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Abstract. We present basics of conceptually new-type way for explaining of the origin,
evolution and current physical properties of our Universe from the graviton-matter gas view-
point. Quantization method for the Friedmann—Lemaitre Universe based on the canonical
Hamilton equations of motion is proposed and quantum information theory way to physics of
the Universe is showed. The current contribution from the graviton-matter gas temperature
in quintessence approximation is discussed.
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1 Introduction

Origin, evolution and physical picture of our Universe are one of main areas of modern exper-
imental as well as theoretical physics. From the theoretical physics viewpoint it seems that
all known approaches, from the most popular inflationary cosmology [1] and loop quantum
cosmology [2] to new alternative and compatible with experimental data conformal cosmology
scenarios [3, 4, 5], produce pictures of the Universe incompatible with each other.

The most probable model for the Universe is the conformal flat Friedmann—-Lemaitre space-
time. In this paper we present basics of conceptually new way for explaining the origin, evolution
and current physical properties of our Universe. We found and develop the quantum information
theory approach to the structure and physics of the Universe. As a model of the Universe we
study the classical Friedmann—Lemaitre spacetime. As the first approximation we study the
quintessence model.

By the well known Dirac method [6] we construct the Hamiltonian approach to the Universe
and as the solution of classical constraints we obtain the Hubble law, that confirms experimental
data. According to the Dirac approach we apply the first quantization of classical primary
constraints and as a result we obtain the Wheeler-DeWitt equation for the Universe. For
correct quantum description of quantum gravity in this cosmological model we propose the
second quantization method for the Wheeler—-DeWitt equation by non-fockian distributions and
by that we obtain quantum description of gravity in terms of the graviton-matter gas. By using
the Bogoliubov transformation and diagonalization of equations of motion we build the correct
Fock space formulation for quantum theory of the Universe. We show that a crucial role for the
quantum theory of gravitation is played by quantum effective phenomena in the graviton-matter
gas, which in case of the Friedmann—Lemaitre spacetime are superfluidity phenomena. We find
the field operator of the Universe. By using the quantum information theory methods we
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calculate the density matrix and entropy of the graviton-quintessence gas. We predict a relation
between temperature and number of particles, and evaluate equation of state for the gas.

In this paper we will use cosmological units system A = ¢ = kg = % = 1, where A is the
Dirac constant, c¢ is the velocity of light, kp is the Boltzmann constant, e is the elementary

charge and G is the Newton gravitational constant.

2 Classical Friedmann—Lemaitre spacetime

2.1 Conformal flat metric

As a cosmological model of the Universe we will study an exact solution of the Einstein field
equations of general relativity [7], homogenous, flat and isotropic expanding or contracting
spacetime founded and studied by A.A. Friedmann [8] in the Einstein field equations context
and by G.-H. Lemaitre [9] in the Big Bang theory as the origin of the Universe context. This
model is characterized by the interval

ds* = dtdt — a*(t)dz'dz’, (2.1)

where a(t) is known as the Friedmann conformal scale factor. The spacetime interval (2.1) can
be transformed to conformal flat form by diffeomorphism of ¢. Friedmann [8] introduced change
of time ¢ on the conformal time n by formula

t dt/
o / alt’)’ 22

This is a replacement of two diffeoinvariant times ¢ — 1. With using of the conformal time (2.2)
the interval (2.1) reduces into the pseudo-Euclidean form

ds* = a*(n) (dndn — dxidzi) :

Conceptually new moment in the general relativity was introducing by P.A.M. Dirac [6] of
the lapse function Ny(x°) defined by the formula

dn = Ny(z°)da?, (2.3)

0

where z" is time-coordinate as object of diffeomorphisms

20 — 70 = 7(2?),
introduced by Albert Einstein [7] in the general relativity context and developed by A.L. Zel-
manov [10] in cosmology context and by B.M. Barbashov et al. [11] in diffeoinvariant Hamilto-
nian cosmological perturbation theory.

2.2 The Dirac Hamiltonian approach

Recall that the Einstein—Hilbert general relativity with presence of the matter fields is described
by the action found by David Hilbert [12]

A_/d4x\/fg{—é7z+.cM}, (2.4)

where g = det g, g, is the metric tensor of the spacetime, Ly is the matter field Lagrangian
and R is the Ricci scalar (see for example [13, 14]). In cosmological considerations the La-
grangian L); describes matter in the Universe. As the Universe is classical object, the matter
is characterized by mean-field properties.
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The Hilbert action (2.4) calculated for the Friedmann—Lemaitre metric (2.1) is

2
Ala] = —V/dxo {;ld <$0> 4 Nda4<H(x0))}, (2.5)

where

(H(zY)) = ‘1//d3x Har(z, 20), V= /d?’:c < 00,

are the zeroth Fourier harmonic of the matter Hamiltonian and spatial volume, respectively.
We apply for the action (2.5) the Hamiltonian reduction procedure. Firstly, we calculate the
canonical conjugate momentum corresponding to this action

2V da

-0 7 2.6
Ny dx0’ (2.6)

Pa =

and with use of this momentum the action (2.5) becomes

2
_ o) P 4 0
Ala] = —V/dx {W +at(H(a )>} |
From the Hamiltonian reduction viewpoint the reduced action has a form

Al = [ aa® {0 35 - )} (2.7

where the Hamiltonian H(p,, a). By this we obtain

2
p
H(pa,a) = Ny [—4‘(1/ + V(H(mo)m‘ﬂ )
According to the Dirac approach the action principle with respect to the lapse function Ny
applied to the action (2.7) produces Hamiltonian constraint equation. In the considered case we
have the constraint equation
0. Ala] Pe

N, 0= i + V(H(z))a'. (2.8)

We can resolve this classical constraint equation immediately. As a result, we obtain

a(t)
a(to)

and it is the Hubble law.
From the other side the constraint equation (2.8) expressed in the Dirac conformal time has
a solution

= exp {sgn(t —tp) t Ny(2")dz" <H(370)>}>

to

d
Pa = _QVIZ = dw, (2.9)

and defines values of the canonical conjugate momentum (2.6). In (2.9) the quantity w, is time
diffeoinvariant variable

wa = 2V/(H(n))a?(n). (2.10)



4 L.A. Glinka

Equation (2.9) produces the ordinary differential equation on a(n)
da
—— = £/ (H(n))a*(n).
==V
In this equation variables can be separated immediately and elementary integration leads to the
result

_ a(no)
a(n) = T 200 (2.11)

where we have defined the quantity

(i) = al)seat — ) [ " aof o/ TH). (2.12)

70

The nature of z(ng,n) can be understood if we rewrite (2.12) in the power series form [14, 15]
490
2(noim) = Ho(n o) + (1+ ) Hi(n—mo)* + -+

The quantity z(7o,n) is nothing else than the redshift. The constants Hy and gy are called the
Hubble parameter and the deceleration parameter

Ho = v/(H(no))a(no), (2.13)

2 (H(mo))

90 = 7

Ho (H(10))
The result (2.11) lies in agreement with experimental data, this formula describes the Hubble
law. It is clear that the Hubble parameter (2.13) and the deceleration parameter (2.14) are
diffeoinvariants.

—2. (2.14)

2.3 Quintessence

We understand the quintessence as a kind of matter characterized by constant energy — the
cosmological constant A. The cosmological constant is equal to zeroth mode of the matter
Hamiltonian. By this way properties of the constant A are

(H(n)) = (H(no)) = A, (H(n)) = (H(no)) = 0.

In this approximation the Hubble constant (2.13) and the deceleration parameter (2.14) have
a simple form

Ho = AY2a(np), g0 = —2,
and the redshift is
z(no; ) = Holn — nol. (2.15)

The solution of classical constraints (2.10) for the quintessence has a form

2
Pa — :I:u)a = $+2V A1/2 2 = :|:(.<)a n ( (77) >
where

H2
Wq = 2V A/242 =2V -2,
(n0) (n0) J

is diffeoinvariant constant.
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3 Quantum gravity and collective phenomena

In this section we quantize the Friedmann-Lemaitre spacetime with quintessence. In contrast
to hitherto existing approaches we propose the procedure based on the Hamilton equations of
motion

1. By first quantization of classical constraints we obtain the Wheeler-DeWitt equation for
the wave function ¥ of the Universe,

2. We treat the wave function ¥ as a classical field, and we construct classical field theory
the canonical Hamilton equations,

3. We quantize the canonical Hamilton equations by non-fockian distributions in the Fock
space of annihilation and creation operators,

4. We apply the Bogoliubov transformation and by diagonalization of the quantized cano-

nical Hamilton equations in the Fock space we carry evolution from operators onto the
Bogoliubov coefficients,

5. We find the field operator ¥ of the Universe and conjugate momentum operator Ily.

3.1 Quantum mechanics of the Universe

In agreement with P.A.M. Dirac [6] we apply the first quantization of the classical constraint
equation. Recall that for the Friedmann—Lemaitre Universe the Hamiltonian constraint equation
has a form

pg — wg =0, (3.1)

with w, given by (2.10). Classical solution of this constraint equation is given by the Hubble
law (2.11) with the redshift (2.15).

The first quantization of the Hamiltonian constraint equation is given by canonical commu-
tation relation in the standard form

{ [f)ay a] = 17

where p, = —ia— is the momentum operator corresponding to canonical conjugate momen-

a
tum p,. We assume that the wave function ¥(a) for quantum theory exists. The final result of
this step is the quantum evolution equation

(0a0a + w?) ¥(a) =0, (3.2)

which is known as the Wheeler-DeWitt equation [16, 17]. This equation defines quantum
mechanics description of the spacetime. Classical solutions of (3.2) fulfill all conditions for wave
function.

3.2 Classical field theory of the Universe

The equation (3.2) looks like the Klein—Gordon equation [18] for the boson with mass w,. Let
us consider the Wheeler-DeWitt equation as an equation of motion for the classical field ¥ and
describe the Hamiltonian classical field theory of W. For this purpose we should construct the
classical action which produces the equation of motion (3.2) from the Hamilton action principle.
The correct form of the classical action can be obtained by heuristic analogy with the Klein—
Gordon case

S = / (:])) da { (2,97 202} (3.3)
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Let us check that this action produces the Wheeler-DeWitt equation. The Hamilton action
principle gives

_ . 08[Y] 5S[Y] _ 0S[Y] dS[V]
ISP =0= 50 ov + 5&1\1/56“\11_ 50 U + 65)@\118“5\11
_ [4S[Y] 5S|Y] 6S[¥]
_{ 50 _aa(saaxp SV + 9, &%\ij .

The second term vanishes on boundaries and thus we obtain

5S[U] sS[w]
N D 50,0 0,

or after using (3.3)
/da {wZ\I/ + 5a8a\1f} =0= (Oaﬁa + wg) v =0,

what is exactly the Wheeler-DeWitt equation (3.2) for the field ¥. By this the Wheeler-DeWitt
equation is an equation of motion for the classical field ¥ and the heuristic action (3.3) is correct.
Let us calculate the canonical conjugate momentum field corresponding to the action (3.3)
ISV

Iy = S0~ 9, (3.4)

With this momentum the action (3.3) reduces into the form
S1) = [ da {my0,0 ~ H(11a., 0} (3.5)
where

H(Ily, ¥) = = (II§ + w2¥?), (3.6)

N

is the Hamiltonian that describes evolution of classical field . The canonical Hamilton equa-
tions of motion for the classical field theory described by the Hamiltonian (3.6) are as follows

OH(Ily, ¥)
olly 0at, 0
OH(Ily, )
g = Oullu. (3-8)

after calculations we can rewrite these equations in the form

][ 3[0)

The equation (3.7) leads to the relation (3.4), and the equation (3.8) is equivalent to the Wheeler—
DeWitt equation (3.2) after using the equation (3.7). Hitherto existing approaches to quanti-
zation problem of the Friedmann—Lemaitre spacetime, and generally to quantization problem
for gravity, was based on testing of solution or the second quantization of the Wheeler-DeWitt
equation for the theory. As opposed to these approaches, we will base the quantum theory of
gravity on the canonical Hamilton equations of motion.
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3.3 Quantization of the Hamilton equations of motion

The analogy method presented in previous subsection produces conclusion that given system
is a boson and by this the corresponding quantum field theory description should be build in
boson type Fock space language. The boson type Fock space of creation G' and annihilation G
operators are standard, constructed by the canonical commutation relations [18, 19, 20)]

[G(a(n)), G (a(n))] = é(a(n) — aly')),
[G(a(n)),G(a(n))] = 0.

By way of analogy with the Klein—Gordon theory we propose the following second quantization
by the non-fockian type distributions in the Fock space (a = a(n))

1
U(a) = m(g(a) +§'(a)), (3.10)
y(a) = —i %(g(a) - G'(a)), (3.11)

or in compact form
1 1
|\ V 2wq V 2wy, g
= il (3.12)
IIg CJwe . [we
V 2 \V 2
The correct canonical commutation relation for the field operators ¥ and Iy

[@(a(n')), My (a(n))] = id(a(n) — a(n')),

is preserved automatically. The distributions (3.10) and (3.11) contain the new element that will
play a crucial role — the normalization coefficients depend on a. It causes that (3.10) and (3.11)
are nonfockian representations in the Fock space of the system.

Using the non-fockian distributions (3.10) and (3.11) we can translate the Wheeler-DeWitt
action (3.5) into the Fock space language

1 _ T
S(Q’,QT) _ /Da{ig 0.9 _ G0, G —H},

where we have used the Feynman-type measure, and the effective Hamiltonian H is equal to
1 .
H = (ng + 2) Wa + %(ngT —GG)A, (3.13)

Oqwq

where A = has the meaning of coupling. The Hamiltonian (3.13) is well known from

Wa
the many particle theories as the Hamiltonian describing the boson superfluidity phenomenon.

By this way the coupling A manifests collective phenomena. The superfluidity in quantum
cosmology was first discussed in paper [21].

3.4 Diagonalization of equations of motion

By quantization of the canonical Hamilton equations of motion (3.9) we obtain the equations of
motion for the creation and annihilation operators in the Fock space

g ~wa g
G wa | LY
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These equations are understood as the Heisenberg equations for G and GT [19] with nonlinearity
in form of nondiagonal elements in the evolution matrix (3.14). We see that the quantum
evolution (3.14) is not diagonal. Now we must diagonalize this evolution. Firstly we use

The boson Bogoliubov transformation. We change the basis (G',G) to another basis
(WT, W) in the Fock space by the general transformation (a = a(n))

[ vvvv*(fa)) ] B [ 51(8) 5*(&)) ] [ gg*@) ] '

If we want to preserve the canonical commutation relations in the basis (W1, W)

(Wiam), Wi(a())] = da(m) — @), Vam) Wian))] =0,
we obtain the rotation condition
[u(@)? = (@) = 1. (3.15)

After this we apply

Diagonalization of quantum canonical Hamilton equations of motion. The a-
evolution in the basis (G',G) (3.14) is transformed into the evolution in the basis (W, W)
in the form

. w o w1 0 4%
a3 15
with some diagonalization energies w; and we. In this way there is no coupling in the basis
(Wiw).
This procedure produces equations for the Bogoliubov coefficients u and v
. v| | —we —2A v
al2]=[ 2 2200 o)

and values of the diagonalization energies w; and wy are
w1 =wg = 0.
By this we have solution of the equations (3.16)
W(a) = W(ap), Wi(a) = Wi(ap),
and we can see that the operator Ny = WIW = WT(ag)W(ao) is an integral of motion
OaNw = 0.
By this the stable Bogoliubov vacuum state |0) exists
wio) =0, (0w =0.

Since the hyperbolic identity (3.15), the Bogoliubov coefficients u and v can be parameterized
as [22]

v(a) = @ sinh ¢(a), u(a) = ¢ cosh ¢(a),
and thus the equations (3.17) are equivalent to the equations

040(a) = twy = pa, Oap(a) = —2A = _8Z)w = —0y In|wg|,
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with obvious solutions

0@ = [ pada,  6(a) = —1n

By this we have
v(a) = %exp {z /a ; pada} (u;aa(:;)) ~ 5;((7777()))) :
@) = Lo {Z / 0 pada} (foiﬁ n 5;(%))) |

In the Einstein—Hilbert theory, gravitation does not exist without structure of spacetime — the
spacetime creates gravitation, and gravitation creates the spacetime. The formalism presented
here describes the spacetime, which in our problem is the Friedmann—Lemaitre Universe, in the
language of collective phenomena. In this formulation, these collective phenomena take place
in gas, which is a nontrivial mixture of quanta of gravity and the quintessence, that is a model
approximation of bosons and fermions fields. Generally our proposition is based on applying of
the graviton-matter gas approach to quantization of gravity with matter fields presence. In this
language we will formulate physics of the Universe.

3.5 Field operator of the Universe

As we have seen, the second quantization of the canonical Hamilton equations of motion (3.9)
really represents classical field theory phase space [¥(a) Ily(a)]” by the non-fockian represen-
tation (3.12) in the Fock space with using of the correct Bogoliubov transformed basis

[ G(a) ] _ [ u*(a) —v(a) ] [ W(ao) }
G'(a) —v*(a)  u(a) Wi(ao) |-

This procedure produces quantum field theory phase space described by general relation
I u*(a) — v*(a) u(a) — v(a)

[ U(a) ]_ 2 2wq [ W(ao) ]

= Wa . [Wa H(a
L _i\/;(U*(a) +v*(a)) Z\/;(“(a) +v(a)) Wi

H\y a)

or after calculations

where
n0ta) = 2ealno) (20N 0ta) = [
a(no) ap
By this we have the field operator of the Universe
1 40| , ; —
U(a) = u(6“91/\)T(a0) + e "W(ap)),

wa(No) 2

and similarly we can read the momentum field

Iy (@) = iwa(n0)y | 57557 (/W (a0) = ™" Wo(ao)).
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4 Thermodynamics of the Universe

4.1 Density matrix and entropy

Obviously, the graviton-matter gas is an open quantum system [23] and should be described
by nonequilibrium quantum statistical mechanics methods [24]. In the standard approach to
nonequilibrium processes the one-particle density operator is the particle number operator. In
the case of the graviton-matter gas a role of particles is played by elements of this gas. By this,
the density operator for the system is

0g = G'g,

and if we rewrite this operator in (W, W) basis we have

0 = WTpw,
where W = [ VV\YT } and

lul?> —uw
P = P S |U|2 )

is the density matrix for graviton-matter gas in thermodynamical equilibrium.
Physical entropy of the system is defined by the formula well known from the quantum
information theory [25]

__tr(plnp)
tr(p)

where €2 is the partition function that for the graviton-quintessence gas is equal to

= InQ,

1
Q= ——.
2ul?2 —1

4.2 Temperature

In case of the graviton-matter gas we have thermodynamical nonequilibrium, particles of the
gas go out from the system. As a result we have diagonalized equations of motion, and we
have found basis where particle number operator is an integral of motion and thus in this basis
we have thermodynamical equilibrium of the graviton-matter gas. So we can use equilibrium
statistical mechanics formulas for thermodynamical description of the system.

If we identify the partition function of the graviton-quintessence gas (4.1) with the Bose—
Einstein type partition function we obtain

1 1 E
0= - — T=——
2ul2 -1 In 2|u|?’

E
eXpT—l

where we used the Gibbs state type. This type of identification has a meaning if and only if we
identify
E=U - uN,

where U is internal energy, p is chemical potential and N is number of particles of the graviton-
matter gas, respectively.
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As we have seen, the Hamiltonian describes considered system was given by (3.13)
1 .
H = (ng + 2) wa+5(9'0" - gg)A.

In a diagonalized basis this effective Hamiltonian has a form

H =WIHW,
where
2 2 *oy * —
|ul® + |v| o+ [ -t w4+ Juu— oo
H_ 2 2 2
Ut — lu|? + |v]? v — uv*
—urvtw, + 1 > A 5 wg +1 5 A

is the matrix of the effective Hamiltonian.
In the quantum statistical mechanics [24] internal energy U of thermodynamical system is
defined by quantum mechanical average Hamiltonian of the thermodynamical system
tr (pH)

U= (H) ==

After averaging we obtain

N R

where N is a number of particles of the gas
N = |v|%.

So the chemical potential for the gas is

1
) S 42N+

2 IN+1 (\/N—l- —\/N) Wa<770>7

a (2N +1)2 2¢/N(N+ 1)

and temperature T (see Fig. 1) is equal to

VNTI-VN [/1 N 1 [N N
o VNHI-VNI(L o N 1oy | —2N—
2 N + 1 2V N+1 (2N 1 1)2

(2N + 2) walfo)-
We see that now (N = 0) we have a finite contribution from the gas temperature

o = 5

Now we can conclude that the equation of state for the graviton-matter gas in case of quintessence
is equal to

U In(2N + 2)

T L+}/ N N 1+20@2N+1)2
2VN+1 2N+ 1N-—1+3(2N+1)2

The diagram of this relation is presented on the Fig. 2.
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2 TT[O0] u/T

Figure 1. Relation between temperature Figure 2. The equation of state for the
and number of particles for the graviton- graviton-matter gas in case of quintessence.
quintessence gas. Minimal value of temper-

ature is obtained for Ny ~ 2.73793853 and is

No]
~ 0.69058084.
T[]

equal to

5 Graviton-matter gas as solution for quantum gravity

In this paper we have considered the Friedmann—Lemaitre model of the Universe with the
quintessence. We have proposed the quantization procedure for this classical cosmological model
in terms of the graviton-matter gas. As a result we have obtained nontrivial formulation of
cosmology in terms of collective phenomena.

Physical meaning of the graviton-matter approach to the cosmic microwave background radi-
ation temperature anisotropies arises from the following scenario. From the physical viewpoint
we can think about our Universe as a gas of gravitons, gauge bosons, and material particles as
electrons, quarks, Higgs particles etc. If in our thinking huge volume of the Universe is taken into
account, the conclusion is that during our all observations and measurements of the Universe
physical properties, we are on the position of an element of the gas — an observer in the Uni-
verse is an element of the Universe. By this way observations of the temperature anisotropies,
understood as an effect of condensation of all particles and fields in the Universe, are natural
conceptual consequence of this approach. From the graviton-matter gas viewpoint the quantum
gravity has a meaning of effective theory and collective phenomena language seems adequate
to description of the Universe physics. For this reason, in our opinion, the graviton-matter gas
approach is interesting for further research in quantum cosmology.
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