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Abstract. Monogenic functions are basic to Clifford analysis. On Euclidean space they
are defined as smooth functions with values in the corresponding Clifford algebra satisfying
a certain system of first order differential equations, usually referred to as the Dirac equation.
There are two equally natural extensions of these equations to a Riemannian spin manifold
only one of which is conformally invariant. We present a straightforward exposition.
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1 Introduction

This article is dedicated to the memory of Tom Branson, a true gentleman, scholar, and friend.
A significant and recurring theme in his work was the interaction between the following topics

Lie Groups Homogeneous Spaces
Global Symmetry Representation Theory

↔ Differential Geometry Local Structure
Local Symmetry PDEs

Items in the left hand box are concerned with geometry and global analysis on a homogeneous
space G/P where G is a Lie group with subgroup P . Items in the right hand box are concerned
with local differential geometry ‘modelled’ on the homogeneous space G/P . Without trying
to explain what this might mean in general, one of the best known examples is to have conformal
differential geometry in dimension n ≥ 3 in the right hand box and the sphere Sn, viewed as
a homogeneous space for SO(n +1, 1), in the left hand box. The round sphere provides a better
‘flat model’ of conformal geometry than does Euclidean space because all the conformal Killing
fields integrate to genuine conformal motions (and there is a conformal embedding Rn ↪→ Sn

given by inverse stereographic projection). Tom Branson was one of the first (e.g. [4]) systemati-
cally to exploit the interplay between ‘curved’ conformal differential geometry and its flat model.
He was also keen to promote the interaction between conformal geometry and the field of Clifford
analysis, where monogenic functions were defined and are now studied.

Some disclaimers are in order. The results in this article are, in some sense, already known.
More precisely, there are a few mathematicians, including David Calderbank and Vladimı́r
Souček, who are well aware of results in this vein. There is no doubt that Tom Branson would
have had his own distinctive viewpoint. Our aim, therefore, is to give what we believe to be
a particularly efficient formulation and method of proof with minimal prerequisites. Motivation
and consequences will be given as we go along.

?This paper is a contribution to the Proceedings of the 2007 Midwest Geometry Conference in honor of
Thomas P. Branson. The full collection is available at http://www.emis.de/journals/SIGMA/MGC2007.html
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Clifford analysis on Euclidean space Rn is usually developed by considering smooth functions
with values in the Clifford algebra of Rn. In this context one may equally well consider smooth
differential forms on Rn, i.e. smooth functions with values in Λ• =

⊕n
p=0 Λp where Λp is the

bundle of p-forms. In fact, there is a canonical identification between Λ•Rn and the Clifford
algebra. Under this identification, the so-called ‘Dirac operator’ D : Λ• → Λ• is precisely

Dω = dω − d∗ω,

where d is exterior derivative and d∗ is its adjoint. Viewed like this, D enjoys an evident
extension to any Riemannian manifold where it is called the Hodge-de Rham operator. There
is, however, an equally natural but different extension of D to any Riemannian manifold with
spin structure. This alternative extension turns out to be conformally invariant and hence to be
preferred as the starting point for Clifford analysis on manifolds.

In this article, we shall present this alternative extension in as simple a manner as possible.
In particular, we shall not need Clifford algebras for the basic exposition, only to compare the
resulting Dirac operator with the classical one defined on the usual spin bundles in § 4 (and,
even then, only implicitly). The simplest exposition does not even require any representation
theory beyond the basics.

We conclude this introduction by establishing some notation and conventions. We shall use
Penrose’s ‘abstract index notation’ [17] for tensors on a manifold and also for representations of
the orthogonal group SO(n). Thus, we shall write ωa to denote a smooth 1-form, and Xa to de-
note a vector field. Square brackets denote skewing over the indices they enclose – if ωab = ω[ab],
then ωab denotes a 2-form. Similarly, we shall use round brackets to denote symmetrisation:
φ(ab) = 1

2(φab + φba). Repeated indices denote the natural pairing of vectors and co-vectors:
X ω = Xaωa. In local coördinates this is the Einstein summation convention but the ab-
stract index convention is itself coördinate free. Following standard practise, on a Riemannian
manifold we shall write gab for the metric and gab for its inverse: gabg

bc = δa
c where δa

c is the
Kronecker delta or identity matrix. We shall often ‘raise and lower indices’ without comment –
if Xa is a vector field then Xa ≡ gabX

b is the corresponding 1-form. Sometimes we shall write
〈u, v〉 instead of uava. We need to set some conventions for the exterior and interior product on
differential forms – if ωbc···d has p indices, then

(v ∧ ω)abc···d ≡ v[aωbc···d] and (v ω)c···d ≡ pvbωbc···d. (1)

These conventions have the convenient feature that

u ∧ (v ω) + v (u ∧ ω) = 〈u, v〉ω. (2)

For further details see [18].

2 Conformally invariant first order operators

We begin with three simple examples. If ωa is a 1-form on a Riemannian manifold M and we
rescale the metric according to ĝab = Ω2gab, then it is easily verified that

∇̂aωb = ∇aωb −Υaωb −Υbωa + Υcωcgab where Υa = ∇aΩ
/
Ω

and ∇a is the metric connection for gab whilst ∇̂a is the metric connection for ĝab. It follows
that

∇̂[aωb] = ∇[aωb].
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This is just the conformal invariance of the exterior derivative d : Λ1 → Λ2. More instructive
examples are obtained by insisting that when we rescale the metric so that ĝab = Ω2gab we also
rescale the 1-form ω̂a = Ωwωa. In this case

∇̂aω̂b = ∇̂a(Ωwωb)

= (∇aΩw)ωb + Ωw∇̂aωb

= ΩwwΥaωb + Ωw
(
∇aωb −Υaωb −Υbωa + Υcωcgab

)
= Ωw

(
∇aωb + (w − 1)Υaωb −Υbωa + Υcωcgab

)
.

Notice that the right hand side rescales by the same power of Ω as we decreed for our 1-form ωa.
Thus, if we say that ωa is conformally weighted of weight w instead of writing ω̂a = Ωwωa, then
we have shown that

∇̂aωb = ∇aωb + (w − 1)Υaωb −Υbωa + Υcωcgab (3)

for ωa of conformal weight w. More precisely, we define a conformal manifold to be a smooth
manifold equipped with an equivalence class of Riemannian metrics under the equivalence rela-
tion gab 7→ ĝab = Ω2gab for any smooth function Ω. On such a manifold we define a line bundle L
as trivialised by any choice of metric – its sections are identified as ordinary functions f . For
a conformally related metric ĝab = Ω2gab, however, the same section gives a different func-
tion f̂ = Ωf . Let us write Λ0[w] instead of Lw and refer to its sections as conformal densities
of weight w. Similarly, Λp[w] = Λp ⊗ Lw is the bundle of conformally weighted p-forms of
weight w. For any metric gab in the conformal class these bundles acquire natural connections,
namely by trivialising L and employing the metric connection. Equation (3) now has a precise
interpretation – it says how the connection ∇ : Λ1[w] → Λ1 ⊗ Λ1[w] changes under a conformal
rescaling of the metric. The metric gab itself acquires a tautological interpretation as a confor-
mally invariant section of

⊙2Λ1[2]. Similarly, its inverse gab has conformal weight −2 and we
may raise and lower indices at the expense of changing the weight – if ωa has weight w, then ωa

has weight w − 2.
If w = 2, then (3) reads

∇̂aωb = ∇aωb + Υaωb −Υbωa + Υcωcgab.

It follows that

∇̂(aωb) − 1
n∇̂

cωcgab = ∇(aωb) − 1
n∇

cΥcgab.

Thus, we have a conformally invariant operator

Λ1[2] →
⊙2

◦Λ
1[2],

where
⊙2

◦Λ
1 denote the trace-free symmetric covariant 2-tensors.

Taking the trace of (3) yields

∇̂aωa = ∇aωa + (n + w − 2)Υaωa.

We obtain, as our third example, a conformally invariant differential operator

Λ1[−(n− 2)] → Λ0[−n].

Our fundamental theorem constructs first order conformally invariant operators from repre-
sentations of SO(n) or Spin(n). Let us denote by W, the defining representation of SO(n) on Rn

and by gab ∈ W⊗W or by 〈 , 〉 the standard Euclidean metric, preserved by SO(n). We shall
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identify Λ2W with the Lie algebra so(n) of SO(n) or Spin(n). Explicitly, let us take the action
of Xab ∈ Λ2W on wa ∈ W to be given by Xa

bwb. Also let

wa 7→ −2ga[bwc] define ι : W → W⊗ Λ2W.

A representation E of SO(n) gives rise to an irreducible tensor bundle E on any oriented Rieman-
nian n-manifold. Specifically, we shall regard E as induced from the orthonormal co-frame bun-
dle so that W gives rise to Λ1, the co-tangent bundle. Similarly, if E is a Spin(n)-representation,
then we find induced bundles E on any oriented Riemannian spin n-manifold. On a conformal
manifold it is convenient, following Calderbank [7], to induce bundles from the orthonormal
frames of Λ1[1]. The reason is that 〈ω, µ〉 = gabωaµb is conformally invariant for ωa and µa of
conformal weight 1 and so these frames are well-defined. A further reason is that, although there
is no conformally invariant connection on Λ1[1], the conformal change (3) is especially simple:

∇̂aωb = ∇aωb −Υbωa + Υcωcgab = ∇aωb − Γab
cωc where Γabc = −2ga[bΥc]. (4)

We shall denote by E the bundle induced on an oriented conformal manifold from a representa-
tion E of SO(n). From the defining representation W of SO(n) we obtain the bundle Λ1[1].

Theorem 1. Suppose that E and F are representations of SO(n) and that

π : W⊗ E → F

is a homomorphism of SO(n)-modules. Let ρ : Λ2W⊗ E → E denote the action of so(n) on E.
Suppose that the composition

W⊗ E ι⊗Id−−−→ W⊗ Λ2W⊗ E Id⊗ρ−−−→ W⊗ E π−→ F

is equal to wπ : W ⊗ E → F for some constant w. Then there is a conformally invariant first
order linear differential operator

D : E[w] → F [w − 1]

whose symbol is induced by π. If, instead, E and F are representations of Spin(n), then we
obtain the corresponding conclusion on any Riemannian spin manifold.

Proof. Recall the formula (4) for a change of connection on Λ1[1]. Therefore, for sections φ of
the associated bundle E,

∇̂φ = ∇φ− Γφ

where Γφ is the image of Υ⊗ φ under the composition

Λ1 ⊗ E
ι⊗Id−−−→ Λ1 ⊗ Λ2 ⊗ E

Id⊗ρ−−−→ Λ1 ⊗ E.

For sections of E[w], therefore,

∇̂φ = ∇φ + wΥ⊗ φ− Γφ.

Hence, for D = π∇ we have

D̂φ = Dφ + wπ(Υ⊗ φ)− πΓφ = Dφ,

as required. �
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The three conformally invariant operators given at the beginning of this section are easily
obtained from Theorem 1. Specifically, the irreducible decomposition

W⊗W = Λ2W⊕
⊙2

◦W⊕ R

is given explicitly by

ξaωb = ξ[aωb] +
(
ξ(aωb) − 1

nξcωcgab

)
+ 1

nξcωcgab

from which we obtain three possible symbols with E = W so that E = Λ1[1]. The composition

W⊗ E ι⊗Id−−−→ W⊗ Λ2W⊗ E Id⊗ρ−−−→ W⊗ E

is ξaωb 7→ −2ga[bξc]ωd 7→ ξbωa − gabξ
cωc ≡ σab and to apply Theorem 1 we must see whether πσ

is a multiple of π(ξ ⊗ ω). We find

ξaωb
π7−→ ξ[aωb] gives σ[ab] = −ξ[aωb],

ξaωb
π7−→ ξ(aωb) − 1

nξcωcgab gives σ(ab) − 1
nσc

cgab =
(
ξ(aωb) − 1

nξcωcgab

)
,

ξaωb
π7−→ ξaωa gives σa

a = −(n− 1)ξaωa.

We obtain our three basic conformally invariant operators

F w F E[w] F [w − 1]

Λ2W −1 Λ2[2] Λ1 Λ2⊙2
◦W 1

⊙2
◦Λ

1[2] Λ1[2]
⊙2

◦Λ
1[2]

R −(n− 1) Λ0 Λ1[−(n− 2)] Λ0[−n]

in accordance with Theorem 1.
In stating Theorem 1 we were imprecise concerning whether E and F should be real or complex

representations of SO(n) or Spin(n). In fact, there are two versions – if the representations are
real (as in our three examples), then the corresponding induced bundles are real but if the
representations are complex (as is more usual in representation theory) then the bundles are
complex.

The hypotheses of Theorem 1 are automatically satisfied if E is an irreducible complex rep-
resentation of SO(n) or Spin(n). In this case the decomposition of W ⊗ E into irreducibles is
multiplicity-free. Thus, if π : W ⊗ E → F is projection onto any of the irreducibles, then any
other so(n)-invariant homomorphism W ⊗ E → E must be a multiple thereof. In this case, it
is just a matter of identifying the constant w in order to classify the first order conformally
invariant differential operators between irreducible tensor or spinor bundles. This is precisely
what Fegan does in [10], using Casimir operators to compute w. In [8], Čap, Slovák, and Souček
extended Fegan’s method to higher order operators.

3 Monogenic functions and Dirac operators

The construction and conformal invariance of monogenic functions also comes from Theorem 1.
In distinction to the discussion at the end of the previous section, the representation E will be
real and reducible. As a vector space, let E = Λ•W where, as usual, W is the (real) defining
representation of SO(n). Define a homomorphism

W⊗ E ε−→ E by v ⊗ e 7→ v.e ≡ v ∧ e− v e. (5)
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There are two natural ways in which E is an so(n)-module. The more obvious corresponds to
the SO(n)-action defined by that on W. Evidently, ε is a homomorphism of SO(n)-modules.
The geometric consequence of this is a differential operator from E to itself defined on any
Riemannian manifold as the composition

E
∇−→ Λ1 ⊗ E

ε−→ E,

where∇ is induced by the metric connection on the co-frame bundle. This is the Hodge–de Rham
operator. For this choice of ρ : Λ2W⊗ E → E, however,

W⊗ E ι⊗Id−−−→ W⊗ Λ2W⊗ E Id⊗ρ−−−→ W⊗ E ε−→ E

is not a multiple of ε : W⊗E → E. The Hodge–de Rham operator is not conformally invariant.
An alternative but equally natural way in which E is an so(n)-module is given by

so(n)⊗ E = Λ2W⊗ E 3 v ∧ w ⊗ e
σ7−→ −1

8(v.w.e− w.v.e) ∈ E. (6)

The constant −1/8 ensures that this is, indeed, a representation of so(n). To verify this and
other properties of this construction, the following lemmata are useful.

Lemma 1. For all u, v ∈ W and e ∈ E we have

u.v.e + v.u.e = −2〈u, v〉e. (7)

Proof. A simple computation from (2). �

Lemma 2. For all u, v, w ∈ W and e ∈ E we have

u.v.w.e− v.w.u.e− u.w.v.e + w.v.u.e = −4〈u, v〉w.e + 4〈u, w〉v.e. (8)

Proof. From (7) we find

u.v.w.e− v.w.u.e = u.v.w.e + v.u.w.e− v.u.w.e− v.w.u.e

= −2〈u, v〉w.e + 2〈u, w〉v.e.

The other terms in (8) are dealt with similarly. �

Proposition 1. The action (6) makes E into a representation of so(n). With this structure
ε : W⊗ E → E is a homomorphism of so(n)-modules.

Proof. On simple vectors, the Lie bracket on so(n) = Λ2W is given by

[t ∧ u, v ∧ w] = 1
2

(
〈u, v〉t ∧ w − 〈u, w〉t ∧ v − 〈t, v〉u ∧ w + 〈t, w〉u ∧ v

)
.

The assertions are straightforward calculations on simple vectors using (8). �

Lemma 3. If we define W⊗W⊗ E → E by v ⊗ w ⊗ e 7→ v.w.e, then gab ⊗ e 7→ −ne.

Proof. If u1, u2, . . . , un is an orthonormal basis of W, then gab =
n∑

i,j=1
ui⊗uj . The result follows

immediately from (7). �

Proposition 2. The composition

W⊗ E ι⊗Id−−−→ W⊗ Λ2W⊗ E Id⊗σ−−−→ W⊗ E ε−→ E (9)

is equal to −n−1
2 ε : W⊗ E → E.
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Proof. Let us perform this computation using abstract indices. For this purpose, if we write
ε : W⊗ E → E as wa ⊗ eα 7→ waε

a
α

βeβ, then Lemma 3 says that

εa
α

βεaβ
γ = −nδα

γ . (10)

Let us write σ : Λ2W⊗ E → E as Xab ⊗ eα 7→ Xabσ
ab

α
βeβ, where

σab
α

γ = −1
8(εa

α
βεb

β
γ − εb

α
βεa

β
γ).

Then (9) becomes

waeα 7→ εa
α

β(−2ga[bwc]σ
bc

β
γeγ) = −2εa

α
βwcσa

c
β

γeγ

and so we are required to show that

−2εa
α

βσa
c
β

γ = −n−1
2 εc

α
γ i.e. 4εa

α
βσa

c
β

γ = (n− 1)εc
α

γ .

Using (10), we compute:

4εa
α

βσa
c
β

γ = −1
2εa

α
β(εaβ

ηεc
η
γ − εc

β
ηεaη

γ) = n
2 εc

α
γ + 1

2εa
α

βεc
β

ηεaη
γ .

To continue, let us write (8) with abstract indices:

εa
α

βεb
β

ηεc
η
γ − εb

α
βεc

β
ηεa

η
γ − εa

α
βεc

β
ηεb

η
γ + εc

α
βεb

β
ηεa

η
γ = −4gabεc

α
γ + 4gacεb

α
γ .

Tracing over a and b and using (10) gives

−nεc
α

γ − εa
α

βεc
β

ηεaη
γ − εa

α
βεc

β
ηεaη

γ − nεa
α

γ = −4nεc
α

γ + 4εc
α

γ .

If follows that

εa
α

βεc
β

ηεaη
γ = (n− 2)εc

α
γ

and hence that

4εa
α

βσa
c
β

γ = n
2 εc

α
γ + n−2

2 εc
α

γ = (n− 1)εc
α

γ ,

as required. �

Theorem 2. Let E denote that representation of Spin(n) corresponding to (6). Let E denote
the corresponding bundle on a conformal spin manifold induced from the orthonormal frames
of Λ1[1]. Then there is a conformally invariant first order linear differential operator

E[−n−1
2 ] D−→ E[−n+1

2 ]

whose symbol is induced by ε : W⊗ E → E.

Proof. Proposition 1 ensures that the statement of this theorem makes sense and now Propo-
sition 2 ensures that the criterion of Theorem 1 is satisfied. �

Remark 1. This operator D extends the Dirac operator from Clifford analysis on Rn to a general
spin manifold. Elements of its kernel are referred to as ‘monogenic functions’.

Remark 2. Almost no representation theory is needed here – we have only used that Spin(n)
is the simply-connected connected Lie group whose Lie algebra is so(n). In fact, we shall see
in the next section that spin is essential – the representation (6) of so(n) does not arise from
an action of SO(n). The proof of Theorem 2 is purely computational and the only ingredients
in this computation are (8) and (10) both of which follow easily from Lemma 1. In fact, the
particular constant in Lemma 3 (leading to (10)) is unimportant. We would obtain the same
result (with the same conformal weight) from gab ⊗ e 7→ κe for any non-zero κ.
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4 Clifford algebras and the classical Dirac operator

The Dirac operator from Clifford analysis is usually introduced via the Clifford algebra C`(W),
defined as the tensor algebra

⊗• W modulo the two-sided ideal generated by

v ⊗ w + w ⊗ v + 2〈v, w〉 ∀ v, w ∈ W.

Writing the multiplication in C`(W) as juxtaposition, there is a canonical identification

E ≡ Λ•W '−−→ C`(W) by v ∧ w 7→ 1
2(vw − wv). (11)

The conclusion (7) of Lemma 1 is precisely that ε : W ⊗ E → E extends to a representation
C`(W), namely to a homomorphism of algebras C`(W) → End(E). Equivalently, if we transport
the Clifford algebra structure from C`(W) to Λ•W using (11) then (5) gives the Clifford product
between W and Λ•W and so the action of C`(W) on E induced by ε becomes the action of C`(W)
on itself by left multiplication. For further details see [13].

A standard rationale for introducing the Clifford algebra is in providing a concrete realisation
of Spin(n), namely as a subgroup of the group of invertible elements in C`(Rn). Then it is clear
that E under (11) is a real representation of Spin(n) – simply restrict the action of C`(Rn)
to Spin(n).

The basic spin representations of so(n) are complex representations. Hence, in order to make
contact with E as an so(n)-module given by (6), it is necessary to complexify. Let us suppose
that n is even. Then we may write CW as the direct sum of two totally null subspaces, using
the complexified metric as a dual pairing between them. Specifically, let us take

CW = U⊕ U∗ 3 α + β so that ‖α + β‖2 = 2α β. (12)

Let use abstract indices to write elements of U as αa and elements of U∗ as βa, without being
alarmed that the index a now runs only over half the range that it did in previous sections.
Forms now decompose according to ‘type’. Specifically, CE = Λ•CW and

ΛrCW =
⊕

p+q=r

ΛpU⊗ ΛqU∗.

Splitting the formulae (1) according to this decomposition, we find

for ΛpU⊗ ΛqU∗ 3 ω ! ωbc · · · d︸ ︷︷ ︸
p

q︷ ︸︸ ︷
fg · · ·h,

{
(α + β) ∧ ω ! α[aωbc···d]

fg···h + (−1)pβ[eωbc···d
fg···h],

(α + β) ω ! pβbωbc···d
fg···h + (−1)pqαfωbc···d

fg···h.

Consequently, as a complexification of the action of W on E = Λ•W given by (5) we obtain an
action of CW on Λ•U⊗ Λ•U∗ given by

(α + β).ω ! α[aωbc···d]
fg···h + (−1)pβ[eωbc···d

fg···h] − pβbωbc···d
fg···h − (−1)pqαfωbc···d

fg···h.

In accordance with (7) and (12), or as may be verified by direct computation, this action has
the property that

(α + β).(α + β).ω = −2αaβ
aω.

There is, however, another action with this property. Specifically, it is easily verified that

(α + β):ω !
√

2
(
α[aωbc···d]

fg···h − pβbωbc···d
fg···h

)
=⇒ (α + β):(α + β):ω = −2αaβ

aω.
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Proposition 3. There is an automorphism of Λ•U⊗Λ•U∗ that converts (α+β).ω into (α+β):ω
for all α + β ∈ CW.

Proof. More precisely, we want to find Φ : Λ•U ⊗ Λ•U∗ → Λ•U ⊗ Λ•U∗, an invertible linear
transformation, so that

(α + β):Φ(ω) = Φ((α + β).ω) ∀ (α + β) ∈ U⊕ U∗ = CW and ω ∈ Λ•U⊗ Λ•U∗. (13)

Let us take

Φ(1) ≡ 1 + δb
f + δ[b

[fδc]
g] + · · ·+ δ[b

[fδc
g · · · δd]

h] + · · · .

Then, in order for (13) to hold, we should have α:Φ(1) = Φ(α.1) = Φ(α) whence

Φ(αb) =
√

2
(
αb + α[bδc]

f + α[bδc
fδd]

g + · · ·
)

.

Similarly, we should have β:Φ(1) = Φ(β.1) = Φ(β), which forces

Φ(βf ) = −
√

2
(
βf + 2β[fδb

g] + 3β[fδb
gδc

h] + · · ·
)

.

Now, however, there is something to check because α.β + β.α = −2αaβ
a and so for consistency

it must be that

α:Φ(β) + β:Φ(α) = −2αaβ
aΦ(1). (14)

This is readily verified as follows

αb:Φ(βf ) = −2
(
αbβ

f + 2α[bβ
[fδc]

g] + · · ·
)

,

βf :Φ(αb) = −2
(
βaαa + 2βaα[aδb]

f + 3βaα[aδb
fδc]

g + · · ·
)

= −2
(
βaαa + βaαaδb

f − βaαbδa
f + βaαaδ[b

fδc]
g − 2α[bβ

[fδc]
g] + · · ·

)
=⇒ αb:Φ(βf ) + βf :Φ(αb) = −2βaαa

(
1 + δb

f + δ[b
fδc]

g + · · ·
)

= −2αaβ
aΦ(1).

So far, we know Φ on C⊕ CW. But now we may use the desired property

Φ(v.w) = v:Φ(w) for v, w ∈ CW

of Φ to extend its definition to C⊕CW⊕Λ2CW: it is only necessary for consistency to check (14)
and, similarly, that

α:Φ(α) = 0 and β:Φ(β) = 0.

Next one uses the desired property (13) to extend the definition of Φ to
⊕3

r=0 ΛrCW and so on
by induction. The details are left to the reader. �

Remark 3. For those readers who know the theory of Clifford algebras, we have in Λ•CW and
Λ•U⊗Λ•U∗ = End(U) two different realisations of the Clifford algebra C`(CW). The mapping Φ
constructed in the proof of Proposition 3 is the unique unital isomorphism between them.

The geometric consequences of Proposition 3 are as follows. Recall that the Dirac operator D
in the sense of Clifford analysis was built in § 3 from (5) and (6) both of which are defined in



10 M. Eastwood and J. Ryan

terms of v.e for v ∈ W and e ∈ E ≡ Λ•W. We have just seen that, in case n is even, we can
write

CE = Λ•CW = Λ•(U⊕ U∗) = Λ•U⊗ Λ•U∗.

Therefore, Proposition 3 may be viewed as providing an automorphism Φ of CE so that

Φ(v.e) = v:Φ(e) ∀ v ∈ CW and e ∈ CE.

In particular, this is true for v ∈ W ↪→ CW. Though it is essential to complexify W and also to
choose a splitting CW = U⊕ U∗ in order to define Φ as a complex linear automorphism of CE
and though it is also necessary in order to write down the formula

(α + β):ω !
√

2
(
α[aωbc···d]

fg···h − pβbωbc···d
fg···h

)
for

{
α + β ∈ U⊕ U∗ = CW,
ω ∈ Λ•U⊗ Λ•U∗ = CE,

(15)

it is not necessary for v to be complex in order that v:ω be perfectly well-defined. The key
point to observe about (15) is that, when viewed on Λ•U⊗Λ•U∗, the action ω 7→ v:ω is entirely
on Λ•U with Λ•U∗ as a passenger. It follows that the complexification of the representation (6)
of so(n) is isomorphic to S⊗ Λ•U∗ where S is Λ•U regarded as an so(n)-module according to

so(n)⊗ S = Λ2W⊗ Λ•U 3 v ∧ w ⊗ ω 7→ −1
8(v:w:ω − w:v:ω) ∈ S.

This action manifestly preserves the splitting Λ•U = ΛevenU ⊕ ΛoddU. It is the standard spin
representation

�
@

...• • •
•

•

0 0 0
1

0

⊕ �
@

...• • •
•

•

0 0 0
0

1

of so(n). In any case, the geometric import of these observations is that there is a complex vector
bundle S defined on an arbitrary spin manifold such that the differential operator D : E → E
defined in §3, when acting on complex-valued sections, becomes

C⊗R E ∼= S ⊗ CN 6D⊗Id−−−−→ S ⊗ CN ∼= C⊗R E.

Here CN denotes the trivial bundle of rank N = 2n/2 obtained as the induced bundle from the
trivial representation of Spin(n) on U∗. In other words, the Dirac operator D from Clifford
analysis may be viewed simply as 2n/2-copies of an operator 6D : S → S. The operator 6D is
the classical Dirac operator. There is, however, an awkward proviso to this conclusion, namely
that D and 6D should be acting on complex-valued sections. The theory of real spin-bundles is
quite complicated [13]. These particular complications are simply avoided in Clifford analysis
by using the real operator D instead.

Similar conclusions hold in the odd-dimensional case:

CE = Λ•CW ∼= ...• • • •〉0 0 0 1⊗ CN =⇒ C⊗R E ∼= S ⊗ CN and D = 6D ⊗ Id,

where 6D is the classical Dirac operator in odd dimensions and N = 2(n+1)/2.
In fact, all complications are avoided by using the operator D. This ‘one-size-fits-all’ approach

avoids complex bundles and, at the same time, there is no need to treat even-dimensional and
odd-dimensional manifolds differently. The integral formulae for monogenic functions developed
in [3], for example, are obtained in a uniform dimension-free manner.

The main point of this article is to provide a simple formulation and näıve computational
proof of Theorem 2 and its main consequence, the conformal invariance of monogenic functions.
But the conformal invariance of the classical Dirac operator is another consequence. In arbitrary
dimensions, this invariance was first shown by Kosmann-Schwarzbach [14].
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5 Rarita–Schwinger operators and their generalisations

Having defined and established the conformal invariance of the Dirac operator in the context of
Clifford analysis, it is reasonably straightforward to do the same thing for the classical Rarita–
Schwinger operator [5] and its symmetric analogues [6]. Throughout this section E is to be
regarded as an so(n)-module under (6).

For the Rarita–Schwinger operator, define a representation F of so(n) via the exact sequence

0 → F → W⊗ E ε−→ E → 0, (16)

bearing in mind that ε is a homomorphism of so(n)-modules in accordance with Proposition 1.
Lemma 3 provides a canonical splitting of this sequence. Specifically, using abstract indices as
in the proof of Proposition 2, we define Π : W⊗ E → F by

Taα
Π7−→ Taα + 1

nεaα
βεc

β
γTcγ .

Finally, to define the Rarita–Schwinger operator via Theorem 1, we consider the so(n)-module
homomorphism θ : W⊗ F → F given as the composition

W⊗ F ↪→ W⊗W⊗ E ε̃−→ W⊗ E Π−→ F

where ε̃(w ⊗ v ⊗ e) = v ⊗ w.e or, using abstract indices,

Tabα
ε̃7−→ εb

α
βTbaβ.

Let us write τ for the representation of so(n) = Λ2W on F. By construction, it is the restriction
to F of the action

Λ2W⊗W⊗ E 3 X ⊗ w ⊗ e 7→ Xw ⊗ e + w ⊗ σ(X ⊗ e) ∈ W⊗ E (17)

on W⊗ E.

Proposition 4. The composition

W⊗ F ι⊗Id−−−→ W⊗ Λ2W⊗ F Id⊗τ−−−→ W⊗ F θ−→ F

is equal to −n−1
2 θ : W⊗ F → F.

Proof. In full, we may expand this composition as

W⊗ F ↪→ W⊗W⊗ E ι⊗Id⊗Id−−−−−→ W⊗ Λ2W⊗W⊗ E Id⊗τ−−−→ W⊗W⊗ E︸ ︷︷ ︸
?

ε̃−→ W⊗ E Π−→ F

and, according to (17), the homomorphism ? is the sum of two parts, namely

W⊗W⊗ E ι⊗Id⊗Id−−−−−→ W⊗ Λ2W⊗W⊗ E −→ W⊗W⊗ E (18)

and

W⊗ W ⊗ E ι⊗Id⊗Id−−−−−→ W⊗ Λ2W⊗ W ⊗ E −→ W⊗ W ⊗ E, (19)

in which the boxed vector spaces are passengers. The first one is

Tabα 7→ −2ga[bTc]dα 7→ Tbaα − gabT
c
cα
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and composing with ε̃ gives

Tabα 7→ εb
α

β(Tabβ − gabT
c
cβ) = −εaα

βT d
dβ,

when acting on W⊗ F. Evidently, this is in the kernel of Π and so (18) makes no contribution
to the overall composition. On the other hand (19) can be continued to

W⊗ W ⊗ E ι⊗Id⊗Id−−−−−→ W⊗ Λ2W⊗ W ⊗ E −→ W⊗ W ⊗ E ε̃−→ W ⊗ E,

which has already been computed in Proposition 2. It is −n−1
2 ε̃. Therefore, composing with Π

gives −n−1
2 θ, as advertised. �

Theorem 3. Let F denote the bundle defined on a conformal spin manifold corresponding to the
representation F of so(n). Then there is a conformally invariant first order linear differential
operator

F [−n−1
2 ] D−→ F [−n+1

2 ]

whose symbol is induced by θ : W⊗ F → F.

Proof. Proposition 4 ensures that the criterion of Theorem 1 is satisfied. �

The operators in this theorem are the Rarita–Schwinger operators in the context of Clifford
analysis. The symmetric analogues of [6] are obtained by a similar construction starting with
the exact sequence

0 → Fj →
⊙jW⊗ E Id⊗ε−−−→

⊙j−1W⊗ E → 0,

generalising (16). Details are left to the reader.

6 Flat structures and comparison of notations

The operators that we have constructed in previous sections are conformally invariant in the
‘curved’ setting. Explicitly, this means that for each operator there is a universal formula in
terms of a chosen Riemannian metric and its Levi-Civita connection so that, for an arbitrary
metric, using the same formula with any metric in the same conformal class gives the same
operator. This is a very strong notion of invariance. There are several weaker notions one of
which is to restrict attention to conformally flat metrics, asking only for a local formula in terms
of a flat metric from the conformal class and only that the result be invariant under arbitrary
flat-to-flat conformal rescalings. Evidently, an invariant operator in the fully curved sense gives
rise to an invariant operator in the conformally flat sense as just defined. That curved invariance
is strictly stronger, however, was demonstrated by Graham [12] who showed that the operator

∆3 : Λ0[1] → Λ0[−5] on R4,

where ∆ is the Laplacian for the standard flat metric on R4 does not arise from a curved invariant
operator although it is easily verified to be invariant under flat-to-flat conformal rescalings (see
also [11]).

In any case, the Dirac operator is conformally invariant in the curved case and therefore in-
variant under flat-to-flat conformal rescalings. Such rescalings are scarce. In fact, the only way
that they can arise is by so-called ‘Möbius transformations’, i.e. the transformations obtained
from the action of SO(n + 1, 1) on the n-sphere and viewed in Rn by stereographic projection.
Hence, monogenic functions locally defined on Rn are invariant under Möbius transformations.
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This is a well-known phenomenon from Clifford analysis usually attributed to the invariance
of the generalised Cauchy integral formula [3] on Rn under Möbius transformations. Mono-
genic functions on conformally flat spin manifolds such as cylinders and tori provide a natural
extension [15, 16] of automorphic forms from the realm of complex analysis. The n-sphere
is a spin manifold homogeneous under its conformal motions, finitely covered by the group
G = SO(n + 1, 1) (as indicated below and fully explained, for example, in [9]). It follows that
the Dirac operator is G-invariant on Sn (some authors write G-equivariant). This is yet another
sense of ‘conformal invariance’ and a notion that is purely algebraic – the question of classi-
fying the G-invariant operators on Sn acting between irreducible homogeneous vector bundles
is a (solved) question in representation theory. It is this sense of conformal invariance that is in
effect throughout the following discussion.

Finally, for completeness, we present the conformal invariance of the Dirac operator on the flat
model in terms of the Dynkin diagram notation of [1]. The conformal sphere Sn is a homogeneous
space for the Lie group SO(n + 1, 1). For convenience we shall take this to mean the connected
component of the group of (n + 2)× (n + 2) matrices preserving the quadratic form 0 0 1

0 Id 0
1 0 0


where Id denotes the n × n identity matrix. This group acts on Sn as its conformal motions
and, for a suitable choice of basepoint, Sn = SO(n+1, 1)/P where P is the subgroup consisting
of matrices of the form λ · ·

0 M ·
0 0 λ−1

 , for
{

λ > 0
M ∈ SO(n).

The irreducible real homogeneous bundles on Sn are thus parameterised by the representations λ · ·
0 M ·
0 0 λ−1

 7→ λ−wρ(M)

for w ∈ R and ρ an irreducible real representation of SO(n). It is convenient to specify such
a representation of P by recording its highest (or lowest) weight as a linear combination of the
fundamental weights for so(n + 1, 1). With the conventions of [1] we find, for example, that

Λ0[w] =× • • • •〉
w 1 0 0 0 Λ1 =× • • • •〉

−2 1 0 0 0 Λ2 =× • • • •〉
−3 0 1 0 0 Λ1[w] = × • • • •〉

w−2 1 0 0 0

on S9 and

Λ0[w] = �
@

× • • •
•

•

w 1 0 0
0

0

Λ1 = �
@

× • • •
•

•

−2 1 0 0
0

0

Λ2 = �
@

× • • •
•

•

−3 0 1 0
0

0

Λ1[w] = �
@

× • • •
•

•

w−2 1 0 0
0

0

on S10. On odd-dimensional spheres Sn the Dirac operator acts as

...× • • • •〉
−n/2 0 0 0 1 −→ ...× • • • •〉

−n/2−1 0 0 0 1
.

On even-dimensional spheres, however, there are two irreducible Dirac operators:

�
@

...× • • •
•

•

−n/2 0 0 0
1

0

−→ �
@

...× • • •
•

•

−n/2−1 0 0 0
0

1

and �
@

...× • • •
•

•

−n/2 0 0 0
0

1

−→ �
@

...× • • •
•

•

−n/2−1 0 0 0
1

0

.

In odd dimensions the generalised Rarita–Schwinger operators of [6] act as

...× • • • • •〉
−n/2−j j 0 0 0 1 −→ ...× • • • • •〉

−n/2−j−1 j 0 0 0 1
.
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