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Abstract. Recently Cherednik and Feigin [arXiv:1209.1978] obtained several Rogers—Ra-
manujan type identities via the nilpotent double affine Hecke algebras (Nil-DAHA). These
identities further led to a series of dilogarithm identities, some of which are known, while
some are left conjectural. We confirm and explain all of them by showing the connection with
Y -systems associated with (untwisted and twisted) quantum affine Kac-Moody algebras.
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1 Dilogarithm identities from Nil-DAHA

Let R, be a root system of finite type and of rank n with non-degenerate bilinear form ( , ),
and let o; and w; be the simple roots and the fundamental weights of R,. The Cartan matrix
C = (ci5)fj=1 is given by ¢;; = 2(ay, @) /(e ;). Following [3], let A = (a;;) and A = (a?j)
be the matrices with a;; = 2(w;,w;) and agj = (wj,wj), respectively. Set v; = (o, @;)/2. Then,

v; Yy, w;) = 6;j, and we have
(4) 7" = (e ) 5o (1)

Below we normalize the bilinear form as (aghort, @short) = 2 so that v; € {1,2,3}.
Let L(z) be the Rogers dilogarithm function

1 (" (log(1—y) logy }
L(x :—/ { + dy.
(@) 2 Jo Yy -y

In [3, equation (3.34)] Cherednik and Feigin presented two (partially conjectural) series of di-

logarithm identities. Let A" = (aj;)7';—; be either A or A" as above. Let Q; (i = 1,...,n) be the
unique solution of the system of equations

n
. al
(1-Q)" =1]e;" (2)
j=1
in the range 0 < @; < 1. Then, the following identity was proposed
6 n
) > UL(Qi) =L, (3)
i=1

where the value L 4/ is the rational number given in Table 1.
In addition, there are identities for ‘type T;,’ (tadpole type). We define the ‘Cartan mat-
rix’ C' as almost the same as type A, except that the last diagonal entry is 1, not 2. Also the
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Table 1. The value L.

Rn An Bn Cn Dn E6 E7 ES F4 G2 Tn

La n(n+1) n(2n—1)

n—1 36 6 15 36 g n(@ntl)

ni3 ntl n 7 10 2 7 n+3
I n(n+l) 2n(2n—1) 2n(n+l) 2(n—-1)n 24 6 80 24 8  n(2ni1)
Ab n+4 2n+3 2n+3 2n+1 5 11 5 3 2n+4

matrices A and A° are defined by a;; = 2min(i, j) and an = min(i, j), respectively; the latter
is the same matrix A” for type Cy,. Then, (A?)~! = C holds. We set v; = 1. Again, (3) should
hold for the value L4 in Table 1, where T,, is formally included as a member of R,,.

In [3] these identities were partially obtained and generally motivated by the Rogers—Rama-
nujan type identities arising from nilpotent affine Hecke algebras (Nil-DAHA), but only some
of them are identified with the known identities.

The authors of [3] expected the connection between (3) and dilogarithm identities from
some Y-systems (and cluster algebras behind them). In this note we answer this question
affirmatively, and, in particular, we confirm all the identities in question. The note has con-
siderable overlap with the paper by Lee [8], but it is written for a different purpose and in
a different perspective.

2 Dilogarithm identities for Y -systems of simply laced type

Let us recall the following dilogarithm identities proved by cluster algebra method [9]. For ¢ = 2
see also [2].

Let C be any Cartan matrix of simply laced type R, = A, D,, Fg, E7, Fg, and let £ > 2
be any integer (called the level). Let Yw(f) (t=1,...,n; m=1,...,£ — 1) be the unique real
positive solution of the system of equations

Yy = - ; (4)
() (1+Yn(’:)—1_1)(1 +Yn(7:-)i-1_1)

where Yo(l)_1 = YZ(Z)_1 =0.

Theorem 1 ([9, Corollay 1.9]). The following identity holds

6 o v, ¢~ 1)nh

Sy () - G 0
i—1m=1 \1+¥m

where h is the Coxeter number of type R,, i.e., n+1, 2n —2, 12, 18, 30 for A,, D,, Eg, E7,

Fs, respectively.

The system of equations (4) is called the level ¢ constant Y -system associated with the
quantum affine Kac-Moody algebra of (untwisted) type Rg), which is a specialization of the cor-
responding (non-constant) Y-system. It is also known as the (constant) Y-system of R, x A;_;.
See [6] for more information.

We explain below that all the identities (3) in question are the ones in (5) for £ = 2,3, or

their specializations.
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Table 2. The Langlands dual of affine type.

R7(zl) AS—LI) Br(zl) Cr(zl) D7(11) Eél) Eél) Eg(;l) F4(1) Ggl)

S| AD AR, ofy Db B) B B B Dp

3 Identification with Y -systems
from quantum affine Kac—Moody algebras
3.1 The non-b case

We consider the case A’ = A. We use the change of variables

Y,
i = ) 6
@ 1+Y; (©)

so that the range 0 < @; < 1 corresponds to the range 0 < Y;. Then, using (1), one can
transform the equations (2) into the form

(%) - (%)
Py, 14y

which is equivalent to

n
Y2 =]+ yy)oe. (7)
j=1

For simply laced types A, Dy, Eg, E7, Es, (7) coincides with the level 2 constant Y-system (4)
of untwisted type R,(Il) by identifying Y; with Yl(i). Then, the right hand side of (5) with ¢ =2
gives the value of L,4, agreeing with Table 1.

In contrast, for types By, Cy, Fy, Ga, (7) coincides with the level 2 constant Y-system of
twisted type S\ (in the sense of [6, Remark 9.22]), where S is the Langlands dual of R,
See Table 2 for the Langlands dual of affine type. Also see [6, Section 9] for the full version
of Y-systems of twisted type. In this case, the direct inspection of the Cartan matrix shows
that the equation (7) can be obtained from the level 2 constant Y-system of the untwisted (and
simply laced) type 57(71) by folding, i.e., identifying the variables with the diagram automor-
phism o of S,,. This is possible, due to the symmetry Yr(ni) > ngf(i)) of the Y-system (4).
Furthermore, it is easy to see that v; coincides with the number of elements in the o-orbit of 7.
Thus, we obtain the identity (3) for type R, with L4(R,) = La(Sy). For example, for R,, = By,
L4(By) = La(A2,—1). This confirms and explains Table 1.

Finally, for type T}, (7) coincides with the level 2 constant Y-system of type Agi) (in the

sense of [6, Remark 9.22]). Note that Aéi) is self-dual under the Langlands duality. Again, this
(

Y -system is obtained by the folding of level 2 constant Y-system of untwisted Azln). Since we set
v; = 1, the multiplicities are discarded in (3). Therefore, La(T,) = La(A2,)/2. Actually, this
connection is known in [3] and other literature.

3.2 The b case

We consider the case A’ = A°. By the same change of variables (6), one can transform the
equations (2) into the form

n Cii 2
LY _ (Y, Y, L
- — 147,
jH1<1+Yj) (ri7) = (i5) 0+
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which is equivalent to

(1+Y;

<.
it

Y2 = .
2 1+§/;._1 (8>

For simply laced types, A,, D,, Es, E7, Eg, (8) is obtained from the level 3 constant Y-
system (4) of untwisted type R,(ll) by the specialization Yl(i) = YQ(i) and identifying it with Y;.
This is possible, due to the symmetry Yl(i) > Y2(i) of level 3 Y-system (4). (One can also view it
as the folding of As to T} in the second component of R,, X As.) Since we discard the multiplicity
in (3), L 4 is the half of the right hand side of (5) with ¢ = 3. This agrees with Table 1.

Similarly, for the rest of types, (8) is obtained from the level 3 constant Y-system of type 57(77;)
or Agzn) (in the sense of [6, Remark 9.22]) by the specialization Yl(i) = Yz(i), and the latter is
further obtained from the level 3 constant Y-system of type S,(le) or Agl) by the folding. Then,
one can confirm Table 1.

Let us summarize the result.

Theorem 2. The identity (3) holds. Moreover, except for type T,, the value La: in (3) has
a unified expression

mh*

Ly =——
A e+ 0

where £ =2 for A' = A and £ =3 for A’ = A°, and m and h* are the rank and Cozeter number
of Sy, for the Langlands dual SS;) of Rg).

We remark that the dilogarithm identities for untwisted and nonsimply laced types BT(LI),

C'y(Ll), il), Ggl) are also known [4, 5]. It is natural to ask whether they will also appear from
Nil-DAHA.

4 Connection to cluster algebraic method

For the reader’s convenience, we include a brief explanation of the background of the dilogarithm
identity (5), especially in the cluster algebraic method. See [7] and references therein for more
information.

(a) Y -systems and dilogarithm identities. As the name suggests, the constant Y-system (4)
is the constant version of the following (non-constant) Y-system

IT (1 + V9 (u)) 20—
j=1

L+ @) ) (L + Y, ()Y

Y (u+ DY) (u—1) = : (9)

where the variables Y (u) now carry the spectral parameter u € C. The Y-system (9) appears in

the thermodynamic Bethe ansatz (TBA) analysis of the deformation of conformal field theory.
A constant solution ¥, := Yrgf)(u) of (9), which is constant with respect to u, satisfies the
constant Y-system (4), that also appears in the TBA analysis to calculate the effective central
charge of conformal field theory.

The Y-system (9) has the following two remarkable properties.

(1) Periodicity

YD (u+2(h 4 £)) = Y, (u). (10)
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(7i) Dilogarithm identity. For any positive real solution of (9), the following identity holds

2(h+€ -1 n -1
Z YL < (u) ) = 2(0 — 1)nh. (11)
i=1m=1 \1+ Yo ( )

The identity (5) is obtained by specializing the identity (11) to the (unique) positive real
constant solution, and dividing the both hand sides of (5) by the period 2(h + ¢).

(b) Cluster algebras and dilogarithm identities. It was once formidable to prove the proper-
ties (10) and (11) in full generality. However, they are now proved and rather well understood by
the cluster algebraic method. In general, to any period of y-variables (coefficients) of a cluster
algebra, the following dilogarithm identity is associated

= Z (Ttsm) = (12)

where ki,...,k, are the sequence of mutations for which y-variables are periodic, y,(t) is the
y-variable mutated at ¢, and N_ is the total number of ¢ € {1,...,p} such that the tropical sign
of y, (t) is minus. One can apply this general result to our Y-system (9). First, the Y-system is
embedded into the y-variables of a certain cluster algebra. Then, by proving the periodicity of
y-variables of this cluster algebra, we obtain the periodicity (10) of the Y-system. Finally, from
the general identity (12), we obtain the dilogarithm identity (11) by calculating the constant
term N_.

(¢) Quantum cluster algebras and quantum dilogarithm identities. One can lift the result in (b)
to the quantum case. Namely, any period of y-variables of a cluster algebra can be lifted to the
period of quantum y-variables of the corresponding quantum cluster algebra. Then, to any such
period, the quantum dilogarithm identity is associated; furthermore, taking the semiclassical
limit of the quantum dilogarithm identity we recover the classical dilogarithm identity (12). We
expect that the Rogers-Ramanujan type identities of [3] are also deduced from these quantum
dilogarithm identities. Some result in this direction is obtained by [1].
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