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Abstract. Olver and Rosenau studied group-invariant solutions of (generally nonlinear)
partial differential equations through the imposition of a side condition. We apply a similar
idea to the special case of finite-dimensional Hamiltonian systems, namely Hamilton–Jacobi,
Helmholtz and time-independent Schrödinger equations with potential on N -dimensional
Riemannian and pseudo-Riemannian manifolds, but with a linear side condition, where
more structure is available. We show that the requirement of N−1 commuting second-order
symmetry operators, modulo a second-order linear side condition corresponds to nonregular
separation of variables in an orthogonal coordinate system, characterized by a generalized
Stäckel matrix. The coordinates and solutions obtainable through true nonregular separation
are distinct from those arising through regular separation of variables. We develop the theory
for these systems and provide examples.
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1 Introduction

The primary motivation for this paper was the construction by Olver and Rosenau of group-
invariant solutions of (generally nonlinear) partial differential equations through the imposition
of a side condition [27, 28]. Various forms of conditional symmetry methods, including nonclas-
sical symmetry reduction, have been applied by several authors, e.g. [1, 5, 6, 10, 21, 26, 29]. We
are interested in using linear second-order side conditions and separation of variables to find
explicit solutions of Hamilton–Jacobi, Helmholtz, Laplace, wave and heat equations. We exploit
the special properties of finite order classical Hamiltonian systems and their quantum analogues
represented by Schrödinger equations to obtain new results on separation of variables. The
present paper is devoted to Hamilton–Jacobi and Helmholtz or time independent Schrödinger
equations with potential but the ideas are clearly applicable to more general Hamiltonian sys-
tems and to non-Hamiltonian systems such as diffusion equations that share some features with
time-dependent Schrödinger equations.
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An example is the Schrödinger equation HΨ = EΨ where H = ∆ + V (x) and ∆ is the
Laplace–Beltrami operator on some Riemannian or pseudo-Riemannian manifold. We look for
solutions of this equation that also satisfy a side condition SΨ = 0 where S is some given linear
partial differential operator in the variables x. A consistency condition for the existence of
nontrivial solutions Ψ is [H,S] = AS for some linear partial differential operator A. Moreover
a linear differential operator L will be a symmetry operator for H, (modulo SΨ = 0) if [H,L] =
BS for some linear partial differential operator B. To make contact with solutions that are
separable in some system of coordinates, we restrict to the case where the symmetries and the
side condition are second-order partial differential operators.

A Hamilton–Jacobi analog is the equation H = E where, in orthogonal coordinates,

H =
N∑
j=1

gjj(x)p2j + V (x),

which is double the classical Hamiltonian. We look for solutions u(x) of the Hamilton–Jacobi
equation, where pj = ∂xju, subject to the side condition S(x,p) = 0. The consistency require-
ment is the Poisson bracket relation {H,S} = AS for some function A on phase space. Moreover
a phase space function L will be a constant of the motion for H, (modulo S = 0) if {H,L} = BS
for some phase space function B.

Finding such systems directly from their definition leads to great computational complexity.
We explore a new method, based on a generalization of Stäckel form, i.e., a generalization of
separable systems corresponding tho a Stäckel matrix, that allows us to generate such systems
efficiently.

The second motivation for this paper is the general theory of separation of variables for
both linear and nonlinear partial differential equations [17, 20, 23, 24, 25]. In these works
the authors point out that there are two types of variable separation: regular and nonregular.
Regular separation is the most familiar and was exploited by pioneers such as Stäckel [33]
and Eisenhart [12, 14], [13, Appendix 13]. For regular orthogonal separation of a Helmholtz or
Schrödinger equation on anN -dimensional manifold there are always N separation constants and
the associated separable solutions form a basis for the solution space. There is a well developed
theory for regular orthogonal separation of these equations, including classification of possible
separable coordinate systems in various constant curvature spaces and intrinsic characterizations
of the separable systems, see for example [3, 15, 16, 18, 19, 22, 31, 32] in addition to earlier cited
references.

For nonregular separation, on the other hand, the number of separation constants is strictly
less than N and the separable solutions do not form a basis. Symmetry adapted solutions of
partial differential equations are prominent examples of this class, but except for these special
solutions there is virtually no structure or classification theory. First attempts of geometric
interpretation of nonregular separation are given in [2, 8, 9, 11] where nonregular separation
is considered as separation in which the separated solution must satisfy additional constraints
that can be seen as side conditions for the equation. In this paper, however, we will show that
solutions of Helmholtz and Schrödinger equations with second-order side conditions provide
a class of nonregular orthogonal separation of variables that can be characterized intrinsically.
Further, each of these systems is associated with a generalized Stäckel matrix and this association
enables us to generate nonregular separable systems very easily.

In Sections 2 and 3 we review the Stäckel construction for regular additive separation of
Hamilton–Jacobi equations and regular multiplicative separation andR-separation for Helmholtz
equations, and make some comments on their geometric characterizations. We also discuss the
effect of adding vector and scalar potentials. In Section 4 we introduce a generalized Stäckel
matrix with one arbitrary column and show that its use leads to additive separable solutions
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of the Hamilton–Jacobi equation, with a side condition. We express the results in a Hamil-
tonian formalism. Then in Section 5 we carry out the analogous construction for Helmholtz
and Schrödinger eigenvalue equations. Section 7 is the main theoretical contribution of our
paper. We show that the requirement of maximal nonregular separation for Hamilton–Jacobi
equations is equivalent to separation with a generalized Stäckel matrix and can be characterized
geometrically. With some modifications, the same is true of R-separation for Helmholtz and
Schrödinger equations (though there is still a “generalized Rodrigues form” gap in the geometri-
cal characterization). Section 8 is devoted to examples of nonregular separation and discussion
of their various types and significance. We prove a “no go” theorem to the effect that nonregular
R-separation does not occur for the Helmholtz (or Schrödinger) equation with no potential or
scalar potential on a 2D Riemannian or pseudo-Riemannian manifold. However 2D nonregular
separation can occur for equations with vector or magnetic potentials. Section 8.3 develops the
theory for two-dimensional systems with vector potential. The self adjoint Schrödinger equation
for a charged particle in two spatial dimensions, interacting with a classical electromagnetic
field, again has no new separable coordinate systems that are obtainable from a generalised
Stäckel matrix. However, nonself-adjoint equations such as the analogous solute transport equa-
tion with first-order convective terms replacing magnetic potential terms, do indeed have new
nonregular separable coordinate systems.

We provide examples of nonregular R-separation for various zero potential, scalar potential
and vector potential 3D systems: Euclidean space, Minkowski space and nonzero constant cur-
vature space, including a Euclidean space example due to Sym [34] of nonregular separation with
two side conditions. The final Section 9 sums up our conclusions and points the way for future
research on nonregular separation. The coordinate systems and solutions for true nonregular
separation, i.e., nonregular separation for which regular separation doesn’t occur, are distinct
from those for regular separation and further study of their scope and significance is in order.

2 Review of regular orthogonal separation
for the Hamilton–Jacobi equation H = E

Write the Hamilton–Jacobi equation in terms of ui = ∂iu(x), as

H ≡
N∑
i=1

H−2i u2i + V (x) = E. (2.1)

Here, the metric in the orthogonal coordinates xi is ds2 =
N∑
i=1

H2
i (dxi)2. We want to obtain

additive separation, so that ∂jui ≡ ∂j∂iu = 0 for i 6= j. Requiring that the solution u depends
on n parameters (λ1, . . . , λN ) implies the existence of separation equations in the form

u2i + vi
(
xi
)

+
N∑
j=1

sij
(
xi
)
λj = 0, i = 1, . . . , N, λ1 = −E. (2.2)

Here ∂ksij(x
i) = 0 for k 6= i and det(sij) 6= 0. We say that S = (sij) is a Stäckel matrix. Set

T = S−1.
Then (2.1) can be recovered from (2.2) provided H−2j = T 1j and V =

∑
j vjT

1j . The

quadratic forms L` =
N∑
j=1

T `j(u2j + vj) satisfy L` = −λ` for a separable solution. Furthermore,

setting ui = pi, we claim{
L`,Lj

}
= 0, ` 6= j (2.3)
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where {H,K} =
N∑
i=1

(∂xiK∂piH−∂xiH∂piK) is the Poisson Bracket. Thus the L`, 2 ≤ ` ≤ N , are

constants of the motion for the Hamiltonian H = L(1). For the proof of (2.3) one notes that

N∑
j=1

T `jsjk
(
xj
)

= δ`k,

Differentiating this identity with respect to xi, we find

N∑
j=1

∂iT
`jsjk

(
xj
)

+ T `is′ik
(
xi
)

= 0,

so

∂iT
`j = −T `i

N∑
k=1

s′ikT
kj .

We substitute this expression into the left hand side of (2.3) and obtain the desired result after
a routine computation.

3 Review of the Stäckel procedure for the Helmholtz
or Schrödinger equation

We can perform an analogous construction of eigenfunctions for a Helmholtz operator, using the

Stäckel matrix S. We demand eigenfunctions of H in the separated form Ψ =
N∏
j=1

Ψ(j)(xj) and

depending on the maximal number of parameters. Then, the separation equations are of the
form

∂2`Ψ + f`(x
`)∂`Ψ +

v`(x`)− N∑
j=1

s`j
(
x`
)
λj

Ψ = 0, ` = 1, . . . , N (3.1)

for suitable functions f`, v` to be determined. Thus we have the eigenvalue equations

LkΨ ≡
N∑
`=1

T k`
(
∂2` + f`∂` + v`

)
Ψ = λkΨ, k = 1, . . . , N,

where L1 = H. Based on our calculations of the preceding section, we can establish the com-
mutation relations

[Ls, Lt] = 0.

More generally we can consider R-separation for a general Helmholtz equation. In local coor-
dinates zj on an N -dimensional pseudo-Riemannian manifold this equation takes the invariant
form

HΘ ≡

∆N +

N∑
j=1

F j∂j + V

Θ = EΘ, (3.2)
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where

∆N ≡
1
√
g

N∑
j,k=1

∂j
(
gjk
√
g∂k
)

is the Laplace–Beltrami operator. We say that this equation is R-separable in local orthogonal
coordinates xj if there is a fixed nonzero function R(x) such that (3.2) admits solutions

Θ = exp(R)Ψ = exp(R)
N∏
j=1

Ψ(j)
(
xj
)
,

where Ψ is a regular separated solution, i.e., it satisfies the separation equations (3.1). In this
case the symmetry operators are L̃k = exp(R)Lk exp(−R) and equations (3.1) become

∂2`Θ +
(
f`
(
x`
)
− 2∂`R

)
∂`Θ +

v`(x`)− ∂``R+ (∂`R)2 −
N∑
j=1

s`j
(
x`
)
λj

Θ = 0,

` = 1, . . . , N . Then we have

[L̃s, L̃t] = 0,

where L̃1 = H.
Now consider the case

H̃Θ ≡ (∆N + V )Θ = EΘ, (3.3)

i.e., the case where there is no magnetic field, and V is real. We can define an inner product on
the space of C∞ real valued functions f (1)(z), f (2)(z) with compact support in RN , with respect
to which H̃ is formally self-adjoint

〈f (1), f (2)〉 =

∫
RN

f (1)(z)f (2)(z)
√
g(z) dz.

If L =
N∑

j,k=1

ajk(z)∂2jk +
N∑̀
=1

h`(z)∂` +W (z) is a real symmetry operator then it can be uniquely

decomposed as L = L(1) + L(2) where L(1) is formally self-adjoint and L(2) is formally skew-
adjoint

L(1) =
1
√
g

N∑
j,k=1

∂j
(
ajk
√
g∂k
)

+ W̃ , L(2) =
1
√
g

N∑
`=1

(
h̃`∂` +

1

2
∂`h̃

)
.

Moreover, both L(1), L(2) are symmetry operators. Note that we have L(2) = 0 unless H̃ admits
a first-order symmetry operator.

Suppose the system admits N algebraically independent commuting symmetry operators L̃s
such that the coefficients (ajks ) of the second-order terms in the symmetries admit a basis
of common eigenforms. (Without loss of generality we can restrict to the self-adjoint case

L̃s = L̃
(1)
s .) Then it is well established [19], from the examination of the third-order terms in

the relations [L̃s, L̃t] = 0 that there is an orthogonal coordinate system xj and corresponding
Stäckel matrix

(
sjk(x

j)
)

such that

H̃ =

N∑
j=1

1

h
∂j
(
hH−2j ∂j

)
+ V, h = H1H2 · · ·HN .
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Since the metric is in Stäckel form, it is straightforward to verify that the symmetries can be
rewritten as

L̃s =
N∑
j=1

T sj
(
∂2j +

(
∂j
h

S

)
∂j +vj

)
,

making it evident that the first derivative terms are a gradient. (Here, S is the determinant of
the Stäckel matrix.) Thus via an R-transform we can express our system in the form

H =

N∑
j=1

H−2j ∂2j + V̂ .

Then the third derivative terms in the commutation relations [Ls, Lt] = 0 are unchanged and
the cancellation of second derivative terms is satisfied identically. The first derivative terms just
tell us that the transformed potential V̂ is a Stäckel multiplier, so that it permits separation
in the coordinates xj . The zero-th order relation is satisfied identically. Thus the integrable
system (3.3) is R-separable. Under the same assumptions, but with a magnetic term added, this
is no longer necessarily true. It is easy to see that if there is a function G such that F j = ∂jG,
i.e., if the magnetic potential is a gradient, then the system is again R-separable. However, if
the magnetic potential is not a gradient then it is no longer necessarily true that integrability
implies R-separability, even though the second-order terms in the Laplacian admit a common
basis of eigenforms. See [4] for some examples.

4 A generalization of Stäckel form

We define a N ×N generalized Stäckel matrix by

S =


s11
(
x1
)

s12
(
x1
)
· · · s1,N−1

(
x1
)

a1(x)
s21
(
x2
)

s22
(
x2
)
· · · s2,N−1

(
x2
)

a2(x)
· · · · · · · · · · · · · · ·

sN1

(
xN
)

sN2

(
xN
)
· · · sN,N−1

(
xN
)

aN (x)

 . (4.1)

where the ai are arbitrary analytic functions of the variables x1, . . . , xN . We require that S is
a nonsingular matrix. Set T = S−1. Now we assume existence of separation equations in the
form

u2i + vi
(
xi
)

+
N−1∑
ξ=1

siξ
(
xi
)
λξ = 0, i = 1, . . . , N, λ1 = −E. (4.2)

(Here Latin indices take values 1, . . . , N and Greek indices take values 1, . . . , N − 1.) Note that
the term with λN is missing. Thus the general separated solution u will depend on N parameters
(rather than N + 1), an example of (maximal) nonregular separation. Note that equations (4.2)
can be considered as the restriction to the case λN = 0 of

u2i + vi
(
xi
)

+

N−1∑
ξ=1

siξ
(
xi
)
λξ + λNai(x) = 0,

which are not separated for λN = 0. However, any solution of them is a solution of the N
equations

L` ≡
N∑
j=1

T `j
(
u2j + vj

)
= λ`, 1 ≤ ` ≤ N, LN = 0, (4.3)
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where H = L1 is the Hamiltonian. Hence, by solving (4.2) we get a separated solution of
H = E satisfying also LN = 0 as a side condition. This construction shows that separation with
a generalized Stäckel matrix means (nonregular) separation with a side condition. In this case,
functions (4.3) become our “restricted constants of the motion” Lα = λα (modulo LN = 0).

Since

N∑
j=1

T `jsjk = δ`k,

differentiating this identity with respect to xi, gives

N∑
j=1

∂iT
`j sjξ(xj) + T `i s′iξ

(
xi
)

= 0,

and

N∑
j=1

(
∂iT

`j sjN + T `j∂iaj
)

= 0,

so

∂iT
`j + T `i

N−1∑
ξ=1

s′iξT
ξj + TNj

N∑
h=1

T `h∂iah = 0. (4.4)

Using this result it is a straightforward computation to verify the Poisson bracket relations:

{
Li,Lj

}
=

 N∑
k,h=1

(
T ikT jh − T jkT ih

)∂ak
∂xh

ph

LN . (4.5)

Relations (4.5) can be considered as the consistency conditions that guarantee the Li are con-
stants of the motion for the Hamiltonian H, modulo the side condition LN = 0. We have verified
the relations{

Li,Lj
}
LN=0

= 0, i, j = 1, . . . , N

for L1 = H and linearly independent quadratic forms Li. Thus our construction has shown that
separation with a generalized Stäckel matrix implies the existence of N independent constants
of motion in involution (modulo the side condition) diagonalised in the separable coordinates.

We can generalize Eisenhart’s treatment of Stäckel form in which he represented the quadratic

forms T `i in terms of their eigenvalues with respect to the metric T 1j = H−2j : T `j = ρ
(`)
j H−2j .

Here, ρ
(1)
j = 1. Then (4.4) can be rewritten as a system of partial differential equations for

the ρ
(`)
j :

∂iρ
(`)
j + ρ

(`)
j

∂iH
−2
j

H−2j
+ ρ

(`)
i H−2i

N−1∑
ξ=1

s′iξρ
(ξ)
j + ρ

(N)
j

N∑
h=1

ρ
(`)
h H−2h ∂iah = 0. (4.6)

In the special case ` = 1 these equations reduce to

∂iH
−2
j

H−2j
+H−2i

N−1∑
ξ=1

s′iξρ
(ξ)
j + ρ

(N)
j

N∑
h=1

H−2h ∂iah = 0.
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Substituting this result in (4.6) we obtain

∂iρ
(`)
j +

(
ρ
(`)
j − ρ

(`)
i

)∂iH−2j
H−2j

+ ρ
(N)
j

N∑
h=1

(
ρ
(`)
h − ρ

(`)
i

)
H−2h ∂iah = 0. (4.7)

Note that if ∂iah = 0 for i 6= h then we recover Stäckel form and (4.7) simplifies to Eisenhart’s
equation [12, 14]

∂iρ
(`)
j +

(
ρ
(`)
j − ρ

(`)
i

)∂iH−2j
H−2j

= 0.

A way of expressing the identity (4.7) that does not require the introduction of the terms ah

is to note that at least one of the ρ
(N)
j , must be nonzero, say for j = 1. Setting j = 1 in (4.7)

we obtain

N∑
h=1

(
ρ
(`)
h − ρ

(`)
i

)
H−2h ∂iah = − 1

ρ
(N)
1

(
∂iρ

(`)
1 +

(
ρ
(`)
1 − ρ

(`)
i

)∂iH−21

H−21

)
.

Substituting this result back into (4.7) we conclude that

∂iρ
(`)
j +

(
ρ
(`)
j − ρ

(`)
i

)∂iH−2j
H−2j

=
ρ
(N)
j

ρ
(N)
1

(
∂iρ

(`)
1 +

(
ρ
(`)
1 − ρ

(`)
i

)∂iH−21

H−21

)
. (4.8)

For future use we remark that if we restrict to the case ` = N then, for Bj = ρ
(N)
j /ρ

(N)
1 ,

(4.8) becomes

∂iBj = (Bi −Bj)
∂iH

−2
j

H−2j
+Bj(1−Bi)

∂iH
−2
1

H−21

, i, j = 1, . . . , N. (4.9)

Remark 1. There is an equivalence relation obeyed by generalized Stäckel matrices. If S is the
matrix (4.1), then for any nonzero function f(x), the generalized Stäckel matrix

S′ =


s11
(
x1
)

s12
(
x1
)
· · · s1,N−1

(
x1
)

a1(x)f(x)
s21
(
x2
)

s22
(
x2
)
· · · s2,N−1

(
x2
)

a2(x)f(x)
· · · · · · · · · · · · · · ·

sN1

(
xN
)

sN2

(
xN
)
· · · sN,N−1

(
xN
)

aN (x)f(x)

 , (4.10)

defines exactly the same Hamilton–Jacobi equation, separation equations and side condition as
does S.

Remark 2. This construction of Hamilton–Jacobi systems with a side condition can easily be
extended to construct systems with two or more side conditions. For example, with two side
conditions LN−1 = 0, LN = 0, the last two columns of the N × N generalized Stäckel matrix
would be arbitrary and the symmetries would be modulo the side conditions:{

Li,Lj
}

= Ai,jLN +Bi,jLN−1, i, j = 1, . . . , N.

In a similar fashion nonregular separability of Helmholtz equations with multiple linear side
conditions can be defined.
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5 Generalized Stäckel form for the Helmholtz equation

Now we perform an analogous construction of eigenfunctions for a Helmholtz-like operator,
using the same generalized Stäckel matrix S. We want eigenfunctions of the separated form

Ψ =
N∏
j=1

Ψ(j)(xj). We take separation equations in the form

∂2`Ψ + f`
(
x`
)
∂`Ψ +

(
v`
(
x`
)
−
N−1∑
α=1

s`α
(
x`
)
λα

)
Ψ = 0, ` = 1, . . . , N.

Then we have the eigenvalue equations

LβΨ ≡
N∑
`=1

T β`
(
∂2` + f` ∂` + v`

)
Ψ = λβΨ, β = 1, . . . , N − 1,

and the side condition

LNΨ ≡
N∑
`=1

TN`
(
∂2` + f`∂` + v`

)
Ψ = 0.

We take L1 = H, λ1 = E, so −1
2H is the standard Hamiltonian operator.

Let

X` = ∂2` + f` ∂` + v`, Y` = ∂2` + f` ∂`.

We need to compute the commutator [Lα, Lj ] for α = 1, . . . , N − 1, j = 1, . . . , N . Now

LαLj =

(∑
i

ρ
(α)
i H−2i Xi

)(∑
k

ρ
(j)
k H−2k Xk

)
=
∑
i,k

ρ
(α)
i ρ

(j)
k H−2i H−2k XiXk

+
∑
i,k

ρ
(α)
i H−2i Yi

(
ρ
(j)
k H−2k

)
Xk + 2

∑
i,k

ρ
(α)
i H−2i ∂i

(
ρ
(j)
k H−2k

)
∂iXk,

LjLα =

(∑
k

ρ
(j)
k H−2k Xk

)(∑
i

ρ
(α)
i H−2i Xi

)
=
∑
i,k

ρ
(j)
k ρ

(α)
i H−2k H−2i XkXi

+
∑
i,k

ρ
(j)
k H−2k Yk

(
ρ
(α)
i H−2i

)
Xi + 2

∑
i,k

ρ
(j)
k H−2k ∂k

(
ρ
(α)
i H−2i

)
∂kXi,

so [
Lα, Lj

]
=
∑
i,k

(
ρ
(α)
i Yi

(
ρ
(j)
k H−2k

)
− ρ(j)i Yi

(
ρ
(α)
k H−2k

))
H−2i Xk

+ 2
∑
i,k

(
ρ
(α)
i ∂i

(
ρ
(j)
k H−2k

)
− ρ(j)i ∂i

(
ρ
(α)
k H−2k

))
H−2i ∂iXk.

Using (4.7) we can establish the identities(
ρ
(α)
i ∂i

(
ρ
(j)
k H−2k

)
− ρ(j)i ∂i

(
ρ
(α)
k H−2k

))
H−2i ∂i

= ρ
(N)
k H−2k H−2i

N∑
h=1

(
ρ
(α)
h ρ

(j)
i − ρ

(α)
i ρ

(j)
h

)
H−2h (∂iah)∂i,
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ρ
(N)
k H−2k ∂iF = −

(
ρ
(N)
i ∂iH

−2
k + ρ

(N)
k H−2k

N∑
h=1

(
ρ
(N)
i − ρ(N)

h

)
H−2h ∂iah

)
F + ∂i

(
ρ
(N)
k H−2k F

)
,

for any function F , and(
ρ
(α)
i Yi

(
ρ
(j)
k H−2k

)
− ρ(j)i Yi

(
ρ
(α)
k H−2k

))
H−2i

= 2ρ
(N)
i H−2i ∂iH

−2
k

N∑
h=1

(
ρ
(α)
h ρ

(j)
i − ρ

(j)
h ρ

(α)
i

)
H−2h ∂iah

+ ρ
(N)
k H−2k H−2i

(
ρ
(j)
i ∂i

(
N∑
h=1

ρ
(α)
h H−2h ∂iah

)
− ρ(α)i ∂i

(
N∑
h=1

ρ
(j)
h H−2h ∂iah

))

+ ρ
(N)
k H−2k H−2i

(
N∑
h=1

(
ρ
(N)
i − ρ(N)

h

)
H−2h ∂iah

)(
N∑
h=1

(
ρ
(j)
i ρ

(α)
h − ρ

(α)
i ρ

(j)
h

)
H−2h ∂iah

)
.

Thus,

[
Lα, Lj

]
=

N∑
i=1

H−2i

((
2

N∑
h=1

(
ρ
(j)
i ρ

(α)
h − ρ

(α)
i ρ

(j)
h

)
H−2h ∂iah

)

×

(
−1

2

N∑
h=1

(
ρ
(N)
i − ρ(N)

h

)
H−2h ∂iah + ∂i

)
+

(
N∑
h=1

(
ρ
(N)
i − ρ(N)

h

)
H−2h ∂iah

)

×

(
N∑
h=1

(
ρ
(j)
i ρ

(α)
h − ρ

(α)
i ρ

(j)
h

)
H−2h ∂iah

))
LN = FαjL

N ,

where Fαj is a first-order partial differential operator.
We see that there is no obstruction to lifting our classical nonregular separation to the

operator case. A difficulty occurs, however, when we try to write the pure operator part of H
as a Laplace–Beltrami operator on a Riemannian manifold. Then there is an obstruction, a gene-
ralized Robertson condition, to be worked out. Also we need to examine the effect of permitting
R-separation.

6 Maximal nonregular separation as regular separation
with a side condition

Another way to approach the classical Hamilton–Jacobi problem is to use the Kalnins–Miller
method for variable separation [17, 25] and consider maximal nonregular separation as regular
separation with a side condition. (Here the nonregular separation is maximal in the sense that
with a single side condition the number of separation constants is the maximum possible for
nonregular separation, i.e., just 1 less than that for regular separation.) We look for additively
separable solutions of the equation

N∑
i=1

H−2i u2i + V = E (6.1)

with the side condition

N∑
i=1

L−2i u2i +W = 0, (6.2)
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i.e., solutions u such that uij = 0 for i 6= j. From (6.1) we find

ujj = −
Vj +

∑
i ∂jH

−2
i u2i

2H−2j uj
,

and from (6.2)

ujj = −
Wj +

∑
i ∂jL

−2
i u2i

2L−2j uj
.

These expressions must be equal modulo the side condition (6.2), so

Vj +
∑

i ∂jH
−2
i u2i

2H−2j uj
=
Wj +

∑
i ∂jL

−2
i u2i

2L−2j uj
+ νj

(∑
i

L−2i u2i +W

)
, (6.3)

for some functions νj . Similarly, equations derived from ujjk = 0 for j 6= k must hold modulo
the side condition. Requiring that all of the above equations hold identically, i.e., requiring that
we have regular separation modulo the side condition we eventually obtain the conditions that

1. There are functions ωj` = ω`j for all j 6= ` such that

−∂j`L−2i +
∂jL

−2
`

L−2`
∂`L

−2
i +

∂`L
−2
j

L−2j
∂jL

−2
i + ωj`L

−2
i = 0 (6.4)

and

−Wj` +W`
∂jL

−2
`

L−2`
+Wj

∂`L
−2
j

L−2j
+ ωj`W = 0 (6.5)

for all i = 1, . . . , N . (If all the L` are nonzero, this means that the L−2i are in confor-
mal Stäckel form, i.e., an arbitrary function times a Stäckel form matrix, and that W is
a conformal Stäckel form potential [23, 24].)

2. There are functions τj , j = 1, . . . , N such that

∂jH
−2
i

H−2j
=
∂jL

−2
i

L−2j
+ τjL

−2
i , (6.6)

for all i = 1, . . . , N , and

Vj

H−2j
=

Wj

L−2j
+ τjW. (6.7)

3. Let Cij be the second-order differential operator acting on functions f by

Cij(f) = ∂ijf −
∂jH

−2
i

H−2i
∂if −

∂i lnH−2j

H−2j
∂jf. (6.8)

There are functions µj` = µ`j for all j 6= ` such that

Cj`
(
H−2i

)
= µj`L

−2
i , (6.9)

and

Cj`(V ) = µj`W (6.10)

for all j, ` = 1, . . . , N , with j 6= `.
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7 Maximal nonregular separation ⇒ generalized Stäckel form

We have shown that the first row of the inverse of a generalized Stäckel matrix with arbitrary
N -th column is an orthogonal metric H−2i whose associated Hamilton–Jacobi equation admits
nonregular separation on the hypersurfaces given by the level set LN = 0 of a function LN ,
quadratic in momentum variables, which is a constrained first integral on the same level set and
whose components are the N -th row of the inverse of the generalized Stäckel matrix. Now we
prove the converse, i.e., that if an orthogonal geodesic Hamiltonian is separable in orthogonal
coordinates on the level set of a quadratic first integral, then it is a row of the inverse of a gene-
ralized metric and the quadratic coefficients of LN are the N -th row of the generalized Stäckel
matrix. Our starting point here is the geometrical framework of regular separation of variables:
a complete separated solution of the Hamilton–Jacobi equation is a foliation parametrized by N
parameters for the integral manifold of the distribution generated by the N vector fields Di =
∂xi +Ri∂yi where the Ri are determined by the condition that the Di are tangent to H = const.
The classical Levi-Civita conditions [22] represent the integrability conditions of the distribution.

In our case we need this distribution to be integrable only on the submanifold S defined by
LN = 0. We also need the vector fields to be tangent to the submanifold S (closely related to
the compatibility of the side condition). Our first step will be to write the differential conditions
that in this case play the role of the Levi-Civita condition for regular separation. In this case
they mix H and LN . Moreover, they include also the condition that Di are tangent to LN = 0.
We will show that these equations are exactly the equations for nonregular separation derived in
Section 6. Then we will relate these conditions to the existence of some more intrinsic geometrical
object for the eigenvalues of Killing tensors (associated with quadratic in the momenta constants
of motion), whose integrability conditions are equivalent to the Levi-Civita conditions.

Finally, we will construct the family of quadratic “first integrals” Lh =
N∑
j=1

T hju2j commuting

and constant for the motion on LN = 0 diagonalized in the coordinates we are considering, and
show that the inverse of the matrix of the components T hj is a generalized Stäckel matrix. Then
we will extend our analysis to prove the corresponding results for multiplicative separation or
R-separation of the Helmholtz or time independent Schrödinger equations.

7.1 Differential conditions for nonregular separation
on a quadratic first integral leaf

As in Section 6 we consider a natural Hamiltonian in orthogonal coordinates x = (xi) on the
cotangent bundle of a N -dimensional Riemannian manifold Q with Hamiltonian

H = L1 =

N∑
i=1

H−2i p2i + V (x), (7.1)

and a function LN which is also quadratic in the momenta (pi) and diagonalized in the same
coordinates

LN =

N∑
i=1

ρ
(N)
i H−2i p2i +W (x),

where ρ
(N)
i are the eigenvalues with respect to the metric H−2i , i.e., Li = ρ

(N)
i H−2i . We want to

study the existence of separated solutions u of the Hamilton–Jacobi equation

N∑
i=1

H−2i u2i + V (x) = E, ui = ∂iu, (7.2)
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with the side condition, or constraint,

N∑
i=1

ρ
(N)
i H−2i u2i +W (x) = 0.

Recall that the conditions for nonregular separation are (6.4), (6.5), (6.6), (6.7), (6.9), (6.10)

for Li = ρ
(N)
i H−2i and some functions ω`j , τj , µj`. However, in this case, we can avoid the

introduction of additional unknown functions, since we can solve the equation LN = 0 with
respect to a momentum variable ui (as for instance u21 = u21(x

j , uα) with α = 2, . . . , N) so
an expression vanishes on LN = 0 if and only if it vanishes for all uα for α = 2, . . . , N after
the substitution of u1 by u1(x

j , uα). This simplifies very much the task of finding equivalent
conditions such as the link with generalized Stäckel matrices and it is possible only because we
are assuming orthogonal coordinates.

The conditions (6.4), (6.5), (6.6), (6.7), (6.9), (6.10) are equivalent (supposing without loss

of generality that ρ
(N)
1 6= 0) to imposing that for

u21 = − W

ρ
(N)
1 H−21

−
N∑
α=2

ρ
(N)
α H−2α

ρ
(N)
1 H−21

u2α (7.3)

the expressions (6.4)–(6.10) vanish for all values of u2α. Even easier, inserting (7.3) in (6.3) we
find that the coefficient of νj vanishes and equating coefficients of u2α we get

∂jρ
(N)
α H−2α

ρ
(N)
α H−2α

−
ρ
(N)
j

ρ
(N)
α

∂jH
−2
α

H−2α
=
∂jρ

(N)
1 H−21

ρ
(N)
1 H−21

−
ρ
(N)
j

ρ
(N)
1

∂jH
−2
1

H−21

=
∂jW

W
−
ρ
(N)
j

W
∂jV. (7.4)

Similarly we find

Cij
(
H−2α

)
ρ
(N)
α H−2α

=
Cij
(
H−21

)
ρ
(N)
1 H−21

=
Cij(V )

W
. (7.5)

In all these equations we follow the convention that the vanishing of a factor ρ
(N)
α or W in

a denominator in one of expressions (7.4), (7.5), implies that the numerator vanishes.
Note that (7.5) and (7.4) give conditions for separation of the geodesic Hamiltonian with

V = W = 0, with additional conditions that V and W must satisfy. Supposing for simplicity
for the moment V = W = 0, we can rewrite (7.5) and (7.4) as

Cij
(
H−2α

)
H−2α

=
ρ
(N)
α

ρ
(N)
1

Cij
(
H−21

)
H−21

, (7.6)

∂i
ρ
(N)
α

ρ
(N)
1

=

(
ρ
(N)
i

ρ
(N)
1

− ρ
(N)
α

ρ
(N)
1

)
∂iH

−2
α

H−2α
+
ρ
(N)
α

ρ
(N)
1

(
1−

ρ
(N)
i

ρ
(N)
1

)
∂iH

−2
1

H−21

, (7.7)

which are the necessary and sufficient conditions. Equations (7.7) can be interpreted as a

first-order system in the N − 1 unknowns Bα = ρ
(N)
α

ρ
(N)
1

.

Proposition 1. A geodesic Hamiltonian H admits nonregular separation on the submanifold

LN = 0 in a given orthogonal coordinate system if and only if the functions Bk =
ρ
(N)
k

ρ
(N)
1

(k =

1, . . . , N) satisfy

∂iBk = (Bi −Bk)
∂iH

−2
k

H−2k
+Bk(1−Bi)

∂iH
−2
1

H−21

. (7.8)
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Proof. By rewriting the necessary and sufficient conditions (7.6) and (7.7) in terms of the N
functions Bk = B1, Bα with B1 = 1 we get

Cij
(
H−2k

)
H−2k

= Bk
Cij
(
H−21

)
H−21

(7.9)

and (7.8). However, it is a straightforward calculation that (7.9) is a differential consequence
of (7.8), indeed we have

∂i∂jBk − ∂j∂iBk = (Bi −Bj)

(
Cij
(
H−2k

)
H−2k

−Bk
Cij
(
H−21

)
H−21

)
. � (7.10)

Note that the system of equations (7.8) coincides with (4.9), verifying again that separation
with a generalized Stäckel matrix is nonregular.

Proposition 2. A natural Hamiltonian H admits nonregular separation on the submanifold
LN = 0 in a given orthogonal coordinate system only if the ratios

Cij(H
−2
α )H−21

Cij(H
−2
1 )H−2α

are independent of i and j and the eigenvalues of the quadratic function LN are proportional to
them

Bα =
ρ
(N)
α

ρ
(N)
1

=
Cij
(
H−2α

)
H−21

Cij
(
H−21

)
H−2α

. (7.11)

Remark 3. The function LN is naturally defined up to a multiplicative factor f on Q: if an
expression is zero on LN = 0 then it is also zero on fLN = 0 for all functions on T ∗Q, but, since
we are interested on quadratic in the momenta functions, we can normalize f on Q. (From the
Stäckel matrix point of view this corresponds to the multiplication of the N -th column by f .
Hence, equations (7.9) determine the unique (up to a factor) quadratic hypersurface where
separation could occur. Indeed, equations (7.10) are the complete integrability conditions for
the first-order PDE system (7.8). These conditions are identically satisfied for all (Bk, x

i) on
an open subset of C2n only if Cij(H

−2
k ) = 0, that is only if regular separation occurs. However,

a single solution Bk = Bk(x
i) could exist, provided it satisfies the original conditions (7.8),

that is if it takes the form (7.11), or with all Bk equal, that is for LN = H. In this case we
get separation of the null equation H = 0 (in which case a column of the Stäckel matrix was
arbitrary, so the result is consistent with the known one).

Let us examine the relation of this kind of separation with the generalized Stäckel matrix.

Theorem 1. Suppose the natural Hamiltonian (7.1) admits N−2 other functions L2, . . . ,LN−1,
quadratic in the momenta such that

1) L1 = H,L2, . . . ,LN−1,LN are pointwise independent,

2) L1 = H,L2, . . . ,LN−1,LN are constants of the motion, modulo LN , that is{
H,Lk

}
|LN=0 = 0,

3) the quadratic terms of L1 = H,L2, . . . ,LN−1,LN are diagonal in the coordinates (xi), that
is

L` =
N∑
i=1

ρ
(`)
i H−2i

(
u2i + vi(x)

)
, ρ

(1)
i = 1 ∀ i.
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Then,

1) ∂jvi = 0 for j 6= i and the eigenvalues ρ
(`)
i of L` satisfy the following generalization of the

Eisenhart conditions

∂iρ
(`)
α +

(
ρ(`)α − ρ

(`)
i

)∂iH−2α
H−2α

=
ρ
(N)
α

ρ
(N)
1

(
∂iρ

(`)
1 +

(
ρ
(`)
1 − ρ

(`)
i

)∂iH−21

H−21

)
; (7.12)

2) the inverse matrix of T `i =
(
ρ
(`)
i H−2i

)
is a generalized Stäckel matrix with the last column

made of arbitrary functions of N variables a1(x), . . . , an(x);

3) the Hamilton Jacobi equation (7.2) admits a maximal nonregular separated solution on
LN = 0 depending on N − 1 parameters;

4) the N functions L1 = H,L2, . . . ,LN−1,LN are in involution on S, that is{
L`,Lk

}
|LN=0.

Proof. 1) By inserting (7.3) in the Poisson brackets

{
L`,H

}
=
∑
i

2H−2i ui

(
N∑
k=1

(
∂i
(
ρ
(`)
k H−2k

)
− ρ(`)i ∂iH

−2
k

)
u2k

+
N∑
k=1

(
∂i
(
ρ
(`)
k H−2k vk

)
− ρ(`)i ∂i

(
H−2k vk

)))
,

we get that ∂ivk = 0 for i 6= k and that ρ
(`)
k satisfies the generalized Eisenhart conditions (7.12).

2) Since the quadratic diagonal functions are pointwise independent, the matrix T `i has
a nonzero determinant and therefore it admits an inverse skh such that

T `kskh = δ`h (7.13)

(we partially follow the proof of equation (4.7) and a proof of the Eisenhart theorem given

in [11]). We want to show that ∂ishξ = 0 for all i 6= h and ξ 6= N if and only if ρ
(`)
j = T `j/T 1j

satisfy the generalized Eisenhart conditions (7.12). Differentiating (7.13) with respect to xi we
get ∑

k

(
∂iT

`kskh + T `k∂iskh
)

= 0,

that is∑
k

((
H−2k ∂iρ

(`)
k + ρ

(`)
k ∂iH

−2
k

)
skh + ρ

(`)
k H−2k ∂iskh

)
= 0, ` 6= 1, (7.14)∑

k

(
∂iH

−2
k skh +H−2k ∂iskh

)
= 0, ` = 1. (7.15)

Adding (7.15) multiplied by −ρ(`)i to equation (7.14) we get∑
k

((
H−2k ∂iρ

(`)
k +

(
ρ
(`)
k − ρ

`
i

)
∂iH

−2
k

)
skh +

(
ρ
(`)
k − ρ

(`)
i

)
H−2k ∂iskh

)
= 0, ` 6= 1. (7.16)
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Let us suppose that ∂iskh = 0 for all i 6= k and h 6= N and ∂iskN = ∂iah, by multiplying (7.16)
by T hj , we get∑

k

(
H−2k ∂iρ

(`)
k +

(
ρ
(`)
k − ρ

(`)
i

)
∂iH

−2
k

)
δkj +

∑
h

∑
k

((
ρ
(`)
k − ρ

(`)
i

)
H−2k ∂iskh

)
T hj = 0,

that is

H−2j ∂iρ
(`)
j +

(
ρ
(`)
j − ρ

(`)
i

)
∂iH

−2
j + TNj

∑
k

((
ρ
(`)
k − ρ

(`)
i

)
H−2k ∂iak

)
= 0. (7.17)

Writing (7.17) for j = 1 and j = α and by combining them in order to eliminate the common

factor
∑

k

((
ρ
(`)
k −ρ

(`)
i

)
H−2k ∂iak

)
, we get (7.12). Conversely, let us suppose that (7.12) hold; this

means that the quantities

H−2k ∂iρ
(`)
k +

(
ρ
(`)
k − ρ

(`)
k

)
∂iH

−2
k

TNk

are independent of k, that is H−2k ∂iρ
(`)
k +

(
ρ
(`)
k −ρ

(`)
k

)
∂iH

−2
k = TNkQ`i . Therefore (7.16) becomes

TNkQ`iskh +
∑
k

((
ρ
(`)
k − ρ

(`)
i

)
H−2k ∂iskh

)
= δNh Q

`
i +

∑
k

((
ρ
(`)
k − ρ

(`)
i

)
H−2k ∂iskh

)
= 0.

If we fix the values of h and i, then the above equations are a linear system of N − 1 equations
(` = 2, . . . , N) in N − 1 unknown ∂iskh k = 1, . . . , N , k 6= h). For h 6= N the system is

homogeneous and the matrix of coefficient M `k =
(
ρ
(`)
k − ρ

(`)
i

)
H−2k has nonzero determinant

(see [11]). Hence, the only solution is ∂iskh = 0 for h 6= N .
3) If equations (7.12) hold, they hold in particular for ` = N and we get (7.7) which are

proven to be equivalent to conditions (7.8) that are necessary and sufficient for the nonregular
separation with the side condition LN = 0. Further, the conditions (7.4) on V , W are exactly
the consistency conditions that must be satisfied by V , W in order that {H,LN} = 0 hold on
LN = 0, and conditions (7.5) are exactly the integrability conditions for V , W that must be
satisfied if {H,LN} = 0 is to hold.

4) This is essentially the computation in Section 4. �

Theorem 2. If the N pointwise independent functions

L1 = H,L2, . . . ,LN−1,LN

are in involution on LN = 0 and admit common eigenvectors, i.e., if the quadratic forms in
the momenta associated with L`−ρ(`)H have N common eigenvectors, then the eigenvectors are
normal: there exist orthogonal coordinates (xi) such that the N functions are simultaneously
diagonalized.

Remark 4. This is essentially the converse of the results of Section 4. It shows that separation
with a side condition implies the existence of a generalized Stäckel matrix that defines the
separation.

Proof. Apply Theorem 7.5 of [2] with Mab = KN , where KN is the symmetric 2-tensor asso-
ciated with LN . �

Remark 5. The functions L` are defined up to multiples of LN and the conformal Killing
tensors are defined up to multiple of the metric tensor. Indeed, L` + f `LN have the same
eigenvalues of L` (provided that the L` have common eigenvectors) and they are in involution
when restricted to LN = 0:{

L` + f `LN ,Lk + fkLN
}

= QLN .



Nonregular Separation of Variables 17

Now we close the logical loop. Suppose the conditions (7.8)–(7.10) of maximal nonregular
separation are satisfied and consider the linear system of equations

∂iρj + (ρj − ρi)
∂iH

−2
j

H−2j
= Bj

(
∂iρ1 + (ρ1 − ρi)

∂iH
−2
1

H−21

)
, i, j = 1, . . . , N, (7.18)

for the unknowns (ρ1, . . . , ρN ). Remark 5 suggests that this system has solutions for any choice
of ρ1. Therefore, we choose the function ρ1 arbitrarily and consider (7.18) as a system of
N(N−1) independent differential equations for the unknowns (ρ2, . . . , ρN ). It is then a straight-
forward exercise to verify that the integrability conditions for (7.18) are satisfied identically, due
to the nonregular separation conditions. We already know the two solutions (1, 1, . . . , 1) and
(B2, . . . , BN ). Indeed about any regular point x0 we can find a unique solution such that
ρj(x0) = βj , 2 ≤ j ≤ N for any choice of constants βj . For example we could take ρ1 ≡ 1
and define N − 1 linearly independent solutions by choosing the βj accordingly. Then we could
take ρ1 ≡ 0 and find another solution such that the full N solutions form a basis. This basis
determines a generalized Stäckel matrix.

It remains to consider the potential terms, the given functions V and W . Using the func-

tions ρ
(`)
i of the generalized Stäckel matrix computed above we define functions

L` =

N∑
i=1

ρ
(`)
i H−2i u2i +W (`), ` = 1, . . . , N − 1,

where V = W (1) but the remaining W (`) will be determined by imposing the requirement that
there exist functions Fj linear in the momenta and such that{

H,LN
}

= FNLN ,
{
H,L`

}
= F`LN .

By working out the Poisson brackets, it is straightforward to verify that equations (7.4) are
exactly the consistency conditions for the existence of FN and (7.5) are exactly the consistency
conditions for the F` and the integrability conditions for the existence of the potentials W (`).

Now note that since the generalized Stäckel matrix is invertible we can uniquely determine
functions vi(x) such that

W (j) =
N∑
i=1

viρ
(j)
i H−2i , j = 1, . . . , N.

With this observation we have verified all of the assumptions of Theorem 1. This proves the
following result.

Theorem 3. If a natural Hamiltonian H admits maximal nonregular separation on the sub-
manifold LN = 0 in a given orthogonal coordinate system, then the system is separable with
a side condition and there exists a generalized Stäckel matrix for the separation.

All of these results for additive nonregular separation of Hamilton–Jacobi equations extend to
multiplicative nonregular separation for the Helmholtz (or Schrödinger) equations on the same
manifold, but with an obstruction. If a system is nonregular R-separable for the Helmholtz
equation then it is nonregular separable for the Hamilton–Jacobi equation. However, if the
Hamilton–Jacobi equation admits nonregular separation in some coordinate system then there is
a “generalized Robertson condition” to be solved to determine for which potentials the Helmholtz
equation admits R-separation in these coordinates. On the other hand, we can always find some
family of vector potentials for which the Helmholtz equation does admit nonregular R-separation
in the coordinates. That is, it is easy to show that given a nonregular separable system for
the Hamilton–Jacobi equation, we can construct a family of vector potentials for which the
corresponding Helmholtz equation is nonregular R-separable. We give examples in Section 8.
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8 Examples of nonregular separability
for Hamilton–Jacobi and Helmholtz equations

8.1 Examples of restricted regular separation

The simplest examples of Theorems 2 and 3, and their extensions to the Helmholtz equation, are
those for which regular orthogonal separation already occurs. Thus the “generalized” Stäckel
matrix (4.1) is a true Stäckel matrix. Consider first the separable Hamilton–Jacobi equation in
the form

H ≡
N∑
i=1

H−2i u2i + V (x) = E.

Here, the metric in the orthogonal separable coordinates xi is

ds2 =
N∑
i=1

H2
i

(
dxi
)2
.

There is an associated Stäckel matrix and constants of the motion L`, 2 ≤ ` ≤ N , where H = L1.
We apply the side condition LN ′ ≡ LN − λN = 0 where λN is a constant scalar. Note that LN ′

is also a constant of the motion. Now the separation equations become

u2i +
(
vi
(
xi
)

+ λNsiN
(
xi
))

+

N−1∑
j=1

sij
(
xi
)
λj = 0, i = 1, . . . , N, λ1 = −E.

Our “restricted constants of the motion” become

L`′ ≡
N∑
j=1

T `j
(
u2j + vj + λNsjN

)
,

so we have modified the potential. The side conditions are satisfied automatically. Effectively,
we have restricted our Hamiltonian system to the N−1 dimensional hypersurface LN = λN and
seen that the result is again a Hamiltonian system. Under some circumstances this has a simple
interpretation as a separable system on a manifold of one less dimension.

Example 1. Consider the Kepler Hamiltonian

H = L1 = p2x + p2y + p2z +
α

r
, r =

√
x2 + y2 + z2

in real Euclidean space. The system is separable in spherical coordinates r, θ, φ where

x = r sin θ cosφ, y = r sin θ sinφ, z = r cos θ,

r ≥ 0, 0 ≤ θ ≤ π, 0 ≤ φ < 2π.

Here

H = p2r +
L2

r2
+
α

r
, L2 = p2θ +

L3

sin2 θ
, L3 = p2φ.

We choose the side condition L3 = λ3. Then the reduced Hamiltonian becomes

H′ = p2r +
p2θ
r2

+
λ3

r2 sin2 θ
+
α

r
.
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In terms of the new variables X = r cos θ, Y = r sin θ this becomes

H′ = p2X + p2Y +
α√

X2 + Y 2
+
λ3
Y 2

,

a regular separable system in the first quadrant of the Euclidean plane. In the special case λ3 = 0
the singularity on the X-axis disappears and we can extend the system to the full punctured
plane. Note that this construction is conceptually distinct from simply restricting a trajectory
confined to a plane.

A similar construction works for the Helmholtz equation. We want eigenfunctions of the

separated form Ψ =
N∏
j=1

Ψ(j)(xj). We take separation equations in the form

∂2`Ψ + f`
(
x`
)
∂`Ψ +

(
v`
(
x`
)
− s`N

(
x`
)
λN −

N−1∑
α=1

s`α
(
x`
)
λα

)
Ψ = 0, ` = 1, . . . , N.

Then we have the restricted eigenvalue equations

Lβ
′
Ψ ≡

N∑
`=1

T β`
(
∂2` + f`∂` + v` − s`NλN

)
Ψ = λβΨ, β = 1, . . . , N − 1,

and the side condition

LN
′
Ψ ≡

N∑
`=1

TN`
(
∂2` + f`∂` + v` − s`NλN

)
Ψ = 0.

We take L1′ = H ′. Effectively, we have restricted our separable quantum system to an eigenspace
{Ψ : LNΨ = λNΨ} of a symmetry operator. The restriction is again a Hamiltonian system.
Again, under some circumstances this has a simple interpretation as a separable quantum system
on a manifold of one less dimension.

Example 2. Consider the hydrogen atom Hamiltonian, a constant multiple of

H = L1 = ∂2x + ∂2y + ∂2z +
α

r
, r =

√
x2 + y2 + z2

in real Euclidean space. The system is separable in spherical coordinates r, θ, φ:

H = ∂2r +
2

r
∂r +

1

r2
L2 +

α

r
, L2 = ∂2θ + cot θ∂θ +

1

sin2 θ
L3, L3 = ∂2φ.

We choose the side condition L3Ψ = λ3Ψ. Then the reduced Hamiltonian becomes

H ′ = ∂2r +
2

r
∂r +

1

r2
∂2θ +

cot θ

r2
∂θ +

λ3

r2 sin2 θ
+
α

r
.

Now we make an R-transformation Ψ = RΘ where R = 1
r
√
sin θ

. Then the eigenvalue equation

H ′Ψ = EΨ becomes(
∂2r +

1

r2
∂2θ +

λ3 + 1
4

r2 sin2 θ
+

1
4

r2
+
α

r

)
Θ = EΘ, ∂2φΘ = λ3Θ.
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Now write Θ = Φ(φ)Ξ(r, θ). In terms of the new variables X = r cos θ, Y = r sin θ the energy
equation is(

∂2X + ∂2Y +
α√

X2 + Y 2
+

1
4

X2 + Y 2
+
λ3 + 1

4

Y 2

)
Ξ = EΞ,

a regular separable system in the upper half Euclidean plane. If λ3 = −1/4 this equation can
be extended to the punctured plane and regarded as a modification of the hydrogen atom in
the plane. Note, however, that due to the R factor, the usual L2 normalization for eigenstates
in Euclidean space doesn’t restrict to the usual L2 normalization for eigenstates in the plane.
Thus, in analogy with the virial theorem for the mapping between the Coulomb and pseudo-
Coulomb problems [36], one needs to check that the bound state spectra are preserved under
the restriction.

8.2 Nonregular separation in 2D and a “no go” theorem

Now we take up the issue of true nonregular separation in a coordinate system in which regular
separation is impossible. Let us first look at 2D examples, a very special case. By using the
facts that we can always replace a separable coordinate by an invertible function of itself, and
we can perform linear transformations on the separation constants without changing the system,
we can always assume that the generalized Stäckel matrix looks like

S̃ =

(
1 A(u, v)
1 B(u, v)

)
.

We must require that A − B 6= 0 so that the matrix is invertible and that AB 6= 0 so that the
metric is nondegenerate. Further, by making use of the equivalence relation (4.10) we can put
the matrix in canonical form

S =

(
1 1
1 f(u, v)

)
, with inverse T =

1

f − 1

(
f −1
−1 1

)
,

where f = B/A. This form will lead to true nonregular separation unless f can be factored
as f(u, v) = U(u)V (v), because in that case we can take B = V (v), A = 1/U(u) and find an
equivalent true Stäckel matrix. It is easy to see that this form leads to true nonregular separation
for the Hamilton–Jacobi equation. However, in the 2D case the construction fails for Helmholtz
equations.

Theorem 4. For a 2D manifold the Helmholtz equation ∆Ψ = λΨ never admits true nonregular
separation.

Proof. In the 2D case, the Laplacian takes the form

∆ =
f

f − 1

(
∂uu +

1

2

fu
f
∂u

)
− 1

f − 1

(
∂vv −

1

2

fv
f
∂v

)
.

For nonregular separation it is necessary that fu/f is a function of u alone and fv/f is a function
of v alone. Thus f = U(u)V (v) and the system admits regular separation. Similarly if Ψ = eRΘ
for some fixed R, then R-separation implies that there exist functions U(u), V (v) such that

Ru = −1

4

fu
f

+ U(u), Rv =
1

4

fv
f

+ V (v).

Since ∂vRu = ∂uRv it follows easily that ∂uv ln f = 0. Thus f = Û(u)V̂ (v) and the system must
admit regular R-separation. �
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However, true nonregular separation may occur when vector potentials are included, even
in the 2D case. The self-adjoint Schrödinger equation for a non-relativistic charged particle
influenced by a classical electromagnetic 4-potential, still does not admit true nonregular sepa-
ration. Nonetheless true nonregular separation does occur when the vector potential gives rise
to skew-adjoint first-order terms, as in a diffusion-convection equation for transport of solute.

8.3 Quantum particle in R2 with a magnetic field

In the Schrödinger picture with Cartesian coordinates, the eigenvalue equation for the quantized
Hamiltonian of a non-relativistic charged particle interacting with a classical electromagnetic
field, is (e.g. [4])

HΨ = −(~)2

2
∇2Ψ− i~

2
[A.∇+∇.A(x)]Ψ + Φ(x)Ψ = λΨ.

(A1, A2, 0) is the vector potential for the magnetic field and Φ is the scalar potential for the
electric field. We consider the equivalent eigenvalue problem

HΨ = ∂21Ψ + ∂22Ψ +
i

2

[
a1(x)∂1 + a2(x)∂2 +∇.a(x)

]
Ψ + Φ(x)Ψ = EΨ. (8.1)

We extend this equation to a general curvilinear orthogonal coordinate system. As before,

∆ =

[
H−21 ∂21 +H−22 ∂22 +H−21 ∂1 log

H2

H1
∂1 −H−22 ∂2 log

H2

H1
∂2

]
.

In a general orthogonal coordinate system, the scalar divergence, involving Christoffel symbol Γ,
of vector a, is

div a =
∂am

∂xm
+ amΓiim =

1
√
g

∂

∂xi
(
ai
√
g
)

= ∂ia
i + a1[∂1 logH1 + ∂1 logH2] + a2[∂2 logH1 + ∂2 logH2].

The eigenvalue equation for the Hamiltonian is

HΨ = H−21 ∂21Ψ +H−22 ∂22Ψ +

[
H−21 ∂1 log

H2

H1

]
∂1Ψ−

[
H−22 ∂2 log

H2

H1

]
∂2Ψ

+
i

2

[
a1(x)∂1 + ∂1a

1(x) + a2(x)∂2 + ∂2a
2(x)

]
Ψ

+
i

2

[
a1∂1 log(H1) + a1∂1 log(H2) + a2∂2 log(H1) + a2∂2 log(H2)

]
Ψ + Φ(x)Ψ = EΨ.

Consider R-separation

Θ = Ψe−R(x) = Θ(1)
(
x1
)
Θ(2)

(
x2
)
.

Then [
H−21 ∂21 +H−22 ∂22 +H−21

{
∂1 log

H2

H1
+ 2∂1R

}
∂1 +H−22

{
−∂2 log

H2

H1
+ 2∂2R

}
∂2

]
Θ

+H−21

[
∂21R+ (∂1R)2 + (∂1R)∂1 log

H2

H1

]
Θ

+H−22

[
∂22R+ (∂2R)2 − (∂2R)∂1 log

H2

H1

]
Θ + Φ(x)Θ
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+
i

2

[
a1∂1Θ + a2∂2Θ

]
+
i

2

[
a1∂1R+ a2∂2R+ ∂1a

1 + ∂2a
2
]
Θ

+
i

2
a1[∂1 logH1 + ∂1 logH2]Θ +

i

2
a2[∂2 logH1 + ∂2 logH2]Θ = EΘ.

Assume the separation equations

∂21Θ + [f1(x
1) + ig1(x

1)]∂1Θ +
[
[v1(x

1) + iw1(x
1)]− S11(x1)E

]
Θ = 0,

∂22Θ + [f2(x
2) + ig2(x

2)]∂2Θ +
[
[v2(x

2) + iw2(x
2)]− S21(x2)E

]
Θ = 0, ⇒

T11∂
2
1Θ + T12∂

2
2Θ + T11[f1 + ig1]∂1Θ + T12[f2 + ig2]∂2Θ

+ [T11[v1 + iw1] + T12[v2 + iw2]] Θ = EΘ,

T21∂
2
1Θ + T22∂

2
2Θ + T21[f1 + ig1]∂1Θ + T22[f2 + ig2]∂2Θ

+ [T21[v1 + iw1] + T22[v2 + iw2]] Θ = 0,

where matrix T is the inverse of generalized Stäckel matrix S. In order for the above eigenvalue
equation to be identified with the Schrödinger equation, we again require T11 = H−21 and
T12 = H−22 , and in addition,

f1
(
x1
)

= ∂1 log
H2

H1
+ 2∂1R, f2

(
x2
)

= −∂2 log
H2

H1
+ 2∂2R, (8.2)

T11v1 + T12v2 = Φ +H−21 ∂21R+H−22 ∂22R+H−21 (∂1R)2 +H−22 (∂2R)2

+H−21 (∂1R)∂1 log
H2

H1
−H−22 (∂2R)∂2 log

H2

H1
,

g1
(
x1
)

=
1

2
H2

1a
1, g2

(
x2
)

=
1

2
H2

2a
2,

T11w1 + T12w2 =
1

2

[
a1∂1R+ a2∂2R+ ∂1a

1 + ∂2a
2
]

+
1

2
a1[∂1 logH1 + ∂1 logH2] +

1

2
a2[∂2 logH1 + ∂2 logH2]. (8.3)

From (8.2) we can easily deduce that ∂1∂2R = 0 and ∂1∂2 log(H2/H1) = 0. Hence

H2/H1 = Π1

(
x1
)
Π2

(
x2
)

and R = R1

(
x1
)

+R2

(
x2
)

(8.4)

for some functions Π1, Π2, R1, R2. Now assuming the canonical form with H1 = 1, we have

a1 = 2g1
(
x1
)

and a2 = 2g2
(
x2
)
Π2

(
x2
)−2

Π1

(
x1
)−2

,

whence it follows by separation of variables in (8.3), that

Π2
1[w1 − g1∂1R1 − ∂1g1 − g1∂1 log Π1] = γ4,

Π−22 [w2 − g2∂2R2 − ∂2g2 + g2∂2 log Π2] = −γ4,

where γ4 is constant. By integration,

a1 = 2Π−11 e−R1

[
γ5 +

∫
eR1
[
w1Π1 − γ4Π−11

]
dx1
]
,

a2 = 2Π−21 Π−12 e−R2

[
γ6 +

∫
eR2
[
w2Π

−1
2 + γ4Π2

]
dx2
]
,

with γ4, γ5 and γ6 constant. As a standard test, we first recover the known possibility of
separation in polar coordinates in E2, with

x1 = r, x2 = θ, Π1 = r, Π2 = 1.
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In (8.2) we may choose f1 = f2 = 0 without any loss of generality to the class of allowable scalar
and vector potentials. Consequently, from (8.2), R1 = −1

2 log r and R2 = 0. This yields the
potential fields that admit separation of the Schrödinger equation

a1 = α1(r) = γ5r
−1/2 + 2γ4r

−1 + r−1/2
∫
r1/2w1(r)dr,

a2 = α2(θ)r
−2 = 2γ6r

−2 + 2r−2
∫
γ4 + w2(θ)dθ, Φ = v1(r) + r−2v2(θ)−

1

4
r−2.

The above form for the scalar potential agrees with that known to allow separation of polar
coordinates in the Helmholtz operator [19]. When the vector potential a in (8.1) takes values
in R2, the separation condition (8.4) again leads to the conclusion that in this case, generalized
Stäckel matrices do not lead to new separable systems.

8.4 Solute transport

The possibilities of new separable equations are broadened if we replace the pure imaginary
coefficients of first-order terms in (8.1) by first-order terms with real coefficients. Consider
a solute diffusion-convection equation in Cartesian coordinates,

∂tΨ = HΨ = ∂21Ψ + ∂22Ψ−
[
q1(x)∂1 + q2(x)∂2

]
Ψ− µ(x)Ψ.

In this application, Ψ represents the solute concentration, q(x) represents a steady velocity
field of the solvent, and µ(x) is an adsorption coefficient for removal of solute by the solid
substrate of a porous medium or by another (usually solid) component of the mixture. If Ψ(x)
satisfies HΨ = EΨ, then eEtΨ(x) is a solution of the time dependent solute equation. In
standard applications, E ≤ 0, unless the solid component of the mixture is releasing solute
(µ(x) < 0) rather than adsorbing solute. After making the replacements q = (−i/2)a and
µ(x) = −Φ(x)− (i/2)∇.a, the solute equation is directly analogous to the Schrödinger equation
with magnetic field, except that now qj must be real, corresponding to aj being pure imaginary,
aj = −iAj , Aj = −2qj ,

∂tΨ = HΨ = ∂21Ψ + ∂22Ψ +
1

2

[
A1(x)∂1 +A2(x)∂2 +∇.A(x)

]
Ψ + Φ(x)Ψ.

In a general orthogonal coordinate system,

HΨ = H−21 ∂21Ψ +H−22 ∂22Ψ +

[
H−21 ∂1 log

H2

H1

]
∂1Ψ−

[
H−22 ∂2 log

H2

H1

]
∂2Ψ

+
1

2

[
A1(x)∂1 + ∂1A

1(x) +A2(x)∂2 + ∂2A
2(x)

]
Ψ +

1

2

[
A1∂1 log(H1)

+A1∂1 log(H2) +A2∂2 log(H1) +A2∂2 log(H2)
]
Ψ + Φ(x)Ψ = EΨ,

consider R-separation

Θ = Ψe−R(x) = Ψ(1)
(
x1
)
Ψ(2)

(
x2
)
.

Then [
H−21 ∂21 +H−22 ∂22 +H−21

{
∂1 log

H2

H1
+ 2∂1R

}
∂1 +H−22

{
−∂2 log

H2

H1
+ 2∂2R

}
∂2

]
Θ

+H−21

[
∂21R+ (∂1R)2 + (∂1R)∂1 log

H2

H1

]
Θ
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+H−22

[
∂22R+ (∂2R)2 − (∂2R)∂1 log

H2

H1

]
Θ + Φ(x)Θ

+
1

2

[
A1∂1Θ +A2∂2Θ

]
+

1

2

[
A1∂1R+A2∂2R+ ∂1A

1 + ∂2A
2
]
Θ

+
1

2
A1[∂1 logH1 + ∂1 logH2]Θ +

1

2
A2[∂2 logH1 + ∂2 logH2]Θ = EΘ.

Assume the separation equations

∂21Θ + f1
(
x1
)
∂1Θ +

[
v1
(
x1
)
− S11

(
x1
)
E
]

Θ = 0,

∂22Θ + f2
(
x2
)
∂2Θ +

[
v2
(
x2
)
− S21

(
x2
)
E
]

Θ = 0, ⇒
T11∂

2
1Θ + T12∂

2
2Θ + T11f1∂1Θ + T12f2∂2Θ + [T11v1 + T12v2]Θ = EΘ,

T21∂
2
1Θ + T22∂

2
2Θ + T21f1∂1Θ + T22f2∂2Θ + [T21v1 + T22v2]Θ = 0,

where matrix T is the inverse of generalized Stäckel matrix S. In order for the above eigenvalue
equation to be identified with the solute equation, we again require T11 = H−21 , T12 = H−22 .
Since the first-order terms of the target solute equation no longer have imaginary coefficients,
the identification of first-order terms now leads to more general possibilities

H2
1q

1 = −f1
(
x1
)

+ ∂1 log
H2

H1
+ 2∂1R, H2

2q
2 = −f2

(
x2
)
− ∂2 log

H2

H1
+ 2∂2R. (8.5)

By differentiating throughout, this implies

∂1∂2 log
H2

H1
+ 2∂1∂2R− ∂2

(
H2

1q
1
)

= 0, −∂1∂2 log
H2

H1
+ 2∂1∂2R− ∂1

(
H2

2q
2
)

= 0.

This system is equivalent to

4∂1∂2R− ∂2
(
H2

1q
1
)
− ∂1

(
H2

2q
2
)

= 0, 2∂1∂2 log
H2

H1
− ∂2

(
H2

1q
1
)

+ ∂1
(
H2

2q
2
)

= 0.

Similarly, identification of the zero-th order terms also leads to a more general condition

T11v1 + T12v2 = −µ+H−21 ∂21R+H−22 ∂22R+H−21 (∂1R)2 +H−22 (∂2R)2

+H−21 (∂1R)∂1 log
H2

H1
−H−22 (∂2R)∂2 log

H2

H1
− q1∂1R− q2∂2R. (8.6)

In principle, the compatible velocity field q is recovered from (8.5) after substituting these
expressions in (8.6) which determines the function R.

The condition H2/H1 = Π1(x
1)Π2(x

2), which is the key condition for the possibility of
replacement by a regular Stäckel matrix construction, is no longer true in general but occurs
only if

∂2
(
H2

1q
1
)
− ∂1

(
H2

2q
2
)

= 0.

In a description with Cartesian coordinates for Euclidean space, this would be exactly the
restriction that the solvent velocity field is irrotational; ∇×q = 0. Consider the canonical form

S−1 = T =
1

f(x)− 1

[
f −1
−1 1

]
.

Then (8.6) may be written as,

−fv1 + v2 = −f∂21R+ ∂22R+ f(∂1R)2 − (∂2R)2 − f∂1R∂1 log(−f) + 2f∂1R∂1 log(1− f)

− f1∂1R+ ∂2R∂2 log(−f)− 2∂2R∂2 log(1− f) + f2∂2R+ (f − 1)µ.

In looking for examples of genuine nonregular separation, we must consider metrics for which
H2/H1 does not separate in variables x1 and x2.
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Example 3. We consider an example in 2D Euclidean space. The metric is

ds2 = dx2 + dy2 =
f(u, v)− 1

f(u, v)
du2 + (1− f(u, v))dv2,

f(u, v) = −1

4

(
u+ v +

√
(u+ v)2 − 4

)2
.

Here

x = (u+ v) cos(φ− u), y = (u+ v) sin(φ− u),

φ =
1

2

(
u+ v +

√
(u+ v)2 − 4

)
− 2 arctan

(
u+ v +

√
(u+ v)2 − 4

2

)
,

and |u+ v| ≥ 2. The Helmholtz equation with vector and scalar potential takes the form(
∆2 −

f

f − 1

(
1

2

fu
f
∂u − U(u)

)
+

1

f − 1

(
−1

2

fv
f
∂v − V (v)

))
Ψ = EΨ.

The separation equations are

(∂uu + U(u)− E)Ψ(1)(u) = 0, (∂vv + V (v)− E)Ψ(2)(v) = 0,

with Ψ = Ψ(1)(u)Ψ(2)(v).
Now r2 = x2 + y2 = (u+ v)2, from which the polar coordinate may be taken to be r = u+ v.

Then

x = r cos(φ− u), y = r sin(φ− u),

implying that the polar angle coordinate is

φ− u = θ (mod 2π).

Also

φ =
1

2

(
r +

√
r2 − 4

)
− 2 arctan

(
r +
√
r2 − 4

2

)
.

Note that ±θ is an additive component of each of the variables u = φ(r)−θ and v = r−φ(r)+θ.
Therefore physically relevant solutions must be periodic with period 2π in each of the variables u
and v. Taking the simplest case v1(= U) = 0 and f1(= V ) = 0, direct separation is possible
with R = 0, and from (8.5)

(H1)
2q1 = −(H2)

2q2 = 1/
√

(u+ v)2 − 4 =
[
r2 − 4

]−0.5
.

The velocity field is defined on the exterior to the circle of radius 2 centred at the origin. The
squared magnitude of velocity is(

q1
)2
e1.e1 +

(
q2
)2
e2.e2 = H2

1

(
q1
)2

+H2
2

(
q2
)2

=
1

r2 − 4

After taking E = −ω2, separated solutions for solute concentration may be combined in a Fourier
integral

Ψ =

∫ ∞
0

A(ω)e−ω
2t cos(ω[u+ δ(ω)])cos(ω[v + ε(ω)])dω,

with amplitude function A(ω) and phase functions δ(ω), ε(ω).
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8.5 Nonregular separation in more than 2 dimensions

In dimensions greater than two, both true nonregular separation and R-separation occur even
without an added vector potential.

Example 4. This is a 3D Minkowski space example. The metric is

ds2 = dt2 − dx2 − dy2 = − 4w2

(u2 − v2)2
(
du2 + dv2

)
+ dw2 = H2

udu
2 +H2

vdv
2 +H2

wdw
2.

Here,

t =
w

u2 − v2

(
1

4
+
(
u2 + v2

)2)
, x =

w

u2 − v2

(
1

4
−
(
u2 + v2

)2)
, y =

2wuv

u2 − v2
,

and we require u, v real and w > 0, |u| > |v|.
The Helmholtz equation in 3D Minkowski space is

∆3Θ = EΘ,

where

∆3 =

(
u2 − v2

)2
4w2

(
−∂uu − ∂vv +

4w2(
u2 − v2

)2∂ww +
8w(

u2 − v2
)2∂w

)
.

We look for R-separable solutions

Θ = eRΨ = eRΨ(1)(u)Ψ(2)(v)Ψ(3)(w), eR =
1

w
.

By direct calculation we can establish the operator identity

e−R∆2e
R − E = H−2u (∂uu + λ2) +H−2v (∂vv − λ2) +H−2w

(
∂ww −

1

w2
− E

)
.

Thus the generalized Stäckel matrix and its inverse are

S =


0 1 1 +

(
u2 − v2

)2
4w2

0 −1 −
(
u2 − v2

)2
4w2

1 0

(
u2 − v2

)2
4w2


, T =


−
(
u2 − v2

)2
4w2

−
(
u2 − v2

)2
4w2

1

−
(
u2 − v2

)2
4w2

−1−
(
u2 − v2

)2
4w2

0

1 1 0

 .

In terms of the Ψ functions we have

L1Ψ =

(
−
(
u2 − v2

)2
4w2

(∂uu + ∂vv) +

(
∂ww −

1

w2

))
Ψ = EΨ,

L2Ψ =

(
−
(
u2 − v2

)2
4w2

(∂uu + ∂vv)− ∂vv

)
Ψ = −λ2Ψ, L3Ψ = (∂uu + ∂vv) Ψ = 0.

The separation equations are

(∂uu + λ2)Ψ
(1) = 0, (∂vv − λ2)Ψ(2) = 0,

(
∂ww −

1

w2
− E

)
Ψ(3) = 0.

In terms of the Θ functions the final separated solution of ∆3Θ = EΘ is

Θ =
Ψ(1)(u)Ψ(2)(v)Ψ(3)(w)

w
.
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Example 5. Consider the Helmholtz equation in 3D Euclidean space ∆3Θ = EΘ. It is well
known that this equation is regular separable in exactly eleven coordinate systems. Moreover
true regular R-separation does not occur for any constant curvature space [15]. This example,
due originally to Sym [8, 30, 34, 35] and presented from our point of view, shows that nonregular
R-separation with two side conditions occurs in orthogonal coordinates distinct from the usual
eleven. Consider Dupin-cyclidic coordinates u, v, w such that

x =
b2 cosu cosh v + (c cosh v − a cosu)w

a cosh v − c cosu
, y =

b sinu(a cosh v − w)

a cosh v − c cosu
,

z =
b sinh v(w − c cosu)

a cosh v − c cosu
.

Here a, b, c are positive parameters, with b2 = a2− c2, c < a, and u ∈ [0, 2π). For any real v we
require c cosu < w < a cosh v, so that x, y, z are real. Since

ds2 = dx2 + dy2 + dz2 =

(
b(a cosh v − w)

a cosh v − c cosu

)2

du2 +

(
b(w − c cosu)

a cosh v − c cosu

)2

dv2 + dw2

= H2
1du

2 +H2
2dv

2 +H2
3dw

2,

these coordinates are orthogonal. Thus

∆3 = ∂xx + ∂yy + ∂zz

=
1

H1H2H3

[
∂u(H−11 H2H3∂u) + ∂v(H

1
1H
−1
2 H3∂v) + ∂w(H1H2H

−1
3 ∂w)

]
.

We look for R-separable solutions

Θ = eRΨ = eRΨ(1)(u)Ψ(2)(v)Ψ(3)(w), eR =
1√

(w − c cosu)(a cosh v − w)
.

By direct calculation we can establish the operator identity

e−R∆3e
R − E = H−21

(
∂uu +

1

4

)
+H−22

(
∂vv −

1

4

)
+H−23 (∂ww − E).

Thus the generalized Stäckel matrix and its inverse can be taken as

S =

0 1 0
0 0 1

1 −H−21 −H−22

 , T =

H−21 H−22 1
1 0 0
0 1 0

 ,

In terms of the Ψ functions we have

L1Ψ =

(
H−21

(
∂uu +

1

4

)
+H−22

(
∂vv −

1

4

)
+ ∂ww

)
Ψ = EΨ,

L2Ψ =

(
∂uu +

1

4

)
Ψ = 0, L3Ψ =

(
∂vv −

1

4

)
Ψ = 0.

The separation equations are(
∂uu +

1

4

)
Ψ(1) = 0,

(
∂vv −

1

4

)
Ψ(2) = 0, (∂ww − E)Ψ(3) = 0,

Θ =
Ψ(1)(u)Ψ(2)(v)Ψ(3)(w)√

(w − c cosu)(a cosh v − w)
.

Here we have[
L2, L1

]
= F22L

2 + F23L
3,

[
L3, L1

]
= F32L

2 + F33L
3,

[
L2, L3

]
= 0,

for first-order differential operators Fij , so we have R-separation with two side conditions.
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Example 6. Again we consider the Helmholtz equation in 3D Euclidean space but now we
choose coordinates u, v, w such that

x =
1√
2

(v + w) cosu, y =
1√
2

(v + w) sinu, z =
1√
2

(v − w).

We take a scalar potential

Ṽ (x, y, z) =
U(u)

(v + w)2
+ V (v) +W (w).

The metric is

ds2 = dx2 + dy2 + dz2 =
1

2

[
(v + w)2du2 + dv2 + dw2

]
,

H−2u =
2

(v + w)2
, H−2v = H−2w = 2.

Thus

∆3 + Ṽ = ∂xx + ∂yy + ∂zz + Ṽ =
1

H1H2H3

[
∂u(H−11 H2H3∂u) + ∂v

(
H1

1H
−1
2 H3∂v

)
+ ∂w

(
H1H2H

−1
3 ∂w

)]
+

U(u)

(v + w)2
+ V (v) +W (w).

We look for R-separable solutions

Θ = eRΨ = eRΨ(1)(u)Ψ(2)(v)Ψ(3)(w), eR =
(
2
[
x2 + y2

])− 1
4 .

By direct calculation we can establish the operator identity

e−R∆3e
R − E =

2

(v + w)2
(∂uu + U(u) + 1) + 2

(
∂vv +

V (v)

2
− λ2

)
+ 2

(
∂ww +

W (w)

2
− E

2
+ λ2

)
.

Thus the generalized Stäckel matrix and its inverse can be taken as

S =


1
2 1 2− 1

(v + w)2

0 −1 −2
0 0 1

 , T =

2 2
2

(v + w)2

0 −1 −2
0 0 1

 ,

The separation equations are

(∂uu + U(u) + 1)Ψ(1) = 0,

(
∂vv +

V (v)

2
− λ2

)
Ψ(2) = 0,(

∂ww +
W (w)

2
− E

2
+ λ2

)
Ψ(3) = 0, Θ =

Ψ(1)(u)Ψ(2)(v)Ψ(3)

√
v + w

.

Example 7. As a generalization of the previous example, the Euclidean space metrics

ds2 = (U1(u)w + U2(u)v + U3(u))2du2 + dv2 + dw2

for arbitrary functions Uj(u) all lead to nonregular separation for Hamilton–Jacobi equations,
and in the quantum case, to nonregular R-separation for velocity dependent potentials. The
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construction of separation equations and of the generalized Stäckel matrix is standard. As an
instance, if

x = F1(u)v + F2(u)w, y = F3(u)v + F4(u)w, z = F5(u)v + F6(u)w,

for

F1 = sin2 u, F2 =
− cos3 u√
1 + sin2 u

, F3 = sinu cosu,

F4 =
sinu

(
1 + cos2 u

)√
1 + sin2 u

, F5 = cosu, F6 =
− sin2 u√
1 + sin2 u

,

we have

ds2 = dx2 + dy2 + dz2 =

(√
1 + sin2 uv +

cosu
(
2 + sin2 u

)
1 + sin2 u

w

)2

du2 + dv2 + dw2.

Example 8. The negative constant curvature metric

ds2 =
dx2 + dy2 + dz2

z2
=

(u+ v)2du2 + dv2 + dw2

w2

for

x = (u+ v) sinu+ cosu, y = −(u+ v) cosu+ sinu, z = w,

leads to nonregular separation for Hamilton–Jacobi equations, and in the quantum case, to
nonregular R-separation for velocity dependent potentials [7].

9 Conclusions

We have demonstrated that the characterization of symmetry related solutions modulo a side
condition for Hamilton–Jacobi and Helmholtz or Schrödinger equations coincides with maximal
nonregular separation of variables for which there is a generalized Stäckel matrix with one
arbitrary column. We have also shown that these systems can be characterized geometrically,
i.e., in a coordinate-free manner. We have demonstrated that there is a structure theory for this
type of separation; it is not just a collection of examples. This allows us to obtain new separable
solutions for these equations that cannot be obtained by the standard (regular) methods of
separation of variables.

Our work leads to additional questions and possible extensions.

• Eisenhart showed that the Robertson condition for Helmholtz separabilty of a Hamilton–
Jacobi regular separable coordinate system was the vanishing of the off-diagonal elements
of the Ricci tensor in these coordinates [12, 14]. Is there a corresponding geometrical
interpretation of the obstruction problem for nonregular separation?

• Is there a physical interpretation of the side conditions?

• For regular separation of Hamilton–Jacobi and Helmholtz equations all separable systems
on N -dimensional Euclidean spaces and N -spheres are known [15]. Can a similar clas-
sification of separation with a side condition be carried out?

• Much remains to be done in finding explicit, physically interesting, new solutions via this
method.

• It is clear that separation with a side condition is also appropriate for heat, Laplace and
wave equations, where the new solutions are likely to be more interesting physically. This
should be done and a structure theory worked out.
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[33] Stäckel P., Über die Integration der Hamilton–Jacobischen differential Gleichung mittelst Separation der
Variabelen, Habilitationsschrift, Halle, 1891.

[34] Sym A., Solitons of wave equation, J. Nonlinear Math. Phys. 12 (2005), suppl. 1, 648–659.

[35] Sym A., Szereszewski A., On Darboux’s approach to R-separability of variables, SIGMA 7 (2011), 095,
21 pages, arXiv:1102.2637.

[36] Thirring W., A course in mathematical physics. Vol. 3. Quantum mechanics of atoms and molecules, Lecture
Notes in Physics, Vol. 141, Springer-Verlag, New York, 1981.

http://dx.doi.org/10.1007/3-540-12730-5_7
http://dx.doi.org/10.1016/0375-9601(92)90904-Z
http://dx.doi.org/10.1137/0147018
http://dx.doi.org/10.1016/0375-9601(86)90534-7
http://dx.doi.org/10.1016/j.physleta.2005.01.017
http://dx.doi.org/10.1007/BF00971844
http://dx.doi.org/10.2991/jnmp.2005.12.s1.50
http://dx.doi.org/10.3842/SIGMA.2011.095
http://arxiv.org/abs/1102.2637

	1 Introduction
	2 Review of regular orthogonal separation for the Hamilton-Jacobi equation H=E
	3 Review of the Stäckel procedure for the Helmholtz or Schrödinger equation
	4 A generalization of Stäckel form
	5 Generalized Stäckel form for the Helmholtz equation
	6 Maximal nonregular separation as regular separation with a side condition
	7 Maximal nonregular separation  generalized Stäckel form
	7.1 Differential conditions for nonregular separation on a quadratic first integral leaf 

	8 Examples of nonregular separability for Hamilton-Jacobi and Helmholtz equations
	8.1 Examples of restricted regular separation
	8.2 Nonregular separation in 2D and a ``no go'' theorem
	8.3 Quantum particle in R2 with a magnetic field
	8.4 Solute transport
	8.5 Nonregular separation in more than 2 dimensions

	9 Conclusions
	References

