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1 Introduction

Conformally invariant operators have been one of the major subjects in mathematics and physics.
Getting explicit formulas of such operators on many manifolds is potentially important. One
use of spectral data, among other things, would be in application to Polyakov formulas in even
dimensions for the quotient of functional determinants of operators since the precise form of these
Polyakov formulas only depends on some constants that appear in the spectral asymptotics of
the operators in question [3].

In 1987, Branson [1] showed explicit formulas of invariant operators on functions and diffe-
rential forms over the double cover S' x S"~! of the n dimensional compactified Minkowski
space. And lately, Branson and Hong [5, 10, 9] gave explicit determinant quotient formulas
of operators on spinors and twistors including the Dirac and Rarita Schwinger operators over
St x S"~1. Gover [7] recently exhibited explicit formulas of invariant operators with leading
term a power of Laplacian on functions over conformally Einstein manifolds.

In this paper, we show explicit formulas of invariant operators with leading term a power
of Laplacian on functions over general product of spheres, SP x S¢ with the natural pseudo-
Riemannian metric.

2 Yamabe and Paneitz operators

Consider SP x S? with the natural signature (p,q) metric (p minus signs), with p + ¢ = n.
We view this as imbedded in the natural way in R"*2, which carries a signature (p + 1,q + 1)
metric [1, 13] denoting this manifold with metric by RPT14+1 We consider the radial vector
fields

$0s = S = 29, in the ambient RPH!,

rd, = R = 2%, in the ambient RIT!.

*This paper is a contribution to the Proceedings of the 2007 Midwest Geometry Conference in honor of
Thomas P. Branson. The full collection is available at http://www.emis.de/journals/SIGMA /MGC2007.html
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The d’Alembertian [J on RPTL4+1 s
U= Agart — Dgpss = —02 — gar F 2 Age + 02+ iias — 52 Agp
=r 2 (-R*—(¢— )R+ Aga) —s 2 (=5 = (p—1)S + As»), (1)
where A = —¢g®V,V,.
It is well known that the following process is conformally invariant [6, 11]:

e Take a function f on SP x S9, and extend it to a function F' having

XF:(m—%)R (2)

where

X =R+S.

e Compute [J"F.
e Restrict to SP x S1.

More precisely, if we view f as an (m — n/2)-density on the product of spheres, perform the
process above, and view the restricted function as a —(m + n/2)-density, we get a conformally
invariant operator

Em —n/2] — E[-m —n/2],
where E[w] is the bundle of conformal densities of degree w [8]:
felw] —= f=0Q%f under § = Q%g, € is a positive smooth function.

In fact, this happens in the more general setting of the Fefferman—Graham ambient space for
a pseudo-Riemannian conformal manifold (M, [g]), provided the dimension is odd, 2m < n,
or the Fefferman—Graham obstruction tensor vanishes [6]. In particular, this happens with no
restriction on (n, m) whenever [g] is a flat conformal structure and this is the case in our situation.
In particular, using only invariance under conformal changes implemented by diffeomorphisms,
in our situation we get an intertwining operator A for two representations of the conformal group
O(p+1,g+1)[1, 4]

Aum—n/2 - u—m—n/2A'

We begin with a function f having homogeneity u in the radial (S) direction in RP*! and
homogeneity v in the radial (R) direction in RIT1.
The (u,v) homogeneity extension is a special case of the extension scheme (2) as long as

wi=u+v=m-—n/2 (3)

To illustrate our method, we work out the Yamabe operator (m = 1) and the Paneitz opera-
tor (m = 2) cases.
Let Y:=R—S. On SP x §%, r = s =1 and we have

Bf [spxse={-R*+ 5> = (q—1)R+ (p—1)S+ Dga — Dgr} f

—XY —1 —1 —1 —1
= or +X{—q+p}+Y{—q—p}+Dy%@ f
~YX
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=—wYf— %wf—i- <—g+1> Yf+Usrxsaf, since Xf=wf.

Thus, if we choose w =1 — 3, we get

[ |spxse= Osrxga — % <1 - g) -

The scalar curvature on SP x S9 is
q(q—1)—plp—1)=(¢+p)g—p)—(¢g—p)=(n—1)(g—p)

and we get the Yamabe operator
n—2
[ [spxsa= Ogrxsa + mScal.

Now we look at ﬂ]2 in the ambient space. Since R, S, Agr, and Agq all commute,

H]2 = N% 57N, — 2r 252 Aga Agr
+r A (rHERE — (g = DR} 45738+ (0 - 1S}
+ (r{ =R = (g = DR} +s2{S? + (p — 1)S}) (r*Asa)
— s 2Agr (r2{—=R*— (¢ — )R} +s2{S* + (p — 1)S})
— (P =R*— (g = DR} + s S+ (p—1)5}) (s 2As»)
+r{—=R*— (¢ - 1)R} (r *{-R*>— (¢— 1)R})
+572{S*+ (p—1)S} (s 2{S? + (p— 1)S})
+2r 25 2{—R% — (¢ — )RHS*+ (p— 1)S}.

Since 77 2{—R? — (¢ — )R}{r2(—R? — (¢ — 1)R)} equals

r?R(r?R{R*+ (¢ — )R} — 2r *{R*+ (¢ — 1)R})
+77%(q—1) (r2R{R?* + (¢ — )R} — 2r2{R? + (¢ — 1)R})
=r t((R* = 4R+ 4){R*+ (¢ — DR} + (¢ — )(R— 2){R* + (¢ — 1)R})
=r YR?*+ (q—1)RH{R*+ (¢— )R} + (—4R+4—2(¢— 1)) {R*+ (¢ — 1)R}
and (r—2{—R?*— (¢ — 1)R}) (r?Agq) equals
r 4 Age ({-R* - (¢—1)R} +4R -4 +2(q - 1)),
on SP x S9
0?2 = A2, + A%, — 2050 A gp
+20g0 ({~R* = (¢ — DR} +{S* + (p—1)S} + 2R -2+ (¢ — 1))
— 20 ({-R*— (¢ — DR} +{S* + (p—1)S} —25+2—(p—1))
+{-R*— (- 1R +{S*+ (p—1)S}* +2{—R* — (¢ — HYRHS* + (p — 1)S}
+ (AR -4+42(q— 1) {-R?>—(q— 1R} + (=4S +4—-2(p —1){S* + (p—1)S}.
Let

A:={-R*-(¢—1)R}, B:={S*+(p-1)S},
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C:=2R—-2+(¢—1), D:=-25+2—-(p—1).
Then,

0% |spxse= A%y + ALy — 2050 Asp + 2050(A+ B+ C) — 2050 (A + B + D)
+(A+B+C)A+B+D)+(A—B)(C—D)-CD.

Note that, on E[w],
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Since w = 2 — 7,

q—p . n-—2
< 5 1>w (g—3)=1 =1 Scal,

q9—p n—2
< + > w4+ (p—3) (1) Scal, and

w2+nw72w+(w+q73)(w+p73):n—nf+pq+1,

2
we have
-2
[[]2 |SP><S(1: A%q + A%’p — 2ASQASP -2 {1 — 4(7:1_1)8(3&1} AS(I

n—2 n—2 2 n?
+2{—1 A=) 1)Scal} Agp + <4(n_1)Scal) +n— ?—qu.

We claim that this is the Paneitz operator [3]

n—4

P=A%4+6Td+ 5

Q,
where

J=S8cal/(2(n—1)), V=(p—Jg)/(n—-2),
T =(n—2)J -4V Q:gJ?—mw2+AJ

Since Scal = (n —1)(¢ — p) and J = 52,

wdzigﬁAm—AW%

5Vd=ni2ﬂp—UAy+wq—UAy}—2&iZ)

(Lga — Dgo).
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Thus
5Td = (n 2122 (As — D) + o (~4(p— 1)~ 2g — )} Ao
+ 5{—4((1 —1)+2(¢ — p)}Asa

n—2
=9 (‘W’L—DSCM) (Asa — Dgr) = 2(Aga + Dgr).

On the other hand, since |V|? = z,
2 2
e 1 o I R G ) I
2 2 \2\ 2 2] T mn—22 \4n—1) 4
n—2 2 4 n—2 2 n(n—4)
= ——=<Scal ] — 1) - 2= =
<4<n = 1>Sca> (n - 2)? <4<n = 1>Sca> 1

2 2
_ (=2 Scal | +n— = +
“\Umn-1) o M4

and the claim follows.

3 Higher order operators

qg—1)\° p—1\
C:= Asq+<2>, B = ASP+<2>,

so that C' and B are nonnegative operators with

2 2
Asq—CQ—(qu> ) Asp—BQ—(le) .

The eigenvalue list for Agq [12, 2] is

Let

j(q_1+.7)7 j2071727"'7
so the eigenvalue list for C' is

qg—1

5 J=012.... (4)

J+
Similarly, the eigenvalue list for B is

1
k+pT, k=0,1,2,.... (5)

Applying 0™, we get (with &k =m — ¢)
m _m_ k(MY _—20 —2k g—1 a1 5,
N f_zg( 1) <£)s r <C+ 5 +v> <C’+ 5 — 2 1)+v).

(0151 a) (o 5 a1 o)
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(B+p;1+u>-~-(B+p;1—2(l<:—1)+u)o
(5250 u) o (525 v -0)

where in each -, we move in increments or decrements of 2. These increments and decrements
are determined by the homogeneity drops implemented by the s=2 and r~2 factors in (1). To
restrict to SP x 5%, we just set s =1 = 1.

As a result, with

qg—1 —1

= P :: —

Q 5 to 5t

as long as we have the correct weight condition (equivalent to (3))
P+Q=m-1,

then the operator
Aan(€.5,@) =3~ (7 ) €+ Q)€+ Q-2 - 1)

(C—-Q)-(C—Q+2(—-1))e
(B+P)---(B+P—-2k—-1))e
(B-P)---(B-P+2k-1)), k+l=m, P+Q=m-—1,
intrinsically defined on S? x S, intertwines u,, /2 and u_,,_, /o.
Note that the dependence of Ag,,(C, B, Q) is only on (m, C, B, @), since (u, P) is determined
by (m,C, B, Q). The notation suggests substituting numerical values for C' and B, a procedure
justified by the eigenvalue lists (4), (5). These numerical values are nonnegative real numbers,

and depending on the parities of ¢ and p, they are either integral or properly half-integral.
We claim that

Proposition 1.
Ao (C,B,Q)=(C+B+m—1)---(C+B—-m+1)
x(C—B+m-—-1)---(C—B—-m+1):=Gon(C,B), (6)
where the decrements are by 2 units each time.

In particular, we are claiming that the left-hand side of (6) is independent of Q.
The operator Go,,(C, B) is in fact a differential operator since

(m—1>/2
(C + B)(C H [C+ (B+21)][C— (B+20)
=1
x [C+ (B - 25)] [C—(B-2)], modd,

m/2
[[lc+ @B+ @-1)C- B+ @2 -1)
=1
\ X [C+(B-(@20-1)][C—-(B-(2l—1))],  m even,

(m=1)/2
B% [ [C'-2B>+(2)*)C*+ (B> - (20)>)’],  modd,
=1

m/2

H [C* —2(B? + (21 — 1)*)C? + (B* — (21 — 1)*)?], m even.

=1
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Recently, Gover [7] showed that on conformally Einstein manifolds, the operators are of the
form

s

Om = | [ (A — ¢Sc),

=1

where ¢; = (n 4 20 — 2)(n — 21)/(4n(n — 1)), Sc is the scalar curvature and A = V*V,,.
To get the formula (6) in case of sphere S™, we set

n—1\2 1
=4/ A B:= —.
c +< . ), :

And the formula simplifies to

Gan(C.1/2) =] (C - 2l2_1) <C+ 2lz_1)

=1
m

20 — 2)(n — 21

Tilaser2-2m-0

dn(n — 1) —_——

=1
Sc
a
The “4” sign in the above is due to our convention A = —V%V, so the two formulas [J,, and

Gom(C,1/2) agree.

We will now prove the equality in (6).

Because of the eigenvalue lists (4), (5), to prove this in the case in which ¢ and p are odd, it
is sufficient to prove the identity (6) with C' and B replaced by nonnegative integers. This will
hold, in turn, if it holds for ¢ = p = 1, the explicit mention of the dimensions having disappeared
in (6).

To prove (6) for ¢ = p = 1, note that each expression is polynomial in (C, B,v) for fixed m,
and that the highest degree terms in (C, B) add up to (C? — B?)™ for each expression. Thus it
will be enough to prove that the right-hand side of (6) is the unique (up to constant multiples)
intertwinor ,,—1 — %_,,—1 in the case ¢ = p = 1.

By K =S0(2)xSO(2) invariance, an intertwinor A must take an eigenvalue on each

0. = eV —1ft V=1ip
for p and ¢ the usual angular parameters on the positive-metric S' and the negative-metric S*
respectively, and f and j integers.

The prototypical conformal vector field [1] is

T = cos(p) sin(t)0; + cos(t) sin(p)0,,
with conformal factor
w = cos(p) cos(t).
The representation U_, of the Lie algebra s0(2,2) has

1 . .
U_r(T)pj 5 = Z{(f +i+r)ei e+ (f —J+r)ei1ra
F(=f+i+r)pirr 1+ (=f =G +1) 0141} (7)
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Consider the operator

P(g,8) 1 @jf = @jtef+o
for €,6 € {£1}, and the operators
i dvin Frejpe feir
Note that another expression for Ga,,(C, B) is as G, (J, F'), since
Gom(J, F) = Gom(J, — F) = Gop(—J, F).
We have
JP(e,8) = P(e,0)(J + ¢), FP(e,8) = P(g,0)(F +9).
By (7),

@mqﬂﬁ:iﬂ%LDU+F+1¥m}+ﬂ—LD@J+F+1¥m)
+P(1,-1)(J - F+1Fm)+ P(-1,-1)(-J - F+1Fm)}.

With this we may compute that

4Gom (I, F)Up—1(T) = Gom (J, F){P(1,1)(J + F+1—m) + P(-1,1)(=J + F + 1 —m)

+P(1,-1)(J —F+1-—m)+P(-1,-1)(-=J - F+1—-m)}
=PLD{(J+F+m+1)---(J+F—-m+3)e

(J-F+m—-1)---(J=-F-m+1)}J+F—-m+1)
+P(-1L,1){(J+F+m—1)--(J+F—m+1)e
(J—F+m-=3)---(J-F-m-1)}(-J+F—-m+1)
+P1L,-D){(J+F+m—-1)---(J+F—m+1)e
(J—F+m+1)---(J-F-m+3)}(J—F—-m+1)
+P(-1,-D){(J+F+m—=3)---(J+F—-m—1)e
(J—F+m-=1)---(J-F-m+1)}(-J—F—-m+1),

whereas

AUy 1 (T) G (J, F) = {P(1,1)(J + F +m+1) + P(=1,1)(~=J + F +m + 1)
+P(1,-1)(J—F+m+1)+P(-1,-1)(-J —F+m+1)}e
(J+F4+m-1)--(J+F-m+1)(J—-F+m-1)---(J—F—m+1).

The right-hand sides of the two preceding displays agree, so we have an intertwining operator.
As a corollary, the claim (6) follows, so that Gan,(C, B) is an intertwinor whenever g¢p is
odd. In fact, by polynomial continuation from positive integral values, the identity (6) holds
whenever any complex values are substituted for C' and B. In particular, we can substitute
proper half-integers, and thus remove the condition that gp be odd.
It would be good to have a proof which avoids a dimensional continuation argument. We
present in the following appendix a proof which uses only an elementary combinatorial argument.
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A  Appendix
Here we use induction on the order of the operator. We will do:

e Express Ay, 41)(C, B, Q) in terms of (Q — 1) in all terms containing B.

e Compute and see

AQm(C_ 1vaQ_ 1){A2(C’—|—m,B,Q—|—m)+A2(C+m,B,Q—m)}

e Since the above simply says

249,(C —1,B,Q —1)(C+m — B)(C +m+ B)
= AQm(C_ ]-aB’Q - 1)(C+m_ B)(C+m+B) +A2(m+1)(C7BvQ)a

conclude

Asims1)(C, B, Q) = Agp(C —1,B,Q — 1)(C +m — B)(C +m + B).

To go on, note first that Ay(,,41)(C, B, Q) in terms of (Q — 1) in all terms containing B is

m-+1

1 \ym+1-4 m+1

> (1 (")
«(B—(Q-1)+(m—1)(B—(Q—1)— (m—1)+2( 1)
«(B+(Q-1)—(m—1))(B+(Q—1)+(m—1)— 2 1))
«(C-Q)(C-Qta—1)
«(CHQ)(CHQ-2C—1)). (5)

A9 (C —1,B,Q — 1) can be written

=0
eB-(Q@-1)+(m—-1)-(B-(Q—1)—(m—1)+2(
eB+(Q@-1)—(m—-1)--(B+(Q—1)+(m—1)—2()
«(C-Q)-(C-Q+2t-1)
¢ (C+Q—2)-(C+Q—20). 9)

Define Rp and R¢ to express Ao, (C' —1,B,Q — 1) as
() + (B =@ 1)+ (- 1)+ (B Q1) (m-1)
*B+(Q-1)—-(m—-1))--(B+(@—-1)+(m—1))+Rp

Rot (-10P(11) #(C = @)++(C - Q4 20m - 1)
e (C+Q—2)---(C+Q—2m).
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We can write

As(C +m,B,Q +m) = (C+m+ B)(C +m— B)
=—(B=(Q@+m))(B+(Q+m))+(C—Q)(C+Q+2m)

and

Ay(C+m,B,Q —m)=(C+m+ B)(C+m— B)
=—(B-(Q-m))(B+(Q—-m))+(C—-Q+2m)(C+Q).

The first product As,,(C —1,B,Q — 1)A3(C + m, B, Q + m) becomes

Cm(p) e (B =@+ =1 (B (@- 1)~ (m-1)
«(BH(@Q-1)~(m—1)-(B+(Q-1)+(m—1)

o {—(B—(Q+m))(B+(Q+m))+(C—-Q)C+Q+2m)}
+Rpe(C+m+ B)(C+m—B),

which can be rewritten as

0
C(BH(@-1)~(m 1) (B+(Q-1)+(m—1)(B+(Q+m)
cen(5) e B @4 1) (B @1~ (1)
(BH(@Q—1)—(m 1) (B+(Q~1)+(m—1)

e (C—Q)(C+Q+2m)+Rpe(C+m+B)(C+m-—B).

(—1)m+1<m+1>°(B—(Q—1)+(m—1))~-(3—(Q—1)—(m—l))(B—(Q+m))

The second product Agy,(C —1,B,Q — 1)As(C +m,B,Q —m) is

Ros (©+m+ B)C+m—B)+(-1(™) ¢ (C = Q)++(C~ Q+ 2m~1)
«(C+Q-2)-(C+Q—2m)
e [~(B—(@-m)(B+(Q—m)+(C—Q+2m)(C+Q)}
—Res (C+m4 B)C+m—B)+ (-1} (™) ¢ (C = Q)++(C — Q4 2m— 1)
«(CH+Q=2)(C+Q—2m) e (B—(Q-m)(B+(Q—m)

+(—1)0<Zii>o(C’—Q)---(C—Q+2m)o(C+Q)---(C’+Q—2m).

So by adding up the above two products, we get

G (M) ¢ (B @1 (- ) (B (@ 1)~ - D) (B - (Q+m)

¢ (B+(Q-1)~(m=1) - (B+(Q-1)+(m—1))(B+(Q+m)
+(_1)0<Zii).(C_Q)”'(C_QJer)°(O+Q)"‘(C+Q—2m)

s (7)o (B-@-D -1 (B (@1~ (m-1)
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eB+(Q-1)—(m—1))- - (B+(Q—-1)+(m—1))e(C—Q)C+Q+2m)
+(—1)1<Z>o(C—Q)---(C—Q+2(m—1))0(C+Q—2)---(C+Q—2m)
*(B—=(Q-m))(B+(Q—m))

+ (R + Rc) e (C+m+ B)(C +m — B).

Note that Rp is missing the first term and R¢ is missing the last term of (9). So we have

(Rp+ Rc)e (C+m+ B)(C+m— B)
= Aom(C —1,B,Q — 1)(C +m+ B)(C +m — B)

E () (B @D+ m 1) (B @ 1) - (= 1)+ 20)

(=1
eB+(@-1)-(m—1))---(B+(@-1)+(m—1)-20)
e (C—-Q)- (C—Q+2(l—-1)e(C+Q—2)---(C+Q—20)
e (C+m+ B)(C+m—B).
Therefore, A, (C —1,B,Q —1)(C +m+ B)(C +m — B) equals (see (8))
Ist term of Ay(y4.1)(C, B) + (m + 2)nd term of Ay, 11)(C, B)

m

#n(5) (B @1+ m=1) (B (@1~ (1)

e(B+(Q@—-1)—(m—-1)---(B+(Q—-1)+(m—1))
¢ (C—Q)(CH+Q+2m) (10)

(1) #(C= Q) (€ - Q@+ 2m—1)
S(C+Q-2)(C+Q-2m) e (B-(@Q-m)(B+(@Q-m) 1)

m—1

3 Cm() e (B-@- 1 +(m = 1) (B (@) = (m 1) + 20
—1
«(BH(Q-1)— (m—1))--(B+(Q—1)+(m—1) - 20

e (C—-Q)--(C—-Q+2-1)e(C+Q—2)---(C+Q—20)

e (C+m+ B)(C+m—B). (12)

So we want to show (10) + (11) + (12) is exactly the other term in Ay, 41)(C, B).
Since, for any Qy,

(C+m+B)(C+m—=B)={-(B-Q)B+Q)+(C+m—-0Q)(C+m+Q},
(12) becomes

m—1

S () e (B @ 1+ (= D) (B Q1) = 1)+ 20)

(=1
e(B+(Q@—-1)—(m—-1))---(B+(Q—-1)+(m—1)—20)
«(C-Q)+(C-Q+2(4-1))s(C+Q=2)+(C+Q-20)s (B~ Q)(B+Q)
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m—1
E () (B @D m 1) (B (@ 1) - 1)+ 20)
(=1

e(B+(Q-1)—(m—-1)---(B+(Q—1)+(m—1)—20)
e(C—-Q) - (C—-Q+2(-1)e(C+Q—2)---(C+Q—20)
o (C+m—Q)(C+m+ Q)

- §<—1>m+l-f (7) 2+ ?j(—nm-f (7)

Eer (e (7))
(e

But ((7)Eg + (ng)Fg_1> becomes

(7) B =@+ (m=1) (B Q=1 - (m—1)+ 20~ 1)

eB+(Q@-1)—(m—1))--(B+(Q—-1)+(m—1)-2({-1))
¢ (C—Q)(C—Q+2(l—-1)e(C+Q—2)--(C+Q—20)

+<gT1> (B-(Q@-1)+(m~=1))-(B=(Q—1)~(m—1)+2({~1))

e(B+(Q-1)—(m~—1))---(B+(Q—-1)+(m—-1)-2({-1))
e (C—-Q)--(C=Q+2((l-1)—-1)e(C+Q—2)--- (C+Q—2({—-1))
o (C+m—Qu1)(C+m+ Q1)

which is, upon choosing Qg to be @ — 2¢ + m,

B-(@Q@-1)+(m-1)---(B-(Q—-1)—(m—-1)+2({—-1))
eB+(Q@-1)—(m—1))--(B+(Q—-1)+(m—1)-2({-1))
e (C—Q) - (C—Q+2(0—1)e(C+Q—2)---(C+Q—2({—1))

times

<?>(C+Q—2£)+ (ETl)(CJrQ—?(f—l_m))’

B-Qi=B—-(Q—-1)—(m—1)+2({-1),
B+Qi=B+(Q—-1)+(m—1)—-2(/—-1),
C+m—-Q=C—-Q+2((—-1) and
C+m+Qr=C+Q+2({—1-m).

Note also that

(’Z)(C+Q—2£) (6_1>(C+Q—2(€—1— ))_<

m;rl)(CJrQ).
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Thus

<<7Z> Ey+ <€T1> Fg_1> = the (£ + 1)st term of Ay, 41)(C, B, Q).

Finally we note that (10) and (—1)"("7) E1 add up to

D" (B-(@-1)+(m—1)---(B-(Q—1)—(m—1)
eB+Q-1)-(m-1)---(B+(@-1)+(m—1))e(C-Q)

<Tg>(C’—I—Q+2m)+ <T{L>(C+Q—2),

since
B-Qi=B—(Q-1)—(m—1) and B+Qi=B+(Q—-1)+(m—1).

This is the 2nd term of Ay(,4.1)(C, B, @), since

(’(’;)(C+Q+2m)+ (T)(CJrQ—?)— (mIrl)((HQ)

Similarly, (11) and (=1)*(,™ ) Frm—1 add up to

m—1

(=D"(C=Q)---(C-Q+2(m—-1))e(C+Q—=2)--- (C+Q—2(m—1))
eB-(Q@-1)+(m-1)B+(@-1)-(n-1)

times
<Z>(0+Q—2m)+ (mnz 1>(C+Q+2),

since

CH+m—-—Qm-1=C—-Q+2(m-—1),
CH+m+Qmi1=C+Q+2,
B-—(Q-m)=B—-(Q—-1)+(m—-1) and
B+(Q@—-m)=B+(Q—-1)—(m—1).

This is the (m + 1)st term of Ay(,41)(C, B, Q), since
m m m+1
(m)(C—i-Q—Qm)—i-(m_1>(C+Q+2):( m )(C’—i—Q).
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