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Abstract. Let G be a compact, connected, and simply-connected Lie group, equipped
with a Lie group involution σG and viewed as a G-space with the conjugation action. In
this paper, we present a description of the ring structure of the (equivariant) KR-theory
of (G, σG) by drawing on previous results on the module structure of the KR-theory and
the ring structure of the equivariant K-theory.
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1 Introduction

The complex K-theory of compact connected Lie groups with torsion-free fundamental groups
was worked out by Hodgkin in the 60s (cf. [13] and Theorem 2.4). It asserts that the K-theory
ring is the Z2-graded exterior algebra over Z on the module of primitive elements, which are of
degree −1 and associated with the representations of the Lie group. For the elegant proof of
Hodgkin’s result in the special case where G is simply-connected, see [1].

In [2], Atiyah introduced KR-theory, which is basically a version of topological K-theory
for the category of Real spaces, i.e. topological spaces equipped with an involution. KR-theory
can be regarded as a hybrid of KO-theory, complex K-theory and KSC-theory (cf. [2]). One
can also consider equivariant KR-theory, where a certain compatibility condition between the
group action and the involution is assumed. For definitions and some basic properties, see
Definitions 2.26 and 2.27 [2, 5].

Since Hodgkin’s work, there have appeared two kinds of generalizations of K-theory of com-
pact Lie groups. The first such is KR-theory of compact Lie groups, which was first studied by
Seymour (cf. [15]). He obtained the KR∗(pt)-module structure of KR∗(G), where G is a com-
pact, connected and simply-connected Lie group equipped with a Lie group involution, using his
structure theorem of KR-theory of a certain type of spaces (cf. Theorems 2.32, 2.37 and 2.40).
He was unable to obtain a complete description of the ring structure, however, and could only
make some conjectures about it. In [7], Bousfield determined functorially the united 2-adic K-
cohomology algebra of any compact, connected and simply-connected Lie group, which includes
the 2-adic KO-cohomology algebra, and hence extended Seymour’s results in the 2-adic case, if
the Lie group involution is taken into account appropriately.

The second one is the equivariant K-theory of compact Lie groups. In [9], Brylinski and
Zhang showed that, for a compact connected Lie group G with torsion free fundamental group,
the equivariant K-theory, K∗G(G), where G acts on itself by conjugation, is isomorphic to the ring
of Grothendieck differentials of the complex representation ring R(G) (for definition, see [9]).
It is noteworthy that G satisfies the property of being weakly equivariantly formal à la Harada
and Landweber (cf. Definition 4.1 of [11] and Remark 2.8).
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In this paper, based on the previous works of Seymour’s and Brylinski–Zhang’s and putting
both the Real and equivariant structures together, we obtain a description of the ring structure of
the equivariant KR-theory of any compact, connected and simply-connected Lie group, which is
recorded in Theorem 4.33. We express the ring structure using relations of generators associated
to Real representations of G of real, complex and quaternionic type (with respect to the Lie group
involution). Our main contribution is twofold. First, we observe that the conditions of Seymour’s
structure theorem are an appropriate candidate for defining the notion of ‘Real formality’ in
analogy to weakly equivariant formality. These notions together prompt us to introduce the
definition of ‘Real equivariant formality’, which leads to a structure theorem for equivariant
KR-theory (Theorem 4.5). Any compact, connected and simply-connected Real Lie group falls
under the category of Real equivariantly formal spaces and Theorem 4.5 enables us to obtain
a preliminary description of the equivariant KR-theory as an algebra over the coefficient ring.
Second, inspired by Seymour’s conjecture, we obtain the squares of the real and quaternionic
type generators, which in addition to other known relations complete the description of the ring
structure. These squares are non-zero 2-torsions in general. Hence the equivariant KR-theory
in general is not a ring of Grothendieck differentials, as in the case for equivariant K-theory.
Despite this, we remark that, in certain cases, if we invert 2 in the equivariant KR-theory ring,
then the result is an exterior algebra over the localized coefficient ring of equivariant KR-theory.

The organization of this paper is as follows. In Section 2, we review the (equivariant)K-theory
of compact connected Lie groups with torsion-free fundamental groups, Real representation rings
RR(G), KR-theory, and the main results in [15]. In Section 3 we give a description of the
coefficient ring KR∗G(pt). Section 4 is devoted to proving Theorems 4.5 and 4.33, the main
results of this paper, which give a full description of the ring structure of KR∗G(G). In Section 5
we apply the main results to obtain the ring structure of the ordinary KR-theory of compact Lie
groups, thereby confirming Seymour’s conjecture on the squares of the real type generators and
disproving that on the squares of the quaternionic type generators. We also work out several
examples, one of which shows how equivariant KR-theory tells apart (while K-theory cannot)
the ring structures of two equivariant KR-theory rings of G, where in one case G acts on itself
trivially, while in another G acts by conjugation.

Throughout this paper, we follow the convention in [2] and [5] in reference to KR-theory. In
particular, we use the word ‘Real’ (with a capital R) in all contexts involving involutions, so as
to avoid confusion with the word ‘real’ with the usual meaning. For example, ‘Real K-theory’
is used interchangeably with KR-theory, whereas ‘real K-theory’ means KO-theory.

2 Preliminaries

Throughout this section, G denotes any compact Lie groups, and X,Y, . . . any finite CW -
complexes unless otherwise specified.

2.1 (Equivariant) K-theory of compact connected Lie groups

Recall that the functor K−1 is represented by U(∞) := lim
n→∞

U(n), i.e. for any X, K−1(X) is

the abelian group of homotopy classes of maps [X,U(∞)]. Such a description of K−1 leads to
the following

Definition 2.1. Let δ : R(G) → K−1(G) be the group homomorphism which sends any com-
plex G-representation ρ to the homotopy class of i ◦ ρ, where ρ is regarded as a continuous map
from G to U(n) and i : U(n) ↪→ U(∞) is the standard inclusion.

In fact, any element in K−q(X) can be represented by a complex of vector bundles on X×Rq,
which is exact outside X × {0} (cf. [3]). This gives another interpretation of δ(ρ), as shown in
the following proposition, which we find useful for our exposition.
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Proposition 2.2. If V is the underlying complex vector space of ρ, then δ(ρ) is represented by

0→ G× R× V → G× R× V → 0,

(g, t, v) 7→ (g, t,−tρ(g)v) if t ≥ 0,

(g, t, v) 7→ (g, t, tv) if t ≤ 0.

Proposition 2.3 ([13]).

1. δ is a derivation of R(G) taking values in K−1(G) regarded as an R(G)-module whose
module structure is given by the augmentation map. In other words, δ is a group homo-
morphism from R(G) to K−1(G) satisfying

δ(ρ1 ⊗ ρ2) = dim(ρ1)δ(ρ2) + dim(ρ2)δ(ρ1). (2.1)

2. If I(G) is the augmentation ideal of R(G), then δ(I(G)2) = 0.

The main results of [13] are stated in the following

Theorem 2.4. Let G be a compact connected Lie group with torsion-free fundamental group.
Then

1. K∗(G) is torsion-free.

2. Let J(G) := I(G)/I(G)2. Then the map δ̃ : J(G)→ K−1(G) induced by δ is well-defined,
and K∗(G) =

∧
(Im(δ̃)).

3. In particular, if G is compact, connected and simply-connected of rank l, then K∗(G) =∧
Z(δ(ρ1), . . . , δ(ρl)), where ρ1, . . . , ρl are the fundamental representations.

Viewing G as a G-space via the adjoint action, one may consider the equivariant K-theo-
ry K∗G(G). Let Ω∗R(G)/Z be the ring of Grothendieck differentials of R(G) over Z, i.e. the exterior

algebra over R(G) of the module of Kähler differentials of R(G) over Z (cf. [9]).

Definition 2.5. Let ϕ : Ω∗R(G)/Z → K∗G(G) be the R(G)-algebra homomorphism defined by the
following

1) ϕ(ρV ) := [G× V ] ∈ K∗G(G), where G acts on G× V by g0 · (g1, v) = (g0g1g
−1
0 , ρV (g0)v),

2) ϕ(dρV ) ∈ K−1G (G) is the complex of vector bundles in Definition 2.2 where G acts on
G× R× V by g0 · (g1, t, v) = (g0g1g

−1
0 , t, ρV (g0)v),

We also define δG : R(G)→ K−1G (G) by δG(ρV ) := ϕ(dρV ).

Remark 2.6. The definition of δG(ρV ) given in [9], where the middle map of the complex of
vector bundles is defined to be (g, t, v) 7→ (g, t, tρV (g)v) for all t ∈ R, is incorrect, as δG(ρV ) so
defined is actually 0 in K−1G (G). The definition given in Definition 2.5 is the correction made
by Brylinski and relayed to us by one of the referees.

Theorem 2.7 ([9]).

1. δG is a derivation of R(G) taking values in the R(G)-module K−1G (G), i.e. δG satisfies

δG(ρ1 ⊗ ρ2) = ρ1 · δG(ρ2) + ρ2 · δG(ρ1). (2.2)

2. Let G be a compact connected Lie group with torsion-free fundamental group. Then ϕ is
an R(G)-algebra isomorphism.
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Remark 2.8.

1. Although the definition of δG(ρV ) given by Brylinski–Zhang in [9] is incorrect, their proof
of Theorem 2.7 can be easily corrected by using the correct definition as in Definition 2.5,
which does not affect the validity of the rest of their arguments, and Theorem 2.7 still
stands.

2. In [11], a G-space X is defined to be weakly equivariantly formal if the map K∗G(X)⊗R(G)

Z → K∗(X) induced by the forgetful map is a ring isomorphism, where Z is viewed as
an R(G)-module through the augmentation homomorphism. Theorem 2.4 and 2.7 imply
that G is weakly equivariantly formal if it is connected with torsion-free fundamental
group. We will make use of this property in computing the equivariant KR-theory of G.

3. Let f : K∗G(G) → K∗(G) be the forgetful map. Note that f(ϕ(ρ)) = dim(ρ) and
f(ϕ(dρ)) = δ(ρ). Applying f to equation (2.2) in Theorem 2.7, we get equation (2.1)
in Proposition 2.3.

4. I(G), being a prime ideal in R(G), can be thought of as an element in SpecR(G), and
K∗(G) ∼=

∧
Z T
∗
I(G) SpecR(G), K∗G(G) ∼=

∧
R(G) T

∗
I(G) SpecR(G).

2.2 Real representation rings

This section is an elaboration of the part on Real representation rings in [5] and [15]. Since the
results in this subsection can be readily generalized from those results concerning the special
case where σG is trivial, we omit most of the proofs and refer the reader to any standard text
on representation theory of Lie groups, e.g. [6] and [8].

Definition 2.9. A Real Lie group is a pair (G, σG) where G is a Lie group and σG a Lie group
involution on it. A Real representation V of a Real Lie group (G, σG) is a finite-dimensional
complex representation of G equipped with an anti-linear involution σV such that σV (gv) =
σG(g)σV (v). Let RepR(G, σG) be the category of Real representations of (G, σG). A morphism
between V and W ∈ RepR(G, σG) is a linear transformation from V to W which commute
with G and respect σV and σW . We denote Mor(V,W ) by HomG(V,W )(σV ,σW ). An irreducible
Real representation is an irreducible object in RepR(G, σG). The Real representation ring of
(G, σG), denoted by RR(G, σG), is the Grothendieck group of RepR(G, σG), with multiplication
being tensor product over C. Sometimes we will omit the notation σG if there is no danger of
confusion about the Lie group involution.

Remark 2.10. Let V be an irreducible Real representation of G. Then HomG(V, V )σV must
be a real associative division algebra which, according to Frobenius’ theorem, is isomorphic to
either R, C or H. Following the convention of [5], we call HomG(V, V )σV the commuting field
of V .

Definition 2.11. If V is an irreducible Real representation of G, then we say V is of real,
complex or quaternionic type according as the commuting field is isomorphic to R, C or H.
Let RR(G,F) be the abelian group generated by the isomorphism classes of irreducible Real
representations with F as the commuting field.

Remark 2.12. RR(G) ∼= RR(G,R)⊕RR(G,C)⊕RR(G,H) as abelian groups.

Definition 2.13. Let V be a G-representation. We use σ∗GV to denote the G-representation
with the same underlying vector space where the G-action is twisted by σG, i.e. ρσ∗

GV
(g)v =

ρV (σG(g))v. We will use σ∗G to denote the map on R(G) defined by [V ] 7→ [σ∗GV ].

Proposition 2.14. If V is a complex G-representation, and there exists f ∈ HomG(V, σ∗GV )
such that f2 = IdV , then V is a Real representation of G with f as the anti-linear involution σV .
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Proof. If f ∈ HomG(V, σ∗GV ), then it is anti-linear on V and f(gv) = σG(g)f(v) for g ∈ G and
v ∈ V . The assumption that f2 = IdV just says that f is an involution. So V together with
σV = f is a Real representation of G. �

Proposition 2.15. Let V be an irreducible complex representation of G and suppose that V ∼=
σ∗GV . Let f ∈ HomG(V, σ∗GV ). Then

1. f2 = k IdV for some k ∈ R.

2. There exists g ∈ HomG(V, σ∗GV ) such that g2 = IdV or g2 = − IdV .

Proof. Note that f2 ∈ HomG(V, V ). By Schur’s lemma, f2 = k IdV for some k ∈ C. On the
other hand,

f(kv) = f(f(f(v))) = kf(v).

But f is an anti-linear map on V . It follows that k = k and hence k ∈ R. For part (2), we
may first simply pick an isomorphism f ∈ HomG(V, σ∗GV ). Then f2 = k IdV for some k ∈ R×.
Schur’s lemma implies that any g ∈ HomG(V, σ∗GV ) must be of the form g = cf for some c ∈ C.
Then g2 = cf ◦ cf = ccf2 = |c|2k IdV . Consequently, if k is positive, we choose c = 1√

k
so that

g2 = IdV ; if k is negative, we choose c = 1√
−k so that g2 = − IdV . �

Proposition 2.16. Let V be an irreducible Real representation of G.

1. The commuting field of V is isomorphic to R iff V is an irreducible complex representation
and there exists f ∈ HomG(V, σ∗GV ) such that f2 = IdV .

2. The commuting field of V is isomorphic to C iff V ∼= W ⊕σ∗GW as complex G-representa-
tions, where W is an irreducible complex G-representation and W � σ∗GW , and σV (w1, w2)
= (w2, w1).

3. The commuting field of V is isomorphic to H iff V ∼= W ⊕ σ∗GW as complex G-repre-
sentations, where W is an irreducible complex G-representation and there exists f ∈
HomG(V, σ∗GV ) such that f2 = − IdV , and σV (w1, w2) = (w2, w1).

Proof. One can easily establish the above proposition by modifying the proof of Proposition 3
in Appendix 2 of [6], which is a special case of the above proposition where σG is trivial. �

Proposition 2.17.

1. The map i : RR(G)→ R(G) which forgets the Real structure is injective.

2. Any complex G-representation V which is a Real representation can only possess a unique
Real structure up to isomorphisms of Real G-representations.

Proof. Let ρ : R(G)→ RR(G) be the map

[V ] 7→
[(
V ⊕ ι∗GV , σV⊕ι∗GV

)]
,

where σV⊕ι∗GV
(u,w) = (w, u). Let [(V, σV )] ∈ RR(G). Then

ρ ◦ i([(V, σV )]) =
[(
V ⊕ ι∗GV , σV⊕ι∗GV

)]
.

We claim that [(V ⊕V, σV ⊕σV )] = [(V ⊕ ι∗GV , σV⊕ι∗GV )], which is easily seen to be true because

of the Real G-representation isomorphism

f : V ⊕ ι∗GV → V ⊕ V,
(u,w) 7→ (u+ σV (w), i(u− σV (w))).
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It follows that ρ ◦ i amounts to multiplication by 2 on RR(G), and is therefore injective because
RR(G) is a free abelian group generated by irreducible Real representations. Hence i is injective.
(2) is simply a restatement of (1). �

Proposition 2.17 makes it legitimate to regard RR(G) as a subring of R(G). From now on we
view [V ] ∈ R(G) as an element in RR(G) if V possesses a compatible Real structure.

Proposition 2.18. Let G be a compact Real Lie group. Let V be an irreducible complex repre-
sentation of G. Then

1. [V ] ∈ RR(G,R) iff there exists a G-invariant symmetric nondegenerate bilinear form B :
V × σ∗GV → C.

2. [V ⊕ V ] ∈ RR(G,H) iff there exists a G-invariant skew-symmetric nondegenerate bilinear
form B : V × σ∗GV → C.

3. [V ⊕ σ∗GV ] ∈ RR(G,C) iff there does not exist any G-invariant nondegenerate bilinear
form on V × σ∗GV .

Proof. By Proposition 2.16, V is a Real representation of real type iff there exists f ∈
Hom(V, σ∗GV )G such that f2 = IdV . One can define a bilinear form B : V × σ∗GV → C by

B(v1, v2) = 〈v1, f(v2)〉, (2.3)

where 〈 , 〉 is a G-invariant Hermitian inner product on V . It can be easily seen that B
is G-invariant, symmetric and non-degenerate. Conversely, given a G-invariant symmetric non-
degenerate bilinear form on V ×σ∗GV and using equation (2.3), we can define f ∈ Hom(V, σ∗GV )G,
which squares to identity. Part (2) and (3) follow similarly. �

Proposition 2.18 leads to the following

Definition 2.19. Let G be a compact Real Lie group. Let V be an irreducible complex repre-
sentation of G. Define, with respect to σG,

1. V to be of real type if there exists a G-invariant symmetric nondegenerate bilinear form
B : V × σ∗GV → C.

2. V to be of quaternionic type if there exists a G-invariant skew-symmetric nondegenerate
bilinear form B : V × σ∗GV → C.

3. V to be of complex type if V � σ∗GV .

The abelian group generated by classes of irreducible complex representation of type F is denoted
by R(G,F).

Definition 2.20. If V is a complex G-representation equipped with an anti-linear endomor-
phism JV such that JV (gv) = σG(g)J(v) and J2 = − IdV , then we say V is a Quaternionic repre-
sentation of G. Let RepH(G) be the category of Quaternionic representations of G. A morphism
between V and W ∈ RepH(G) is a linear transformation from V to W which commutes with G
and respect JV and JW . We denote Mor(V,W ) by HomG(V,W )(JV ,JW ). An irreducible Quater-
nionic representation is an irreducible object in RepH(G, σG). The Quaternionic representation
group of G, denoted by RH(G), is the Grothendieck group of RepH(G). Let RH(G,F) be the
abelian group generated by the isomorphism classes of irreducible Quaternionic representations
with F as the commuting field.
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Remark 2.21. The tensor product of two Quaternionic representations V and W is a Real
representation as JV ⊗ JW is an anti-linear involution which is compatible with σG. Similarly
the tensor product of a Real representation and a Quaternionic representation is a Quaternionic
representation. To put it succinctly, RR(G)⊕RH(G) is a Z2-graded ring, with RR(G) being the
degree 0 piece and RH(G) the degree −1 piece. Later on we will assign RH(G) with a different
degree so as to be compatible with the description of the coefficient ring KR∗G(pt).

Proposition 2.22. RH(G), as an abelian group, is generated by the following

1. [V ⊕ σ∗GV ] where V is an irreducible complex representation of real type with J(u,w) =
(−w, u). Its commuting field is H.

2. [V ⊕σ∗GV ], where V is an irreducible complex representation of complex type with J(u,w) =
(−w, u). Its commuting field is C.

3. [V ], where V is an irreducible complex representation of quaternionic type. Its commuting
field is R.

Proof. The proof proceeds in the same fashion as does the proof for Proposition 2.16. �

Corollary 2.23.

1. We have that RR(G,R) ∼= RH(G,H) ∼= R(G,R), RH(G,R) ∼= RR(G,H) ∼= R(G,H) and
RR(G,C) ∼= RH(G,C) as abelian groups.

2. RR(G) is isomorphic to RH(G) as abelian groups.

Proof. The result follows easily from Proposition 2.16, Definition 2.19 and Proposition 2.22. �

Proposition 2.24.

1. The map j : RH(G)→ R(G) which forgets the Quaternionic structure is injective.

2. Any complex G-representation which is a Quaternionic representation can only possess
a unique Quaternionic structure up to isomorphisms of Quaternionic G-representations.

Proof. The proof proceeds in the same fashion as does the proof for Proposition 2.17. It suffices
to show that, if η : R(G)→ RH(G) is the map [V ] 7→ [(V ⊕ σ∗GV , σV⊕ι∗GV )], then η ◦ j amounts

to multiplication by 2, i.e. (V ⊕σ∗GV , σV⊕σ∗
GV

) ∼= (V ⊕V, J⊕J), where σV⊕σ∗
GV

(u,w) = (−w, u).

This is true because of the Quaternionic G-representation isomorphism

f : V ⊕ ι∗GV → V ⊕ V,
(u,w) 7→ (u+ Jw, i(u− Jw)). �

Example 2.25. We shall illustrate the similarities and differences of the various aforemen-
tioned representation groups with an example. Let G = Q8 × C3, the direct product of the
quaternion group and the cyclic group of order 3, equipped with the trivial involution. There
are 5 irreducible complex representations of Q8, namely, the 4 1-dimensional representations
which become trivial on restriction to the center Z of Q8 and descend to the 4 1-dimensional
representations of Q8/Z ∼= Z2 ⊕ Z2, and the 2-dimensional faithful representation. We denote
these representations by 1Q8 , ρ(0,1), ρ(1,0), ρ(1,1) and ρQ respectively. Similarly, we let 1C3 , ρζ
and ρζ2 be the three 1-dimensional complex irreducible representations of C3. It can be easily
seen that

R(Q8,R) = Z · [1Q8 ]⊕ Z · [ρ(0,1)]⊕ Z · [ρ(1,0)]⊕ Z · [ρ(1,1)],
R(Q8,C) = 0,
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R(Q8,H) = Z · [ρQ],

R(C3,R) = Z · [1C3 ],

R(C3,C) = Z · [ρζ ]⊕ Z · [ρζ2 ],

R(C3,H) = 0.

It follows that

R(G,R) =
⊕

x∈{1Q8
,ρ(0,1),ρ(1,0),ρ(1,1)}

Z · [x⊗̂1C3 ] ∼= Z4,

R(G,C) =
⊕

x∈{1Q8
,ρ(0,1),ρ(1,0),ρ(1,1),ρQ}
y∈{ρζ ,ρζ2}

Z · [x⊗̂y] ∼= Z10,

R(G,H) = Z · [ρQ⊗̂1C3 ] ∼= Z,

RR(G,R) =
⊕

x∈{1Q8
,ρ(0,1),ρ(1,0),ρ(1,1)}

Z · [x⊗̂1C3 ] ∼= Z4,

RR(G,C) =
⊕

x∈{1Q8
,ρ(0,1),ρ(1,0),ρ(1,1),ρQ}

Z · [x⊗̂ρζ ⊕ x⊗̂ρζ2 ] ∼= Z5,

RR(G,H) = Z · [ρQ⊗̂1C3 ⊕ ρQ⊗̂1C3 ] ∼= Z,
RH(G,R) = Z · [ρQ⊗̂1C3 ] ∼= Z,

RH(G,C) =
⊕

x∈{1Q8
,ρ(0,1),ρ(1,0),ρ(1,1),ρQ}

Z · [x⊗̂ρζ ⊕ x⊗̂ρζ2 ] ∼= Z5,

RH(G,H) =
⊕

x∈{1Q8
,ρ(0,1),ρ(1,0),ρ(1,1)}

Z · [x⊗̂1C3 ⊕ x⊗̂1C3 ] ∼= Z4.

Some representations above should be equipped with suitable Real or Quaternionic structures
given in Propositions 2.16 and 2.22. For example, the Real structure of ρQ⊗̂1C3 ⊕ ρQ⊗̂1C3 in
RR(G,H) is given by swapping the two coordinates.

2.3 KR-theory

KR-theory was first introduced by Atiyah in [2] and used to derive the 8-periodicity of KO-
theory from the 2-periodicity of complex K-theory. KR-theory was motivated by the index
theory of real elliptic operators.

Definition 2.26.

1. A Real space is a pair (X,σX) where X is a topological space equipped with an involutive
homeomorphism σX , i.e. σ2X = IdX . We will sometimes suppress the notation σX and
simply use X to denote the Real space, if there is no danger of confusion about the
involutive homeomorphism. A Real pair is a pair (X,Y ) where Y is a closed subspace
of X invariant under σX .

2. Let Rp,q be the Euclidean space Rp+q equipped with the involution which is identity on
the first q coordinates and negation on the last p-coordinates. Let Bp,q and Sp,q be the
unit ball and sphere in Rp,q with the inherited involution.

3. A Real vector bundle (to be distinguished from the usual real vector bundle) over X
is a complex vector bundle E over X which itself is also a Real space with involutive
homeomorphism σE satisfying
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(a) σX ◦ p = p ◦ σE , where p : E → X is the projection map,

(b) σE maps Ex to EσX(x) anti-linearly.

A Quaternionic vector bundle (to be distinguished from the usual quaternionic vector
bundle) over X is a complex vector bundle E over X equipped with an anti-linear lift σE
of σX such that σ2E = − IdE .

4. Let X be a Real space. The ring KR(X) is the Grothendieck group of the isomorphism
classes of Real vector bundles over X, equipped with the usual product structure induced
by tensor product of vector bundles over C. The relative KR-theory for a Real pair
KR(X,Y ) can be similarly defined. In general, the graded KR-theory ring of the Real
pair (X,Y ) is given by

KR∗(X,Y ) :=

7⊕
q=0

KR−q(X,Y ),

where

KR−q(X,Y ) := KR
(
X ×B0,q, X × S0,q ∪ Y ×B0,q

)
.

The ring structure of KR∗ is extended from that of KR, in a way analogous to the case of
complex K-theory. The number of graded pieces, which is 8, is a result of Bott periodicity
for KR-theory (cf. [2]).

Note that when σX = IdX , then KR(X) ∼= KO(X). On the other hand, if X × Z2 is given
the involution which swaps the two copies of X, then KR(X × Z2) ∼= K(X). Also, if X is
equipped with the trivial involution, then KR(X × S2,0) ∼= KSC(X), the Grothendieck group
of homotopy classes of self-conjugate bundles over X (cf. [2]). In this way, it is natural to view
KR-theory as a unifying thread of KO-theory, K-theory and KSC-theory.

On top of the Real structure, we may further add compatible group actions and define
equivariant KR-theory.

Definition 2.27.

1. A Real G-space X is a quadruple (X,G, σX , σG) where a group G acts on X and σG is an
involutive automorphism of G such that

σX(g · x) = σG(g) · σX(x).

2. A Real G-vector bundle E over a Real G-space X is a Real vector bundle and a G-bundle
over X, and it is also a Real G-space.

3. In a similar spirit, one can define equivariant KR-theory KR∗G(X,Y ). Notice that the G-
actions on B0,q and S0,q in the definition of KR−qG (X,Y ) are trivial.

Definition 2.28.

1. Let K∗(+) be the complex K-theory of a point extended to a Z8-graded algebra over
K0(pt) ∼= Z, i.e. K∗(+) ∼= Z[β]

/
β4 − 1. Here β ∈ K−2(+) is the class of the reduced

canonical bundle on CP1 ∼= S2.

2. Let σ∗X be the map defined on (equivariant) vector bundles on X by σ∗XE := σ∗XE. The
involution induced by σ∗X on K∗G(X) is also denoted by σ∗X for simplicity.
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In the following proposition, we collect, for reader’s convenience, some basic results of KR-
theory (cf. [15, Section 2]), some of which are stated in the more general context of equivariant
KR-theory.

Proposition 2.29.

1. We have

KR∗(pt) ∼= Z[η, µ]
/(

2η, η3, µη, µ2 − 4
)
,

where η ∈ KR−1(pt), µ ∈ KR−4(pt) represents the reduced Hopf bundles of RP1 and HP1
respectively.

2. Let c : KR∗G(X)→ K∗G(X) be the homomorphism which forgets the Real structure of Real
vector bundles, and r : K∗G(X) → KR∗G(X) be the realification map defined by [E] 7→
[E ⊕ σ∗Gσ∗XE]. Then we have the following relations

(a) c(1) = 1, c(η) = 0, c(µ) = 2β2, where β ∈ K−2(pt) is the Bott class,

(b) r(1) = 2, r(β) = η2, r(β2) = µ, r(β3) = 0,

(c) r(xc(y)) = r(x)y, cr(x) = x + σ∗Gσ
∗
Xx and rc(y) = 2y for x ∈ K∗G(X) and y ∈

KR∗G(X), where K∗G(X) is extended to a Z8-graded algebra by Bott periodicity.

Proof. (1) is given in [15, Section 2]. The proof of (2) is the same as in the nonequivariant
case, which is given in [2]. �

Definition 2.30. A Quaternionic G-vector bundle over a Real space X is a complex vector
bundle E equipped with an anti-linear vector bundle endomorphism J on E such that J2 = − IdE
and J(g · v) = σG(g) · J(v). Let KH∗G(X) be the corresponding K-theory constructed using
Quaternionic G-bundles over X.

By generalizing the discussion preceding Lemma 5.2 in [15] to the equivariant and graded
setting, we define a natural transformation

t : KH−qG (X)→ KR−q−4G (X)

which sends

0 −→ E1
f−→ E2 −→ 0

to

0 −→ π∗(H⊗C E1)
g−→ π∗(H⊗C E2) −→ 0,

where

1) Ei, i = 1, 2 are equivariant Quaternionic vector bundles on X × R0,q equipped with the
Quaternionic structures JEi ,

2) f is an equivariant Quaternionic vector bundle homomorphism which is an isomorphism
outside X × {0},

3) π : X × R0,q+4 → X × R0,q is the projection map,

4) H⊗C Ei is the equivariant Real vector bundles equipped with the Real structure J ⊗ JEi ,
5) g is an equivariant Real vector bundle homomorphism defined by g(v, w ⊗ e) = (v, vw ⊗

f(e)).

One can easily show by generalizing the discussion in the last section of [5] that

Proposition 2.31. t is an isomorphism.
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2.4 The module structure of KR-theory
of compact simply-connected Lie groups

The following structure theorem for KR-theory, due to Seymour, is crucial in his computation
of KR∗(pt)-module structure of KR∗(G).

Theorem 2.32 ([15, Theorem 4.2]). Suppose that K∗(X) is a free abelian group and decomposed
by the involution σ∗X into the following summands

K∗(X) = M+ ⊕M− ⊕ T ⊕ σ∗XT,

where σ∗X is identity on M+ and negation on M−. Suppose further that there exist h1, . . . , hn ∈
KR∗(X) such that c(h1), . . . , c(hn) form a basis of the K∗(+)-module K∗(+) ⊗ (M+ ⊕M−).
Then, as KR∗(pt)-modules,

KR∗(X) ∼= F ⊕ r(K∗(+)⊗ T ),

where F is the free KR∗(pt)-module generated by h1, . . . , hn.

Remark 2.33. If T = 0, then the conditions in Theorem 2.32 are equivalent to K∗(X) being free
abelian and c : KR∗(X)→ K∗(X) being surjective. In this special case the theorem implies that
the map KR∗(X)⊗KR∗(pt) K

∗(pt)→ K∗(X) defined by a⊗ b 7→ c(a) · b is a ring isomorphism.
This smacks of the definition of weakly equivariant formality (cf. Remark 2.8) and inspires us
to define a similar notion for equivariant KR-theory (cf. Definition 4.2). We say a real space is
real formal if it satisfies the conditions of Theorem 2.32.

Definition 2.34. Let σR be the complex conjugation of U(n) or U(∞), and σH be the symplectic
type involution g 7→ JmgJ

−1
m on U(2m), or U(2∞).

For any Real space X, KR−1(X) is isomorphic to the abelian group of equivariant homotopy
classes of maps from X to U(∞) which respect σX and σR on U(∞). Similarly, KR−5(X),
which is isomorphic to KH−1(X) by Proposition 2.31, is isomorphic to the abelian group of
equivariant homotopy classes of maps from X to U(2∞) which respect σX and σH on U(2∞)
(cf. remarks in the last two paragraphs of Appendix of [15]). We can define maps analogous to
those in Definition 2.1 in the context of KR-theory.

Definition 2.35. Let δR : RR(G) → KR−1(G) and δH : RH(G) → KR−5(G) be group ho-
momorphisms which send a Real (resp. Quaternionic) representation to the KR-theory element
represented by its homotopy class.

Proposition 2.36. If ρ ∈ RR(G), then δR(ρ) is represented by the complex of vector bundles
in Proposition 2.2 equipped with the Real structure given by

ι : G× R× V → G× R× V,
(g, t, v) 7→ (σG(g), t, v).

If ρ ∈ RH(G), then δH(ρ) can be similarly represented, with the Real structure replaced by the
Quaternionic structure.

From this point on until the end of this section, we further assume that G is connected and
simply-connected unless otherwise specified. It is known that R(G) is a polynomial ring over Z
generated by fundamental representations, which are permuted by σ∗G (cf. [15, Lemma 5.5]). Let

R(G) ∼= Z
[
ϕ1, . . . , ϕr, θ1, . . . , θs, γ1, . . . , γt, σ∗Gγ1, . . . , σ

∗
Gγt
]
,

where ϕi ∈ RR(G,R), θj ∈ RH(G,R), γk ∈ R(G,C). Then K∗(G), as a free abelian group, is
generated by square-free monomials in δ(ϕ1), . . ., δ(ϕr), δ(θ1), . . ., δ(θs), δ(γ1), . . ., δ(γt), δ(σ∗Gγ1),
. . ., δ(σ∗Gγt). Using Theorem 2.32, Seymour obtained
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Theorem 2.37 ([15, Theorem 5.6]).

1. Suppose that σ∗G acts as identity on R(G), i.e. any irreducible Real representation of G is
either of real type or quaternionic type. Then as KR∗(pt)-modules,

KR∗(G) ∼= ∧KR∗(pt)(δR(ϕ1), . . . , δR(ϕr), δH(θ1), . . . , δH(θs)).

2. More generally, c(δR(ϕi)) = δ(ϕi), c(δH(θj)) = β2 · δ(θj), and there exist λ1, . . . , λt ∈
KR0(G) such that c(λk) = β3 · δ(γk)δ(σ∗Gγk), and

KR∗(G) ∼= P ⊕ T · P

as KR∗(pt)-module, where

• P ∼=
∧
KR∗(pt)(δR(ϕ1), . . . , δR(ϕr), δH(θ1), . . . , δH(θs), λ1, . . . , λt),

• T is the additive abelian group generated by the set

{r(βi · δ(γ1)ε1 · · · δ(γt)εtδ(σ∗Gγ1)
ν1 · · · δ(σ∗Gγt)

νt)},

where ε1, . . . , εt, ν1, . . . , νt are either 0 or 1, εk and νk are not equal to 1 at the same
time for 1 ≤ k ≤ t, and the first index k0 where εk0 = 1 is less than the first index k1
where νk1 = 1.

Moreover,

(a) λ2k = 0 for all 1 ≤ k ≤ t,
(b) δR(ϕi)

2 and δH(θj)
2 are divisible by η.

Definition 2.38. Let ωt := δεt,1−νt and

ri,ε1,...,εt,ν1,...,νt := r
(
βi · δ(γ1)ε1 · · · δ(γt)εtδ(σ∗G(γ1))

ν1 · · · δ
(
σ∗G(γt)

)νt) ∈ T.
Corollary 2.39.

1. KR∗(G) is generated by δR(ϕ1), . . ., δR(ϕr), δH(θ1), . . ., δH(θs), λ1, . . ., λtand ri,ε1,...,εt,ν1,...,νt
∈ T as an algebra over KR∗(pt).

2.

r2i,ε1,...,εt,ν1,...,νt =


η2λω1

1 · · ·λ
ωt
t , if ri,ε1,...,εt,ν1,...,νt is of degree − 1 or − 5,

±µλω1
1 · · ·λ

ωt
t , if ri,ε1,...,εt,ν1,...,νt is of degree − 2 or − 6,

0 otherwise.

The sign depends on i, ε1, . . . , εt, ν1, . . . , νt and can be determined using formulae from (2)
of Proposition 2.29.

3. ri,ε1,...,εt,ν1,...,νtη = 0, and ri,ε1,...,εt,ν1,...,νtµ = 2ri+2,ε1,...,εt,ν1,...,νt.

Proof. The Corollary follows easily from the various properties of the realification map and
the complexification map in Proposition 2.29, and the fact that c(λk) = β3 · δ(γk)δ(σ∗Gγk). For
example,

ri,ε1,...,εt,ν1,...,νtη = r
(
βi · δ(γ1)ε1 · · · δ(γt)εtδ(σ∗G(γ1))

ν1 · · · δ
(
σ∗G(γt)

)νtc(η)
)

= 0,

ri,ε1,...,εt,ν1,...,νtµ = r
(
βi · δ(γ1)ε1 · · · δ(γt)εtδ(σ∗G(γ1))

ν1 · · · δ
(
σ∗G(γt)

)νtc(µ)
)

= ri+2,ε1,...,εt,ν1,...,νt . �
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In fact Theorems 2.4 and 2.32 also yield the following description of module structure of
KR-theory of a compact connected Real Lie group with torsion-free fundamental group with
a restriction on the types of the Real representations.

Theorem 2.40. Let G be a compact connected real Lie group with π1(G) torsion-free. Sup-
pose that R(G,C) = 0, i.e. σ∗G acts as identity on R(G). Then KR∗(G) is isomorphic to

∧∗KR∗(pt)(Im(δ̃R), Im(δ̃H)) as KR∗(pt)-modules.

As we see from Theorem 2.37 and Corollary 2.39, to get a full description of the ring structure
of KR∗(G), it remains to figure out δR(ϕi)

2 and δH(θj)
2. We will, in the end, obtain formulae

for the squares by way of computing the ring structure of KR∗G(G) and applying the forgetful
map. In particular, we will show that δR(ϕi)

2 and δH(θj)
2 in general are non-zero. So, unlike

the complex K-theory, KR∗(G) is not an exterior algebra in general. Nevertheless, KR∗(G) is
not far from being an exterior algebra, in the sense of the following

Corollary 2.41.

1. KR∗(pt)2, which is the ring obtained by inverting the prime 2 in KR∗(pt), is isomorphic
to Z

[
1
2 , µ
]
/(µ2 − 4) ∼= Z

[
1
2 , β

2
]
/((β2)2 − 1).

2. Suppose that R(G,C) = 0. KR∗(G)2, which is the ring obtained by inverting the prime 2
in KR∗(G), is isomorphic to, as KR∗(pt)2-algebra∧

KR∗(pt)2

(
δR(ϕ1), . . . , δR(ϕr), δH(θ1), . . . , δH(θs)

)
.

3 The coefficient ring KR∗
G(pt)

In this section, we assume that G is a compact Real Lie group, and will prove a result on the
coefficient ring KR∗G(pt). In [5], all graded pieces of KR∗G(pt) were worked out using Real
Clifford G-modules. We record them in the following

Proposition 3.1. KR−qG (pt), as abelian groups, for 0 ≤ q ≤ 7, are isomorphic to RR(G),
RR(G)/ρ(R(G)), R(G)/j(RH(G)), 0, RH(G), RH(G)/η(R(G)), R(G)/i(RR(G)) and 0 re-
spectively, where the maps i, j, ρ, η are as in Propositions 2.17 and 2.24.

Remark 3.2. Note from the above proposition that KR0
G(pt)⊕KR−4G (pt) ∼= RR(G)⊕RH(G).

In this way we can view RR(G) ⊕ RH(G) as a graded ring where RR(G) is of degree 0 and
RH(G) of degree −4.

Proposition 3.3.

1. Suppose R(G,C) = 0. Then the map

f : (RR(G,R)⊕RH(G,R))⊗KR∗(pt)→ KR∗G(pt),

ρ1 ⊗ x1 ⊕ ρ2 ⊗ x2 7→ ρ1 · x1 + ρ2 · x2

is an isomorphism of graded rings.

2. In general,

f : (RR(G,R)⊕RH(G,R))⊗KR∗(pt)⊕ r(R(G,C)⊗K∗(+))→ KR∗G(pt),

ρ1 ⊗ x1 ⊕ ρ2 ⊗ x2 ⊕ r(ρ3 ⊗ βi) 7→ ρ1 · x1 + ρ2 · x2 + r(ρ3 · βi)

is an isomorphism of graded abelian groups.
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3. If ρ is an irreducible complex representation of complex type, then ηr(βi · ρ) = 0 and
µr(βi · ρ) = 2r(βi+2 · ρ).

Proof. The proposition follows by verifying the isomorphism in different degree pieces against
the description in Proposition 3.1. For example, in degree 0,

RR(G,R)⊗KR0(pt)⊕RH(G,R)⊗KR−4(pt)⊕ r(R(G,C)⊗K0(+))

= RR(G,R)⊕RH(G,R)⊗ Zµ⊕RR(G,C)
∼= RR(G,R)⊕RR(G,H)⊕RR(G,C)

(if [V ] ∈ RH(G,R), then [V ] · µ = [V ⊕ V ] ∈ RR(G,H))

= RR(G) = KR0
G(pt).

(3) follows from Proposition 2.29. �

Remark 3.4. In [5], KR∗G(X), where the G-action is trivial, is given as the following direct
sum of abelian groups

RR(G,R)⊗KR∗(X)⊕RR(G,C)⊗KC∗(X)⊕RR(G,H)⊗KH∗(X),

where KC∗(X) and KH∗(X) are Grothendieck groups of the so-called ‘Complex vector bundles’
and ‘Quaternionic vector bundles’ of X. We find Proposition 3.3, which is motivated by this
description, better because the ring structure of the coefficient ring is more apparent when cast
in this light. The proposition is, as we will see in the next section, a consequence of a structure
theorem of equivariant KR-theory (Theorem 4.5), and therefore still holds true if the point is
replaced by any general space X with trivial G-action.

4 Equivariant KR-theory rings
of compact simply-connected Lie groups

Throughout this section we assume that G is a compact, connected and simply-connected Real
Lie group unless otherwise specified. We will prove the main result of this paper, Theorem 4.33,
which gives the ring structure of KR∗G(G). Our strategy is outlined as follows.

1. We obtain a result on the structure of KR∗G(G) (Corollary 4.10) which is analogous to
Theorem 2.37 and Proposition 3.3. We define δGR (ϕi), δ

G
H (θj), λ

G
k and rGρ,i,ε1,...,εt,ν1,...,νt

(cf. Definition 4.8 and Corollary 4.11), which generate KR∗G(G) as a KR∗G(pt)-algebra, as
a result of Corollary 4.10. We show that (λGk )2 = 0 (cf. Proposition 4.13).

2. We compute the module structure of KR∗(U(n),σF)
(U(n), σF) for F = R and H.

3. Let T be the maximal torus of diagonal matrices in U(n) and, by abuse of notation, σR be
the inversion map on T , σH be the involution on U(n)/T (where n = 2m is even) defined
by gT 7→ JmgT . We show that the restriction map

p∗G : KR∗(U(n),σR)
(U(n), σR)→ KR∗(T,σR)(T, σR)

and the map

q∗G : KR∗(U(2m),σH)
(U(2m), σH)→ KR∗(U(2m),σH)

(U(2m)/T × T, σH × σR)

induced by the Weyl covering map qG : U(2m)/T × T → U(2m), (gT, t) 7→ gtg−1, are
injective.
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4. Let σn be the class of the standard representation of U(n). We pass the computation of the
two squares δGR (σn)2 ∈ KR∗(U(n),σR)

(U(n), σR) and δGH (σ2m)2 ∈ KR∗(U(2m),σH)
(U(2m), σH)

through the induced map p∗G and q∗G to their images and get equations (4.2) and (4.3) in
Proposition 4.29.

5. Applying induced maps ϕ∗i and θ∗j to equations (4.2) and (4.3) yields equations (4.4)
and (4.5) in Theorem 4.30 which, together with Proposition 4.13 and some relations
among η, µ and rGρ,i,ε1,...,εt,ν1,...,νt deduced from Proposition 2.29, describe completely the
ring structure of KR∗G(G) (cf. Theorem 4.33).

Remark 4.1.

1. Seymour first suggested the analogues of Steps 3, 4 and 5 in the ordinary KR-theory case
in [15] in an attempt to compute δR(ϕi)

2 and δH(θj)
2, but failed to establish Step 3, which

he assumed to be true to make conjectures about δR(ϕi)
2.

2. In equivariant complex K-theory, K∗G(G/T × T ) ∼= K∗T (T ) for any compact Lie group G,
and the two maps p∗G (the restriction map induced by the inclusion T ↪→ G) and q∗G which
is induced by the Weyl covering map are the same. If π1(G) is torsion-free, then these
two maps are shown to be injective (cf. [9]. In fact it is even shown there that the maps
inject onto the Weyl invariants of K∗T (T )). In the case of equivariant KR-theory, things
are more complicated. First of all, while in the case where (G, σG) = (U(n), σR), it is
true that KR∗G(G/T × T ) ∼= KR∗T (T ), and p∗G and q∗G are the same, it is no longer true
in the case where (G, σG) = (U(2m), σH). In Step 3, we use q∗G for the quaternionic type
involution case because we find that it admits an easier description than p∗G does. Second,
we do not know whether p∗G and q∗G are injective for general compact Real Lie groups
(equipped with any Lie group involution). For our purpose it is sufficient to show the
injectivity results in Step 3.

4.1 A structure theorem

Definition 4.2. A G-space X is a Real equivariantly formal space if

1) G is a compact Real Lie group,

2) X is a weakly equivariantly formal G-space, and

3) the forgetful map KR∗G(X)→ KR∗(X) admits a section sR : KR∗(X)→ KR∗G(X) which
is a KR∗(pt)-module homomorphism.

Remark 4.3. If X is a weakly equivariantly formal G-space, then the forgetful map K∗G(X)→
K∗(X) admits a (not necessarily unique) section s : K∗(X) → K∗G(X) which is a group homo-
morphism.

Definition 4.4. For a section s : K∗(X) → K∗G(X) (resp. sR : KR∗(X) → KR∗G(X)) and
a ∈ K∗(X) (resp. a ∈ KR∗(X)), we call s(a) (resp. sR(a)) a (Real) equivariant lift of a, with
respect to s (resp. sR).

We first prove a structure theorem of equivariant KR-theory of Real equivariantly formal
spaces.

Theorem 4.5. Let X be a Real equivariantly formal space. For any element a ∈ K∗(X) (resp.
a ∈ KR∗(X)), let aG ∈ K∗G(X) (resp. aG ∈ KR∗G(X)) be a (Real) equivariant lift of a with respect
to a group homomorphic section s (resp. sR which is a KR∗(pt)-module homomorphism). Then
the map

f : (RR(G,R)⊕RH(G,R))⊗KR∗(X)⊕ r(R(G,C)⊗K∗(X))→ KR∗G(X),

ρ1 ⊗ a1 ⊕ r(ρ2 ⊗ a2) 7→ ρ1 · (a1)G ⊕ r(ρ2 · (a2)G).
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is a group isomorphism. In particular, if R(G,C) = 0, then f is a KR∗G(pt)-module isomor-
phism.

Proof. Consider the following H(p, q)-systems

HRα(p, q) := KR−α
(
X × Sq,0, X × Sp,0

) ∼= KR−α+p
(
X × Sq−p,0

)
,

Hα(p, q) := K−α
(
X × Sq,0, X × Sp,0

) ∼= K−α+p
(
X × Sq−p,0

)
,

HRαG(p, q) := KR−αG
(
X × Sq,0, X × Sp,0

) ∼= KR−α+pG

(
X × Sq−p,0

)
.

For the last H(p, q)-system, G acts on Sq−p,0 trivially. The spectral sequences induced by these
H(p, q)-systems converge to KR∗(X), K∗(X) and KR∗G(X) respectively (for the assertion for
the first two H(p, q)-systems, see the proofs of Theorem 3.1 and Lemma 4.1 of [15]. That
the third H(p, q)-system converges to KR∗G(X) follows from a straightforward generalization of
the aforementioned proofs by adding equivariant structure throughout). Consider the two long
exact sequences for the pair (X × Bq−p,0, X × Sq−p,0), with the top exact sequence involving
equivariant KR-theory and the bottom one ordinary KR-theory, and the vertical maps being
forgetful maps. By applying the five-lemma, we have that each element in the first two H(p, q)-
systems has a (Real) equivariant lift. Define a group homomorphism

f(p, q) : (RR(G,R)⊕RH(G,R))⊗HRα(p, q)⊕ r(R(G,C)⊗Hα(p, q))→ HRαG(p, q)

by

ρ1 ⊗ a1 ⊕ r(ρ2 ⊗ a2) 7→ ρ1 · (a1)G ⊕ r(ρ2 · (a2)G).

As RR(G,R), RH(G,R) and R(G,C) are free abelian groups, and tensoring free abelian groups
and taking cohomology commute, f is the abutment of f(p, q). On the Ep,q1 -page, f(p, q) becomes

fp,q1 : (RR(G,R)⊕RH(G,R))⊗KR−q
(
X × S1,0

)
⊕ r(R(G,C)⊗K−q

(
X × S1,0

)
)

→ KR−qG
(
X × S1,0

)
.

Note that K−q(X × S1,0) ∼= K−q(X)⊕K−q(X), KR−q(X × S1,0) ∼= K−q(X), and KR−qG (X ×
S1,0) ∼= K−qG (X). With the above identification,

r : R(G,C)⊗K−q
(
X × S1,0

)
→ KR−qG

(
X × S1,0

) ∼= K−qG (X),

ρ1 ⊗ (a1, 0)⊕ ρ2 ⊗ (0, a2) 7→ ρ1 · (a1)G + σ∗Gρ2 ·
(
σ∗Ga2

)
G
.

So r(R(G,C) ⊗ K−q(X × S1,0)) = R(G,C) ⊗ K−q(X). fp,q1 is a group homomorphism from
(RR(G,R) ⊕ RH(G,R) ⊕ R(G,C)) ⊗ K−q(X) ∼= R(G) ⊗ K−q(X) to K−qG (X), which is an
isomorphism by weak equivariant formality of X. It follows that f is also an isomorphism. If
R(G,C) = 0, then by (1) of Proposition 3.3 and (3) of Definition 4.2, f is indeed a KR∗G(pt)-
module isomorphism. �

Remark 4.6. The term ‘Real equivariant formality’ is suggested by the observation that, if X
is a Real equivariantly formal G-space and R(G,C) = 0, then the map

KR∗G(X)⊗RR(G,R)⊕RH(G,R) Z→ KR∗(X)

induced by the forgetful map is a ring isomorphism, which smacks of the ring isomorphism in
the definition of weak equivariant formality.

Lemma 4.7. δR(ϕi), δH(θj), λk and ri,ε1,...,εt,ν1,...,νt ∈ KR∗(G) all have Real equivariant lifts in
KR∗G(G). Hence G is a Real equivariantly formal space.
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Proof. A natural choice of a Real equivariant lift of δR(ϕi) is represented by the complex
of vector bundles in Proposition 2.2 equipped with both the Real structure and equivariant
structure defined for δR(ϕi) and δG(ϕ) respectively. These two structures are easily seen to be
compatible. A Real equivariant lift of δH(θj) can be similarly defined. The class

r
(
βi · δG(γ1)

ε1 · · · δG(γt)
εtδG(σ∗Gγ1)

ν1 · · · δG(σ∗Gγt)
νt
)

obviously is a Real equivariant lift of ri,ε1,...,εt,ν1,...,νt . By adding the natural equivariant structure
throughout the construction of λk in the proof of Proposition 4.6 in [15], one can obtain a Real
equivariant lift of λk. �

Definition 4.8. We fix a choice of equivariant lift of any element a ∈ K∗(G) by defining δG(ρ)
to be the equivariant lift of δ(ρ). Similarly, we fix a choice of Real equivariant lift of a ∈ KR∗(G)
by defining δGR (ϕi), δ

G
H (θj), λ

G
k , and rGi,ε1,...,εt,ν1,...,νt in the proof of Lemma 4.7 to be the Real

equivariant lift of δR(ϕi), δH(θj), λk and ri,ε1,...,εt,ν1,...,νt .

Remark 4.9. λGk satisfies c(λGk ) = β3δG(γk)δG(σ∗Gγk).

Corollary 4.10. Let G be a compact, connected and simply-connected Real Lie group. The map

f : (RR(G,R)⊕RH(G,R))⊗KR∗(G)⊕ r(R(G,C)⊗K∗(G))→ KR∗G(G),

ρ1 ⊗ a1 ⊕ r(ρ2 ⊗ a2) 7→ ρ1 · (a1)G ⊕ r(ρ2 · (a2)G)

is a group isomorphism. Here (ai)G is the (Real) equivariant lift defined as in Definition 4.8.
In particular, if R(G,C) = 0, then f is an isomorphism of KR∗G(pt)-modules from KR∗G(pt)⊗
K∗(G) to KR∗G(G).

Proof. The result follows from Theorem 4.5 and Lemma 4.7. In the special case where
R(G,C) = 0, KR∗(G) is isomorphic to KR∗(pt)⊗K∗(G) as KR∗(pt)-modules by (1) of Theo-
rem 2.37, and applying Theorem 4.5 and Proposition 3.3 give KR∗G(G) ∼= RR(G)⊗KR∗(G) ∼=
RR(G)⊗KR∗(pt)⊗K∗(G) ∼= KR∗G(pt)⊗K∗(G). In this way f is a KR∗G(pt)-module isomor-
phism from KR∗G(pt)⊗K∗(G) to KR∗G(G). �

Corollary 4.11. Let

rGρ,i,ε1,...,εt,ν1,...,νt := r
(
βi · ρδG(γ1)

ε1 · · · δG(γt)
εtδG(σ∗Gγ1)

ν1 · · · δG(σ∗Gγt)
νt
)
,

where ρ ∈ R(G,C)⊕ Z · ρtriv and ε1, . . . , εt, ν1, . . . , νt are as in Theorem 2.32. Then KR∗G(G),
as an algebra over KR∗G(pt), is generated by δGR (ϕ1), . . . , δ

G
R (ϕr), δ

G
H (θ1), . . . , δ

G
H (θs), λ1, . . . , λt,

and rGρ,i,ε1,...,εt,ν1,...,νt.

Remark 4.12. If ρ = ρtriv, then rGρ,i,ε1,...,εt,ν1,...,νt = rGi,ε1,...,εt,ν1,...,νt . If ρ ∈ R(G,C), then

rGρ,i,ε1,...,εt,ν1,...,νt comes from r(R(G,C)⊗K∗(G)) in the decomposition of Theorem 4.5.

Now we are in a position to compute (λGk )2 by imitating the proof of Proposition 4.7 in [15].

Proposition 4.13.
(
λGk
)2

= 0.

Proof. Consider the Real Lie group (U(n) × U(n), σC), where σC(g1, g2) = (g2, g1). Let pj :
U(n)× U(n)→ U(n) be the projection onto the j-th factor, and ui = p∗1(∧iσn), vi = p∗2(∧iσn).
Thus σ∗Cui = vi. A decomposition of K∗(U(n) × U(n)) by the induced involution σ∗C is given
by M ⊕ T ⊕ σ∗CT , where M is the subalgebra generated by δ(u1)δ(v1), . . . , δ(un)δ(vn). By
Proposition 2.32, there exist h1, . . . , hn ∈ KR0(U(n)×U(n), σC) such that c(hi) = β3δ(ui)δ(vi),
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and KR∗(U(n)×U(n), σC) ∼= F⊕r(K∗(+)⊗T ), where F is the KR∗(pt)-module freely generated
by monomials in h1, . . . , hn. By Corollary 4.10,

KR∗(U(n)×U(n),σC)
(U(n)× U(n), σC) ∼= RR(U(n)× U(n), σC,R)⊗ (F ⊕ r(K∗(+)⊗ T ))

⊕ r(R(U(n)× U(n), σC,C)⊗K∗(U(n)× U(n))).

Let hGi be the equivariant lift of hi as defined in Definition 4.8. So c(hGi ) = β3δG(ui)δG(vi) and
c((hGi )2) = 0. Consequently (hGi )2 = ηki for some ki ∈ KR−7(U(n)×U(n),σC)

(U(n) × U(n), σC) (cf.

Gysin sequence (3.4) in [2] and its equivariant analogue). Since η · r(·) = 0, we may assume
that ki is from the component RR(U(n) × U(n), σC,R) ⊗ F . But the degree −7 piece of the
later is 0. So (hGi )2 = 0.

Consider the map

γk × σ∗Cγk : (G, σG)→ (U(n)× U(n), σC),

g 7→ (γk(g), γk(σG(g))).

It can be easily seen that (γk × σ∗Cγk)∗(hG1 ) = λGk . So (λGk )2 = 0. �

4.2 The module structure of KR∗
(U(n),σF)

(U(n), σF)

Definition 4.14. Let σn be (the class of) the standard representation of U(n).

Proposition 4.15. σn,∧2σn, . . . ,∧nσn ∈ RR(U(n), σR,R), ∧2iσ2m ∈ RR(U(2m), σH,R) and
∧2i+1σ2m ∈ RH(U(2m), σH,R). Also, both R(U(n), σR,C) and R(U(2m), σH,C) are 0.

Proof. For the involution σR and ∧iσn, define the bilinear form

BR : ∧iσn × σ∗R ∧i σn → C,
(v1 ∧ · · · ∧ vi, w1 ∧ · · · ∧ wi) 7→ det(〈vj , wk〉).

Obviously the form is U(n)-invariant, symmetric and non-degenerate. By Proposition 2.18, each
of ∧iσn, 1 ≤ i ≤ n is a Real representation of real type. Similarly, define, for the involution σH
and ∧iσ2m, a bilinear form

BH : ∧iσ2m × σ∗H∧iσ2m → C,
(v1 ∧ · · · ∧ vi, w1 ∧ · · · ∧ wi) 7→ det(〈Jmvj , wk〉).

It is U(n)-invariant because

BH(gv, gw) = det(〈Jmgvj , JmgJ−1m wk〉) = det(〈Jmgvj , JmgJ−1m wk〉)
= det(〈vj , J−1m wk〉) = det(〈Jmvj , wk〉).

Moreover

BH(v, w) = det(〈Jmvj , wk〉) = det(〈−vj , Jmwk〉) = det(−〈Jmwk, vj〉)
= det(−〈Jmwk, vj〉) = (−1)iBH(w, v).

So by Propositions 2.16, 2.18 and 2.22, ∧iσ2m is a Real representation of real type when i
is even and a Quaternionic representation of real type when i is odd. There are no complex
representations of complex type because ∧iσn ∼= σ∗F∧iσn for F = R and H. �

Lemma 4.16. KR∗(U(n),σF)
(U(n),σF) is isomorphic to Ω∗KR∗

(U(n),σF)
(pt)/KR∗(pt) as KR∗(U(n),σF)

(pt)-

modules, where F = R or H.
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Proof. Theorem 4.5 implies that, KR∗(U(n),σR)
(U(n), σR) ∼= RR(U(n), σR)⊗KR∗(U(n), σR) and

KR∗(U(n),σH)
(U(n), σH) ∼= (RR(U(n), σH,R)⊕RH(U(n), σH,R))⊗KR∗(U(n), σH). Moreover, by

Theorem 2.40 and Proposition 4.15,

KR∗(U(n), σR) ∼=
∧

KR∗(pt)
(δR(σn), . . . , δR(∧nσn))

and

KR∗(U(2m), σH) ∼=
∧

KR∗(pt)

(
δH(σ2m), δR(∧2σ2m), . . . , δR(∧2mσ2m)

)
.

Putting all these together and applying Theorem 3.3, we get the desired conclusion. �

Remark 4.17. As ungraded KR∗(pt)-modules, both

KR∗(U(2m),σR)
(U(2m), σR) and KR∗(U(2m),σH)

(U(2m), σH)

are isomorphic to K∗U(2m)(U(2m))⊗KR∗(pt).

4.3 Injectivity results

This step involves proving that the restriction map p∗G to the equivariant KR-theory of the
maximal torus and the map q∗G induced by the Weyl covering map are injective.

Lemma 4.18. Let G be a compact Lie group and X a G-space. Let i∗1 : K∗G(X) → K∗T (X) be
the map which restricts the G-action to T -action. Then

i∗1 ⊗ IdR : K∗G(X)⊗R→ K∗T (X)⊗R

is injective for any ring R.

Proof. By [4, Proposition 4.9], i∗1 is split injective. So is i∗1 ⊗ IdR for any ring R. �

Lemma 4.19. Let i∗2 : K∗T (G)→ K∗T (T ) ∼= R(T )⊗K∗(T ) be the map induced by the inclusion
T ↪→ G. Then

i∗2δT (ρ) =

dim ρ∑
j=1

eτj ⊗ δ(τj) ∈ K−1T (T ),

where τj are the weights of ρ.

Proof. Let V be the vector space underlying the representation ρ. δT (ρ) is represented by the
complex of T -equivariant vector bundles

0 −→ G× R× V −→ G× R× V −→ 0,

(g, t, v) 7→ (g, t,−tρ(g)v) if t ≥ 0,

(g, t, v) 7→ (g, t, tv) if t ≤ 0

which, on restricting to

0 −→ T × R× V −→ T × R× V −→ 0

is decomposed into a direct sum of complexes of 1-dimensional T -equivariant vector bundles,
each of which corresponds to a weight of ρ. �
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Lemma 4.20. Let G be a simply-connected, connected compact Lie group and ρ1, . . . , ρl be its
fundamental representations. Then

i∗2

(
l∏

i=1

δT (ρi)

)
= dG ⊗

l∏
i=1

δ($i), (4.1)

where $i the i-th fundamental weight and dG =
∑
w∈W

sgn(w)e
w·

l∑
i=1

$i
∈ R(T ) is the Weyl deno-

minator.

Proof. Equation (4.1) follows from Lemma 4.19 and Lemma 3 of [1]. �

Lemma 4.21. Let M be an R-module freely generated by m1, . . . ,ml, and N an R-module. If
f : M → N is an R-module homomorphism, and rf(m1) ∧ · · · ∧ f(ml) ∈

∧l
RN is nonzero for

all r ∈ R \ {0}, then∧∗
f :

∧∗
R
M →

∧∗
R
N

is injective.

Proof. It suffices to show that
∧k f is injective for 1 ≤ k ≤ l. Suppose I ⊆ {1, . . . , l}, |I| = k,

mI :=
∧
i∈I mi and f(mI) :=

∧
i∈I f(mi). If

∑
|I|=k

rImI ∈ ker(
∧k f), then for any J with |J | = k,

0 =
∑
|I|=k

rIf(mI) ∧ f(mJc) = rJf(m1) ∧ · · · ∧ f(ml).

Hence
∑
|I|=k

rImI = 0 and the conclusion follows. �

Lemma 4.22. Let G be a simply-connected, connected and compact Lie group. Then the map

i∗2 ⊗ IdR : K∗T (G)⊗R→ K∗T (T )⊗R

is injective for any ring R.

Proof. Note that

K∗G(G)⊗R(G) R(T )→ K∗T (G),

a⊗ ρ 7→ i∗1(a) · ρ.

is an R(T )-algebra isomorphism (cf. [12, Theorem 4.4]). Using Theorem 2.7, we have that K∗T (G)
is isomorphic, as an R(T )-algebra, to

∧∗
R(T )M , where M is the R(T )-module freely generated by

δT (ρ1), . . . , δT (ρl). We also observe that K∗T (T ) is isomorphic, as an R(T )-algebra, to
∧∗
R(T )N ,

where N is the R(T )-module freely generated by δ($1), . . . , δ($l). Note that the hypotheses of

Lemma 4.21 are satisfied by f = i∗2 ⊗ IdZm for any m ≥ 2, as r
l∏

i=1
i∗2δT (ρi) = ri∗2

l∏
i=1

δT (ρi) =

rdG ⊗
l∏

i=1
δ($i) (by Lemma 4.20) is indeed nonzero for any nonzero r in Zm (the coefficients

of dG are either 1 or −1, so after reduction mod m rdG is still nonzero). Now that i∗2 ⊗ Zm is
injective, so is i∗2 ⊗ IdR for any ring R. �
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Proposition 4.23.

1. Let G be a compact, connected and simply-connected Real Lie group such that RR(G,C) =
RR(G,H) = 0 and there exists a maximal torus T on which the involution acts by inver-
sion. Then the restriction map KR∗G(G)→ KR∗T (T ) is injective.

2. The map p∗G : KR∗(U(n),σR)
(U(n), σR)→ KR∗(T,σR)(T, σR) is injective.

Proof. By Corollary 4.10, KR∗G(G) ∼= K∗G(G) ⊗KR∗(pt) and KR∗T (T ) ∼= K∗T (T ) ⊗KR∗(pt)
as KR∗(pt)-modules. Using this identification, we can as well identify the restriction map with
i∗ ⊗ IdKR∗(pt), where i∗ := i∗2 ◦ i∗1. Part (1) then follows from Lemmas 4.18 and 4.22. Part (2)
is immediate once we apply Lemma 4.18 and note that the proofs of Lemmas 4.20 and 4.22
can be adapted to the case G = U(n) by letting σn, . . . ,∧nσn play the role of the fundamental
representations and their highest weights, the fundamental weights. �

Lemma 4.24. KR∗(U(2m),σH)
(U(2m)/T, σH) ∼= Z[eH1 , . . . , e

H
2m, (e

H
1 e
H
2 · · · eH2m)−1] ⊗ KR∗(pt) as

rings, where eHi lives in the degree −4 piece.

Proof. It is known that K∗(U(2m)/T ) ∼= Z[α1, . . . , α2m]/(si −
(
2m
i

)
|1 ≤ i ≤ 2m), where

αi = [U(2m) ×T Cei ] and si is the i-th elementary symmetric polynomial (cf. [3, Proposi-
tion 2.7.13]). The induced map σ∗H acts as identity on K∗(U(2m)/T ). The involution σH
on the base lifts to a Quaternionic structure on the associated complex line bundle, so there
exist αH1 , . . . , α

H
2m ∈ KR−4(U(2m)/T ), such that their complexifications are β2α1, . . . , β

2α2m ∈
K∗(U(2m)/T ). By Theorem 2.32, KR∗(U(2m)/T, σH) is a KR∗(pt)-module generated by poly-
nomials in αH1 , . . . , α

H
2m ∈ KR−4(U(2m)/T, σH). In fact it is not hard to see that KR∗(U(2m)/T ,

σH) is isomorphic to

Z[αH1 , . . . , α
H
2m]⊗KR∗(pt)

/(
s2k −

(
2m

2k

)
, s2k−1 −

1

2
µ

(
2m

2k − 1

)∣∣∣∣ 1 ≤ k ≤ m) .

Also obvious is that each of αHi has an equivariant lift eHi ∈ KR
−4
(U(2m),σH)

(U(2m)/T, σH).
Now that all the hypotheses in Theorem 4.5 are satisfied, we can apply it, together with the

fact that R(U(2m), σH,C) = 0 (cf. Proposition 4.15) to see that KR∗(U(2m),σH)
(U(2m)/T, σH) is

isomorphic to

(RR(U(2m), σH,R)⊕RH(U(2m), σH,R))⊗KR∗(U(2m)/T, σH)

as RR(U(2m), σH,R)⊕RH(U(2m), σH,R)-modules (actually as rings). Noting that

RR(U(2m), σH,R)⊕RH(U(2m), σH,R) ∼= Z
[
s1, . . . , s2m, s

−1
2m

]
we establish the Lemma. �

Proposition 4.25. KR∗(U(2m),σH)
(U(2m)/T × T, σH × σR) is isomorphic to

Z
[
eH1 , . . . , e

H
2m,
(
eH1 · · · eH2m

)−1]⊗KR∗(T, σR)

as graded rings.

Proof. First, by [14, Theorem 1], Proposition 3.3 and Lemma 4.24, KR∗(U(2m),σH)
(U(2m)/T, σH)

is a free KR∗(U(2m),σH)
(pt)-module. The same is also true of KR∗(U(2m),σH)

(T, σR) since, by Theo-

rem 4.5, it is isomorphic to RR(U(2m), σH) ⊗ KR∗(T, σR), which in turn is isomorphic to
KR∗(U(2m),σH)

(pt) ⊗ K∗(T ). The proposition follows from a version of Künneth formula for
equivariant KR-theory. �
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Remark 4.26. KR∗(U(2m),σH)
(U(2m)/T × T, σH × σR) is isomorphic to K∗T (T ) ⊗KR∗(pt) and

KR∗(T,σR)(T, σR) as ungraded KR∗(pt)-modules.

Proposition 4.27. The map q∗G is injective.

Proof. By Remarks 4.17 and 4.26, KR∗(U(2m),σH)
(U(2m), σH) and KR∗(U(2m),σH)

(U(2m)/T ×
T, σH × σR) are isomorphic to KR∗(U(2m),σR)

(U(2m), σR) and KR∗(T,σR)(T, σR) respectively, as

ungraded KR∗(pt)-modules. It is not hard to see that q∗G can be identified with p∗G under these
isomorphisms. Now the result follows from Proposition 4.23. �

4.4 Squares of algebra generators of real and quaternionic types

Lemma 4.28. KR∗(T, σR) is isomorphic to the exterior algebra over KR∗(pt) generated by
δR(e1), . . . , δR(en), as KR∗(T,σR)(pt)-modules. Here ei is the 1-dimensional complex representa-

tion with weight being the i-th standard basis vector of the weight lattice. Moreover, δR(ei)
2 =

ηδR(ei).

Proof. Since R(T, σR,C) = 0, the module structure follows from Theorem 2.40. For the second
part of the Lemma, see the appendix of [15]. �

Proposition 4.29. In KR∗(U(n),σR)
(U(n), σR)

δGR (σn)2 = η
(
σn · δGR (σn)− δGR (∧2σn)

)
. (4.2)

In KR∗(U(2m),σH)
(U(2m), σH),

δGH (σ2m)2 = η
(
σ2m · δGH (σ2m)− δGR (∧2σ2m)

)
. (4.3)

Proof. Now that we have shown that p∗G and q∗G are injective by Propositions 4.23 and 4.27,
we can compute δGR (σn)2 and δGH (σ2m)2 by passing the computation through p∗G and q∗G to their
images. We prove the case F = R. The proof of the case F = H is similar so we leave it to the
reader. Note that

p∗G
(
δGR (σn)2

)
= p∗G(δGR (σn))2 =

(
n∑
i=1

ei ⊗ δR(ei)

)2

=

n∑
i=1

e2i ⊗ ηδR(ei) +
∑
i 6=j

eiej ⊗ δR(ei)δR(ej)

Lemma 4.28
=

n∑
i=1

e2i ⊗ ηδR(ei) +
∑
i<j

eiej ⊗
(
δR(ei)δR(ej) + δR(ej)δR(ei)

)
=

n∑
i=1

e2i ⊗ ηδR(ei).

On the other hand,

p∗(σn · δGR (σn)) =

(
n∑
i=1

ei ⊗ 1

)(
n∑
i=1

ei ⊗ δR(ei)

)
=

∑
1≤i,j≤n

eiej ⊗ δR(ei)

=

n∑
i=1

e2i ⊗ δR(ei) +
∑
i 6=j

ejei ⊗ δR(ei)
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=
n∑
i=1

e2i ⊗ δR(ei) +
∑

1≤i<j≤n
ejei ⊗ (δR(ei) + δR(ej))

=

n∑
i=1

e2i ⊗ δR(ei) + p∗G
(
δGR (∧2σn)

)
.

From the above equations we obtain

p∗G
(
δGR (σn)2

)
= ηp∗G(σn · δGR (σn)− δGR (∧2σn)).

By Proposition 4.23,

δGR (σn)2 = η
(
σn · δGR (σn)− δGR (∧2σn)

)
. �

Theorem 4.30. Let G be a Real compact Lie group. Then

δGR (ϕi)
2 = η

(
ϕi · δGR (ϕi)− δGR (∧2ϕi)

)
, (4.4)

δGH (θj)
2 = η

(
θj · δGH (θj)− δGR (∧2θj)

)
. (4.5)

Proof. The induced map ϕ∗i : KR∗(U(n),σR)
(U(n), σR) → KR∗(G,σG)(G, σG) sends σn to ϕi, and

δGR (σn) to δGR (ϕi). Likewise, the induced map θ∗j : KR∗(U(2m),σH)
(U(2m), σH) sends σ2m to θj ,

and δGH (σ2m) to δGH (θj). The result now follows from Proposition 4.29. �

To further express δGR (∧2ϕi) and δGR (∧2θj) in terms of the module generators associated with
the fundamental representations, we may use the following derivation property of δGR and δGH .

Proposition 4.31. δGR ⊕ δGH is a derivation of the graded ring RR(G) ⊕ RH(G) (with RR(G)
of degree 0 and RH(G) of degree −4) taking values in the graded module KR−1G (G)⊕KR−5G (G).

Proof. We refer the reader to the proof of Proposition 3.1 of [9] with the definition of δG(ρ)
given there (which is incorrect) replaced by the one in Definition 2.5. One just need to simply
check that the homotopy ρs in the proof for t ≥ 0 intertwines with both σR and σH. �

Corollary 4.32. In KR∗(U(n),σR)
(U(n), σR),

δGR
(
∧kσn

)2
= η

2k∑
i=1

∧2k−iσn · δGR
(
∧iσn

)
.

In KR∗(U(2m),σH)
(U(2m), σH),

δGH
(
∧2k−1σ2m

)2
= η

2k−1∑
j=1

(
∧4k−2j−1σ2m · δGH

(
∧2j−1σ2m

)
+ ∧4k−2j−2σ2m · δGR

(
∧2jσ2m

))
,

δGR
(
∧2kσ2m

)2
= η

2k∑
j=1

(
∧4k−2j+1σ2m · δGH

(
∧2j−1σ2m

)
+ ∧4k−2jσ2m · δGR

(
∧2jσ2m

))
.

Proof. By the definition,(
∧kσn

)∗(
δGR
(
∧2σn

k


))

= δGR
(
∧2
(
∧kσn

))
.
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By Exercise 15.32 of [10],

∧2(∧kσn) =
⊕
i

Γ$k−2i+1+$k+2i−1
.

By Giambelli’s formula,

Γ$k−2i+1+$k+2i−1
= ∧k+2i−1σn · ∧k−2i+1σn − ∧k+2iσn · ∧k−2iσn.

By Proposition 4.31

δGR (Γ$k−2i+1+$k+2i−1
) = ∧k+2i−1σn · δGR

(
∧k−2i+1σn

)
+ ∧k−2i+1σn · δGR

(
∧k+2i−1σn

)
− ∧k+2iσn · δGR

(
∧k−2iσn

)
− ∧k−2iσn · δGR

(
∧k+2iσn

)
.

Now the first equation is immediate. The second and third equations can be derived simi-
larly. �

Putting together the previous results yields the following full description of the ring structure
of KR∗G(G).

Theorem 4.33. Let G be a simply-connected, connected and compact Real Lie group. Viewing G
as a Real G-space with adjoint action, we have

1. (Corollary 4.10) The map

f : (RR(G,R)⊕RH(G,R))⊗KR∗(G)⊕ r(R(G,C)⊗K∗(G))→ KR∗G(G)

ρ1 ⊗ a1 ⊕ r(ρ2 ⊗ a2) 7→ ρ1 · (a1)G ⊕ r(ρ2 · (a2)G)

is a group isomorphism. In particular, if R(G,C) = 0, then f is an isomorphism of
KR∗G(pt)-modules.

2. (Corollary 4.11) KRG(G) is generated by δGR (ϕ1), . . ., δ
G
R (ϕr), δ

G
H (θ1), . . ., δ

G
H (θs), λ

G
1 , . . ., λ

G
t

and rGρ,i,ε1,...,εt,ν1,...,νt as an algebra over KR∗G(pt). Moreover,

(a) (Proposition 4.13)
(
λGk
)2

= 0 for all 1 ≤ k ≤ t,
(b) (rGρ,i,ε1,...,εt,ν1,...,νt)

2 (4.6)

=


η2(ρ · σ∗Gρ)(λG1 )ω1 · · · (λGt )ωt if rGρ,i,ε1,...,εt,ν1,...,νt is of degree − 1 or − 5,

±µ(ρ · σ∗Gρ)(λG1 )ω1 · · · (λGt )ωt if rGρ,i,ε1,...,εt,ν1,...,νt is of degree − 2 or − 6,

0 otherwise.

The sign can be determined using formulae in (2) of Proposition 2.29.

(c) rGρ,i,ε1,...,εt,ν1,...,νtη = 0, and rGρ,i,ε1,...,εt,ν1,...,νtµ = 2rGρ,i+2,ε1,...,εt,ν1,...,νt , (4.7)

(d) (Proposition 4.30) δGR (ϕi)
2 = η

(
ϕi · δGR (ϕi)− δGR (∧2ϕi)

)
,

δGH (θj)
2 = η

(
θj · δGH (θj)− δGR (∧2θj)

)
.

One can express δGR (∧2ϕi) and δGH (∧2θj) in terms of the algebra generators using the deriva-
tion property of δGR and δGH (cf. Proposition 4.31).

Proof. Only (4.6) and (4.7) need explanation, but they are just equivariant analogues of Corol-
lary 2.39 and follow from (2) of Proposition 2.29 and Remark 4.9. �
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Remark 4.34.

1. KR∗G(pt)2, which is the ring obtained by inverting the prime 2 inKR∗G(pt), is isomorphic to

(RR(G, σG,R)⊕RH(G, σG,R))⊗ Z
[
1
2 , β

2
]
/
((
β2
)2 − 1

)
⊕ r
(
R
(
G, σG,C

)
⊗ Z

[
1
2 , β
]
/(β4 − 1)

)
.

2. If R(G,C) = 0, then KR∗G(G)2, which is the ring obtained by inverting the prime 2 in
KR∗G(G), is isomorphic to, as KR∗G(pt)2-algebra,∧

KR∗
G(pt)2

(
δGR (ϕ1), . . . , δ

G
R (ϕr), δ

G
H (θ1), . . . , δ

G
H (θs)

)
.

5 Applications and examples

Applying the forgetful map KR∗G(G) → KR∗(G) to Proposition 4.31 and Theorem 4.33, we
solve the problem of finding a description of the ring structure of KR∗(G) which was left open
by Seymour in [15].

Theorem 5.1. Let G be a simply-connected, connected and compact Real Lie group. Then

δR(ϕi)
2 = η

(
dim(ϕi) · δR(ϕi)− δR(∧2ϕi)

)
, δH(θj)

2 = ηδR(∧2θj).

One can express δR(∧2ϕi) and δH(∧2θj) in terms of the generators in Proposition 2.37 using the
derivation property of δR and δH got by applying the forgetful map to Proposition 4.31. The above
equations, together with Theorem 2.37 and Corollary 2.39, constitute a complete description of
the ring structure of KR∗(G).

Remark 5.2. Seymour’s conjecture concerning δR(σn)2 is true. However, his conjecture that if
x ∈ KR−5(X), then x2 = 0 is false, as evidenced by the ring structure of KR∗(U(2m), σH).

Example 5.3. Let G be a simply-connected, connected and compact Real Lie group with no
fundamental representations of complex type. Equip G with both the trivial G-action and the
adjoint action. Both K∗Gtriv

(G) and K∗GAd
(G) are isomorphic to Ω∗R(G)/Z as rings. On the other

hand, though both KR∗Gtriv
(G) and KR∗GAd

(G) are isomorphic to Ω∗KR∗
G(pt)/KR

∗(pt) as KR∗G(pt)-

modules, they are not isomorphic as rings, as one can tell from the squares of the generators of
both rings. For instance, in KR∗Gtriv

(G),

δGR (ϕi)
2 = η

(
dim(ϕi)δ

G
R (ϕi)− δGR (∧2ϕi)

)
whereas in KR∗GAd

(G),

δGR (ϕi)
2 = η

(
ϕi · δGR (ϕi)− δGR (∧2ϕi)

)
.

In this example KR-theory can tell apart two different group actions, while K-theory cannot.

Example 5.4. Let (G, σG) = (Sp(2m), Id). Then R(Sp(2m)) ∼= Z[σ12m, σ
2
2m, . . . , σ

m
2m], where

σi2m is the class of the irreducible representation with highest weight L1 + L2 + · · · + Li. Note
that σ2k−12m ∈ RH(Sp(2m), Id,R), σ2k2m ∈ RR(Sp(2m), Id,R). Moreover, σi2m+∧i−2σ2m = ∧iσ2m
for 1 ≤ i ≤ m. The equivariant KR-theory KR∗(Sp(2m),Id)(Sp(2m), Id) is isomorphic to, as

KR∗(Sp(2m),Id)(pt)-modules, the exterior algebra over KR∗(Sp(2m),Id)(pt) generated by δGH (σ2k−12m )

and δGR (σ2k2m) for 1 ≤ k ≤ m by Theorem 4.33. The restriction map

i∗ : KR∗(U(2m),σH)
(U(2m), σH)→ KR∗(Sp(2m),Id)(Sp(2m), Id)
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sends δGR (∧2kσ2m−∧2k−2σ2m) to δGR (σ2k2m) and δGH (∧2k+1σ2m−∧2k−1σ2m) to δGH (σ2k+1
2m ). Apply-

ing i∗ to the relevant equations in Corollary 4.32, we get

δGR
(
σ2k2m

)2
= η

2k∑
i=1

(
σ4k−2i2m · δGR

(
σ2i2m

)
+ σ4k−2i+1

2m · δGH
(
σ2i−12m

))
,

δGH
(
σ2k−12m

)2
= η

2k−1∑
i=1

(
σ4k−2−2i2m · δGR

(
σ2i2m

)
+ σ4k−1−2i2m · δGH

(
σ2i−12m

))
.

Example 5.5. Let (G, σG) = (G2, Id). Then RR(G2) ∼= Z[σ1, σ2], where σ1 and σ2 are the
classes of irreducible representations of dimensions 7 and 14, respectively. Note that both σ1
and σ2 are in RR(G2, Id,R), and that ∧2σ1 = σ1 + σ2, ∧2σ2 = σ31 − σ21 − 2σ1σ2 − σ1. The
equivariant KR-theory KR∗(G2,Id)

(G2, Id) is isomorphic to, as KR∗(G2,Id)
(pt)-modules, the ex-

terior algebra over KR∗(G2,Id)
(pt) generated by δGR (σ1) and δGR (σ2), by Theorem 4.5. Using

Theorem 4.30 and Proposition 4.31, we have

δGR (σ1)
2 = η

(
(σ1 − 1) · δGR (σ1) + δGR (σ2)

)
, δGR (σ2)

2 = η
(
(σ21 − 1) · δGR (σ1) + σ2 · δGR (σ2)

)
.
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