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Abstract. Characterizations of entire subsolutions for the 1-harmonic equation of a con-
stant 1-tension field are given with applications in geometry via transformation group the-
ory. In particular, we prove that every level hypersurface of such a subsolution is calibrated
and hence is area-minimizing over R; and every 7-dimensional SO(2) × SO(6)-invariant
absolutely area-minimizing integral current in R8 is real analytic. The assumption on the
SO(2)×SO(6)-invariance cannot be removed, due to the first counter-example in R8, proved
by Bombieri, De Girogi and Giusti.
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1 Introduction

The study of 1-harmonic functions, or more generally that of p-harmonic maps is an area of an
active research that is related with many branches of mathematics. For instance, in a celebrated
paper of Bombieri, De Girogi and Giusti [3], a 1-harmonic function has been constructed to
provide a counter-example for interior regularity of the solution to the co-dimension one Plateau
problem in Rn for n > 7. Recall a C1 functions f : Rn → R is said to be 1-harmonic if it is
a weak solution of 1-harmonic equation

div
(
∇f
|∇f |

)
= 0 , (1.1)

where |∇f | is the length of the gradient ∇f of f , and for a C2 function f without a critical
point, div

(
∇f
|∇f |

)
is said to be the 1-tension field of f .

In this paper, characterizations of entire subsolutions for the 1-harmonic equation of a con-
stant 1-tension field are given in various aspects, and their relationships with calibration geomet-
ry are established (cf. Theorem 2, Corollary 3). As applications, we prove via transformation
group theory (cf. [9, 10, 13, 2, 21]) that the cone over S1×S5 is not minimizing in R8 but is sta-
ble; that any 7-dimensional SO(2)×SO(6)-invariant absolutely area-minimizing integral current
in R8 is real analytic; and that the only 7-dimensional SO(3)×SO(5)-invariant minimizing inte-
gral current with singularities in R8 is the cone over S2×S4, and is minimizing over R (cf. Theo-
rems 3–5). These results improved an early partial proof by numerical computation done by
Plinio Simoes [17] in his Berkeley thesis. The assumption on the SO(2) × SO(6)-invariance
cannot be removed, due to the first counter-example of Bombieri, De Girogi and Giusti that
the cone over S3( 1√

2
)×S3( 1√

2
) ⊂ S7(1) is area-minimizing in R8. It should be pointed out that

Fang-Hua Lin [14] proved that the cone over S1×S5 is one-sided area-minimizing and is stable by
a different method. By constructing 1-harmonic functions on hyperbolic space Hn, Hn ×Hn,
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Hn × SO(n, 1) and many other associated spaces, S.P. Wang and the author [19] show the
Bernstein Conjecture in these spaces to be false in all dimensions. In particular, these construc-
tions give the first set of examples of complete, smooth, embedded, minimal (hyper-)surfaces in
hyperbolic space Hn in all dimensions (cf. also Remark 3(ii)).

2 Fundamentals in geometric measure theory

For our subsequent development, we recall some fundamental facts, definitions, and notations,
for which the reference is Federer’s book [5] and paper [7].

Let N denote an n-dimensional Riemannian manifold and denote by Rloc
p (N) the set of p-

dimensional, locally rectifiable currents (of Federer and Fleming, cf. [8]) on N . For S ∈ Rloc
p (N),

denote the mass of S by M(S), and the boundary of S by ∂S, and is given by (∂S)(w) = S(dw),
where w is a smooth p-form and d is the exterior differentiation. From a calculus of variational
viewpoint, we make the following

Definition 1. A current T ∈ Rloc
k (N) is said to be stationary if d

dtM(φV
t∗(T ))|t=0 for all vector

fields V on N with compact support where φV
t is the flow associated with V , and stable if for

every vector fields V on N with compact support, there exists an ε > 0 such that M(T ) ≤
M(φV

t∗(T )) for |t| < ε.

We are primarily interested in minimizing currents.

Definition 2. A current T ∈ Rloc
k (N) is homologically (resp. absolutely) area-minimizing over Z

if for all compact sets K ⊂ M , we have M(φKT ) ≤ M((φKT ) + S) for all S ∈ Rloc
k (N) having

compact support and being the boundary of some current in Rloc
k+1(N) with compact support

(resp. the empty boundary)(here φK denotes the characteristic function on K).

Using a dimension reduction technique, Federer proves that the support of an area-minimizing
integral current T [8] minus another compact set S whose Hausdorff dimension does not exceed
n − 8 is an (n − 1)-dimensional analytic manifold [6]. Hence, if n ≤ 7, then S = ∅. If n = 8,
S consists of at most isolated points [5, 5.4.16]. This result is optimal by the counter-example
due to Bombieri–De Giorgi–Giusti [3] that {x ∈ R2m : x2

1 + · · ·+ x2
m = x2

m+1 + · · ·+ x2
2m} is an

area-minimizing cone over the product of (m−1)-spheres
{
x ∈ R2m : x2

1 + · · ·+x2
m = x2

m+1 + · · ·
+ x2

2m = 1
2

}
in R2m for m ≥ 4.

The union of the groups Fm,K(U) = {R+∂T : R ∈ Rm,K(U), T ∈ Rm+1,K(U)} corresponding
to all compact K ⊂ U is the group Fm(U) of m-dimensional integral flat chains in an open
subset U of Rn. We denote the group ofm-dimensional integral flat chains, cycles and boundaries
by Fm(A) = Fm(Rn)∩{S : sptS ⊂ A}, Zm(A,B) = Fm(A)∩{S : ∂S ⊂ Fm(B) or m = 0}, and
Bm(A,B) = {R+ ∂T : R ∈ Fm(B), T ∈ Fm+1(A)} respectively. Similarly, we define and denote
Fm(A), Zm(A,B) and Bm(A,B) the vector space of m-dimensional real flat chains, cycles and
boundaries respectively, where B ⊂ A are compact Lipschitz neighborhood retract in U .

For every positive convex parametric integrand ψ, and every compact subset K of A, we
define Zm,K(A,B) = Zm(A,B) ∩ {R : sptR ⊂ K}, Bm,K(A,B) = Bm(A,B) ∩ {R : sptR ⊂ K},
Zm,K(A,B) = Zm(A,B) ∩ {R : sptR ⊂ K}, and Bm,K(A,B) = Bm(A,B) ∩ {R : sptR ⊂ K},
and make the following

Definition 3. An m-dimensional rectifiable current Q (resp. Q′) is said to be absolutely (resp.
homologically) ψ-minimizing in K with respect to (A,B) over Z if∫

Q
ψ = inf

{∫
S
ψ : S ∈ Fm,K(U), Q− S ∈ Zm,K(A,B)

}
(

resp.
∫

Q′
ψ = inf

{∫
S
ψ : S ∈ Bm,K(U), Q′ − S ∈ Bm,K(A,B)

} )
.
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Definition 4. An m-dimensional real flat chain Q (resp. Q′) is said to be absolutely (resp.
homologically) ψ-minimizing in K with respect to (A,B) over R if∫

Q
ψ = inf

{∫
S
ψ : S ∈ Fm,K(U), Q− S ∈ Zm,K(A,B)

}
(

resp.
∫

Q′
ψ = inf

{∫
S
ψ : S ∈ Bm,K(U), Q′ − S ∈ Bm,K(A,B)

} )
.

We will make comparisons between real and integral absolute (resp. homological) minimizing
currents in the subsequent Sections 3, 4, and 5.

3 Characterizations of subsolutions for 1-harmonic equation
of constant 1-tension field

We connect an entire subsolution of this sort, with a calibration. Recall a calibration is a closed
form with comass 1.

Lemma 1. Let M be a complete noncompact Riemannian manifold. For any x0 ∈ M and
any pair of positive numbers s, t with s < t, there exists a rotationally symmetric Lipschitz
continuous function ψ(x) = ψ(x; s, t) and a constant C1 > 0 (independent of x0, s, t) with the
properties:

(i) ψ ≡ 1 on B(x0; s), and ψ ≡ 0 off B(x0; t);

(ii) |∇ψ| ≤ C1

t− s
, a.e. on M. (3.1)

Proof. (cf. Andreotti and Vesentini [1], Yau [22], Karp [11]). �

Theorem 1. Let Ω be a domain in Rn containing a ball B(x0, r) of radius r, centered at x0,
and g : Ω → R be a continuous function with g ≥ 0, and c = inf

x∈B(x0, r
2
)
g(x). Let f : Ω → R be

a C1 weak solution of

div
(
∇f
|∇f |

)
= g(x) on Ω, (3.2)

then the inf imum c satisf ies

0 ≤ c ≤ C12n

r
,

where C1 is as in (3.1).

Proof. Let ψ ≥ 0 be as in Lemma 1, in which M = Rn, t = r, s = r
2 . Choose ψ to be a test

function in the distribution sense of (3.2). Then via the assumption on g, and Cauchy–Schwarz
inequality we have:∫

B(x0, r
2
)
cψ(x)dx ≤

∫
B(x0, r

2
)
g(x)ψ(x)dx

≤
∫

B(x0,r)
g(x)ψ(x)dx = −

∫
B(x0,r)

∇f
|∇f |

· ∇ψdx ≤
∫

B(x0,r)
|∇ψ|dx.

Hence,

cVol
(
B
(
x0,

r

2

))
≤ C1

r
Vol(B(x0, r))

yields the desired. �
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Corollary 1. Let f : Rn → R be a C1 weak subsolution of 1-harmonic equation (1.1) with
constant 1-tension field c, i.e. 0 ≤ div

(
∇f
|∇f |

)
= c in the distribution sense. Then f is a 1-har-

monic function.

Corollary 2. There does not exist a C1 weak subsolution f : Rn → R of equation (3.2) with
lim

r→∞
inf

x∈B(x0,r)
g(x) > 0, for any x0 ∈ Rn.

Let A ⊂ Rn be an open set. We denote BVloc(A) = {f ∈ L1
loc(A): the distributional

derivatives Dif of f are (locally) measures}= {f ∈ L1
loc(A) : suppφn ⊂ K ⊂ A, φn → 0

uniformly, imply
(

∂
∂xi
f
)
φn → 0}. Let Df = (D1f, . . . , Dnf) denote the gradient of f in the

sense of distributions and |Df | the scalar measure defined by
∫
K |Df | = sup

∫
K

∑
i εi(x)Dif ,

where the supremum is taken over all sets {εi(x), i = 1, . . . , n} of C∞(K) functions which satisfy∑
ε2i (x) ≤ 1.

Definition 5. A function f ∈ BVloc(A) has least gradient in A if for every g ∈ BVloc(A), with
compact support K ⊂ A we have∫

K
|Df | ≤

∫
K
|D(f + g)|. (3.3)

Definition 6. Let E be a set in Rn and φE its characteristic function. E has an oriented
boundary of least area with respect to A, if (i) φE ∈ BVloc(A) and (ii) for each g ∈ BVloc(A)
with compact support K ⊂ A we have

∫
K |DφE | ≤

∫
K |D(φE + g)|.

Theorem 2. Let f ∈ H1,1
loc (Rn), and ∇f(x) 6= 0 for every x in Rn. Let Eλ = {x : f(x) ≥ λ},

and Sλ = {x : f(x) = λ}. We denote the set of integers by Z. Then the following thirteen
statements (1)–(13) are equivalent and each of them implies the fourteenth statement (14).

1. f : Rn → R is a C1 weak subsolution of (1.1) with constant 1-tension field.

2. f is a C1 weak solution of (1.1) on Rn.

3. f is a C1 1-harmonic function on Rn.

4. For each (a, t0) = (a1, . . . , an−1, t0) ∈ Sλ, there exists a neighborhood D of a in Rn−1, and
a unique real analytic function η : D → R such that η(a) = t0, f(x1, . . . , xn−1, η(x1, . . . ,

xn−1)) = λ and div
(

∇η√
1+|∇η|2

)
= 0 on D.

5. Each level hypersurface Sλ is minimal in Rn.

6. ∗df
|df | is a globally defined “weakly” closed form with comass 1.

7. f is a function of least gradient in Rn.

8. Each Eλ, λ ∈ R has an oriented boundary of least area with respect to Rn.

9. Each level hypersurface Sλ is absolutely area-minimizing in Rn over Z.

10. Each level hypersurface Sλ is absolutely area-minimizing in Rn over R.

11. Each level hypersurface Sλ is homologically area-minimizing in Rn over R.

12. Each level hypersurface Sλ is homologically area-minimizing in Rn over Z.

13. Each level hypersurface Sλ is stable in Rn.

14. If f ∈ C2(Rn), then ∗df
|df | is closed and the restriction ∗df

|df |

∣∣∣
Sλ

is its volume form, hence each

Sλ is real absolutely area-minimizing in Rn over R.
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Corollary 3. Every level hypersurface of a C2 subsolution of 1-harmonic equation on Rn+1 with
constant 1-tension field is calibrated and hence is area-minimizing over R.

Proof. (1) ⇔ (2) ⇔ (3) : This follows immediately from Corollary 1.
(2) ⇔ (4) : (⇒) Let f(x1, . . . , xn−1, t) = η(x1, . . . , xn−1)− t. The assertion follows from the

implicit function theorem and

0 =
∫ n−1∑

i=1

∂f
∂xi

∂ϕ
∂xi

|∇f |
+
∫ ∂f

∂t

|∇f |
∂ϕ

∂t
=
∫ n−1∑

i=1

∂η
∂xi√

1 + |∇η|2
∂ϕ

∂xi
(3.4)

for all ϕ ∈ C∞0 (D × R). The regularity of solutions of minimal surface equation implies that η
is real analytic and completes the proof. (⇐) This follows immediately from (3.3).

(4) ⇔ (5) : This is due to the fact that the graph of a solution to the minimal surface equation
on D is a minimal hypersurface in D × R.

(2) ⇔ (6) : This follows from the following: For every φ ∈ C∞0 (A),∫
A

∗df
|df |

∧ dφ =
∫
A

n∑
i,j=1

(−1)i−1
∂f
∂xi

|∇f |
dx1 ∧ · · · ∧ dxi−1 ∧ dxi+1 ∧ · · · ∧ dxn ∧ ∂φ

∂xj
dxj

=
∫
A

n∑
i=1

(−1)n−1
∂f
∂xi

∂φ
∂xi

|∇f |
dx1 ∧ · · · ∧ dxi ∧ · · · ∧ dxn.

(2) ⇒ (7): let us first assume that g ∈ C1
0 (A). Let h(t) =

∫
|D(f + tg)|. Then

h′(t) =
∫ (

n∑
i=1

∂(f+tg)
∂xi

∂g
∂xi

)
(

n∑
i=1

(
∂(f+tg)

∂xi

)2
) 1

2

.

Hence h′(0) = 0 by assumption. Furthermore,

h′′(t) =
∫ (

n∑
i=1

( ∂g
∂xi

)2
)(

n∑
i=1

(∂(f+tg)
∂xi

)2
)
−
(

n∑
i=1

∂(f+tg)
∂xi

∂g
∂xi

)2

[
n∑

i=1
(∂(f+tg)

∂xi
)2
] 3

2

≥ 0,

by the Cauchy–Schwarz inequality. Therefore
∫
|Df | = h(0) ≤ h(1) =

∫
|D(f + g)|. If g ∈

BVloc(A) with compact support K and let Dg = G1 + G2 where G1 is completely continuous
and G2 is the singular part of Dg with support Ng of measure zero. Then we have

∫
K |D(f +

g)| =
∫
K |Df + G1| +

∫
K |G2| because f ∈ H1,1

loc (A). Let gε = g ∗ ψε where ψε is a mollifier.
Then g ∈ C1

0 (A) and
∫
Kε
|Df | ≤

∫
Kε
|D(f + gε)| ≤

∫
Kε
|Df + G1 ∗ Ψε| +

∫
A |G2 ∗ Ψε|, where

Kε = {x ∈ A : dist(x,K) < ε}. Letting ε→ 0 completes the proof (cf. [3]).

(7) ⇒ (8) : This follows from Coarea formula for BV functions [15],
∫
K |Df | =

∞∫
−∞

(
∫
K |Dφλ|)dλ

together with two observations:
(i) If f1 and f2 satisfy (3.3), so does sup(f1, f2).
(ii) If fi ∈ BVloc(A), fi → f in L1

loc and each fi satisfies (3.3), so does also f ∈ BVloc(A) and
satisfies (3.3).

For detailed proof see [16].
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(8) ⇒ (9) : Let φλ = φEλ
. Since for every x in Rn, ∇f(x) 6= 0, ∂Eλ = Sλ for Sλ 6= ∅.

It follows from a theorem of Miranda [15] that on any compact set K in Rn, the Hausdorff
(n− 1)-measure

Hn−1(K ∩ Sλ) =
∫

K
|Dφλ| ≤

∫
K
|D(φλ + g)| = Hn−1(K ∩ T )

for all sets T with ∂(K ∩ T ) = ∂(K ∩ Sλ).
(9) ⇒ (10) : It follows from Theorem 6.
(10) ⇒ (11) ⇒ (12) : Since absolute area-minimization over R ⇒ homological area-minimi-

zation over R ⇒ homological area-minimization over Z.
(12) ⇒ (13) ⇒ (5) : Since homological minimization over Z ⇒ stability ⇒ minimality. This

completes the proof of (1) ⇔ · · · ⇔ (13).
(2) ⇒ (14) : If f ∈ C2(A) then by (3.4) ∗df

|df | is closed. Now let e1, . . . , en−1 be an orthonormal
basis for the tangent space of Sλ at x0 and ν a unit normal vector at x0. We denote by tilde
“∼” the canonical isomorphism between a tangent space and its dual space. To show ∗df

|df | has
comass 1, note for any (n− 1)-vector field ξ,

∗df
|df |

(ξ) =

(
∗ ∇̃f
|∇f |

)
(ξ)

(
because

df

|df |
(X) =

Xf

|∇f |
=
〈
∇f
|∇f |

, X

〉)
= (∗ν̃)(ξ) = ( ˜e1 ∧ · · · ∧ en−1)(ξ) = 〈e1 ∧ · · · ∧ en−1, ξ〉.

In particular ∗df
|df |(e1 ∧ · · · ∧ en−1) = 1, ∗df

|df |(ξ) ≤ 1 and ∗df
|df |

∣∣∣
Sλ

= volume element of Sλ. By

the formalism of Stokes theorem, for any integral current T with ∂T = ∂(Sλ ∩Br)

M(Sλ ∩Br) = (Sλ ∩Br)
(
∗df
|df |

)
= T

(
∗df
|df |

)
=
∫
∗df
|df |

(−→
Tx

)
d||T ||(x) ≤

∫
d||T || = M(T ),

where
−→
T is the field of oriented unit tangent planes to T . �

Remark 1. In Theorem 2, if one replace Rn with an open subset A in Rn, then assertions
(2)⇔ · · · ⇔ (13) ⇒ (14) remain to be true.

Remark 2. Concerning the assertion (2) ⇒ (7), a stronger theorem can be found in [3]: Let
A ⊂ Rn be an open set and let f ∈ H1,1

loc (A). Suppose that (i) Hn({x ∈ A : |∇f | = 0}) = 0,

(ii) Hn−1(N) = 0 where N is a closet set in A, (iii)
∫
A−N |∇f |

−1
n∑

i=1

∂f
∂xi

∂φ
∂xi
dx = 0 for every

φ ∈ C1
0 (A−N). Then f has least gradient with respect to A.

Remark 3. (i) The assertion (7) ⇒ (9) is due to Miranda.
(ii) Connecting the assertions (5), (6), and (12) on Riemannian manifolds, S.P. Wang and the

author [19] prove that if each level hypersurface of a smooth function f : M → R on an oriented
Riemannian manifold M with nowhere vanishing ∇f , is minimal, then there exists a closed form
with comass 1 on M and hence each level hypersurface is homologically area-minimizing over R.

Corollary 4. Let A be an open subset in Rn, N be a closed subset in A with Hn−1(N) = 0.

Then the graph of any weak solution of the minimal surface equation
n∑

i=1

∂
∂xi

(
∂f
∂xi√

1+|∇f |2

)
= 0

on A−N is in fact absolutely area-minimizing in A× R ⊂ Rn+1 over R.
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Proof. Applying (3.4) in which “f(x1, . . . , xn−1, t) = η(x1, . . . , xn−1) − t” is replaced with
“F (x1, . . . , xn, t) = f(x1, . . . , xn) − t”, and Remark 2, we have that F is a C1 1-harmonic
function in A. By Theorem 2, the zero level set S0 = {(x1, . . . , xn, t) : t = f(x1, . . . , xn)} is
absolutely area-minimizing in A× R ⊂ Rn+1 over R. �

4 Further applications

A natural question arises: Are Bombieri–De Giorgi–Giusti and Lawson cones the only SO(m)
×SO(n)-invariant singular absolutely area-minimizing integral currents in Euclidean
space Rm+n+2? The answer is affirmative. Combining the theory of 1-harmonic functions
developed, and the techniques of transformation groups in [10, 13, 2], and [21], evolved from the
ideas in [9], one obtains the following:

Theorem 3. The cone C(Sm × Sn) over Sm × Sn is the unique singular absolutely area-
minimizing hypersurface in the class of SO(m + 1) × SO(n + 1)-invariant integral currents
in Rm+n+2 over R for m+ n > 7 or m+ n = 6, |m− n| ≤ 2. (It is known that the cone is not
even stable otherwise.)

Proof. Assume m = n. Let Lie group G = SO(n + 1) × SO(n + 1) acting on manifold
Rn+1 × Rn+1 in the standard way, i.e. assigning

(
(A,B), (x, y)

)
∈ G× R2n+2 to (A · x,B · y) ∈

R2n+2, where “·” is the matrix multiplication. Then the collection X of principle orbits is
given by X = {(x, y) ∈ R2n+2 : |x||y| 6= 0}, where “| · |” is the length of “·” in Rn+1. The
orbit space which is stratified, can be represented as R2n+2/G = {(u, v) ∈ R2 : u, v ≥ 0} =
X ∪ {(u, v) ∈ R2 : u = 0, v > 0} ∪ {(u, v) ∈ R2 : u > 0, v = 0} ∪ {(0, 0)}. The canonical
metric on R2n+2/G (compatible with the fibration over each stratum) is the usual flat one
ds20 = du2 + dv2. The canonical projection π : R2n+2 → R2n+2/G is given by π(x, y) = (|x|, |y|),
and let X/G = π(X). Then the length of a curve σ in (X/G, ds20) is the length of any orthogonal
trajectory through the corresponding orbits in X, and 2n-dimensional volume of π−1((u, v))
(which is diffeomorphic to Sn × Sn) is proportional to unvn, for (u, v) ∈ X/G. Thus if we
choose the metric ds2 = u2nv2n(du2 + dv2) on R2n+2/G , then by Fubini’s theorem, the length
of a curve σ in (R2n+2/G, ds2) is equal to (2n + 1)-dimensional volume of hypersurface π−1σ
(with possible singularities) in R2n+2, up to a constant factor. It follows that σ is a length
minimizing geodesic “downstairs” (in (R2n+2/G, ds2)), if and only if π−1σ is area-minimizing in
the class of G-invariant (2n+1)-dimensional currents “upstairs” (in (R2n+2, dx2

1+· · ·+dx2
2n+2)),

or equivalently, π−1σ is area-minimizing in (R2n+2, dx2
1 + · · · + dx2

2n+2) in general (cf. [13], [2,
p. 174, 6.4] and [21]). Furthermore, if a length minimizing geodesic σ meets the boundary
{(u, v) ∈ R2 : u = 0, v > 0} ∪ {(u, v) ∈ R2 : u > 0, v = 0}, it meets the boundary orthogonally
by the first variational formula for the arc-length functional, and the corresponding π−1σ is
a regular, embedded and analytic hypersurface in R2n+2. If σ meets the vertex {(0, 0)}, then
π−1σ is singular. Therefore, it suffices to show that any curve in R2n+2/G, other than the
diagonal ray emanating from the origin is not absolutely length minimizing with respect to the
metric ds2 = u2nv2n(du2 + dv2).
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Now let Γ = {(u0(t), v0(t))} be the geodesic through (1, 0) in (R2n+2/G, ds2), and Γλ =
{(λu0(t), λv0(t))}, λ > 0. In [3], a 1-harmonic function was constructed in such a way that the lift
of family {Γλ} of these homothetic geodesics are level hypersurfaces in (R2n+2, dx2

1+· · ·+dx2
2n+2).

Hence Γλ is absolutely length minimizing in (R2n+2/G, ds2) (cf. also Theorem 2, Remark 2). Now
suppose Theorem 3 were not true. Then there would exist a curveQP ⊂ Γλ transverse to a length
minimizing curve OP . It follows that the length l(OP ) of OP would satisfy l(OP ) = l(QP ).
Consider the curve OPR where R is on the curve Γλ, and l(OPR) = l(QPR). Then the curve
OPR would be a geodesic, and hence smooth at P . This is a contradiction. Similarly, one can
show the remaining case m 6= n. �

Theorem 4. The cone C(S1 × S5) over S1 × S5 is not absolutely area-minimizing, although it
is stable.

Proof. Suppose, on the contrary, that the cone were absolutely area-minimizing. Then consider
Lie group G = SO(2)×SO(6) acting on manifold R2×R6 in the standard way. By the previous
argument, this would imply the line segment OP were length-minimizing in (R8/G, ds2), where
ds2 = u2v6(du2 + dv2). On the other hand, based on the study of Simoes’ thesis [17], [13]
and [21], the level curve (uλ, vλ) in the u, v-plane is absolutely length-minimizing. Argue as
before, the curve OPR would be smooth at P . This is a contradiction. The stability of the cone
follows from Simons’ work [18]. �

Theorem 5. Any 7-dimensional SO(2)× SO(6)-invariant absolutely area- minimizing integral
current in R8 is real analytic.

Proof. By the argument given in the proof of Theorem 3, it suffices to show that any curve
in R2n+2/G, from the origin is not absolutely length minimizing with respect to the metric
ds2 = u2v6(du2 +dv2). By Theorem 4, the diagonal ray emanating from the origin is not length
minimizing. Similarly, if there were an absolutely length minimizing curve starting from the
origin lying above v =

√
5u, then this would lead to an irregularity of a geodesic, a contradic-

tion. �

5 Comparison theorem

It is known that each level hypersurface of a function of least gradient defined on an open
subset A ⊂ Rn is absolutely area-minimizing in A over Z. It is tempting to ask it if is absolutely
area-minimizing in A over R. This motivates our discussion on comparison between real and
integral absolute (or homological) minima. In general they are distinct. Examples are given by
Almgren [7, 5.11], Federer [7] and Lawson [12]. Furthermore, in the case of 1-dimensional (or
co-dimension 1) integral flat chains, Federer [7] has shown that real and integral homological
(or absolute) minimizing are the same.

Let M be a locally Lipschitz neighborhood retract in Rn (i.e. there exists a locally Lipschitz
map which retracts a neighborhood of M onto M), M be an open subset of M , and A be an
open subset of Rn. Using the assumption on vanishing topology, an exhaustion of M by an
increasing sequence of compact set Ki ⊂M , we obtain the following:
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Theorem 6. (1) Let Tn−1 denote a codimension 1 integral absolutely area-minimizing rectifiable
current in M with homology group Hn−1(M) = 0. Then Tn−1 is absolutely area-minimizing in M
if and only if Tn−1 is absolutely area-minimizing in A; and if and only if Tn−1 is real absolutely
area-minimizing in A. (2) Let H1(M) = 0. T 1 is a homologically area-minimizing rectifiable
current of degree 1 of M if and only if T 1 is real homologically area-minimizing in M .

We have the following immediate

Corollary 5. The level hypersurface of a function of least gradient in an open subset A of Rn

is absolutely area-minimizing over R.

Corollary 6. Let N be a closed set in A ⊂ Rn with Hn−1(N) = 0. The graph of any weak

solution of the minimal surface equation
n∑

i=1

∂
∂xi

(
∂f
∂xi√

1+|∇f |2

)
= 0 on A−N is in fact absolutely

area-minimizing in A× R ⊂ RN+1 over R.

Corollary 7. All the examples we find in [21] are absolutely area-minimizing over R.
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