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Abstract. The linearizability of differential equations was first considered by Lie for scalar
second order semi-linear ordinary differential equations. Since then there has been consi-
derable work done on the algebraic classification of linearizable equations and even on sys-
tems of equations. However, little has been done in the way of providing explicit criteria to
determine their linearizability. Using the connection between isometries and symmetries of
the system of geodesic equations criteria were established for second order quadratically and
cubically semi-linear equations and for systems of equations. The connection was proved
for maximally symmetric spaces and a conjecture was put forward for other cases. Here the
criteria are briefly reviewed and the conjecture is proved.
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1 Introduction

Whereas there are standard methods to solve linear ordinary differential equations (ODEs),
there are hardly any for nonlinear ODEs. One could, of course, approximate the nonlinear ODE
by a linear one (as in perturbation methods), but the key features of the nonlinear equation that
may be vital for the phenomenon being modeled could easily be lost. As such, one needs methods
to obtain exact solutions of the equation. Further, if one tries to improve the approximation
by an iterative series the convergence of the series would need to be proved. The same problem
is faced by numerical schemes for solution. Proof of existence and convergence is provided by
functional analytic methods when they can be applied. On the other hand, some methods were
developed for specific classes of first order ODEs and some second order ODEs were converted
to linear form by transformation of variables. Using symmetry considerations, Lie had found
that all first order ODEs could, in principle, be converted to linear form by some appropriate
change of independent and dependent variables. (The infinitesimal generators of symmetry form
a Lie algebra [3].) He obtained criteria for a second order semi-linear ODE to be such that it
could be converted to linear form by point transformations [1, 2]. He did not go further to
deal with systems of ODEs or third order ODEs. His procedure uses transformations of the
dependent and independent variables of the ODE (or system of ODEs) There has been work
done on obtaining the symmetry classes of systems of second order ODEs [4] and for the third
order ODE [5]. Some explicit criteria for the linearizability of single third order ODEs have also
been provided in the literature [6, 7, 8, 9, 11, 12].

?This paper is a contribution to the Proceedings of the Seventh International Conference “Symmetry in
Nonlinear Mathematical Physics” (June 24–30, 2007, Kyiv, Ukraine). The full collection is available at
http://www.emis.de/journals/SIGMA/symmetry2007.html

mailto:aqadirmath@yahoo.com
http://www.emis.de/journals/SIGMA/2007/103/
http://www.emis.de/journals/SIGMA/symmetry2007.html


2 A. Qadir

It is natural to ask what the connection is between symmetries in geometry and for differential
equations. After all, differential equations “live” on manifolds. More precisely, we would like
to relate the symmetry algebra of the ODEs to that of the manifold. There had been some
suggestions but there does not appear to have been any attempt to formulate the connection
precisely till the turn of the century. The first such attempt looked for the connection through
the system of geodesic equations[13]1. It was used for the projective geometry of geodesics.
(A recent paper [14], and references therein, detail relations between projective algebra (point
symmetries of a particular class of second order ODEs) and algebra of isometries, providing
a more complete background of geometry for the purpose.) Independently, the same idea was
developed and carried further to construct the Lie algebra of the system of geodesic equations
on maximally symmetric spaces [15]. There a conjecture was stated for all spaces. In this paper
that conjecture will be proved.

The plan of the paper is as follows. A brief review of the geometrical notation used will
be presented in the next section. The application of the geometric method for linearization of
second order ODEs will be presented in the subsequent section and its extension to higher orders
in Section 4. The theorem will be proved in the subsequent section and a brief summary and
discussion presented in Section 6.

2 Geometric notation used

To explain the linearization procedure it is necessary to introduce the geometric notation used.
This will be presented first.

The following are well-known and can be found in text books. We use the Einstein sum-
mation convention that repeated indices are summed over the entire range of the index. Thus,
AaBa stands for

∑n
a=1 AaBa. The metric tensor will be represented by the symmetric (non-

singular) matrix gij and its inverse by gij . The Christoffel symbols are given by

Γi
jk =

1
2
gim(gjm,k + gkm,j − gjk,m),

where , k stands for partial derivative relative to xk, etc. The Christoffel symbols are symmetric
in the lower pair of indices, Γi

jk = Γi
kj .

In this notation, the system of n geodesic equations is

ẍi + Γi
jkẋ

j ẋk = 0, i, j, k = 1, . . . , n,

where ẋi is the derivative relative to the arc length parameter s defined by ds2 = gijdxidxj .
The Riemann tensor is defined by

Ri
jkl = Γi

jl,k − Γi
jk,l + Γi

mkΓ
m
jl − Γi

mlΓ
m
jk,

and has the properties Ri
jkl = −Ri

jlk, Ri
jkl + Ri

klj + Ri
ljk = 0 and Ri

jkl;m + Ri
jlm;k + Ri

jmk;l = 0.
The Riemann tensor in fully covariant form Rijkl = gimRm

jkl satisfies Rijkl = −Rjikl.

3 Linearizability of second order ODEs

A general quadratically semi-linear system of ODEs is of the form

xa′′ + αa + βa
b xb′ + γa

bcx
b′xc′ = 0. (1)

1There appears to be a Russian preprint of 1991, but that is even less accessible than this paper.
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The system of ODEs will be said to be of geodesic form if αa = βa
b = 0. It can be regarded

as a system of geodesic equations if there exists some metric tensor for which the Christoffel
symbols satisfy Γa

bc = γa
bc. In this case we can construct the curvature tensor corresponding to

the given coefficients. It is easier to see the procedure adopted for the case of two dependent
variables. Call the variables x, y. Then we have 6 arbitrary functions of these variables appearing
as coefficients in the equations

x′′ = a(x, y)x′2 + 2b(x, y)x′y′ + c(x, y)y′2,

y′′ = d(x, y)x′2 + 2e(x, y)x′y′ + f(x, y)y′2,

the Christoffel symbols in terms of these coefficients are

Γ1
11 = −a, Γ1

12 = −b, Γ1
22 = −c, Γ2

11 = −d, Γ2
12 = −e, Γ2

22 = −f.

The linearizability criteria are [16]

ay − bx + be− cd = 0, by − cx + (ac− b2) + (bf − ce) = 0,

dy − ex − (ae− bd)− (df − e2) = 0, (b + f)x = (a + e)y, (2)

with constraints on the metric coefficients: g11 = p, g12 = g21 = q, g22 = r,

px = −2(ap + dq), qx = −bp− (a + e)q − dr, rx = −2(bq + er),
py = −2(bp + eq), qy = −cp− (b + f)q − er, ry = −2(cq + fr).

The compatibility of this set of six equations gives the above four linearization conditions (2).
The remarkable fact is that the linearization criteria are simply Ri

jkl = 0! For a system of three
equations we get eighteen such equations. In general there are n2(n + 1)/2, n ≥ 2. One now
obtains the required linearizing transformation by regarding the variables in which the equation
is linearized as Cartesian, thus having g11 = g22 = 1 and g12 = g21 = 0, and looking for the
coordinate transformation yielding the original metric coefficients [16]. This can be done by
using complex variables. The details can be found in the reference, where examples are also
given.

Following Aminova and Aminov [13] and projecting the system n-dimensional system down
to a system of (n− 1) dimensions, the geodesic equations become [17]

xa′′ + Abcx
a′xb′xc′ + Ba

bcx
b′xc′ + Ca

b xb′ + Da = 0, a = 2, . . . , n, (3)

where the prime now denotes differentiation with respect to the parameter x1 and the coefficients
in terms of the Γa

bcs are

Abc = −Γ1
bc, Ba

bc = Γa
bc − 2δa

(cΓ
1
b)1,

Ca
b = 2Γa

1b − δa
b Γ1

11, Da = Γa
11, a, b, c = 2, . . . , n.

System (3) is cubically semi-linear. When n = 2, writing a− 2e = h, f − 2b = g, we get

y′′ + c(x, y)y′3 − g(x, y)y′2 + h(x, y)y′ − d(x, y) = 0. (4)

This is the general form of linearizable second order semi-linear ODE found by Lie, with the
coefficients re-named. To be linearizable it must satisfy the linearizability conditions

hy + 2ey − bx + be− cd = 0, by − cx + hc + ec + b2 − bg = 0,

−dy + ex + eh + e2 + bd− dg = 0, 3bx − 3ey − gx − hy = 0,

which are simply the Lie criteria for a scalar ODE !
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One can use the same procedure to go on to systems of two (or more) cubically semi-linear
ODEs by taking n ≥ 3 in (1). This has been done [17] and examples of the two dimensional
case are also given there.

It is known that there is a unique class of linearizable scalar second order semi-linear ODEs,
namely that which satisfies the Lie criteria. One may wonder if the extension provided for
systems will give a unique class as well. The answer is “No”, as it is known that for 2-dimensional
systems there are five classes [4] that are linearizable and only one has been provided by the
above procedure. How is it that the case of the single equation is fully covered by the above
procedure but the systems are not fully covered?

Note that the projection procedure applied to an arbitrary system of n quadratically semi-
linear second order ODEs reduces it to n−1 cubically semi-linear second order ODEs. (Of course
there is an enormous computational complication arising. To construct the metric tensor from
the Christoffel coefficients an algebraic computational code has been written [18].) Now observe
that in projecting down from the system of n variables to n−1 variables, the Christoffel symbols
are reduced from n2(n + 1)/2 by n, to give (n − 1)n(n + 2)/2 independent coefficients. Since
we now have n − 1 equations, each with its own cubic function, there are 4(n − 1) coefficients
for the reduced system. If the number of coefficients left after losing n equals the number of
coefficients of the reduced system, we can determine one set of coefficients in terms of the other.
The two expressions are obviously equal for n = 2 and the former is greater than the latter for
n > 2. As such, the coefficients of the cubic system can be determined uniquely in terms of
the quadratic system for n = 2, i.e. for a scalar cubically semi-linear system. For larger systems
there will be infinitely many ways to write the former in terms of the latter. This is why there
is a unique solution to the linearizability problem for the scalar equation and many solutions for
the systems! It can be seen that (3) is not the most general form for the system as one should
have Aa

bcdx
b′xc′xd′ in place of the second term for full generality. For n = 2 there can be no new

term coming from this more general coefficient, but for n ≥ 3 new terms will come in. This is
where the extra classes that are missed for n ≥ 3 will come from.

4 Higher order systems

A procedure to extend the scalar second order case to the third order is to differentiate the
general second order ODE (4). One can now replace the second order derivative term in the
equation by using the original second order ODE. Thus [19] one either gets a third order ODE
which is quintic in the first derivative

y′′′ − αy′5 + βy′4 − γy′3 + δy′2 − εy′ + φ = 0,

or a third order ODE with a term in the second order that has a coefficient quadratic in the
first derivative

y′′′ − (A(x, y)y′2 −B(x, y)y′ + C(x, y))y′′ + D(x, y)y′4 + E(x, y)y′3

− F (x, y)y′2 + G(x, y)y′ −H(x, y) = 0.

It turns out that the same result is obtained in either case. These equations are not in the
classes considered in the literature earlier. It must be added that the class of equations obtained
by this procedure also does not contain the classes earlier discussed in the literature . Instead
of following this procedure, one could have gone in the reverse direction. First differentiate
the system and then project it. Surprisingly, it turns out that the result is again the same in
either case. Some examples of linearizable third order equations are given in [19], one of which
overlaps with the class of Meleshko [12], but none of which overlaps with that of Ibragimov and
Meleshko [11].
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It should be noted that if one tries to reduce from the quintic, it is not possible to reduce
to the quartic. Further, the cubic cannot be resolved directly as there are problems of non-
uniqueness of the solutions of the equations for the coefficients required to linearize the third
order cubic ODE. It would be useful to find a canonical way to solve the equations, or to prove
that all solutions are equivalent. One needs to understand how a complete classification of
the various classes can be obtained and to provide explicit criteria and constructive procedures
for the solutions. In particular, there are only three classes possible for the third order ODEs
linearizable by point transformations [5], y′′′(x) = 0, y′′′(x) = y(x) and y′′′(x) = α(x)y(x). Two
were provided by Chern [6, 7] and the third by Neut and Petitot [10], and later by Ibragimov and
Meleshko [11]. How can there then be another class? The point is that the method just outlined
uses a projection and differentiation apart from the point transformations. It guarantees only
two arbitrary constants and not three while the other procedure guarantees three.

Can one go further? On differentiating the third order ODE (in the quintically semi-linear
form) and using the second order ODE, just as in the case of the third order cubically semi-linear
ODE, there is no guarantee that the coefficients of the fourth order ODE would be resolvable in
terms of the coefficients of the original second order ODE. It turns out that it is [20] resolvable.
However, as yet there is no proof that the other forms of the equation, involving the third and
lower orders or the second and first orders, would yield the same result. It certainly is not clear
that the projection and differentiation procedures would commute. It is not even clear how
that would be checked. One would need a system of third order equations to be able to check
this result. Though the system of third order equations that are cubically semi-linear in the the
first derivative has been computed [21], it is highly complicated and one cannot yet make any
statement about the commutation of the different procedures.

5 Proof of the Feroze–Mahomed–Qadir conjecture

In [15] maximal curvature spaces were considered and it was found that for flat spaces of
dimension n the symmetry algebra is sl(n+2, R), for positive curvature so(n+1), or for negative
curvature a corresponding non-compact version. There was no result for spaces that are not
maximally symmetric. However, one can imagine some invariant procedure to split the space into
flat, positive or negative curvature spaces, or those with no symmetry. Considering each of these
subspaces it seemed clear that the corresponding direct sums should provide the full symmetry
algebra. In case there is no flat subspace, there will still remain the geodesic re-parametrization
by translation and scaling. This is what gives the extra 2 in sl(n + 2, R). Where there is no
part of the special linear algebra the dilation algebra, d2, will replace it. On this basis a more
general conjecture was stated. That conjecture is now proved as a theorem.

Theorem. For a space of non-zero curvature with isometry algebra h the symmetry algebra
of the geodesic equations is h ⊕ d2 provided that there is no section of zero curvature. If there
is an m-dimensional maximal cross-section of zero curvature, M , and the symmetry algebra
of the orthogonal subspace, M⊥ is h1, the symmetry algebra of the geodesic equations will be
h1 ⊕ sl (m + 2, R).

Proof. First consider a base manifold N , which has a maximal flat section M of dimension
m 6= 0 such that N = M × M⊥, where the orthogonal subspace, M⊥, has no flat section.
Consider a metric tensor g on N and let the isometry algebra on M⊥ be h. Thus the isometry
algebra of N will be so(m)⊕s⊕h, where ⊕s denotes the semi-direct sum, i.e. a “non-commutative
direct sum”.

Construct a fibre bundle on N with the fibre given by R and take the position vector x to
depend on the arc length, or geodetic, parameter along the fibre s, i.e. such that g.ẋẋ is unity.
If one defines the Lagrangian, as a function of x and ẋ to be this quantity, it will possess at least
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one additional symmetry generator, ∂/∂s, apart from the isometry algebra. The Lagrangian is
not, in general, invariant under the generator s∂/∂s (unless it has the value zero). However, the
Euler–Lagrange equations for this Lagrangian will be invariant under this additional generator.

Consider the geodesic equations for M in the fibre bundle over it. They will be the vector free-
particle equations and hence will have the symmetry algebra sl (m + 2, R). The remaining part
will retain its isometry algebra. Thus, in this case, the full symmetry algebra is h1⊕sl (m + 2, R).

Now consider the case that there is no flat section of the manifold, M = ∅ so m = 0. In
this case the isometry algebra will simply be h. There will remain the two symmetry generators
for re-parametrization of the geodetic parameter by translation and re-scaling, ∂/∂s and s∂/∂s.
They form a two-dimensional dilation algebra, d2. �

This theorem provides the basis for using geometric procedures to obtain linearizable forms
of (systems of) ODEs, through the link between the symmetries of the manifold and the system
of geodesic equations on it. In particular, one requires a flat space for the system of geodesics to
be linearizable. The geometry of the projective space need not be flat but it must be imbeddable
in a flat space. While it was used as a conjecture, one really needed a rigorous proof of the
result.

6 Conclusion

In this paper a review has been provided of the geometric approach to symmetry analysis using
the connection between symmetries of geometry and of differential equations provided by the
system of geodesic equations, noted by Aminova and Aminov [13] and separately by Feroze
et al. [15]. This leads to a new approach to investigate the linearizability of ODEs. A bonus
of this approach is that the solution of the linearized equations is obtainable by constructing
the transformation of coordinates from Cartesian to the metric tensor given by the geodesic
equations [16]. Using this approach and the projection procedure of Aminova and Aminov [13]
one can re-derive the Lie criteria for a scalar equation and extend them to a system of equa-
tions [17]. One can also extend to the third and higher order scalar equations [19] and to the
third order system of equations [21]. There is much work that needs to be done in this direction.
For one thing, the systems have many classes of which one segment has been dealt with so far.
A complete analysis and a method to find solutions of the remaining classes would be very im-
portant. Again, the higher order equations can be linearized by using the Lie procedure as done
by Ibragimov and Meleshko [11] or by the procedure of Neut and Petitot [10]. To what extent
is there an overlap between the two procedures? For that matter, does this work subsume the
work of Grebot [8, 9] or not? The relation between the various methods and approaches being
used is needed for a proper understanding and classification of the procedures.

A conjecture that was at the base of the connection between geometry and symmetry analysis
found by Feroze et al [15] was stated and proved as a theorem. The proof given demonstrates that
there is at least one extra symmetry generator of the Lagrangian apart from the isometry algebra,
and that the symmetry algebra of the geodesic equations contains the symmetry algebra of the
Lagrangian. The Lagrangian can have additional symmetries beyond the one extra symmetry
generator of geodetic re-parametrization by translation due to “mixing” between the additional
dimension of the fibre bundle and the other flat dimensions. It would be of interest to use the
above approach in proving the conjecture to determine the symmetry algebra of the Lagrangian.
The problem is that whereas for the Euler–Lagrange equations the “mixing of the two symmetries
of the fibre with the flat base space” is apparent and is maximal, that is not true for the
Lagrangian. For one thing, there is generally only one symmetry for the fibre and the mixing
along a section of the fibre is not maximal and is not apparent. How, and to what extent, the
extra symmetries from the fibre come into the Lagrangian needs to be determined rigorously.
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