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Abstract. It has recently been shown within a formal axiomatic framework using a defini-
tion of four-momentum based on the Stiickelberg—Feynman—Sudarshan-Recami “switching
principle” that Einstein’s relativistic dynamics is logically consistent with the existence of
interacting faster-than-light inertial particles. Our results here show, using only basic natural
assumptions on dynamics, that this definition is the only possible way to get a consistent
theory of such particles moving within the geometry of Minkowskian spacetime. We present
a strictly formal proof from a streamlined axiom system that given any slow or fast inertial
particle, all inertial observers agree on the value of m - /|1 — v2|, where m is the particle’s
relativistic mass and v its speed. This confirms formally the widely held belief that the
relativistic mass and momentum of a positive-mass faster-than-light particle must decrease
as its speed increases.
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1 Introduction

Following the introduction of Einstein’s special theory of relativity in 1905, it was generally
believed that the existence of faster-than-light (FTL) particles would violate causality, and they
could not therefore exist. Tolman’s 1917 ‘anti-telephone’ scenario [33] was followed by a series of
papers describing causality violations involving FTL particles, leading over the last half-century
to a host of related paradoxes and possible resolutions [4, 5, 6, 8, 11, 12, 16, 19, 21, 22, 25, 26,
31, 34, 35].

Another issue associated with FTL particles concerns the nature of collisions. If one observer
sees two particles (one of which is FTL) fusing to form a third, then another, fast enough but
nonetheless slower-than-light, observer will see this fusion as the decay of one particle into two
others (see Fig. 1) [21, 31]. Such ambiguities are not in themselves paradoxical; rather, they
provide one more confirmation of the need to distinguish between physical laws and their visible
manifestations in relativity theory [5].

Various authors have investigated how the relativistic mass of FTL particles ought to vary
with speed, prompted in part by experimental evidence confirming the existence of FTL be-
haviours, e.g., in certain astronomical and quantum-mechanical situations (see [21] for a com-
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Figure 1. If FTL particles are involved, what one person sees as a decay, another may see as fusion.

prehensive review). Sudarshan [31] considered the theory of tachyons, and noted — contrary to
earlier assumptions in the literature — that their existence does not contradict any of the physical
consequences of relativity theory, since these are based not on the ‘limiting’ nature of the speed of
light, but its invariance. Even more strikingly, Recami [24] notes that “at least four different ex-
perimental sectors of physics seem to indicate the actual existence of Superluminal motions”, two
of which have been confirmed both theoretically and experimentally [23]. In particular, various
experiments [14, 17, 20, 29] (cf. [18]) have confirmed the quantum-theoretical prediction [1] that
the total time taken for a photon to ‘tunnel’ through an opaque barrier is independent of tunnel
width, whence group velocities are necessarily superluminal for wide enough barriers.

The derivations presented in these earlier papers differ from ours in certain respects. For
example, Recami and his colleagues follow Sudarshan [31] in assuming that positive-energy
objects travelling backwards in time cannot exist, and that “any negative-energy particle P
travelling backwards in time can and must be described as its antiparticle P, endowed with
positive energy and motion forward in time”, whereas we make no such blanket assumption.
Recami [22] suggests that since we know nothing a priori about tachyons, “the safest way to
formulate a theory for them is to try to generalize the ordinary theories ... by performing
modifications as small as possible”. Our approach is to remove unnecessary assumptions so
as to generalise the standard theory to the point where tachyon dynamics can be investigated
without further modification.

Our derivation is, accordingly, by strict formal proof from a sparse set of basic, simple, axioms
that are already known to be consistent both with standard descriptions of special relativity and
with the existence of FTL particles [15]. We show, moreover, how the same deductive reasoning
can be applied to Newtonian as well as relativistic dynamics, by replacing just one of the
underlying axioms. Our main theorem (Theorem 1) shows that

e if relativistic dynamics holds, then all inertial observers agree on the value they calculate
for m- /|1 — v?|, where m is the relativistic mass of an inertial particle and v is its speed,
whether or not this is FTL';

e if Newtonian dynamics holds, all observers agree on the particle’s relativistic mass m.
A consequence of this result is confirmation that if an FTL inertial particle has positive

relativistic mass, its relativistic mass and momentum must decrease as its speed increases, while
for slow particles we get back the usual mass increase theorem in the relativistic case.

1For ‘slow’ particles, this invariant is the usual rest mass mg = m - v/1 — v2. For FTL particles, our formula
m - v/v? — 1 agrees with that required by non-restricted special relativity (NRR) [21] (although, of course, we are
working here not in NRR, but in a general axiomatic framework of dynamics).
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In [15] a model of relativistic dynamics is constructed in which there are interacting FTL
inertial particles, by extending the definition of four-momentum for FTL particles using the
Stiickelberg—Feynman—Sudarshan—Recami “switching principle” [5, 9, 30]. Our results here
therefore complement [15], because they show — using only basic natural assumptions on dy-
namics — that this definition is the only possible way to get a consistent theory of interacting
FTL inertial particles.

2 Informal formulation of our axioms and the main result

We begin with an informal outline of our basic first-order axiom system, BA. This formalises
the axioms used in standard approaches to special relativity theory from Einstein onwards.
Informally paraphrased, these axioms are:

e AxEField
Physical quantities satisfy certain basic algebraic properties of the real numbers.

e AxL
The world-line of every inertial particle and inertial observer is a subset of a straight line,
and contains at least two points.

o AxW
The world-view transformation between any two observers is an affine transformation
which takes the world-line of each body according to the first observer to the world-line
of the same body according to the second observer.

o AxSelf™
Inertial observers are stationary (they do not move spatially) in their own coordinate
systems.

Using BA, we can define the speeds and velocities of inertial observers and inertial particles
according to any observer, as well as the linear momenta of inertial particles moving at finite
relative speeds.

Our next axiom system, DYN (for dynamics), adds concepts relating to particle collisions.
Intuitively, by a collision we mean a set of incoming and outgoing inertial particles for which
the sums of the relativistic masses and linear momenta of the incoming particles coincide with
those of the outgoing ones (Fig. 2), i.e. we build conservation of both relativistic mass and linear
momentum into collisions from the outset. Inelastic collisions are defined as collisions in which
there is only one outgoing particle?.

Informally, DYN consists of the basic assumptions in BA together with the following axioms
(see Fig. 4):

o AxCollg
If one observer sees a 3-particle collision, all the others see it as well.

e AxVinecoll™
Given any two inertial particles a¢ and b with given velocities and relativistic masses, we can
find a (possibly different) pair of particles @’ and b which can collide inelastically, where
the relativistic masses and velocities of @’ and b’ agree with those of a and b respectively.

e AxSpd™
If two observers agree on the speed of a ‘slow’ inertial particle, then they agree on its
relativistic mass.

2As is well known, when two particles undergo a relativistic inelastic collision, kinetic energy is not con-
served [10]. Nonetheless, the total energy of the system — and hence its combined relativistic mass — remains
unchanged [7, § 4.3], [13, Example 3.2], [27, § 6.2].
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Figure 2. Collision and inelastic collision of incoming and outgoing particles. Four-momentum is
conserved in collisions.

Notice, however, that we make no assumptions concerning the relationship between rela-
tivistic mass and speed for FTL particles. Instead, this will emerge as a logical consequence
of the axioms.

e AxMass
If the velocities and relativistic masses of two inertial particles coincide for one observer,
then their relativistic masses also coincide for all other observers.

o AxThEx™
Given any observers m and h, and any non-negative speed v slower than that of h as
observed by m, we can assume the existence of a massive inertial particle with speed v
relative to m.

In relativistic terms, AxThEx™ says that inertial particles with non-zero relativistic mass can
be assumed to travel at any desired sub-light speed (because observer h cannot travel faster than
light in our framework), but the axiom is phrased so as to remain valid in Newtonian dynamics
also. The difference between the relativistic and Newtonian systems is captured by

o AxPh, the light axiom
The speed of light is 1 for every observer;

e AxAbsSim, absolute simultaneity
If two events are simultaneous for one observer, then they are simultaneous for all observers.

In our theories, relativistic dynamics is captured by DYN+AxPh, while DYN-+AxAbsSim is an
axiom system for Newtonian dynamics [15].

Writing mg(b) for the relativistic mass and v (b) for the speed of particle b according to
observer k, the main result of this paper (Theorem 1) describes how particle mass (including
that of FTL particles) varies with speed in both relativistic and Newtonian dynamics. For all
inertial observers k and h, and any inertial particle b moving with a finite speed according to
both of them, we have

e if relativistic dynamics (DYN+AxPh) holds, then
mp(0) - /|1 = vk (0)?] = mn(b) - V[T = vn(0)?]; (1)
e if Newtonian dynamics (DYN+AxAbsSim) holds, then

mk(b) = mh(b).
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Equation (1) gives back the usual relativistic mass-increase theorem for slower than light
particles, but predicts that both the relativistic mass and the momentum of an FTL particle
with positive mass should decrease with speed.

It is worth noting that the axiom system DYN+AxPh is self-consistent because it is more
general that the axiom system SRDyn of [15], which has been shown there to be logically con-
sistent. Likewise, a similar construction to that used in [15] shows that the axiom system
DYN+AxAbsSim is also self-consistent.

3 Formalization

We begin by formalising a number of basic concepts, including the axioms described above, and
introduce some notation. For brevity we have adopted the familiar expositional style of formal
mathematics, but it should be noted that everything can also be expressed in the pure first-order
logic framework of, e.g., [3, 15].

3.1 Quantities and bodies

We use the algebraic structure @ = (Q,+,+, <) to represent quantities (the values used to
measure relativistic masses, speed, momenta, etc.), where + (addition) and - (multiplication)
are binary operations, and < (less than) is a binary relation, on the set @. As usual, we
write Q™ for the Cartesian product of n copies of @, and write x; for the i*" component of
T=(x1,...,2y) € Q™.

We write B for the set of bodies, and pick out three types of body in particular: the sets
IOb of inertial observers, Ip of inertial particles and Ph of photons are subsets of B. We
do not assume a priori that these subsets are disjoint — the fact that, e.g., photons cannot be
inertial observers in the relativistic case, arises instead as a theorem of the logic.

Given any inertial observers k, h € IOb and body b € B,

e wl(b) C Q*is the world-line of b according to observer k;

o Wi QF — Q% is the world-view transformation between the world-views (coordinate
systems) of k and h;

e my(b) € @ is the relativistic mass of b according to k.

3.2 Basic axioms

Throughout the paper we assume a set BA of four basic axioms in our definitions and axioms
without mentioning this explicitly. Formally, we have

BA := {AxEField, AxL, AxXW, AxSelf ™},

where the axioms AxEField, AxL, AxXW and AxSelf~ are defined below.

3.2.1 Notation

Our notation is essentially standard. We write R for the field of real numbers and := for
definitional equality, so that “v := €” indicates that the value v is fully determined by evaluating
an appropriate instantiation of the expression e. Given any function f: X — Y and S C X, the
f-image of S is given by f[S] := {f(z) : x € S}.
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3.2.2 Field axioms

Einstein and his followers assumed implicitly that the structure @ is the field R of real numbers,
but in fact this imposes more logical structure than is necessary for our deductions. We therefore
make our system more general by assuming for @ only the more important algebraic properties
of R.

AxEField The quantity part (@, +,, <) is assumed to be a Euclidean field, i.e. it is a linearly
ordered field in the sense of abstract algebra, equipped with the usual field operations 0,
1, — and / definable from addition and multiplication, and every non-negative element x
has a square root, i.e. (VY > 0)(3y)(z = y?). It is easy to see that square roots can be
assumed to be non-negative when they exist, and we define the / function accordingly.

For eachn =1,2,3,..., the set @™ is be assumed to carry the normal vector space structure.
Regardless of n, we write 0 := (0,...,0) for the origin. The Euclidean length of a vector

T = (x1,...,T,) is the non-negative quantity |z| = \/z3 + - + z2.

For simplicity, we shall make the standard assumption throughout this paper that n =4, so
that spacetime has one temporal and three spatial dimensions. Given any = = (x1, 2, 3, x4) €
Q* we call z; its time component and (z2,z3,24) its space component. If Z has time
component t and space component 5, we occasionally abuse notation and write = (¢, ).

3.2.3 World-lines

We assume that the world-line of every inertial particle or inertial observer is a subset of a straight
line? containing at least 2 distinct points.

AxL For every k € 10b and b € Ip U lOb there is a straight line £ of Q* such that w/y(b) C ¢,
and wly(b) contains at least two points (elements).
3.2.4 World-view transformation

The world-view transformation between any two observers is an affine transformation (i.e. a li-
near transformation composed with a translation) which takes the world-line of each body ac-
cording to the first observer to its world-line according to the second observer.

AxW wyy, is an affine transformation and wgp, [wl(b)] = wlp(b) for every k, h € IOb and b € B.

3.2.5 Self-coordinatisation

Inertial observers consider themselves to be stationary in space (but not in time). This makes it
easy to speak about the motion of inertial observers since it identifies observers with their time
axes.

AxSelf~ If z € wli(k), then (29, x3,24) = (0,0,0).

3.2.6 Auxiliary definitions

The velocity vi(b) € Q3 and speed wvi(b) € Q of any inertial body b € Ip U10b according to
an inertial observer k are defined by

vi(b) == (z2 — Y2, 3 —y3, T4 —ya)/(21 — Y1) and vg(b) == |vi(D)],

3By a straight line we mean a set £ C Q* for which there exist distinct Z,5 € Q* with £ = {Z 4+ ¢- (§—Z) :
q€Q}



Relativistic Mass and Momenta of FTL Particles 7

where z,y € wly(b) are any points for which 1 # y; (these are well defined concepts whenever
such points exist, since they do not depend on the choice of Z and 7).

If there are no such z and g, then vy (b) and vg(b) are undefined. Indeed, if there are distinct
z,y € wly(b) with 1 = y;, the worldline of b is a subset of a horizontal straight line and its
speed is, from k’s viewpoint, ‘infinite’. We therefore write vg(b) = oo in this case, and vy (b) < 0o
otherwise. We say that the speed of body b is finite (infinite) according to observer k provided
vg(b) < 0o (vk(b) = 00), respectively.

4 Axioms for dynamics

Throughout this paper we write mg(b) for the relativistic mass of particle b according to
observer k — we assume here that m is a primitive construct and deduce (Theorem 1) how my(b)
varies with the relative speed of b relative to k.

We define the linear momentum py(b) of inertial particle b according to inertial observer k
in the obvious way, viz. pg(b) = mg(b) - vi(b). Provided b is travelling at finite speed relative
to k, so that py(b) is defined, the associated four-momentum Py (b) is the vector in Q* whose
time component is the relativistic mass, and whose space component is the linear momentum —
it is not difficult to prove that P (b) is parallel to the world-line of b (Fig. 3)

Pu(b) = {(mk(b)apk(b)) if v (b) < o0,

undefined otherwise.

mass, mg(b)

whe(b)

linear momentum, pg(b)

Figure 3. The time component of four-momentum is relativistic mass, and its space component is linear
momentum. Each inertial observer k£ considers b’s four-momentum to be parallel to its world-line.

4.1 Particles involved in a collision

We say that an inertial particle b is incoming at some coordinate point z, according to inertial
observer k, provided z € wl(b) and 1 is an upper bound for the time coordinates of points
on wly(b) and the speed of b is finite, i.e. if § € wly(b) and § # T then y; < z1. We write
ing(b) to mean that there is some point z at which b is incoming according to k, and ing(b)Qz
if we wish to highlight some such Z explicitly. Outgoing particles, out(b) and outy(b)@Qz are
defined analogously.

A collection b1, ..., b, of inertial particles form a collision according to observer k provided

e there is a point T at which they are all either incoming or outgoing with finite speed
according to k; and
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e relativistic mass and linear momentum are both conserved at z according to k (Fig. 2),
i.e. allowing b; to range over the particles, we have

Yoo P = D> P

{bi:ink(bi)@i‘} {bi:outk(bi)@a’c}
We are particularly interested below in collisions involving three particles, and write
colli(abc) to mean that a, b, ¢ form a collision according to k.
4.1.1 Collision axioms

For each natural number n we introduce an axiom saying that the existence of any n-body
collision is observer-independent. Thus, conservations of relativistic mass, linear momentum
and four-momentum do not depend on the inertial observer.

AxColl, If inertial particles by,...,b, form a collision for one inertial observer, they also form
a collision for every other inertial observer who considers them all to have finite speed (see
Fig. 4).

AxCollz colly(abc) = colly (abe) AxYinecoll~  There are
‘copies’ of a and b
i c h which collide inelastically.
/\ c b
b a
a4 k
o\ b
AxSpd~ [u(b) = v (b) ...] = mi(b) = mp(b) \
o
KoY b h T
Ja’ =
my (b) mn(b) \ \
AxMass  my(a) = mg(b) = my(a) = my,(b) AxThEx™ There are ‘slow’
massive inertial particles.
3 my(b) # 0.
h
a
h € 10b
b

Figure 4. The dynamical axioms in DYN.

4.1.2 Inelastic collisions

We say that inertial particles a and b collide inelastically according to observer k provided
there exist some inertial particle ¢ such that a, b, ¢ form a collision, where a and b are incoming
and c is outgoing, i.e.

Je|collg(abe) Aing(a) Aing(b) A outg(c)].
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The following axiom is slightly subtle. In general, an observer would not expect two arbitrarily
selected particles a and b to be following worldlines that necessarily meet. We can, however,
find paths parallel to those followed by a and b (i.e. followed by particles with the same four-
momenta), which meet at some point. The axiom states this formally, and says that we can
form an inelastic collision of these parallel-moving particles at Z, provided they have ‘sensible’
relativistic masses and speeds according to the observer in question. In other words, this axiom
says that all ‘sensible’ collisions are realisable.

AxVinecoll” If k € 10b and a,b € Ip satisfy vi(a) < 0o, vk(b) < co and mg(a) + mg(b) # 0, then
there exist a/,b" € lp with Pi(a’) = Pr(a) and Pg(b') = Pg(b), such that o’ and b’ collide
inelastically.

We typically use these collisions to determine relationships between the four-momenta of a
and b, but of course it is actually a’ and b’ that take part in the collision. Nonetheless our
deductions remain valid, because a and a’ have the same four-momentum, as do b and o', and
these equalities continue to hold in every other observer’s worldview by AxMass below.

4.1.3 Relativistic mass

Given @, 7 € @3, we write % < ¥ to mean that % and @ point in the same direction, and the
length of @ is less than or equal to the length of v, i.e.

a<v &L INO0<AL<I A u=A\-2).

The following axioms concern the relativistic masses of slow particles, and are expressed in
a way that makes them equally meaningful for both relativistic and Newtonian dynamics. Since
inertial observers travel slower than light in the relativistic setting, but can achieve any sublight
speed we wish, we can define a particle to be ‘slow’ provided there is some observer who appears
to be travelling faster than it. That is, observer k considers body b to be ‘slow’ provided there
is some other observer h for which vi(b) < vi(h).

Our next axiom asserts that whenever two observers agree on the speed of a slow inertial
particle, then they also agree on its relativistic mass. That is, suppose observer k considers
inertial particle b and observer h to be moving in the same direction, with A moving faster
than b. If h and k see b to be moving at the same speed, they will also agree on its relativistic
mass (Fig. 4).

AxSpd~ If vi(b) < vi(h) and vg(b) = vy (b), then mg(b) = my(b), for all k,h € 10b and b € Ip.

It is important in axiom AxSpd~ that particle b is slow, because in special relativity, if
observers k and h move with respect to one another and b is moving with the speed of light in
the same spatial direction as h according to k, then the speed of b is the same for k£ and h but its
relativistic mass is different. In both relativistic and Newtonian axiom systems, we can prove
that no observer can travel with infinite speed, and moreover in the relativistic axiom system
every observer travels with slower than light speed, see Corollary 1.

We also assume that if the relativistic masses and velocities of two inertial particles coincide
for one inertial observer, then their relativistic masses also coincide for all other inertial observers.

AxMass If Py(a) = Py (b), then my(a) = my(b) for all k, h € IOb and a,b € Ip.

Finally, we assume the existence of ‘slow’ inertial particles with nonzero relativistic masses.
That is, given any inertial observer and any ‘slow’ velocity v, there is an inertial particle with
nonzero relativistic mass that moves with velocity v.

AxThEx~ For all k,h € 10b and v < vi(h) there is b € Ip satisfying vi(b) = v and mg(b) # 0.
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Figure 5. Illustration for the photon axiom and for the absolute simultaneity axiom.
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4.1.4 Shared axiom system for dynamics

We can now define the axiom system DYN for dynamics, which is common to both the rela-
tivistic and Newtonian settings. It comprises the basic assumptions, together with the axioms
introduced above, viz.

DYN := BA U {AxCollz, AxVinecoll, AxSpd ™, AxMass, AxThEx™ }.

4.1.5 Differentiating between relativistic and Newtonian dynamics

Finally, we define the axioms that allow us to distinguish between the two systems (Fig. 5).
The photon axiom, AxPh, says that each inertial observer considers the speed of light to
be 1 everywhere and in every direction (in particular, therefore, it is finite, whence this axiom
characterises relativistic dynamics). Moreover, it is always possible to send out such light signals,
i.e. two points lie on a photon’s worldline if and only if the slope of the line joining them is 1.

AxPh For every inertial observer k € 10b,
(Bp e Ph)(@,7 € wli(p)) & (22—y2)* + (23— y3)* + (21 — y2)* = (21 — 11)*.

In contrast, the absolute simultaneity axiom, AxAbsSim, which characterises Newtonian
dynamics, says that whenever two events are simultaneous for one observer then they are simul-
taneous for every observer.

AxAbsSim If wiy,(Z) = &' and wyy,(y) = ¢/, then z1 = y1 <z} =y for every k, h € 10b.

The axiom system DYN U {AxPh} is our axiom system for relativistic dynamics, and axiom
system DYN U {AxAbsSim} is our axiom system for Newtonian dynamics.

5 The main theorem and its proof
We can now state and prove our main theorem. Our central claim, concerning the way that
relativistic masses transform as speed increases, then follows as an easy corollary.

Theorem 1. Assume axiom system DYN. Let b be an inertial particle and let k, h be inertial
observers for which the speed of b is finite. Then

(@) mg(d) - /|1 —vk(b)?| = mp(b) - /|1 — vp(b)?| if AxPh holds;
(b) mg(b) = mp(b) if AxAbsSim holds.
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Figure 6. A spacetime diagram showing the relativistic mass m and linear momentum p of a positive-
mass FTL body b as seen by two observers k and h in the relativistic setting. The arrows represent the
four-momenta of b as seen by each observer, and the continuous lines show the Minkowski circle on which
their tips are constrained to lie.

To see how positive FTL mass and momentum change in the relativistic setting depending
on the particle’s speed relative to an inertial observer, let us assume that b is an FTL particle
relative to k, and that vj(b) < vg(b). It is known [28] that the axioms assumed here prohibit
inertial observers (though not FTL inertial particles in general) from travelling FTL with respect
to one another, so we can also assume that b is travelling FTL relative to h. Since both observers
consider v(b) to be greater than 1, the theorem tells us that

vp(D)2 —1

mg(b) = mp(b) - (0?2 —1

< mh(b),

so that relativistic mass is considered to be lower by the observer who is moving faster relative
to the particle. Similarly, the observers’ momentum measurements satisfy

vp(0)2 —1

[Pr(B)] = mi(b) - v(b) = malb) -y | e

Uk(b)

A simple rearrangement of terms shows that

) > md) = \/ w0 =0 <o),

and hence

1Pk (b)] = mk(b) - vk (b) < mp(b) - v (b) = |Pr(b)],

so that momentum also appears to drop as the particle’s speed increases.

We can also interpret this result as shown in Fig. 6. Notice that mg(b) - \/|1 — vx(b)?| is
essentially the Minkowski norm |Px(b)[, of b’s four-momentum as seen by k (see Section 5 for
the definition of |-[,), except that the actual, rather than absolute, value of mg(b) is used. Thus
the theorem states that the two observers agree both on the Minkowski length of P(b), and on the
sign they assign to b’s relativistic mass. As illustrated in the diagram, the points Py = (my, px)
and Py, = (mp, p) must, therefore, lie on the same component of the Minkowski sphere M, and
since b is faster for k than for h the corresponding four-momentum is closer to the horizontal,
whence it is clear that m; < mj, and |px| < |pn|-
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Outline of the proof

Let [|-|| be either of the norms ||, or ||, where the Minkowski norm [z|, and time norm [z|,
of z € Q* are given by

al, = /Je?— a3 a3 - a3 and [l = o]

Recall that a linear transformation L : Q* — Q* is called a Lorentz transformation if it
preserves the Minkowski norm. We will say that a linear transformation is time-preserving
if it preserves the time-norm. An expansion on Q* is a mapping E, : Q* — Q* given by
E.(Z):=q-Z, where 0 < g € Q.

The proof requires four basic lemmas.

1. Given two observers k and h moving with finite (possibly zero) speed with respect to one
another, we show (Lemma 2) that there exists a slowly moving massive inertial particle a
on whose speed they agree (doing so first requires us to show (Lemma 1) that, subject to
certain speed restrictions, we have my(b) = 0 whenever my(b) = 0). According to AxSpd—,
the two observers therefore agree on the particle’s relativistic mass as well, and hence
IPL(@)]l = [IP4(a)]|-

2. To prove the main theorem, we consider a collision between a and an arbitrary massive
particle b, and use basic linear algebra to deduce both that ||[Py(b)|| = ||Pn ()| and that k
and h agree as to the sign of b’s relativistic mass, where the choice of norm depends on
whether we are assuming AxPh or AxAbsSim in addition to DYN. In order to do this, we
first need to prove that the linear part of the worldview transformation can be written as
a composition of a norm-preserving transformation L and an expansion E; (Lemma 3), and
show under what conditions two observers assign the same sign to a particle’s relativistic
mass (Lemma 4).

Lemma 1. Assume DYN \ {AxSpd~}, and suppose k,h € 10b and b € Ip satisfy vi(b) < oo,
vp(b) < 00, vE(h) < 0o, and vp(k) < oo. Then my(b) = 0 if and only if mp(b) = 0.

Proof. Suppose my(b) = 0. We will prove that my,(b) = 0 as well. The converse will follow by
Symmetry.

Axiom AxThEx™ says we can choose an inertial particle a such that mg(a) # 0, vg(a) < 0o
and vp(a) < co. By AxVinecoll™, we can collide a and b inelastically as incoming particles (from
k’s point of view) to form an outgoing particle ¢, and we have Py(a) + Px(b) = Pr(c). Because
mi(b) = 0, we know that Pg(b) := (mg(b), mg(b) - vi(b)) = 0, whence Pr(a) = Pg(c) and k
considers a and ¢ to have parallel worldlines. Axiom AxMass now tells us that my(a) = my(c),
and since wyy, is affine, it maps parallel worldlines to parallel worldlines, so h considers a and
¢ to have identical velocities. By definition, it follows that Pp(a) = Pp(c).

We know that a, b and ¢ form a collision for k, so they also form one for A by AxColl3. We
know that a and ¢ have parallel worldlines from k’s point of view, so, since they coincide at the
collision point, the same straight line contains both of them in k’s worldview, with the collision
point marking a clear boundary between one worldline and the other. Since wyy is affine, it
takes straight lines to straight lines without changing the delimiting nature of the ‘boundary
point’, so according to h, one of a and c is incoming and the other one is outgoing. Since they
form a collision, we conclude that either

Pun(a) + Pr(b) =Pn(c)  or  Pp(a) =Pp(c) + Pn(b)

depending on whether b is seen to be incoming or outgoing by h. In either case it follows that
Pn(b) = 0, whence my,(b) = (Pp(b))1 = 0 as claimed. [ |
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The next lemma shows that two observers, moving at finite speed relative to one another,
can identify a particle b on whose speed they agree. The proof outline given below makes
a simplifying assumption — equation (2) — and assumes that a version of Bolzano’s theorem
holds for @ (i.e. if a continuous @-valued function on [0, 1] takes both positive and negative
values, then it must also take the value 0 at some point in the interval). A fully rigorous proof
of the lemma is provided in the Appendix.

Lemma 2. Assume BA and AXThEx™, and suppose k and h are inertial observers satisfying
vp(h) < oo and vp(k) < co. Then there exists an inertial particle b such that vi(b) < vi(h),
vg(b) = vp(b) and my(b) # 0.

Proof outline. If viy(h) = 0, then by AXThEx™, there is b € Ip such that vg(b) = 0 and
my(b) # 0. This b has the desired properties, so without loss of generality we shall assume that
Uk(h) > 0.

For simplicity assume that, for every inertial particle b,

ve(b) <wvk(h) = wvp(b) < 0. (2)

This implication holds automatically if we assume either AxPh or AxAbsSim (see Corollary 1),
as we do in the proof of the main theorem, but is not strictly necessary in the current context;
see the Appendix.

For each x € [0, 1], choose b, € Ip such that v (b,) = x-vi(h) and mg(b,) # 0, and note that
by’s existence is guaranteed by AXThEx™. Since (2) implies that v, (b;) < 0o, we can define

h(z) = vg(bs) — va(bs)

and it is easy to see that h is continuous on [0,1]. By vk(by) = 0, vp(bo) > 0, vk(b1) > 0 and
vg(b1) = 0, we have that h(0) < 0 and h(1) > 0. Now Bolzano’s theorem tells us there is some
u € [0, 1] such that h(u) = 0, i.e. vg(by) = vp(by). Taking b = b, completes the proof. [ |

Lemma 3. Assume BA and suppose k,h € 10b. There exists a linear transformation L and an
expansion Eq such that the linear part of wyy, is the composition E, o L of L with E,, viz.

win (%) — win(0) = ¢ - L(z)  for allz € Q*,  where

(a) if AXPh holds, L is a Lorentz transformation;

(b) if AXAbsSim holds, L is a time-preserving transformation.

Proof. (a) Notice first that wyy, is necessarily ‘photon preserving’, in that it maps any line of
slope one in k’s worldview to a line of slope one in h’s worldview. To see why, suppose £ is
such a line. By AxPh we can choose a photon p whose worldline contains two points within £.
Writing ¢p, := wgp(£), we know that ¢}, is again a straight line (since wyy, is assumed affine,
by AxW). Since p is a photon and ¢, contains two points at which p is present from h’s point of
view, it follows that the slope of ¢}, is also equal to 1 (again by AxPh). But in [2, Theorem 3.6.4]
it is shown that any photon-preserving affine transformation can be written as the composition
of a Poincaré transformation and an expansion, and the result follows.

(b) Notice first that the linear part (call it ®) of wyy, maps the hyperplane x1 = 0 to itself,
since ®(0,3) has to be simultaneous with ®(0) = 0 for all 5 € Q3 by AxAbsSim. Since ® is
linear, it therefore maps the hyperplane 1 = 1 to some hyperplane z1 = X\, where A € @ is
non-zero. It follows that ®’s action can be written in the form ®(z1,s) = (A z1, ¢(5)), where ¢
is a linear map on (3. Defining ¢ = |\| ensures that ¢ > 0, so that the expansions F, and Ey/q
are defined. If we now define L = Fj/, o ®, it follows immediately that L is time-preserving,
and since ® = E; 0 (Ey),0®) = E; 0 L, we are done. [
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An easy corollary (since every inertial observer h considers that v,(h) = 0 by AxSelf™) is
that there are no F'TL inertial observers in the relativistic case and no inertial observers moving
with infinite speed in the Newtonian case.

Corollary 1. Assume BA and suppose k,h € 10b. Thenvi(h) < 1 if AxPh holds, and vi(h) < co
if AxAbsSim holds. |

Given any inertial observer k and incoming or outgoing inertial particle b, write

Au(b) = Pr(b) if b is incoming,
T —Pr(b) if b is outgoing.

Lemma 4. Assume BA. Let k and h be inertial observers moving at finite speed relative to one
another, and let b be an inertial particle which k considers to be either incoming or outgoing
at some point and that vp(b) < co. Suppose also that the linear part of Wy, is a composition
Eq o L, where E4 is an expansion (¢ > 0) and L is a linear transformation.

Then

(a) if An(b) = L(Ak(b)), then mi(b) - mu(b) = 0;
(0) if An(b) = —L(Ax(b)), then my(b) - mp(b) < 0.

Proof. Assume without loss of generality that b is incoming for k. Then Ag(b) = Px(b). The
proof when b is outgoing is analogous. Moreover, if mg(b) = 0, the claims follow trivially, so
assume without loss of generality that my(b) > 0.

(a) If b is incoming for h, then A (b) = Pp(b) and so Pp(b) = L(Px(b)). Since b is incoming
for h we know that its worldline exists to the past of the collision point, and likewise for k, so L
cannot have reversed the temporal sense of b’s worldline, and hence cannot have changed the sign
of the first component of P (b). On the other hand, if b is outgoing for h, then Ap(b) = —Pp(b)
and so Pp(b) = —L(Pg(b)). This time we know that L must have reversed the temporal sense
of b’s worldline, since it maps a worldline to the past of the collision event to one that exists
in its future. This is then reversed again by the negative sign in “—L(Pg(b))”. In either case,
we therefore find that the time-components of Py (b) and Pj(b) must have the same sign (see
Fig. 7). Since this component is the relativistic mass, we must have my(b) > 0, and the result
follows.

(b) The proof of this part is similar. If b is incoming for h, then L does not reverse the
temporal sense of b’s worldline, but nonetheless Py (b) = —L(Py(b)). On the other hand, if b is
outgoing for h, then Py (b) = L(Pg(b)) and L has ‘reversed time’ (it has switched an incoming
particle to an outgoing one). In either case, we find that the time-components of Py (b) and P (b)
must have opposite signs, and the result again follows. |

Proof of main theorem. Suppose k and h are inertial observers and recall that, by Corol-
lary 1, all inertial observers move at finite speed relative to one another, and that by Lemma 2,
there exists a massive slow inertial particle a on whose speed they agree.

Let b be an arbitrary inertial particle. We will prove the theorem holds for . Form a collision
between a and b, and call the resulting outgoing particle ¢. Without loss of generality we can
assume that ¢ has finite speed relative to both k and h, for if not we can use AxVinecoll™ to
replace a with multiple copies of itself to change the resulting trajectory of ¢. Then by AxColls
we have that a, b, ¢ form a collision according to h. There are three cases to consider.

(a) If mg(b) = 0, then we know from Lemma 1 that my(b) = 0, and so the theorem holds.

(b) Suppose my(b) # 0. If vi(b) = vi(a), then because wyy, is affine, we also have vy (b) =
vi(a) and hence, by choice of a, that vg(b) = vi(b). By AxSpd™ it now follows that my(b) =
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h sees b incoming

P (b) h
L °
T An(b) = Pi(b)

h sees b outgoing An(b) = —P(b)

1M =P "
L
/\

Figure 7. Tlustration for the proof of (a) of Lemma 4.

mp(b). So k and h agree on both b’s speed and its relativistic mass, and the theorem again
holds.

(c) Suppose mg(b) # 0 and vi(b) # vi(a) (Fig. 8). Then the worldlines of a and b are not
parallel in k’s worldview, so their four-momenta cannot be linearly dependent. We also know
that Pi(a) + Pr(b) = Pi(c) because a, b and ¢ form a collision. It follows that no two of the
vectors L(Pg(a)), L(Pr(b)) and L(Pg(c)) can be linearly dependent.

Using the notation of Lemma 4, the collision conditions on a, b and ¢ can be written

Ak(a) + Ak(b) + Ak(C) =0= Ah(a) + Ah(b) + Ah(C)
and hence
(An(a) = L(Ax(a))) + (An(b) — L(Ak(b))) + (An(c) — L(Ak(c))) = 0. (3)

For each particle d, however, we know that L(Aj(d)) is parallel to Aj(d), because each of
these is parallel to d’s worldline as seen by h. We claim that Ay (a) = L(Ax(a)). We have already
observed that L(Ag(a)) is parallel to Ap(a). To see that they have the same size (whether in the
Minkowski norm, time norm or Euclidean norm), recall that (since a is slow), k and h agree on
a’s speed, and also therefore (by AxSpd™) on its relativistic mass. It now follows that k& and h
agree on the size of A(a), and since L is norm-preserving Ap(a) and L(Ag(a)) have the same
size. It only remains to show that Aj(a) and L(Ag(a)) point in the same direction. But this
is immediate from Lemma 4(b), since we would otherwise require mg(a) - mp(a) < 0, which is
impossible (we have already established that they are equal and non-zero).

It now follows from (3) that (A (b) — L(Ax())) + (An(c) — L(Ag(c))) = 0, and hence by linear
independence that

Ah(b) = L(Ak(b)) and Ah(c) = L(Ak(c))

Lemma 4(a) now tells us that mg(b) - mp(b) > 0, while Lemma 1 shows that the inequality is
strict, as claimed.

In summary, we know that k and h agree on the sign of the relativistic mass of b, and
because L is norm preserving, we know that [|Pg(b)|| = ||Px(b)||. For the relativistic case we
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A

Ax(c
«) Ak (a)

A (D)

( 0 A;L(a) + A;L(b) + A;L(C) =0
ve(a) = vp(a) Amg(a) = mp(a) = L(Ak(a)) = Ap(a) =
b

= L(Aw(b)) = An(b) and L(Ax(c)) = Ap(c)

Figure 8. Illustration for the proof of the main theorem.

have [|Py(b)|| = [mg(b) - (1, vi(b))[, = [mk(b)] - ’1 - vz(b)}, and likewise for h. Because mg(b)
and my(b) have the same sign, we can remove the relevant modulus signs, and conclude that

mi() /|1 020 = ma(6) /]2~ 20)]

In the Newtonian case, we have ||Py(b)|| = |(mg(b), my(b) - vi(b))|, = |mx ()], and hence
my(b) = mp(b)

as claimed. ]

6 Concluding remarks

We began this paper by asking why the masses and momenta of faster-than-light particles
decrease with their velocities. In the sense of [32], Theorem 1 answers this question by explaining
that the axioms described in DYN-+AxPh leave no other options open to us. The fact that our
axiom system is so sparse, and the axioms themselves so elementary, makes this answer difficult
to challenge, and highlights the advantages of the axiomatic approach. If experimental evidence
one day shows our conclusions to be physically invalid, this will necessarily point to the invalidity
also of one of our axioms, thereby identifying profitable areas for future investigation.

Alternatively, one can see the results presented here as a comment on our underlying axiom
system — the axioms are strong enough to allow familiar and meaningful results to be derived
for slow particles, yet generous enough not to disallow the existence of FTL particles for which
reference frame transformations preserve norms as they do for slow particles?.

4We are grateful to the anonymous referee for this observation.
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A Rigorous proof of Lemma 2

Bolzano’s theorem does not hold in general in arbitrary Euclidean ordered fields, but it holds

for quadratic functions by item (i) of Lemma 5, and as we shall see, this is all we require.
Recall that r is a root of a function f : @ — @ iff f(r) = 0, and that f : @ — @ is

a quadratic function iff there are a,b,c € Q such that f(z) = az? + bx + ¢ for every z € Q.

Lemma 5. Assume AxEField. Then (i) and (ii) below hold.

(i) Let f be a quadratic function. Assumep,q € Q are such thatp < q, f(p) > 0 and f(q) < 0.
Then f has a root between p and q, i.e. there is r € Q such that f(r) =0 and p <r < q.

(13) Let f: Q — @ be a function such that there are quadratic functions fi, fo and s € Q

_Jhie) ifz<s,
A )_{fz(az) if x> s.

Assume p,q € Q are such that p < q and f(p) > 0 and f(q) < 0. Then f has a root
between p and q.

Proof. To prove item (i), assume f(x) = ax? 4 bx + ¢ for every z € Q and f(p) > 0, f(q) <0
and p < q. Without loss of generality we can assume that a > 0. Then, for every x € @,

b\% b2 — 4dac

If b? — 4ac < 0, then f(x) > 0 for every # € Q. Thus the discriminant b — 4ac is positive since
f(q) < 0. Then, by the same methods as for the field of reals, one can prove that f has exactly
two roots x1,zo € @ such that x1 < xo and

f(z) =a(x —z1)(x — z2) for every z € Q.

Then f(z) < 0if € [z1,22] and f(z) > 0 if 2 < 21 or & > x9. By this, we conclude that
x1 € [p,q|, and this completes the proof of (i).

To prove item (ii) assume f, fi1, fa, s, p, q satisfy the assumptions. Let us note that
fi(s) = fa(s).

First assume that s < p. Then f coincides with fa on [p, ¢, i.e. f(x) = fa(z) for every
x € [p,q]. Then fy has a root between p and ¢ by item (i) of the lemma. Hence f has a root
between p and q.

Now assume that s > ¢. Then f coincides with fi on [p,q|. Then by item (i) of the lemma
we conclude that f has a root between p and gq.

Finally assume that p < s < ¢. Then f coincides with f; on [p, s| and f coincides with f,
on [s,q]. If f(s) < 0, then f; has a root between p and s, and if f(s) > 0 then fy has a root
between s and ¢ by item (i) of the lemma. Therefore, f has a root between p and q. |

Proof of Lemma 2. Assume k, h satisfy the assumptions. Let L be the linear part of the
world-view transformation wgy. In the proof we will need the following definition. Let z € Q™
be such that x; # 0. Then the speed v(z) of vector Z and line(Z) determined by vector z are
defined as

x5+ +ad
|21

v(Z) = and line(z) :={q-z:q € Q}.
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Figure 9. Illustration for the claim that (4) can be satisfied.

For every @, 0 € 3, let
u=<v <d:‘3f> UAEUVANU=RD.
Claim. Assume vy (h) > 0. Then there is @ € Q3 such that
u < vi(h) and v(1,a) = v(L(1,7)), (4)

see Fig. 9.

We will prove the claim at the end of the proof. We note that in the field of reals, by
continuity and Bolzano’s theorem, it is easy to see that the claim holds.

If vg(h) = 0, then by AXThEx™ there is an inertial particle b such that vy (b) = 0 and my(b) # 0.
Then vy, (b) = 0 and b has the desired properties. Suppose instead, therefore, that vi(h) > 0.
Then vy, (k) > 0. Let 4 € Q3 be such that (4) holds. Then, by AxThEx™, there is an inertial
particle b such that v (b) = @ and my(b) # 0. Then w/j(b) is parallel with line(1,u) and w/p,(b)
is parallel with line(L(1,@)). Thus vj(b) = v(1,@) and va(b) = v(L(1,@)). Thus vg(b) = vu(b)
and v(b) < vi(h).

Now we turn to prove the claim. Let K : Q%> — Q* and H : Q%> — Q* be the linear
embeddings such that

K(1,0) =(1,0,0,0) and  K(0,vg(h)) = (0,vi(h)), and
H(1,0) = (1,0,0,0) and  H(0,vs(k)) = (0,vn(k)).

Both K and H preserve the Euclidean distance and take the time-axis line(1,0) of Q2 to the
time axis t-axis := {Z € Q*: 1y = 23 = 24 = 0} of Q*. Furthermore, for every (t,z) € Q2

v(t,z) =v(K(t,z)) =v(H(t, ). (5)
Let
T:=H 'oLoK. (6)

By BA, the world-view transformation wygy, takes t-axis and wflg(h) to wl,(k) and t-axis,
respectively. Moreover, line(1,vg(h)) and line(1, v,(k)) are parallel with wy(h) and wly(k),
respectively. Therefore,

L takes t-axis to line(1, v, (k)) and takes line(1,v(h)) to t-axis,
K takes line(1,0) to t-axis and takes line(1,v;(h)) to line(1,vg(h)),
H takes line(1,0) to t-axis, and takes line(1, vy (k)) to line(1, v, (k)).



Relativistic Mass and Momenta of FTL Particles 19

Therefore,
T takes line(1,0) to line(1,v,(k)),
T takes line(1,vi(h)) to line(1,0), (7)

and T : Q? — Q2 is a linear transformation.
Next we prove that

Ju [0 <u<wvg(h) A v(lu)=v(T(1,u))]. (8)

Let a,b,c,d € @ be such that T(t,z) = (at + bz, ct + dx) for every t,z € Q. Such a, b, ¢, d exist
and ad—bc # 0 since T is a linear transformation. By (7), T'(1, vk(h))2 = 0. Thus c+d-vg(h) = 0.
Therefore, ¢ = —d - vi(h) and, for every x € Q, T(1,z) = (a + bx,—d - vi(h) + dz) and

d| - h) —
v(T(1,2)) = i ](cz)lfi—(b)x ?) ifa4+bxr+#0and 0 <z <wvg(h).
By ¢ = —d - vg(h) and ad — bc # 0 we have that
d#0 and a+0b-vg(b) #0. 9)
Clearly, v(1,z) = x for every x > 0. Thus, to prove (8), we have to prove that
d| - h) —
Ju |a+bu#0 A 0<u<uvp(h) A d ’(;’ibl W _ ol (10)

Let us define a function g : @ — @ as follows:
g(z) :=|d| - (vi(h) — x) — |a + bz]| - z. (11)

If w is a root of g, then by (9), a + bu # 0. Thus, we can prove (10) by showing that function g
has a root between 0 and v (h).
Clearly, g(0) = |d| - vg(h) and g(vg(h)) = —|a + b-vg(h)| - ve(h) by (11). Thus, by (9),
g(0) >0 and g(vk(h)) < 0. (12)
By Bolzano’s theorem and (12), it is easy to prove that g has a root between 0 and vi(h) if we

assume that our field is the field of real numbers. To prove this for arbitrary Euclidean ordered
fields, let gg, g1 and go be the following quadratic functions:

go() 1= 1d] - (w(k) — 2) — la] -z,
g1(z) = |d| - (vg(h) — z) — (a + ba) - =, and
g2(z) :=|d| - (vg(h) — z) + (a + bz) - .
Assume that b = 0. Then, g(z) = go(z) for every z. By Lemma 5(i) and (12), we conclude

that g has a root between 0 and vi(h).
Now, assume b # 0. Then i, j can be chosen such that {i,5} = {1,2} and

gi(x) ifzx<—a/b,
ola) = 90 e =al
gj(z) ifx > —a/b.
Now, by Lemma 5(ii) and (12), g has a root between 0 and v (h).

We have proved that (8) holds.
Let u be such that

0<u<uvg(h) A v(l,u)=v(T(1,u)). (13)

Let 4 € @3 be such that K(1,u) = (1,4). Then % < vi(h) by definition of K and (13).
Furthermore, by (5), (6) and (13), we have that v(1,7) = v(K(1,u)) = v(1,u) = v(T(1,u)) =
v(H ' oLoK(1,u)) = v(H ' oL(1,a)) = v(L(1,a)). Thus v(1,a) = v(L(1,u)). Thus the
claim holds, and this completes the proof of the lemma. |
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