on G/K (on G/MN) then this
transform can be written in terms of the corresponding coordinates.

The transform x → g−1x on G/K and on G/MN gives a possibility to introduce unitary
representations on L2(G/K) and on L2(G/MN). These representations are given by the formula

π(g)f(x) = f(g−1x), x ∈ G/K or G/MN, (13.1)

and are called quasi-regular. The quasi-regular representation on G/K will be denoted by πH

and on G/MN by πC .
One of the main problems of our paper is to construct orthogonal bases on the Hilbert spaces

L2(G/K) and L2(G/MN) for each coordinate system introduced above. To each coordinate
system there corresponds a chain of subgroups of G:

S-system: G ⊃ K ⊃ · · · ,

T -system: G ⊃ N̄ ⊃ · · · ,

O-system: G ⊃ N̄M ⊃ · · · ,

H-system: G ⊃ Kε ⊃ · · · .

There are several choices for each of these chains. An explicit form of other subgroups gives
different varieties of a fixed type of coordinate systems. We do not consider them. As in the
case of the group G = SO0(1, 4), most interesting bases of L2(G/K) and L2(G/MN) are bases
with separated variables. Irreducible representations of the group G and of its subgroups are
realized on parts of the corresponding bases. These basis functions are eigenfunctions of opera-
tors invariant with respect to the group G and its subgroups associated with the corresponding
coordinate system (see the case G = SO0(1, 4)). Eigenvalues of these operators (and also other
indices if invariant operators have multiple eigenvalues) characterize basis functions. Therefore,
we have to know a list of irreducible representations which are contained in the quasi-regular
representations on L2(G/K) and on L2(G/MN) (these representations determine eigenvalues of
the corresponding invariant operators). We also have to find decompositions of the irreducible
representations of G, which are contained in the decomposition of the quasi-regular representa-
tions, into irreducible representations of the corresponding subgroups. These representations of
subgroups determine a part of indices characterizing basis functions.

13.2 Decomposition of quasi-regular representation πH

Let F be a space of real linear forms on the subalgebra a of the Lie algebra g. The subset of F ,
consisting of linear form λ for which (λ, αi) > 0 for each simple restricted root αi of the pair (g, a),
is denoted by F+. Let πδλ be a principal nonunitary series representation of the group G from
section 10. We are interested in representations πδλ of class 1 with respect to the subgroup K
(that is, in representations πδλ, which contain a trivial representation of K). A restriction πδλ|K
of the representation πδλ upon the subgroup K contains an irreducible representation ω of this
subgroup if and only if a restriction of ω upon the subgroup M contains the representation δ
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of M (see [15]). Therefore, the representation πδλ is of class 1 with respect to K if and only
if δ is the trivial representation of the subgroup M . Such representations πδλ will be denoted
by πλ. The representations πλ, for which λ + ρ (where ρ is the half-sum of positive restricted
roots) are pure imaginary linear forms, are unitary (see, for example, [15]). They constitute
class 1 representations of the principal unitary series of the group G. These representations are
irreducible. In the class of the unitary representations πλ, λ ∈ iF − ρ, equivalence relations
exist. Namely, representations πλ and πλ′ are equivalent if and only if λ′ = w(λ + ρ) − ρ,
w ∈ W . In order to obtain non-equivalent representations we have to restrict ourselves by the
representations πλ, λ ∈ iF+ − ρ.

Let g ∈ G and k ∈ K. Then for the element g−1k we have a decomposition

g−1k = kghn, kg ∈ K, h ∈ A, n ∈ N

(the Iwasawa decomposition). We represent the element h in this decomposition in the form

h = expH(g−1k), H(g−1k) ∈ a.

By means of this element we introduce a Fourier transform of functions on G/K. If f ∈
C∞c (G/K), where C∞c (G/K) is the set of infinitely differentiable functions on G/K with com-
pact support, then f can be considered as a function on G which is constant on cosets from
G/K. A Fourier transform of the function f is a function on K/M ×F determined by

f̃(k̃, ν) =
∫

G
f(g) exp{(−iν − ρ)[H(g−1k)]}dg, ν ∈ F , (13.2)

where k̃ is the coset in K/M which contains the element k ∈ K. The function f̃(k̃, ν) can
be represented as a function on K constant on cosets of K/M . Let us prove that if f(g)
transforms under action of G by quasi-regular representation πH of G, then f̃(k̃, ν) transforms
under the representation πλ ≡ π−iν−ρ of the principal unitary series. Indeed, if f(g) is replaced
by F (g) := πH(g0)f(g) = f(g−1

0 g), then the function (13.2) is replaced by∫
G
f(g−1

0 g) exp{(−iν − ρ)[H(g−1k)]}dg =
∫

G
f(g) exp{(−iν − ρ)[H(g−1g−1

0 k)]}dg. (13.3)

Let us analyze the expression H(g−1g−1
0 k). Since

g−1
0 k = kg0hn, g−1kg0 = (kg0)gh

′n′,

then

g−1g−1
0 k = (kg0)gh

′hn′′n = (kg0)g exp[H(g−1kg0)] exp[H(g−1
0 k)]n′′n.

Therefore,

H(g−1g−1
0 k) = H(g−1kg0) +H(g−1

0 k).

Then

exp{(−iν − ρ)[H(g−1g−1
0 k)]} = exp{(−iν − ρ)[H(g−1kg0)]} exp{(−iν − ρ)[H(g−1

0 k)]}.

Substituting this expression into (13.3), we obtain that under the transition

f(g) → πH(g0)f(g) ≡ f(g−1
0 g)
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the function f̃(k̃, ν) turns into the function

exp{(−iν − ρ)[H(g−1
0 k)]}

∫
G
f(g) exp{(−iν − ρ)[H(g−1kg0)]}dg

= exp{(−iν − ρ)[H(g−1
0 k)]}f̃(k̃g0 , ν) = π−iν−ρ(g0)f̃(k̃, ν).

This proves our assertion.
The transform (13.2) at fixed ν is called a Poisson transform on G/K (see [51]). The

function f(g) from (13.2) can be restored by means of the function f̃(k̃, ν) as [51]

f(g) = |W |−1

∫
F

∫
K/M

f̃(k̃, ν) exp{(iν − ρ)[H(g−1k)]}|c(ν)|−2dk̃ dν. (13.4)

Moreover, the Plancherel formula∫
G/K

|f(g̃)|2dg̃ = |W |−1

∫
F

∫
K/M

|f̃(k̃, ν)|2|c(ν)|−2dk̃ dν (13.5)

holds. In (13.4) and (13.5), |W | means an order of the Weyl group W , dg̃ is a G-invariant
measure on G/K, dk̃ is a K-invariant measure on K/M , and dν is the Lebesgue measure on F .
The multiplier c(ν) in the Plancherel measure |c(ν)|−2dν is determined by the formula

c(ν) =
∫

N̄
exp{(−iν − ρ)[H(n̄)]}dn̄ =

I(iν)
I(ρ)

. (13.6)

Here H(n̄) is determined by the Iwasawa decomposition n̄ = k exp[H(n̄)]n, k ∈ K, n ∈ N ,
H(n̄) ∈ a, of the element n̄ ∈ N̄ , and dn̄ is the normalized measure on N̄ (see [15]). For I(ν)
the following formula holds:

I(ν) =
∏

α∈Σ+

B

(
m(α)

2
,
m(α/2)

4
+
〈ν, α〉
〈α, α〉

)
, (13.7)

where Σ+ is the set of positive restricted roots of the pair (g, a) (without taking into account
multiplicities), m(α) is a multiplicity of the root α, and B(., .) is the beta-function. The formulas
(13.6) and (13.7) determine the Plancherel measure in (13.4) and (13.5). A proof of formulas
(13.4)–(13.7) can be found in [15]. Note that formulas (13.2)–(13.5) demand certain normaliza-
tion of the measures dg, dk̃ and dν. A violation of this normalization leads to multiplication of
expressions by constants.

The function f̃(k̃, ν) on K/M ×F satisfies the additional condition (see [50])∫
F

∫
K/M

|f̃(k̃, ν)|2|c(ν)|−2dk̃ dν =
∫
F

∫
K/M

|f̃(k̃, wν)|2|c(ν)|−2dk̃ dν,

where w is any element of the Weyl group W . Hence, the relation (13.5) can be written in the
form ∫

G/K
|f(g̃)|2dg̃ =

∫
F+

∫
K/M

|f̃(k̃, ν)|2|c(ν)|−2dk̃ dν. (13.8)

Formulas (13.2), (13.4) and (13.8) can be continued onto the spaces L2(G/K) and L2(K/M×
F+) (the latter space is taken with respect to the measure |c(ν)|−2dk̃ dν). Then they give
a decomposition of the quasi-regular representation πH of the group G into irreducible unitary
constituents. According to this decomposition we may state that the representation πH of G
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decomposes into a direct integral of the unitary representations πλ ≡ πiν−ρ, ν ∈ F+, of G and
each of these representations appears in the decomposition only once:

πH =
∫
F+

⊕πiν−ρ|c(ν)|−2dν.

In order to separate in L2(G/K) those spaces, on which irreducible representations πiν−ρ are
realized, we have to take by means of the integral transform (see formula (13.4))∫

K/M
f̃(k̃, ν) exp{(iν − ρ)|H(g−1k)]}dk̃ (13.9)

an image in L2(G/K) of the space L2(K/M) ≡ L2
0(K), on which πiν−ρ is realized.

13.3 Decomposition of quasi-regular representation πC

The problem of decomposition of the quasi-regular representation πC into irreducible represen-
tations of G can be solved by means of the usual Fourier transform on the commutative group A.
Let C∞c (G/MN) be the space of infinitely differentiable functions on G/MN with a compact
support. This space is everywhere dense in L2(G/MN). Functions f ∈ C∞c (G/MN) are con-
sidered as functions f(k̃, h) on (K/M)A (see subsection 11.7). For these functions the following
transform can be constructed:

f̃(k̃, ν) =
∫

A
f(k̃, h) exp{(iν + ρ)(log h)}dh, ν ∈ F . (13.10)

It is easy to see that

f(k̃, h) =
∫
F
f̃(k̃, ν) exp{(−iν − ρ)(log h)}dν, (13.11)

and the Plancherel formula∫
G/MN

|f(x)|2dx ≡
∫

K/M
dk̃

∫
A
|f(k̃, h)|2e2ρ(log h)dh =

∫
K/M

dk̃

∫
F
|f̃(k̃, ν)|2dν (13.12)

holds.
Formulas (13.10)–(13.12) can be continued to the spaces L2(G/MN) and L2(K/M × F).

Using the formula (13.10) it is easy to show that if a function f(k̃, h) ∈ L2(G/MN) transforms
under the representation πC , then the function f̃(k̃, ν) at each fixed ν transforms under the
irreducible unitary representation π−iν−ρ of the group G. Since f(k̃, h), as a function on A,
does not satisfy additional conditions, then f̃(k̃, ν), as a function on F , also does not satisfy any
additional conditions. Formulas (13.10)–(13.12) give a decomposition of the representation πC

of the group G into irreducible representations πiν−ρ of G:

πC =
∫
F
⊕πiν−ρdν.

The representations πiν−ρ and πw(iν)−ρ are unitary equivalent for any w ∈W and other equiva-
lence relations in the set of the representations πiν−ρ do not exist. Hence, the representation πC

decomposes into a direct integral of all irreducible class 1 representations of the principal unitary
series, and each of these representations is contained in the decomposition |W | times, where |W |
is an order of the group W .
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In order to separate in L2(G/MN) a subspace of functions which are transformed under the
irreducible representation πiν−ρ it is necessary to make the integral transform

f̂(k̃, h; ν) =
∫

A
f(k̃, hh′)e−(iν−ρ)(log h′)dh′. (13.13)

(Speaking in a mathematically strict way, this space can be separated not in L2(G/MN), but in
the space of infinitely differential functions on G/MN .) The functions (13.13) are homogeneous
in h of homogeneity degree (iν − ρ). It is easy to show that f̂(k̃, h; ν) are functions on the cone
G/MN ∼ (K/M)A and are transformed under the representation πiν−ρ.

Let us consider other spectral problems, in particular, restrictions of representations πλ of
the group G onto the subgroups K, N̄ , N̄M , Kε, and decompositions of these restrictions into
irreducible constituents.

13.4 Restriction of representations πλ onto K

A multiplicity of an irreducible unitary representation ω of the subgroup K in πλ↓K coincides
with a multiplicity of the unit (identity) representation of the subgroup M in ω↓M . This state-
ment solves completely the problem of restriction of πλ onto K. It is known [50] that if the
group G is of real rank 1 (that is, G coincides with one of the groups SU(1, n), SO0(1, n),
Sp(1, n), F4(−20)), then the restriction πλ|K decomposes into a sum of all irreducible representa-
tions of K which are of class 1 with respect to M and their multiplicities in the decomposition
are equal to 1.

13.5 Restriction of representations πλ onto N̄

The representation πλ can be realized as follows. We take functions f on G satisfying the
condition

f(g) = f(xmnh) = exp(−λ(log h))f(x), (13.14)

where x are representatives of cosets of G/MNA. We construct a Hilbert space of such functions
with the norm

‖f‖2 =
∫

K
|f(k)|2dk. (13.15)

The representation πλ is realized in this space by the formula

πλ(g0)f(g) = f(g−1
0 g), g0 ∈ G.

Functions f satisfying the condition (13.14) are determined uniquely by their values on rep-
resentatives x. Therefore, πλ can be realized on functions f(x). In order to give an action
of the operators πλ(g) on functions f(x) we take into account that πλ(g)f(x) = f(g−1x) and
decompose g−1x into a product of elements of X, M , N and A (where X denotes the set of
representatives x):

g−1x = xgm
′n′hg. (13.16)

Since f(g−1x) = f(xgm
′n′hg) = exp(−λ(log hg))f(xg), then

πλ(g)f(x) = exp(−λ(log hg))f(xg), (13.17)

where hg and xg are determined by (13.16). When we realize the representation πλ on the space
of functions f(x) it is desirable to have an expression for a norm in this space expressed by
means of an integral over X.
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According to the Gelfand–Naimark–Bruhat decomposition of the group G, almost each ele-
ment g ∈ G can be decomposed in the form

g = n̄hmn = n̄mn′h, n̄ ∈ N̄ , m ∈M, n′ ∈ N, h ∈ A.

Hence, the subgroup N̄ can be taken as a set X of representatives x of cosets of G/MNA. An
action formula for operators πλ(g), g ∈ G, upon functions f(n̄) can be obtained in each concrete
case by means of formulas (13.16) and (13.17). In this space we have the norm

‖f‖2 =
∫

N̄
|f(n̄)|2dn̄, (13.18)

where dn̄ is an invariant measure on N̄ , instead of the norm (13.15). The representation πiν−ρ,
ν ∈ F , of the principal unitary series, realized on the Hilbert space L2(N̄) (with the norm
(13.18)), is unitary and is unitary equivalent to the corresponding representation in the Hilbert
space with the norm (13.15).

Restrict the representation πλ of the group G, realized on the space L2(N̄), upon the subgroup
N̄ . It is easy to see that the operators πλ(n̄0), n̄0 ∈ N̄ , act on L2(N̄) as

πλ(n̄0)f(n̄) = f(n̄−1
0 n̄).

Thus, a restriction of the representation πλ upon the subgroup N̄ is unitary equivalent to the
regular representation of this subgroup. We conclude that a decomposition of regular represen-
tation of N̄ gives a decomposition of the representation πλ↓N̄ into irreducible constituents.

In particular, if G = SO0(1, n), then N̄ is a commutative group isomorphic to the group Tn−1

of real translations of dimension n− 1 in Rn−1. If (x1, x2, . . . , xn−1) ∈ Tn−1, then an irreducible
unitary representation of Tn−1 can be written in the form

x = (x1, x2, . . . , xn−1) → ei(x·p), p = (p1, p2, . . . , pn−1), pi ∈ R.

Here x · p = x1p1 + x2p2 + · · · + xn−1pn−1. The regular representation of the group N̄ = Tn−1

decomposes into a direct integral of all these irreducible unitary representations and each of these
representations is contained in the decomposition once. The restriction of the representation πλ

of G upon the subgroup N̄ = Tn−1 decomposes into the same direct integral.

13.6 Restriction of representations πλ onto N̄M

We represent the group G in the form G = (N̄M/M)AMN . Almost each element g ∈ G
decomposes uniquely as a product of elements of (N̄M/M), A, M and N . Therefore, the
representation πλ of G can be realized on the space of functions given on the set (N̄M/M).
This set is homeomorphic to the subgroup N̄ . Hence, a norm on this space can be given by the
formula (13.18). According to formulas (13.16) and (13.17), a restriction of the representation πλ

upon N̄M acts upon the functions f(x), x ∈ (N̄M/M) by the formula

πλ(s)f(x) = f(s−1x), s ∈ N̄M.

Therefore, a restriction of the representation πλ of the groupG upon the subgroup N̄M is unitary
equivalent to the quasi-regular representation of this subgroup, realized on the homogeneous
space N̄M/M .

In particular, if G = SO0(1, n), then N̄M ∼ ISO(n−1). The quasi-regular representation of
the group ISO(n−1) on the space L2(ISO(n−1)/SO(n−1)) decomposes into a direct integral
of all unitary irreducible representations of ISO(n− 1) of class 1 with respect to the subgroup
M ∼ SO(n−1) and each of these representations of ISO(n−1) is contained in the decomposition
only once (see, for example, [3]). These representations are given by a real positive number.
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13.7 Restriction of representations πλ onto Kε

The generalized Iwasawa decomposition

G =
r⋃

i=1

KεwiAN,

where the equality is understood on a dense subspace of G, can be written in the form

G =
r⋃

i=1

(Kε/M)wiMAN. (13.19)

Almost each element of G decomposes as a product of elements of (Kε/M)wi (i = 1, 2, . . . , r),
M , A, N . Then elements of the set

X =
r⋃

i=1

(Kε/M)wi (13.20)

can be taken as representatives of cosets of G/MAN . Thus, the representation πλ of the group G
can be realized on a space of functions given on X. The representation πiν−ρ, ν ∈ F , realized on
the Hilbert space L2

0(K) of invariant (with respect to M) functions on K with the norm (13.15),
is unitary equivalent to the representation πiν−ρ realized by formula (13.17) on the Hilbert space
L2

0(X) of functions on the set (13.20) with the scalar product

〈f, f ′〉 =
r∑

i=1

∫
Kε

f(kεwi)f ′(kεwi)dkε,

where dkε is an invariant measure on Kε. It follows from (13.16) and (13.17) that a restriction
of the representation πλ of G upon the subgroup Kε acts on functions f given on X by the
formula

πλ(k0
ε)f(kεwi) = f((k0

ε)
−1kεwi), k0

ε ∈ Kε. (13.21)

Thus, a restriction of the representation πλ of G upon the subgroup Kε is unitary equivalent
to the orthogonal sum of r copies of the quasi-regular representation of Kε on the space of
functions on Kε/M . Since M is a compact subgroup in Kε, then the decomposition of the
quasi-regular representation of Kε into irreducible constituents can be easily obtained from the
decomposition into irreducible constituents of the regular representation of Kε (see [52]).

In particular, if G = SO0(1, n), then M = SO(n − 1). One of the possibilities for a sub-
group Kε is SO0(1, n − 1). We have M ⊂ Kε and r = 2. A restriction of the representa-
tion πλ of the group SO0(1, n) upon the subgroup Kε = SO0(1, n − 1) is unitary equivalent
to the orthogonal sum of two quasi-regular representations of Kε on the space of functions on
SO0(1, n − 1)/SO(n − 1). This quasi-regular representation decomposes into a direct integral
of all representations of class 1 (with respect to SO(n − 1)) from the principal unitary series
of SO0(1, n− 1) and each of these representations is contained in the decomposition only once
(see, for example, [3]).

14 Expansion of functions on the cone G/MN

In order to obtain basis functions on the cone G/MN for each coordinate system, we can act
as in the case G = SO0(1, 4). For this, for each coordinate system it is necessary to find
differential operators, invariant with respect to the group G and its subgroups characterizing
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the corresponding coordinate systems, then to create a system of differential equations for
their eigenfunctions, and to solve this system. As shown below, an expansion of functions on
G/MN is reduced to expansion of functions, given on homogeneous spaces of subgroups of
smaller dimension. If the latter expansion is known, then we do not need to create a system
of differential equations and to solve it. In other words, we shall construct basis functions by
using the method of reduction of this problem to the problem for a smaller dimension (without
using invariant differential operators). However, the basis functions, which will be obtained, are
eigenfunctions of an appropriate system of invariant differential operators. Let us consider each
coordinate system separately.

14.1 Expansion for S-system

Formulas (13.10)–(13.12) reduce an expansion of functions f(x) ≡ f(k̃, h) on G/MN to an
expansion of functions, given on K/M . Indeed, under the integral in (13.11) we have a func-
tion f̃(k̃, ν), which for each fixed ν is transformed under irreducible representation πiν−ρ of the
group G and belongs to L2

0(K) ≡ L2(K/M). The function f̃(k̃, ν) can be expanded in matrix
elements of irreducible representations of the compact subgroup K, invariant on the right with
respect to the subgroup M . To obtain this expansion it is enough to apply the Peter–Weyl
theorem.

Multiplying these representation matrix elements by the exponential functions exp[(−iν −
ρ)(log h)] and by exp[(iν−ρ)(log h)] (at fixed ν) we obtain basis functions for irreducible spaces
for the group G. Unification of these basis functions for all values of ν gives a (continuous) basis
of the space L2(G/MN).

For example, if G = SO0(1, n), then K = SO(n) and M = SO(n − 1). Expansion of
functions given on the cone G/MN is reduced by formula (13.11) to expansions on the sphere
SO(n)/SO(n − 1). A basis for expansion of the latter functions consists of matrix elements
of “null” column of irreducible representations of the subgroup SO(n) with highest weights
(m, 0, 0, . . . , 0), that is of representations of class 1 with respect to the subgroup SO(n− 1) (see
[3], Chapter 9). We denote these matrix elements by Dm

α,0(k), where α enumerates basis elements
of the space, where the irreducible representation with highest weight (m, 0, . . . , 0) acts. Then
the collection of functions (see formula (13.11))

Dm
α,0(k̃) exp[(−iν − ρ)(log h)], m = 0, 1, 2, . . . , −∞ < ν <∞,

with different α constitutes the basis of L2(SO0(1, n)/MN), where MN ∼ ISO(n− 1).

14.2 Expansion for T -system

Let us change decompositions (13.10)–(13.12). Namely, we consider functions f ∈ C∞c (G/MN)
as functions f(n̄, h) on N̄A. Then instead of relations (13.10)–(13.12) we have

f̃(n̄, ν) =
∫

A
f(n̄, h)e(iν+ρ)(log h)dh, (14.1)

f(n̄, h) =
∫
F
f̃(n̄, ν)e(−iν−ρ)(log h)dν, (14.2)∫

G/MN
|f(x)|2dx ≡

∫
N̄
dn̄

∫
A
|f(n̄, h)|2e2ρ(log h)dh =

∫
N̄
dn̄

∫
F
|f̃(n̄, ν)|2dν. (14.3)

Thus, anexpansion of functions f ∈ C∞c (G/MN) in basis functions is reduced to an expansion
in basis functions, given on N̄ . For each fixed ν, the functions f̃(n̄, ν) are transformed under
the left regular representation of the subgroup N̄ . They can be expanded in basis functions by
means of decomposition of the regular representation of N̄ into irreducible constituents.



Eigenfunction Expansions of Functions Describing Systems with Symmetries 73

Let, for example, G = SO0(1, n). Then the subgroup N̄ is isomorphic to (n− 1)-dimensional
group Tn−1 of translations. The exponential functions

exp i(x · p), x = (x1, x2, . . . , xn−1) ∈ Tn−1, (14.4)
p = (p1, p2, . . . , pn−1), −∞ < pi <∞,

where x · p = x1p1 + x2p2 + · · · + xn−1pn−1, constitute a continuous basis for functions given
on N̄ . Thus, the functions f(x) ≡ f(n̄, h) can be expanded in the functions

exp i(x · p) exp[(exp(−iν − ρ)(log h)], −∞ < pi <∞, −∞ < ν <∞. (14.5)

Using formulas (14.1)–(14.3) and formulas for expansion of functions f(n̄) in the basis (14.4),
it is easy to write down formulas for expansions of functions f(n̄, h) in the basis (14.5) and the
corresponding Plancherel formula.

14.3 Expansion for O-system

In this coordinate system the cone G/MN is parametrized by means of the set (N̄M/M)A (see
formula (12.26)). We consider functions f ∈ C∞c (G/MN) as functions f(y, h) on (N̄M/M)×A.
The expansions

f̃(y, ν) =
∫

A
f(y, h)e(iν+ρ)(log h)dh, (14.6)

f(y, h) =
∫
F
f̃(y, ν)e(−iν−ρ)(log h)dν, (14.7)∫

G/MN
|f(x)|2dx =

∫
N̄M/M

dy

∫
A
|f(y, h)|2e2ρ(log h)dh =

∫
N̄M/M

dy

∫
F
|f̃(y, ν)|2dν (14.8)

hold. As we see, expansion of functions f ∈ C∞c (G/MN) in basis functions is reduced to
expansion of functions given on N̄M/M . At each fixed ν the functions f̃(y, ν) are transformed
under the quasi-regular representation of the subgroup N̄M . By means of decomposition of this
quasi-regular representation into irreducible representations of the subgroup N̄M , the functions
f̃(y, ν) can be expanded in matrix elements of irreducible representations of N̄M right invariant
with respect to the subgroup M .

If G = SO0(1, n), then the subgroup N̄M is isomorphic to the group ISO(n−1). The quasi-
regular representation of ISO(n− 1) on the space of functions given on the homogeneous space
ISO(n− 1)/SO(n− 1) decomposes into a direct integral of irreducible unitary representations
of ISO(n− 1) which are of class 1 with respect to the subgroup SO(n− 1). Matrix elements of
these representations of ISO(n−1) in SO(n−1)-basis are expressed in terms of Bessel functions
and are given in [3]. In expansion of functions given on ISO(n − 1)/SO(n − 1) only matrix
elements of the “null” column take part. If DR

α,0(r), r ∈ ISO(n − 1), 0 < R < ∞, are these
matrix elements, then the functions

DR
α,0(r)e

(−iν−ρ)(log h), 0 < R <∞, −∞ < ν <∞,

constitute a collection of basis functions on SO0(1, n)/SO(n) in the O-coordinate system.

14.4 Expansion for H-system

In this coordinate system, the cone G/MN is parametrized by the set

X =
r⋃

i=1

(Kε/M)wi, wi ∈Wε\W.
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We represent a function f ∈ C∞c (G/MN) as a function f(y, h) on X ×A. Then the transforms

f̃(y, ν) =
∫

A
f(y, h)e(iν+ρ)(log h)dh, (14.9)

f(y, h) =
∫
F
f̃(y, ν)e(−iν−ρ)(log h)dν, (14.10)∫

G/MN
|f(x)|2dx =

∫
X
dy

∫
A
|f(y, h)|2e2ρ(log h)dh =

∫
X
dy

∫
F
|f̃(y, ν)|2dν (14.11)

hold. Thus, an expansion of functions f ∈ C∞c (G/MN) in basis functions in H-coordinate sys-
tem is reduced to an expansion of functions given on Kε/M . At each fixed ν and wi the functions
f̃(y, ν) are transformed under the quasi-regular representation of the subgroup Kε. By means
of decomposition of this quasi-regular representation into irreducible constituents, the functions
f̃(y, ν) can be expanded in matrix elements of irreducible representations of Kε, invariant on
the right with respect to the subgroup M . Moreover, matrix elements of representations of Kε

can correspond to different chains of subgroups of Kε. Each basis function is non-vanishing only
on one set (Kε/M)wi.

If G = SO0(1, n), then the subgroup SO0(1, n−1), containing the subgroup M = SO(n−1),
can be taken as the subgroup Kε. In this case r = 2. The elements w1 ≡ 1 and w2 correspond
to the upper and lower parts of the hyperboloid Hn−1 = SO0(1, n)/SO(n− 1). Thus,

X = (Kε/M)
⋃

(Kε/M)w.

The problem of construction of the whole collection of basis functions on the cone G/MN in
this case is reduced to construction of basis functions for the space L2(Hn−1) of functions on
the hyperboloid SO0(1, n−1)/SO(n−1). On this hyperboloid different coordinate systems can
be chosen. A detailed consideration of this case see in [3], Chapters 9 and 10.

15 Expansion of functions on the hyperboloid G/K

The first way of construction of collections of basis functions on the hyperboloid G/K, cor-
responding to different coordinate systems, is to use reasoning described for the case when
G = SO0(1, 4) in Section 7. For SO0(1, 4), for each coordinate system we have found a complete
system of differential operators, invariant with respect to the group G and its subgroups, which
characterize the corresponding coordinate system. Then we have constituted the corresponding
system of differential equations and have solved it.

The second way for solving the problem of construction of collections of basis functions
consists in using the relations (13.2)–(13.5). Since it is not possible to construct a system of
invariant differential operators for the case of a generic group G, we use the second way. For
each concrete group G, the collection of basis functions, which will be found, a priori is a solution
of the corresponding system of invariant differential equations. Let us consider each coordinate
system separately.

15.1 Expansion for S-system

According to the relation (13.4), a function f(g̃) ∈ C∞c (G/K) can be represented as

f(g̃) = |W |−1

∫
F

[∫
K/M

f̃(k̃, ν) exp({(iν − ρ)[H(g−1k)]}dk̃

]
|c(ν)|−2dν. (15.1)

Let us consider the intrinsic integral on the right-hand side of this relation. The function f̃(k̃, ν),
as a function on K (constant on cosets with respect to M), can be expanded in matrix elements
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Dω
αα′(k) of irreducible representations ω of the group K. Only the matrix elements, invariant

on the right with respect to the subgroup M , enter to the expansion. This condition implies
a certain conditions for α′. Thus, by the Peter–Weyl theorem we have

f̃(k̃, ν) =
∑

ω,α,α′

Aων
αα′D

ω
αα′(k̃) (15.2)

and

Aων
αα′ =

∫
K/M

f̃(k̃, ν)Dω
αα′(k̃)dk̃, (15.3)∑

ω,α,α′

|Aων
αα′ |2 =

∫
K/M

|f̃(k̃, ν)|2dk̃. (15.4)

We substitute the expression (15.2) for f̃(k̃, ν) into the intrinsic integral on the right-hand side
of the relation (15.1) (that is, into the integral (13.9)) and permute summation and integration.
As a result, we obtain

I(g) ≡
∑

ω,α,α′

Aων
αα′

∫
K/M

Dω
αα′(k̃) exp{(iν − ρ)[H(g−1k)]}dk̃. (15.5)

Since in formula (15.1) we are interested in functions f given on G/K we can suppose that
g = k′h, where k′ are representatives of cosets in K/M and h ∈ A+. Thus, we put g = k′h.
Making in (15.5) the substitution k → k′k and taking into account the relation dk̃ = d(k′k̃), we
find that

I(g) ≡ I(k′h) =
∑

ω,α,α′

Aων
αα′

∫
K/M

Dω
αα′(k

′k̃) exp{(iν − ρ)[H(h−1k)]}dk̃

=
∑

ω,α,α′

∑
α′′

Aων
αα′D

ω
αα′′(k

′)
∫

K/M
Dω

α′′α′(k̃) exp{(iν − ρ)[H(h−1k)]}dk̃.

The integral∫
K/M

Dω
α′′α′(k̃) exp{(iν − ρ)[H(h−1k)]}dk̃ ≡ Dν

ω(α′′α′),0(h)

is a matrix element of the “null” column of the operator πiν−ρ(h) in the K-basis, and

I(g) ≡ I(k′h) =
∑

ω,α,α′

Aων
αα′

[∑
α′′

Dω
αα′′(k

′)Dν
ω(α′′α′),0(h)

]
. (15.6)

Substituting this expression for I(g) into (15.1) one obtains the relation

f(g̃) ≡ f(k̃h) = |W |−1

∫
F

 ∑
ω,α,α′

Aων
αα′F

ων
αα′(k

′, h)

 |c(ν)|−2dν, (15.7)

where

Fων
αα′(k

′, h) =
∑
α′′

Dω
αα′′(k

′)Dν
ω(α′′α′),0(h). (15.8)
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From (15.3) and (13.2) we find the transform inverse to the transform (15.7):

Aων
αα′ =

∫
K/M

dk̃′
∫

G
dg f(g) exp{(−iν − ρ)[H(g−1k′)]}Dω

αα′(k̃
′)

=
∫

G
f(g)Fων

αα′(k
′, h)dg, (15.9)

where g = khk′, k, k′ ∈ K, h ∈ A. It follows from (15.4) and (13.8) that the Plancherel formula∫
G/K

|f(g̃)|2dg̃ =
∫
F+

∑
ω,α,α′

|Aων
αα′ |2|c(ν)|−2dν (15.10)

holds. Thus, functions (15.8) constitute a complete collection of basis functions for the hyper-
boloid G/K.

If G = SO0(1, n), then K = SO(n) and M = SO(n − 1). Irreducible representations of K,
which are of class 1 with respect to SO(n − 1), are given by one non-negative integer m, and
the matrix elements Dω

αα′(k̃) from (15.8) and (15.3) take the form Dm
α,0(k), k ∈ K. We suppose

that these matrix elements are taken in the basis corresponding to the chain of subgroups

SO(n) ⊃M ≡ SO(n− 1) ⊃ SO(n− 2) ⊃ · · · .

Thus, functions (15.8) are products of matrix elements of “null” column of a representation of
the subgroup SO(n) and matrix elements of “null” column of the operator πiν−ρ(h):

Fmν
α,0 (k̃, h) = Dm

α,0(k̃)Dν
m,0(h)

(see [3] for an explicit form of these functions).

15.2 Expansion for T -system

Let us write down the formulas (13.2)–(13.5) in such form that the representation πiν−ρ is realized
on functions given on N̄ (not on functions, given on K/M). According to (13.16) and (13.17),
the operators πiν−ρ(g), g ∈ G, act on the space L2(N̄) with the norm (13.18) by the formula

πλ(g)f(n̄) = exp{−λ[H ′(g−1n̄)]}f(n̄g), (15.11)

where H ′(g−1n̄) and n̄g are determined by

g−1n̄ = n̄gm exp[H ′(g−1n̄)]n,

n̄g ∈ N̄ , m ∈M, n ∈ N, H ′(g−1n̄) ∈ a.

Due to these formulas, instead of the transform (13.2) we have the transform

f̃(n̄, ν) =
∫

G/K
f(g̃) exp{(−iν − ρ)[H ′(g−1n̄)]}dg̃. (15.12)

Integration over G/K here coincides with integration on the right-hand side of (12.12), where N
is replaces by N̄ . If the functions f(g̃) are transformed under the quasi-regular representation
πH of the group G, then the functions f̃(n̄, ν) are transformed under the representations π−iν−ρ

(by the formula (15.11)). Instead of formulas (13.4) and (13.8) we have

f(g̃) = |W |−1

∫
F

∫
N̄
f̃(n̄, ν) exp{(iν − ρ)[H ′(g−1n̄)]}|c(ν)|−2dn̄ dν, (15.13)
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G/K

|f(g̃)|2dg =
∫
F+

∫
N̄
|f̃(n̄, ν)|2|c(ν)|−2dn̄ dν. (15.14)

Now we expand f̃(n̄, ν), as a function on N̄ , in matrix elements of irreducible unitary repre-
sentations of the group N̄ :

f̃(n̄, ν) =
∫

N̂

∑
α,α′

Aων
αα′D

ω
αα′(n̄)dµ(ω), (15.15)

where N̂ denotes a set of irreducible unitary representations ω of the group N̄ . The coefficients
Aων

αα′ are determined by the formula

Aων
αα′ =

∫
N̄
f̃(n̄, ν)Dω

αα′(n̄)dn̄ (15.16)

and the Plancherel formula∫
N̄
|f̃(n̄, ν)|2dn̄ =

∫
N̂

∑
α,α′

|Aων
αα′ |2dµ(ω) (15.17)

holds.
We substitute the expression (15.15) for f̃(n̄, ν) into the intrinsic integral (the integral over N̄)

of the right-hand side of (15.13). If permutation of the integrations is possible in the obtained
expression (we denote this expression by I(g)), then

I(g) =
∫

N̂

∑
α,α′

Aων
αα′dµ(ω)

∫
N̄
Dω

αα′(n̄) exp{(iν − ρ)[H ′(g−1n̄]}dn̄.

Taking into account the T -parametrization of G, we assume that elements g have the form n̄′h,
n̄′ ∈ N̄ , h ∈ A. Therefore, replacing n̄ by n̄′n̄ we find

I(g) ≡ I(n̄′h) =
∫

N̂

∑
α,α′

Aων
αα′dµ(ω)

∑
α′′

Dω
αα′′(n̄

′)
∫

N̄
Dω

α′′α′(n̄) exp{(iν − ρ)[H ′(h−1n̄]}dn̄.

If the integral∫
N̄
Dω

α′′α′(n̄) exp{(iν − ρ)[H ′(h−1n̄]}dn̄

exists, we denote it as Dν
ω(α′′α′)(h). Then it follows from (15.13) that

f(g̃) ≡ f(n̄′h) = |W |−1

∫
F

∫
N̂

∑
α,α′

Aων
αα′F

ων
αα′(n̄

′, h)dµ(ω)|c(ν)|−2dν,

where

Fων
αα′(n̄

′, h) =
∑
α′′

Dω
αα′′(n̄

′)Dν
ω(α′′α′)(h). (15.18)

Using formulas (15.12) and (15.16) one obtains the inverse transform

Aων
αα′ =

∫
N̄
dn̄

∫
G/K

dg̃ f(g̃) exp{(−iν − ρ)[H ′(g−1n̄]}Dω
αα′(n̄). (15.19)

A Plancherel formula for these transforms follows from (15.14) and (15.17). Thus, the functions
(15.18) are basis functions on G/K in the T -coordinate system.
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15.3 Expansion for O-system

Let us write down the formulas (13.2)–(13.5) in such form that the representation πiν−ρ is
realized on functions given on N̄M/M (not on K/M). According to (13.16) and (13.17), the
operators πiν−ρ(g), g ∈ G, act on the space L2(N̄M/M) by the formula

πλ(g)f(x) = exp{−λ[H ′′(g−1x)]}f(xg), x ∈ (N̄M/M), (15.20)

where H ′′(g−1x) and xg are determined by

g−1x = xgm exp[H ′′(g−1x)]n,

xg ∈ (N̄M/M), m ∈M, n ∈ N, H ′′(g−1x) ∈ a.

Due to these formulas, instead of the transform (13.2) we consider the transform

f̃(x, ν) =
∫

G/K
f(g̃) exp{(−iν − ρ)[H ′′(g−1x)]}dg̃. (15.21)

Integration on G/K here coincides with integration on the right-hand side of (12.15), where N
is replaces by N̄ . If the functions f(g̃) are transformed under the quasi-regular representation
πH of the group G, then the functions f̃(x, ν) are transformed under the representation π−iν−ρ

(by the formula (15.20)). Instead of formulas (13.4) and (13.8) we have

f(g̃) = |W |−1

∫
F

∫
N̄M/M

f̃(x, ν) exp{(iν − ρ)[H ′′(g−1x)]}|c(ν)|−2dx dν, (15.22)∫
G/K

|f(g̃)|2dg̃ =
∫
F+

∫
N̄M/M

|f̃(x, ν)|2|c(ν)|−2dx dν. (15.23)

Now our reasoning is as in the previous case. We expand f̃(x, ν), as a function on N̄M ,
constant on cosets with respect to the subgroup M , in matrix elements of irreducible unitary
representations of the group N̄M invariant on the right with respect to the subgroup M :

f̃(x, ν) =
∫

ˆNM0

∑
α,α′

Aων
αα′D

ω
αα′(x)dµ(ω), (15.24)

where ˆNM0 denotes a set of nonequivalent irreducible unitary representations of the group N̄M
of class 1 with respect to the subgroup M . Invariance of matrix elements Dω

αα′(x) on the right
with respect to M imposes some conditions on values of α′. The coefficients Aων

αα′ are determined
by the formula

Aων
αα′ =

∫
N̄M/M

f̃(x, ν)Dω
αα′(x)dx (15.25)

and the Plancherel formula∫
N̄M/M

|f̃(x, ν)|2dx =
∫

ˆNM0

∑
α,α′

|Aων
αα′ |2dµ(ω) (15.26)

holds.
We substitute the expression (15.24) for the function f̃(x, ν) into the intrinsic integral (the

integral over x) of the right-hand side of (15.22). If permutation of the integrations is possible
in the obtained expression (we denote this expression by I(g)), the

I(g) =
∫

ˆNM0

∑
α,α′

Aων
αα′dµ(ω)

∫
N̄M/M

Dω
αα′(x) exp{(iν − ρ)[H ′′(g−1x]}dx.
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Due to the O-parametrization of G, elements g have the form yh, where y are representatives
of cosets of N̄M/M and h ∈ A. Replacing x by yx and using the relation dx = d(yx) we find

I(g)≡I(yh)=
∫

ˆNM0

∑
α,α′

Aων
αα′dµ(ω)

∑
α′′

Dω
αα′′(y)

∫
N̄M/M

Dω
α′′α′(x) exp{(iν−ρ)[H ′′(h−1x)]}dx.

If the integral∫
N̄M/M

Dω
α′′α′(x) exp{(iν − ρ)[H ′′(h−1x)]}dx ≡ Dν

ω(α′′α′)(h)

exists, then it follows from (15.22) that

f(g̃) = |W |−1

∫
F

∫
ˆNM0

∑
α,α′

Aων
αα′F

ων
αα′(y, h)dµ(ω)|c(ν)|−2dν,

where

Fων
αα′(y, h) =

∑
α′′

Dω
αα′′(y)Dν

ω(α′′α′)(h). (15.27)

Using formulas (15.21) and (15.25) one obtains the inverse transform

Aων
αα′ =

∫
N̄M/M

dx

∫
G/K

dg̃ f(g̃) exp{(−iν − ρ)[H ′′(g−1x]}Dω
αα′(x).

A Plancherel formula for these transforms follows from this formula and from (15.23). Thus,
the functions (15.27) are basis functions on G/K in the O-coordinate system.

15.4 Expansion for H-system

Let us give to formulas (13.2)–(13.5) such form for which the representations πiν−ρ are realized
on functions on the set

X =
r⋃

i=1

(Kε/M)wi

instead of functions given on K/M . According to (13.16) and (13.17) the operators πλ(g), g ∈ G,
act on the space L2(X) by the formula

πλ(g)f(x) = exp{−λ[H ′′′(g−1x)]}f(xg), x ∈ X,

where H ′′′ and xg are determined by the relation

g−1x = xgm exp[H ′′′(g−1x)]n, xg ∈ X, m ∈M, n ∈ N, H ′′′(g−1x) ∈ a.

Therefore, instead of the transform (13.2) we consider the transform

f̃(x, ν) =
∫

G/K
f(g̃) exp{(−iν − ρ)[H ′′′(g−1x)]dg̃. (15.28)

If the function f(g̃) is transformed under the quasi-regular representation πH , then the function
f̃(x, ν) is transformed under the representation π−iν−ρ. Instead of formulas (13.4) and (13.8)
we have

f(g̃) = |W |−1

∫
F

∫
X
f̃(x, ν) exp{(iν − ρ)[H ′′′(g−1x)]}|c(ν)|−2dx dν
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≡ |W |−1
r∑

i=1

∫
F

∫
Kε

f̃(kεwi, ν) exp{(iν − ρ)[H ′′′(g−1kεwi)]}|c(ν)|−2dkε dν, (15.29)

∫
G/K

|f(g̃)|2dg̃ =
r∑

i=1

∫
F+

∫
Kε

|f̃(kεwi, ν)|2|c(ν)|−2dkε dν, (15.30)

where dkε is an invariant measure on Kε.
For each fixed ν and wi we expand the function f̃(kεwi, ν) (as a function on the group Kε,

constant on cosets with respect to M) in matrix elements of irreducible unitary representations ω
of the group Kε of class 1 with respect to the subgroup M :

f̃(kεwi, ν) =
∫

K̂ε

∑
α,α′

Aωνi
α,α′D

ω
αα′(kε)dµ(ω), (15.31)

where K̂ε means the set of irreducible unitary representations of Kε. The coefficients Aωνi
αα′ are

determined by the formula

Aωνi
αα′ =

∫
Kε

f̃(kεwi, ν)Dω
αα′(kε)dkε. (15.32)

The Plancherel formula∫
Kε

|f̃(kεwi, ν)|2dkε =
∫

K̂ε

∑
α,α′

|Aωνi
αα′ |2dµ(ω) (15.33)

holds. We substitute the expression (15.31) for the function f̃(kεwi, ν) into the intrinsic integral
in (15.29) (we denote this integral by I(g)). If permutation of the integrals is allowed in the
resulting expression for I(g), then

I(g) =
∫

K̂ε

∑
α,α′

Aωνi
αα′dµ(ω)

∫
Kε

Dω
αα′(kε) exp{(iν − ρ)[H ′′′(g−1kεwi)]}dkε. (15.34)

Suppose that elements g here have the form k′εwih, h ∈ A. Making in (15.34) the substitution
kε → k′εkε and using the relation dkε = d(k′εkε), we find that

I(g) ≡ I(k′εwjh) =
∫

K̂ε

∑
α,α′

Aωνi
αα′dµ(ω)

∑
α′′

Dω
αα′′(k

′
ε)

×
∫

Kε

Dω
α′′α′(kε) exp{(iν − ρ)[H ′′′(h−1w−1

j kεwi)]}dkε.

If the latter integral on the right hand side exists, we denote it as Dνi
ω(α′′,α′)(wjh). Then the

formula (15.29) gives

f(g̃) ≡ f(k′εwjh) = |W |−1
r∑

i=1

∫
F

∫
K̂ε

∑
α,α′

Aωνi
αα′F

ωνi
αα′ (k

′
ε, wjh)|c(ν)|−2dµ(ω) dν,

where

Fωνi
αα′ (k

′
ε, wjh) =

∑
α′′

Dω
αα′′(k

′
ε)Dνi

ω(α′′,α′)(wjh). (15.35)

The inverse transform is of the form

Aωνi
αα′ =

∫
Kε

dkε

∫
G/K

dg̃ f(g̃) exp{(−iν − ρ)[H ′′′(g−1kεwi)]}Dω
αα′(kε).
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The Plancherel formula for these transforms follows from (15.30) and (15.33). Thus, the func-
tions (15.35) are basis functions on G/K in the H-coordinate system.

In the expansions considered above representations of the subgroups N , NM and Kε were
considered in discrete bases. The corresponding expansions can be similarly obtained also for
the case when these representations are considered in “continuous” bases.

15.5 Expansion of K-invariant functions on G/K

A function f on G/K is called K-invariant if f(kg̃) = f(g̃), g̃ ∈ G/K. Since elements of G/K
are determined by representatives g = kh, k ∈ K, h ∈ A, then K-invariant functions f on G/K
can be considered as functions on A:

f(g̃) = f(kh) = F (h).

If M ′ is a normalizer of the subgroup A in K, then for m ∈M ′ we have mAm−1 = A and

F (mhm−1) = F (h).

In other words, the function F is uniquely determined by values on A+.
We consider the Fourier transform (13.2) of K-invariant functions f on G/K:

f̃(k̃, ν) =
∫

G
f(g) exp{(−iν − ρ)[H(g−1k)]}dg, ν ∈ F .

Let us show that f̃(k̃, ν) is independent of k̃. For k0 ∈ K we have

f̃(k0k̃, ν) =
∫

G
f(g) exp{(−iν − ρ)[H(g−1k0k)]}dg.

Since H(g−1k0k) = H((k−1
0 g)−1k) and d(k0g) = dg, then

f̃(k0k̃, ν) =
∫

G
f(k0g) exp{(−iν − ρ)[H(g−1k)]}d(k0g)

=
∫

G
f(g) exp{(−iν − ρ)[H(g−1k)]}dg = f̃(k̃, ν).

This means that f̃(k̃, ν) is independent of k̃, that is f̃(k̃, ν) = F̃ (ν).
Thus, for K-invariant functions f on G/K we have the expansion

f(g̃) = |W |−1

∫
F

∫
K/M

F̃ (ν) exp{(iν − ρ)[H(g−1k)]}|c(ν)|−2dk̃ dν, (15.36)

where

F̃ (ν) =
∫

G
f(g̃) exp{(−iν − ρ)[H(g−1k)]}dg. (15.37)

The function

ϕν(g) =
∫

K/M
exp{(iν − ρ)[H(g−1k)]}dk̃ (15.38)

is called a zonal spherical function of the group G corresponding to the representation πiν−ρ.
This function is in fact the matrix element

diν−ρ
11 (g) = 〈1, πiν−ρ(g)1〉 (15.39)
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of the representation πiν−ρ of the group G. It is easy to check that

ϕν(kgk′) = ϕν(g), k, k′ ∈ K,

that is, ϕν(g) is a K-invariant function on G/K.
It follows from (15.36) and (15.38) that

f(g̃) = |W |−1

∫
F
F̃ (ν)ϕν(g)|c(ν)|−2dν. (15.40)

According to the equality (12.8), the measure dg in (15.37) can be decomposed into the
product of the measures on K and A. Since f(g̃) = F (h), then applying formula (15.38) we
have

F̃ (ν) = c|W |−1

∫
a
F (expH)ϕν(expH)

∣∣∣∣∣∏
α>0

sinhα(H)

∣∣∣∣∣ dH.
Using the formula (12.8) again we obtain

F̃ (ν) =
∫

G
f(g̃)ϕν(g)dg. (15.41)

The Plancherel formula (13.5) now takes the form∫
G/K

|f(g̃)|2dg = |W |−1

∫
F
|F̃ (ν)|2|c(ν)|−2dν. (15.42)

The transform (15.41) is called a spherical transform of K-invariant functions f on G/K.
The formula (15.40) gives an inverse transform, which is an expansion of the function f in zonal
spherical functions of the group G. The formula (15.42) shows that the spherical transform is
isometric.

In the spherical transform only the zonal spherical functions ϕν(g) of the representations πiν−ρ

from the principal unitary series participate. The formula (15.38) determines zonal spherical
functions for all representations πiν−ρ of the principal nonunitary series, that is, for representa-
tions with arbitrary complex linear forms ν on a.
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