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Abstract. We give a detailed account of the geometric correspondence between a smooth
complex projective quadric hypersurface Q™ of dimension n > 3, and its twistor space PT,
defined to be the space of all linear subspaces of maximal dimension of Q™. Viewing complex
Euclidean space CE™ as a dense open subset of @™, we show how local foliations tangent
to certain integrable holomorphic totally null distributions of maximal rank on CE™ can
be constructed in terms of complex submanifolds of PT. The construction is illustrated by
means of two examples, one involving conformal Killing spinors, the other, conformal Killing—
Yano 2-forms. We focus on the odd-dimensional case, and we treat the even-dimensional
case only tangentially for comparison.
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1 Introduction

The twistor space PT of a smooth complex projective quadric hypersurface Q™ of dimension n =
2m—+1 > 3, is defined to be the space of all y-planes, i.e., m-dimensional linear subspaces of Q™.
This is a complex projective variety of dimension %(m + 1)(m + 2) equipped with a canonical
holomorphic distribution D of rank m+ 1, and maximally non-integrable, i.e., TPT = [D, D]+ D.
Here, TPPT denotes the holomorphic tangent bundle of PT. Noting that a smooth quadric can be
identified with a complexified n-sphere and is naturally equipped with a holomorphic conformal
structure, we shall view complex Euclidean space CE™ as a dense open subset of Q™. In this

context, we shall prove the following new results holding locally:

e totally geodetic integrable holomorphic «-plane distributions on CE™ arise from (m + 1)-
dimensional complex submanifolds of PT — Theorem 3.5;

e totally geodetic integrable holomorphic «-plane distributions on CE" with integrable or-
thogonal complements arise from (m+1)-dimensional complex submanifolds of PT foliated
by holomorphic curves tangent to D — Theorem 3.6;

e totally geodetic integrable holomorphic «-plane distributions on CE” with totally geodetic
integrable orthogonal complements arise from m-dimensional complex submanifolds of a 1-
dimensional reduction of a subset of PT known as mini-twistor space MT — Theorem 3.8.

Conversely, any such distributions arise in the ways thus described. These findings may be
viewed as odd-dimensional counterparts of the work of [20], where it is shown that local foliations
of a 2m-dimensional smooth quadric @*™ by a-planes, i.e., totally null self-dual m-planes, are in
one-to-one correspondence with certain m-dimensional complex submanifolds of twistor space,
here defined as the space of all a-planes in Q>™.
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The first two of the above results are conformally invariant, and to arrive at them, we shall
first describe the geometrical correspondence between Q" and PT in a manifestly conformally
invariant manner, by exploiting the vector and spinor representations of the complex conformal
group SO(n+ 2,C) and of its double-covering Spin(n + 2, C). Such a tractor or twistor calculus,
as it is known, builds on Penrose’s twistor calculus in four dimensions [29]. The more ‘standard’,
local and Poincaré-invariant approach to twistor geometry will also be introduced to describe
non-conformally invariant mini-twistor space MIT. In fact, a fairly detailed description of twistor
geometry in odd dimensions will make up the bulk of this article, and should, we hope, have
a wider range of applications than the one presented here. Once our calculus is all set up, our
main results will follow almost immediately. The effectiveness of the tractor calculus will be
exemplified by the construction of algebraic subvarieties of PT, which describe the null foliations
of Q™ arising from certain solutions of conformally invariant differential operators.

Another aim of the present article is to distil the complex geometry contained in a number of
geometrical results on real Euclidean space and Minkowski space in dimensions three and four.
In fact, our work is motivated by the findings of [27] and [2]. In the former reference, the author
recasts the problem of finding pairs of analytic conjugate functions on E" as a problem of finding
closed null complex-valued 1-forms, and arrives at a description of the solutions in terms of real
hypersurfaces of C* 1. The case n = 3 is of particular interest, and is the focus of the article [2]:
the kernel of a null complex 1-form on E? consists of a complex line distribution THOE3 and
the span of a real unit vector uw. This complex 2-plane distribution is in fact the orthogonal
complement (T(LO)IE‘g)L of TMOE3, and we can think of T(OE3 as a CR-structure compatible
with the conformal structure on E? viewed as an open dense subset of S3. The condition that
(T(I’O)E:‘)L be integrable is equivalent to u being tangent to a conformal foliation, otherwise
known as a shearfree congruence of curves. To find such congruences, the authors construct the
S2-bundle of unit vectors over S3, which turns out to be a CR hypersurface in CP3. A section
of this S2-bundle defines a congruence of curves, and this congruence is shearfree if and only if
the section is a 3-dimensional CR submanifold.

There are three antecedents for this result:

1) there is a one-to-one correspondence between local self-dual Hermitian structures on E4CS*
and holomorphic sections of the S%-bundle CP? — S* known as the twistor bundle — this
is a well-known result, see, e.g., [2, 4, 14, 20, 32];

2) there is a one-to-one correspondence between local analytic shearfree congruences of null
geodesics in Minkowski space Ml and certain complex hypersurfaces of its twistor space,
an auxilliary space isomorphic to CP? — this is known as the Kerr theorem [11, 29, 31];

3) there is a one-to-one correspondence between local shearfree congruences of geodesics in E3
and certain holomorphic curves in its mini-twistor space, the holomorphic tangent bundle
of CP' 2 82 — such congruences can also be equivalently described by harmonic morphisms
[3, 36, 37].

Statements (1) and (2) are essentially the same result once they are cast in the complexification
of E* and M.

The analogy between statement (1) and the result of [2] can be understood in the following
terms: in the former case, the integrable complex null 2-plane distribution TGOE4 defining the
Hermitian structure is totally geodetic, i.e., VxY € F(T(LO)E‘l) for all X,Y € I‘(T(LO)E‘l).
In the latter case, the condition that u be tangent to a shearfree congruence is also equivalent
to the complex null line distribution T(OE3 being (totally) geodetic. One could also think of
the integrability of both TMOE3 (trivially) and (T(l’U)E3)J‘ as an analogue of the integrability
of TLOEA,
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Finally, statement (3), unlike (1) and (2), breaks conformal invariance, and the additional
data fixing a metric on E3 induces a reduction of the S%-bundle constructed in [2] to mini-
twistor space T'S? of (3). Correspondingly, for u to be tangent to a shearfree congruence of null

geodesics, both T(HOE3 and (T(I’O)E?’)L must be totally geodetic, which is not a conformally
invariant condition.

The structure of the paper is as follows. Section 2 deals with the twistor geometry of a smooth
quadric Q" focussing mostly on the case n = 2m+ 1. In particular, we give an algebraic descrip-
tion of the canonical distribution on its twistor space. The geometric correspondence between Q"
and PT is made explicit. Propositions 2.12 and 2.13, and Corollary 2.14 give a twistorial artic-
ulation of incidence relations between v-planes in Q™. The mini-twistor space MT of complex
Fuclidean space CE™ is introduced in Section 2.4. Points in CE™ correspond to embedded
complex submanifolds of PT and MT, and their normal bundles are described in Section 2.5.
The main results, Theorems 3.5, 3.6 and 3.8, as outlined above, are given in Section 3. In
each case, a purely geometrical explanation precedes a computational proof. In Section 4, we
give two examples on how to relate null foliations in Q™ to complex varieties in PT, based on
certain solutions to the twistor equation, in Propositions 4.2 and 4.3, and the conformal Killing—
Yano equation, in Proposition 4.7. We wrap up the article with Appendix A, which contains
a description of standard open covers of twistor space and correspondence space.

2 Twistor geometry

We describe each of the three main protagonists involved in this article in turn: a smooth
quadric hypersurface in projective space, its twistor space and a correspondence space fibered
over them. The projective variety approach is very much along the line of [19, 31], while the
reader should consult [5, 9] for the corresponding homogeneous space description.

Throughout V will denote an (n+2)-dimensional complex vector space. We shall make use of
the following abstract index notation: elements of V and its dual V* will carry upstairs and down-
stairs calligraphic upper case Roman indices respectively, i.e., VA € V and oy € V*. Symmetri-
sation and skew-symmetrisation will be denoted by round and square brackets respectively, i.e.,
QAB) = %(aAB +apa) and apup = %((X_AB —ap4). These conventions will apply to other types
of indices used throughout this article. We shall also use Einstein’s summation convention, e.g.,
VAa 4 will denote the natural pairing of elements of V and V*. We equip V with a non-degenerate
symmetric bilinear form h4p, by means of which V 22 V*: indices will be lowered and raised
by hap and its inverse A8 respectively. We also choose a complex orientation on V, i.e., a com-
plex volume element € 4,...4,,,, in A"F2V. We shall denote by G the complex spin group Spin(n -+
2,C), the two-fold cover of the complex Lie group SO(n + 2, C) preserving hap and €4,...4, -

Turning now to the spinor representations of G, we distinguish the odd- and even-dimensional
cases:

e n = 2m+1: denote by S the 2 *!-dimensional irreducible spinor representation of G. Ele-
ments of S will carry upstairs bold lower case Greek indices, e.g., S* € S, and dual elements,
downstairs indices. The Clifford algebra C¢(V, h ) is linearly isomorphic to the exterior
algebra A®V, and, identifying A*V with AZ"+3=%V by Hodge duality for k =0,...,m+1,
it is also isomorphic, as a matrix algebra, to the space End(S) of endomorphisms of S. It
is generated by matrices, denoted I' A“Y, which satisfy the Clifford identity

T

r B — _h 508 (2.1)

(A = B)y

Here 5!,5‘ is the identity element on S. There is a spin-invariant inner product on S denoted

F(S%): S xS — C, yielding the isomorphism End(S) = S ® S. The resulting isomorphisms



4 A. Taghavi-Chabert

ClUV, hag) = AV = S®S will be realised by means of the bilinear forms on S with values
in AFV* for k=1,...,n+2:
(k) — Y 8k (0)
FA1---Aktxl3 = F[Ala L. ”I‘Ak]vk_l kFSkB' (2.2)

These are symmetric in their spinor indices when & = m + 1,m + 2 (mod 4) and skew-
symmetric otherwise.

e n = 2m: G has two 2™-dimensional irreducible chiral spinor representations, which we
shall denote S and S'. Elements of S and S’ will carry upstairs unprimed and primed lower
case bold Greek indices respectively, i.e., A* € S and B¥ € §'. Dual elements will carry
downstairs indices. The Clifford algebra C4(V, h 45) is isomorphic to End(S®S’) as a matrix

’

algebra, and, linearly, to A*V. We can write its generators in terms of matrices I' A“Y
and I' , (x,y satisfying

p B’ _ _h.ABéﬁ/

YTy P =—hupoh, T B)y 2

Liaa Doy

(Ax!
where (55( and 55 are the identity elements on S and S’ respectively. There are spin-
invariant bilinear forms on S @ S’ inducing isomorphisms §* = §', (§)* = S when m is
even, and S* = S and (S')* =2 S’ when m is odd, and denoted Fg};,, PEB)B’ and Fg};, F((f,)ﬁ,
respectively. The resulting isomorphisms CO(V,hyp) = AV =2 (S §) @ (S@ ) are
realised by A*V-valued bilinear forms ng, for k = m+1 (mod 2), and FEZ;,, for k =m
(mod 2) and so on.

We work in the holomorphic category throughout.

2.1 Smooth quadric hypersurface

Let us denote by X the position vector in V, which can be viewed as standard Cartesian
coordinates on C"2. The equivalence class of non-zero vectors in V that projects down to the
same point in the projective space PV 2 CP"*! will be denoted [-], and thus [X“] will represent
homogeneous coordinates on PV.

The zero set of the quadratic form associated to hyg on V defines a null cone C in V, and
the projectivisation of C defines a smooth quadric hypersurface Q" in PV, i.e.,

Q" = {[X*] e PV: h g XAXP = 0}.

By taking a suitable cross-section of C, one can identify Q™ with the complexification CS™ of
the standard n-sphere S™ in Euclidean space E"*1. Using the affine structure on V, h 45 can be
viewed as a field of bilinear forms on V and thus on C. We can then pull back h 45 to Q™ along
any section of C — Q" to a (holomorphic) metric on Q". Different sections yield conformally
related metrics on Q", i.e., a (holomorphic) conformal structure on Q™. The projective tangent
space at a point p of Q™ with homogeneous coordinate [PA] is the linear subspace

T,Q" := {[X*] € Q": huapX*PP =0},

which can be seen to be the closure of the (holomorphic) tangent space T),,Q™ at p € Q™ in the
usual sense. The intersection of T, Q™ and Q" is a cone through p, and any point lying in this
cone is connected to its vertex by a line that is null with respect to the conformal structure.
To obtain the Kleinian model of Q™, we fix a null vector XA in V, and denote by P the
stabiliser of the line spanned by XAin G. The transitive action of G on V descends to a transitive
action on Q", and since P stabilises a point in Q", we obtain the identification G/P = Q™. The
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subgroup P is a parabolic subgroup of GG, and its Lie algebra p admits a Levi decomposition,
that is, a splitting p = po @ p1, where pg is the reductive Lie algebra so(n,C) @& C, and py
is a nilpotent part, here isomorphic to (C™)*. We choose a complement p_; of p in g, dual
to p1 via the Killing form on g, so that g = p_; ® p. There is a unique element spanning the
centre 3(pg) = C of pg, which acts diagonally on pg, p; and p_; with eigenvalues 0, 1 and —1
respectively. For this reason, we refer to this element as the grading element of the splitting
g = p_1 D po®p1. This splitting is compatible with the Lie bracket [-,-]: g X g — g on g in
the sense that [p;,p;] C piyj, with the convention that p; = {0} for |i| > 1. In particular, it is
invariant under pg, but not under p. However, the filtration p! € p° C p~! := g, where p' := p;
and p° := po @ p1, is a filtration of p-modules on g, and each of the p-modules p~!/p®, p°/p!
and p' is linearly isomorphic to the pp-modules p_1, po and p; respectively. These properties
are most easily verified by realising g in matrix form, i.e.,

0 o1 poipope ) b 0 P poipo ) b

when n = 2m + 1 and n = 2m respectively.

Given a vector representation V' of P, one can construct the holomorphic homogeneous vector
bundle G xp V over G/P: this is the orbit space of a point in G x V under the right action
of G. In particular, the tangent bundle of Q™ can be described as T(G/P) = G xp (g/p), and
the tangent space at any point of Q™ is isomorphic to p_; = g/p — for a proof, see, e.g., [9].
Similarly, denoting by Py the reductive subgroup of P with Lie algebra pg, we can construct
holomorphic homogeneous vector bundles from representations of Fj.

2.1.1 The tractor bundle

An important homogeneous vector bundle over Q" is the one constructed from the standard
representation V of G. It leads to a conformal invariant calculus, known as tractor calculus. The
reader should consult, e.g., [1, 12] for further details.

Definition 2.1. The (complex) standard tractor bundle over Q™ = G/P is the rank-(n + 2)
vector bundle 7 :=G xpV=G/P x V.

The symmetric bilinear form hy p on V induces a non-degenerate holomorphic section of
®2T* — Q" on T, called the tractor metric, also denoted by h4p. Further, the affine structure
on V induces a unique tractor connection on T preserving h.4zs.

The vector space V admits a filtration of P-modules V =: V™! 5 V0 5 V!, where V! = <XA>
and V? is the orthogonal complement of V!, These P-modules and their quotients V¢/Vi*! give
rise to P-invariant vector bundles as explained above. For convenience, we choose a splitting

V=V_ &V, V, (2.3)

where Vi := V7!, V_; is a null line in V complementary to VO C V=, and Vj is the n-
dimensional vector subspace orthogonal to both V_; and V;. We note the linear isomorphisms
V_o12V~1/V% and Vo 2 VO VL

Let us introduce some abstract index notation. Elements of Vg and its dual (Vo)* will be
adorned with upstairs and downstairs lower-case Roman indices respectively, e.g., V* € Vy and
ag € (Vo)*. We fix a null vector YA spanning V_; such that XAY, = 1. We also introduce
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the injector Z;;l Vo — V. Then, hyp restricts to a non-degenerate symmetric bilinear form
Jab = ZO;“ZObB h 4 on Vq. Indices can be raised or lowered by means of h 45, g and their inverses.

A geometric interpretation of T — G/P can be found in [12] in a real setting. Here, we
note that the line subbundle G xp V! of T can be identified with the pull-back O[—1] of the
tautological line bundle O(—1) on PV to Q™. The bundle G xp (V~!/V?) is isomorphic to the
dual of O[—1], i.e., to the pullback O[1] of the hyperplane bundle O(1) on PV. Finally, since
p_1 ® Vq 2V, we have the identification G xp (V0/V!) 2 TQ" @ O[-1].

The structure sheaf of Q™ will be denoted O, and the sheaf of germs of holomorphic functions
on Q" homogeneous of degree w by Ow]. We shall write O® for the sheaf of germs of holomorphic
sections of TQ", and extend this notation in the obvious way to tensor products, e.g., (’)fb[w] =
OA® O, ® O[w], and so on. In particular, the sheaf of germs of holomorphic sections of the
tractor bundle T reads

04 = 0[1] + 0-1] + O[-1]. (2.4)

The line bundle O[1] has the geometric interpretation of the bundle of conformal scales, and
the conformal structure on Q" can be equivalently encoded in terms of a distinguished global
section gap of O(qp)[2] called the conformal metric. For any non-vanishing local section o of O[1],
Gab = 0 2gap is a metric in the conformal class. A choice of metric in the conformal class is
essentially equivalently to a splitting of (2.4), i.e., a choice of section YA of O4[—1] such that
YAY,4 =0 and XYy = 1, where we view X4 € O4[1] as the Euler vector field on C ¢ V. We
can then choose a section ZA of OA[1] satisfying ZAZy4 = gap and ZAX 4 = ZAY4 = 0, so
that the tractor metric takes the form hap = 2X4Yp) + Znggab — see, e.g., [15]. A section XA
of OA can be expressed as

SA = oY A + 0024 + pXA, where (0,¢% p) € O[1] & O%[—1] & O]-1]. (2.5)

We shall denote both the tractor connection and the Levi-Civita connection of a metric in the
conformal class by V,. The explicit formula for the tractor connection on a section (2.5) of 04
in terms of a splitting of (2.4) can then be recovered from the Leibniz rule and the formulae

VXA =24 VoZP = —Pup XA —guYA, V. YA=PZ%, (2.6)

where Py, is the Schouten tensor of V, defined by the relation 2V, VyV¢ = QPC[aVb] —
2VIP ;1,05

Complex Euclidean space. Most of this paper will be concerned with the geometry on
n-dimensional complex Euclidean space CE™ viewed as a dense open subset of Q" i.e., CE"” =
Q™ \ {oo} where oo is a point at ‘infinity’ on CS™ = Q™. We choose a conformal scale o € O[1]
so that g,y is the flat metric, i.e., Py, = 0. To realise o geometrically, we use the splitting (2.3).
Then, CE" arises as the intersection of the affine hyperplane H := {X AcV: X A?A = 1} with
C: Vi = (XA descends to the origin on CE”, and V_; = (YA) represents oo on Q™. The flat
metric gqp is obtained by pulling back h 45 along the local section CN'H of C — Q™. Letting {2}
be flat coordinates on CE" so that V, = 8%“, we can integrate (2.6) explicitly to get

YA =YA, ZA = ZA — gty A, XA = XA 42070 - %gabxaxbf/““. (2.7)

This description is also consistent with the identification of CE™ with the tangent space at the
‘origin’ of Q™. In this case, the coordinates {z%} arise from p_; = V_; ® Vj via the exponential
map, which provides an embedding of CE" into Q", x® ++ [X“] where X is given by (2.7).
The embedding can in fact be extended to a conformal embedding

CE" —» C — 9",

7% QXA = QXA + a:“QZC“L4 — %(Q2gabxaxb)971f/“4 > [XA},
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obtained by intersecting C with the affine hypersurface Hq := { XA € V: X Ay, = Q}, where
is a non-vanishing holomorphic function on V.

2.1.2 The tractor spinor bundle

We can play the same game by considering bundles over Q™ arising from the spinor representa-
tions of G = Spin(n + 2,C). Again, we distinguish the odd- and even-dimensional cases.
Odd dimensions. Assume n =2m + 1.

Definition 2.2. The tractor spinor bundle and dual tractor spinor bundle over Q™ = G /P are
the holomorphic homogeneous vector bundles § := G xp S and §* := G X p S* respectively.

The generators I' A“B of the Clifford algebra (V,h4p) induce holomorphic sections of 7* ®
S*® S on Q" which we shall also denote by I’ A “B. The tractor connection on Q™ extends to
a tractor spinor connection on S preserving FAaB, and thus hyg.

There is a filtration of P-submodules S =: S~% > S3. These P-modules and their quotients

give rise to P-invariant vector bundles on Q" in the standard way. The splitting (2.3) of V
induces a splitting

S=ES_1 eS8, (2-8>
2 2

where S1 2 V; ® S_1, and we can identify S_1, and thus Si, as the spinor representation for
2 2 2 2
(Vo, gap). Similar considerations apply to S*. See, e.g., [16, 17] for details.
Elements of S, 1 will carry bold upper case Roman indices, e.g., A es 1 1. The Clifford
2 2
algebra generators 7, AB satisfy Va Ac'yb)CB = — gabcs_l;:, where 52 is the identity on S 1. There

. . . o 0 . . e
is a spin-invariant bilinear form 7&])3 on S, 1, by means of which we can define bilinear forms
2

(k) — C Cx,. (0)
Yay..arAB "= Va A P Var)Cr_1 k'YCkB7
from S;1 x S;1 to NV for k = 1,...,n. We introduce projectors OOQ: S — S_1 and
2 2 2

iﬁ‘: S — S%, and injectors IDX: S_ 1 — S and OQX: S% — S, which satisfy OOEIEX = 52 and

Ooéloﬁ + .féOofi = 55’(. Then one can check that the relation between FAO(B and %AB is given by

N

i = 2308 Brua® — 1808,aP) + VEV,OROR — VEXLIALL 29)

Sheaves of germs of holomorphic sections of G X p (Sfé /Sfé) will be denoted O#, and we
shall write OA[—1] := OA ® O[-1], and similarly for dual bundles in the obvious way. In
particular, the sheaves of germs of holomorphic sections of S and its dual are given by

0% =072+ OA—1], Oy = Op[l] + Oq, (2.10)

respectively. The splitting of (2.10) can be realised by means of injectors/projectors O% €
O, IA € OR[-1], 0% € O%[1] and I§ € 0%, such that OYIg = 68, A0 = 55, and
Oﬁ‘[i + Ioj}Og = 5&, while all the other pairings are zero. In particular, we shall express
a section of O% as

E* = IR¢* +04¢*, where (¢4,¢%) € 0% + 0A[-1],

and similarly for dual tractor spinors.
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By abuse of notation, the connection on § and the spin connection associated to a metric in
the conformal class will both be denoted V,. They satisfy

1 1
V.0f = _ﬁyaBAIol?v Valg = _Epab‘beAOE’
1 1
V,0% = —v,ABIS, VoI§ = —P,_, v’ ABOE, 2.11
aVA \@YQA B A~ /2 awY A UB ( )
where vy, ,B € O, ,B[1] satisfy y(aACyb)CB = —gup05. The bundle analogue of (2.9) is

Tk = Z4 (OB 15y A8 — T205 Y, AB) + V2Y40408 — V2X 4T21% .

With a choice of conformal scale ¢ € O[1] for which gu, = 0 2gy is flat, i.e., Py = 0,

equations (2.11) can be integrated explicitly to give
=18 0% =0%+ satuall I =If 0k =0k - ataPiE
where 'yaAB = ailyaAB.

Even dimensions. When n = 2m, the story is similar, except that, by virtue of the two
chiral spinor representations, we have an unprimed tractor spinor bundle and a primed tractor
spinor bundle, defined as S := GxpSand § := G xpS respectively. We shall view the genera-
tors I' 4, B and L, P as holomorphic sections of 7* ® §* ® 8" and T* @ (8')* © S respectively
on Q" both of Wthh are preserved by the extension of the tractor connection to S ®S.

The SpanI‘ spaces S and S’ admit filtrations of P-submodules S =: S~ 35S and § =

S 2 P 2. These P-modules and their quotients give rise to P-invariant vector bundles on Q”
in the standard way. The splitting (2.3) on V induces a splitting of these filtrations

S~S_ 1 ®Sy, S~s , oS, (2.12)
2 2 2 2

where S’ 2V, ®S 1 and Sl =V, ®8 ,, and we can identify S 1 and S" L and thus S’

l\')

2
and Si, as the chiral spinor representations of (Vo, gap). Elements of S_ 1 and Si will carry
unprlmed and primed upper case Roman indices respectively, e.g., n € S 1 and §A eS_1.
2 2

The generators of the Chfford algebra are matrices denoted 'ya A B’ and 'yaB, , satisfying the

Clifford identities V(aA vb) — a8 A and V(ar’ 71;) B’ — a0 B A» Where 6B A and 52 are

the identity elements on S_1 and S1 respectively. We also obtain spin invariant bihnear forms
2

2
VXC,)B,, 71(5])3 and 71(51)3/ The story for S’ is similar.

We introduce projectors OA I3 /A" and injectors IX‘ and OOX, for the splitting (2.12), normalised
in the obvious way. The relation between the generators of the Clifford algebra C/(V,h45) and
those of C/(Vy, gup) is then given by

D = Z8(ORIE A — 1 OF ua) +VIVAOROK — VAX TN IE

and similar for T" 4 a,ﬁ by interchanging primed and unprimed indices.

These algebraic objects extend to weighted tensor or spinor fields just as in odd dimensions
in the obvious way and notation. In particular, we have composition series of the unprimed and
primed tractor spinor bundles:

0% =02+ 0A-1], 0¥ =0 +0A-1],
Oa:OA/[l]—i-OA, Oy ZOA[l]-i-OA/.
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2.2 Twistor space

The linear subspaces of Q™ can be described in terms of representations of G = Spin(n + 2,C).
We shall be interested in those of maximal dimension, arising from maximal totally null vector
subspaces of (V, h4z). In even dimensions, the complex orientation on V determines the duality
of the corresponding linear subspaces, via Hodge duality, which are then described as either
self-dual or anti-self-dual.

Definition 2.3. An m-dimensional linear subspace of Q*™*1 is called a y-plane. A self-dual,
respectively, anti-self-dual, m-dimensional linear subspace of Q%™ is called an a-plane, respec-
tively, a B-plane.

We call the space of all y-planes in Q?™*! the twistor space of Q*"*+1 and denote it
by PT (2, 41)- The space of all a-planes, respectively, 8-planes in Q%™ will be called the twistor
space PT (g, respectively, the primed twistor space IP’]I‘?Qm).

A point in PT will be referred to as a twistor.

We shall often write PT and PT’ for PT (o, 41) or PT(s,,), and P']I"(Qm) respectively. We now
distinguish the odd- and even-dimensional cases.

2.2.1 0Odd dimensions

Assume n = 2m + 1. Let Z%* be a non-zero spinor in S, and define the linear map
Z% =T 3%2P: V= (2.13)

By (2.1), the kernel of (2.13) is a totally null vector subspace of V, and if it is non-trivial,
descends to a linear subspace of Q".

Definition 2.4. We say that a non-zero spinor Z% in S is pure if the kernel of Z§% := I‘Aﬁ"‘Zf5
has maximal dimension m + 1.

The (m + 1)-dimensional totally null subspace of V associated in this way to a pure spinor
descends to a v-plane in Q". Clearly, any two pure spinors differing by a factor give rise to the
same ~-plane. Further, one can show that any -plane in Q" arises from a pure spinor up to
scale. Hence,

Proposition 2.5 ([10]). The twistor space PT of Q*™*! is isomorphic to the projectivisation
of the space of all pure spinors in S.

k)

Every non-zero spinor in S is pure when m = 1. Let us recall that the foﬁ in the next

theorem denote the spin bilinear forms defined by (2.2).

Theorem 2.6 ([10]). When m > 1, a non-zero spinor Z* in S is pure if and only if it satisfies

I‘%Z“ZBZO, forall k<m+1, k=m+2,m+1 (mod4), (2.14)

(m+1)
and F;g AVAE A
Alternatively, the quadratic relations (2.14) can be expressed more succinctly by [35]
zA2Zb 1 7%78 = 0. (2.15)

In analogy with the description of the quadric, we shall view Z% as a position vector or
coordinates on S. The twistor space of Q™ can then be described as a complex projective variety
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of the projectivisation PS of S with homogeneous coordinates [Z%] satisfying (2.14) or (2.15)
when m > 1. For @3, we have PT(3) = CP3.

We shall adopt the following notation: if Z is a point in PT, with homogeneous coordina-
tes [Z%], then the corresponding y-plane in Q" will be denoted Z, i.e.,

Z:={[x" e Q" X425 =0}.

Let E be a twistor with homogeneous coordinates [£%] and associated y-plane Z in Q™. The
projective tangent space of PT at = is the linear subspace of PS defined by

T=PT := {[Z%] € PS: T} 7%2P = 0, for all k <m — 1}. (2.16)
This is the closure of the holomorphic tangent space T=PT at =, and contains the linear subspace
D= = {[2% € PS: T 7%=P = 0, for all k < m}. (2.17)

This is the closure of a subspace D= of T=PT. The smooth assignment of every point = of PT
of Dz yields a distribution that we shall denote D. Another convenient way of expressing the
locus in (2.17) is [35]

0= zA=Pk 4 27P=> - 7>=P, (2.18)

where Z§ =T 43*ZP and 2§ :=T 43%=P.

To understand PT more fully, we realise it as a Kleinian geometry. Let us fix a pure spinor =%,
and denote by R the stabiliser of its span in G. This is a parabolic subgroup of G. Then, PT
is isomorphic to G/R. One could equivalently realise PT as the quotient of SO(n + 2, C) by the
stabiliser of the corresponding y-plane Z in Q". The Lie algebra t of R induces a |2|-grading on
g,ie,g=t 2@t 1 Dro® ] Dy, where t = vg @ 11 @ to, with tg = gl(m + 1,C), t_1 = C™F!
and t_p 2 A2C™H and v_1 = (11)*, t_2 = (t2)*. In matrix form, this reads as

h

0 ;‘szgtfl;to;to }1

These tp-modules satisfy the commutation relations [v;,t;] C v;4; where v; = {0} for |i| > 2.
Further, g is equipped with a filtration of t-modules g := t™2 D ™! > ¥ > ¢! > % where
th = 1; @ ¢! satisfy [vf,v/] € ¢'J. In particular, g/t is not an irreducible t-module, but admits
a splitting into irreducible t-submodules t=!/v and tv=2/t~!. Since the tangent space at any
point of G/R can be identified with the quotient g/t, i.e., T(G/R) = G xg (g/t), the tangent
bundle of PT admits a filtration of R-invariant subbundles TPT = T—2PT > T~ !PT, where the
rank-(m + 1) distribution

T 'PT := G xp (v '/x) (2.19)

is maximally non-integrable by virtue of the commutation relations among the various graded

pieces of g, i.e., at every point Z € PT, T,'PT = t_; and [T,'PT,T,'PT]+T,'PT =t ®r_o.
We shall presently show that the distributions D defined in terms of (2.17) and T~!PT

defined by (2.19) are the same. We first note that any spinor Z% € S can be expressed as

[(m+1)/2] Nk 1
[ —_) X
7% — Z(O):a —+ E <—4> H (Z(—Qk:) . .:.)
k=1
. [(m+1)/2]

i 1\* 1 —
+ 5 ;) <—4> E (Z(72k71) . \:)“, (220)
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where Z(_;) € Nt_y 22 ANPC™FL and [mT“} is mTH when m + 1 is even, 3 when m + 1 is odd.
Here, the - denotes the Clifford action, i.e., (& -Z)* = @AFA[S“EB, and so on as extended to the
action of A®*V on S. The factors have been chosen for convenience. The representation (2.20) is
sometimes referred to as the Fock representation [7], and is already used implicitly in Cartan’s
work [10], where the Z(_j are viewed as the components of a spinor.

Now, using (2.1) and (2.2), together with (2.14) applied to 2%, we compute F(mH)Z“"“ =

Zo PP Ea2* and, for k > 0,

B
k
F(m 2k+1) Z(x:a: 71 ZBl BQkF(m+1) —Xmx
At A op 1 - 4 k! (—2k) Bi..Bop A1 A —2k 10—

+ I <_1> lzsl---52k+1r(m+2)

[anl® dumi® 4
5 4 k! 7 (—2k-1) Bi..Bopt1 A1 Ay o= =
k
p(m=2k) goaga _ 1 N1 op B2k+1r(m+1) zaza
Al A oo = 2 4] K17(=2k-1) Bopp1Ar Ao T T

k+1
]. 1 Bl-~~B2k+2 (m+2) i & S0 4
+ <_4> (k‘ + 1)!Z(—2k—2) 115’1 Baggo A1 Ay _opaf— = - (2'21)
Here, we have added tractor indices to the Z_;. We can immediately conclude
Lemma 2.7. The conditions that [Z*] € PS lies in T=PT and D= respectively are equivalent to

Z% = ZgyE* + %(Z(_l) )% - H(Z(_g)- 5)"‘, (2.22)
7%= ZpE*+ 5(Z-1y - B)°, (2.23)

[1]

respectively, up to overall factors. When Zy is non-zero, [Z%] given by (2.22) and (2.23) lies
in T=PT and D= respectively. In particular, D = T~'PT.

Proof. Equations (2.22) and (2.23) follow from definitions (2.16) and (2.17) using (2.21). Equa-
tion (2.23) with Z(g) = 1 coincides with the exponential of an element of t_; and thus describes
a point in T;IP"]T. The story for (2.22) is similar. |

On the other hand, using (2.14) or referring to [10], the condition that Z% be pure is that

Z0yZ(—2k-1) = Z(—1) N\ Z(—2k),
Z(O)Z(—Qk) = Z(_Q) A Z(—2k+2)7 k=1,..., [(m + 1)/2] (2.24)

A dense open subset of PT containing [=%] can be obtained by intersecting the locus (2.24) with
the affine subspace Z) = 1 in S. Summarising,

Proposition 2.8. The twistor space PT of a (2m + 1)-dimensional smooth quadric Q>+ has
dimension (m + 1)(m + 2), and is equipped with a mazimally non-integrable distribution D of
rank m + 1, , TPT = D + [D, D], where, for any = € PT, Dz is a dense open subset of Dg
as defined by (2.17).

Further, for any = € PT, the projective tangent space T=PT intersects PT in a (2m + 1)-
dimensional linear subspace of PT, and Dg is an (m + 1)-dimensional linear subspace of PT.

Proof. The first part has already been explained and stems from the general theory of [9].
For the second part, we fix a pure spinor 2%, and let [Z%] be an element of the projective

tangent space TzPT so that Z% takes the form (2.22). If [Z%] also lies in PT, then, with

reference to (2.24), Z(_1) A Z(_g) = 0 and Z(_9) A Z(_gy = 0. Generically, Z_; is non-zero, so

Z(_9) = Z(—1) N ®(_y) for some @) € v_;. The form of Z_5) remains invariant under the



12 A. Taghavi-Chabert

transformation ®(_qy — ®(_;)+aZ_y) for any a € C. The choice of Z(g) is cancelled out by the
freedom in the choice of scale of (2.22). Thus, dim (TzPTNPT) =2x (m+1)—1=2m+ 1.
If [Z%] lies in D=PT , then it takes the form (2.23). In this case, the purity conditions (2.24) do
not yield any further constraints, and thus [Z%] must also lie in PT. |

Definition 2.9. The rank-(m+1) distribution D will be referred to as the canonical distribution
of PT.

When m = 1, the twistor space of Q3 is simply CP3 and the canonical distribution D is the

rank-2 contact distribution annihilated by the contact 1-form a := Fg}; Z%dZPB. The appropriate
generalisation of this contact 1-form to dimension 2m + 1 is then the set of 1-forms

a*f .= zA%d78 1 27Pdz* — 7*dZP, (2.25)

annihilating the canonical distribution D. Here, the homogeneous coordinates [Z%] are assumed
to satisfy (2.14) or (2.15).

The following lemma follows directly from the exponential map from a given complement of ©
in g to a dense open subset of PT.

Lemma 2.10. Let = be a point in PT, and let v be its stabiliser in g. Then D= is foliated by
a family of distinguished curves passing through = parametrised by the points of the (m + 1)-
dimensional module t_1, for any decomposition t =t_o P t_1 Dty Dty D ta.

Geometric correspondences. The bilinear forms (2.2) can also be used to characterise
the intersections of y-planes in terms of their corresponding pure spinors.

Theorem 2.11 ([10, 17]). Let Z and W be two twistors with homogeneous coordinates [Z%]
and [W¥], and corresponding y-planes Z and W in Q™ respectively. Then

dim (ZNW) >k < TQZ°WP=0, foral (<k.

Further, diim(Z N W) = k if and only if in addition FEZ;DZ“WB #0.
A direct application leads to

Proposition 2.12. Let Z and Z be two twistors with corresponding vy-planes = and Z respec-
tively. Then

1. dim(ZN Z) > m — 3 if and only if there exists W € PT such that W € D=z N TzPT or
W e Dz NT=PT.

2. dim(ENZ) > m—2 if and only if = € TZPT if and only if Z € T=PT if and only if there
exists W € PT such that Z,= € Dyy, or equivalenly W € Dz N Dx=.

3. dim(ENZ) >m — 1 if and only if Z € D= if and only if = € D.
Proof. We fix =% and we assume that Z% is given by (2.20) with components Z_; satis-

fying (2.24). In each case, we apply Theorem 2.11 and compute Fgf%Z“Wﬁ = 0 to derive
conditions on Z_;. With no loss of generality, we may assume Zg) = 1.

1. We have Z(_;) for all i > 4 and Z(_o) N Z(_g) = 0, Le., Z(_g) = 1) A ¥(_y) for some
(13(71)7 \I/(,l) €rt_1,and Z(,g) = Z(,l)/\Z(,Q) = Z(,l)/\@(,l)A\IJ(,l). A suitable W € D=NTzPT
is given by W% = 2% + %(Z(,l) E)%and W = Z%+ 3((®(_1) AV (_y)) - Z)%, and similarly for
a suitable W € Dz N TgPT.

2. The first two equivalences follow immediately from Proposition 2.8 and Theorem 2.11. For
the last equivalence, we have Z_; for all i > 3, so that Z(_gy) A Z(_oy =0 and Z(_1) N Z(_g) =0,
e, Z_g = Z1) N @y for some ®_;) € v—1. A suitable W € Dz N Dz is given by
W =Z2%+ 5(Z_1)-E)* and WS = Z% = L(®(_y) - Z)*.

3. This follows immediately from Proposition 2.8 and Theorem 2.11. |
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In a similar vein, we obtain

—

Proposition 2.13. Fiz a twistor Z in PT and let Z be its corresponding v-plane in Q™. Let Z
and W be two twistors in T=PT, corresponding to y-planes Z and W. Then dim(ZNW) > m—A4.
Further, if Z and W take the respective forms

where Z(O)Z(_Q) = Z(—l) A Z(—l), Z(_g) A Z(_g) =0, W(O)W(_Q) = W(_l) A W(_l) and W(_Q) A\
W(_Q) = 0, then

dim (ZNW)>m—-3 <= Z_y AWy =0, (2.26a)
dim (Z N W) >m—-2 < Z(,l) A W(,g) + W(,l) A Z(,Q) =0, (2.26D)
dim (Z N W) >m—-1 <= W(_g) — Z(_g) — W(—l) A Z(—l) = 0. (2.26¢)

Proof. Let us rewrite

W& =Z%4 3(®1)-2)" = §(P( - 2)°

— 5 () A P(2) - 2)" + 5 (D) A 2(2) - 2)",
where ®_1 ;= W_1 — Z_1 and ®_ 9 = W_9 — Z 5 — W_1 A Z_q. It suffices to compute
TP ZeW® = 0 for all k > 4, and
1) I’ggfk)Z“WB =0 for all k > 3 if and only if ®_g) A P(_g) = 0;
2) Ta ™™ ZoWP = 0 for all k > 2 if and only if B(_;) A ®(_y) = 0;
3) Fgg_k)Z“WB =0 for all k£ > 1 if and only if ®_y) = 0.
Equivalences (2.26a), (2.26b) and (2.26¢) now follow from the definitions of ®(_;y and ®(_y). W

A special case of this proposition is given below.

Corollary 2.14. Fiz a twistor = in PT and let Z be its corresponding ~y-plane in Q". Let Z
and W be two twistors in Dz, corresponding to y-planes Z and W. Then dim(ZNW) > m — 2.

Further, Z and W belong to the same distinguished curve in D=, as defined in Lemma 2.10,
if and only if dim(Z NW) >m — 1.

Proof. This is a direct consequence of Proposition 2.13 with Z_g) = W(_y = 0, and Lem-
ma 2.10. |

2.2.2 Even dimensions

Assume n = 2m. Any non-zero chiral spinor Z% defines a linear map ZJ‘Z{I =T Aﬁ‘"lZ B.V =S,
and similarly for primed spinors. Again, any non-trivial kernel of this map descends to a linear
subspace of Q™. A non-zero chiral spinor Z* is pure if the kernel of Z9 has maximal dimension
m + 1, and similarly for primed spinors.

Proposition 2.15 ([10]). The twistor space PT and the primed twistor space PT' of Q*™ are
isomorphic to the projectivations of the spaces of all pure spinors in' S and S’ respectively.
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When m = 2, all spinors in S and S’ are pure. When m > 2, the analogue of the purity
condition (2.14) is now [10]

FféZ“Zf’ =0, forall k<m+1, k=m+1 (mod4), (2.27)

or alternatively, [20, 34], ZA% Zﬁ, = 0. Again, we will think of PT and PT’ as complex projective
varieties of PS and PS’ respectively, when m > 2, while for Q*, we have PTy4) = CP3.

The Kleinian model is again a homogeneous space G/R, where R is parabolic. But its
parabolic Lie algebra t this time induces a |1|-grading g = t—1 ® to © t1 on g, where vy =
gl(m +1,C), t_1 2 A2C™H and t; 2 A2(C™ L)% and t = vg @ vy, as given in matrix form by

Again, the one-dimensional center of vy is spanned by a unique grading element with eigenva-
lues 7 on v;. In this case, the tangent space of any point of G/R is irreducible and linearly
isomorphic to t_j.

Unlike in odd dimensions, the twistor space of Q%™ is not equipped with any canonical
rank-m distribution. As we shall see in Section 2.2.3, one requires an additional structure to
endow PTy,,) with one.

Proposition 2.16. The twistor space PT of a 2m-dimensional smooth quadric Q™ has dimen-
sion %m(m +1). Further, for any Z of PT, the projective tangent space T zPT intersects PT in

a (2m — 1)-dimensional linear subspace of PT.
Arguments similar to those used in odd dimensions lead to the following proposition.

Proposition 2.17. Let Z and W be two twistors corresponding to a-planes Z and W. Then
dim(ZNW) € {m —2,m} if and only if Z € TwPT, or equivalently, W € TzPT. Further, if Z
and W lie in T=PT for some twistor E in PT, then dim(Z N W) € {m —4,m — 2, m}.

2.2.3 From even to odd dimensions

We note that as 2(m + 1)(m + 2)-dimensional projective complex varieties of CP2""' 1 the

respective twistor spaces PT := PT(y,,41) and PT := PT(9p42) of Q?m+1 and Q?"*2 are iso-
morphic. The only geometric structure that distinguishes the former from the latter is the
rank-(m + 1) canonical distribution. It is shown in [13] how PT can be viewed as a ‘Fefferman
space’ over PT — in fact, this reference deals with a more general, curved, setting. Here, we
explain how the canonical distribution on PT arises as one ‘descends’ from PT to PT.

Let V be a (2m + 4)-dimensional oriented complex vector space equipped with a non-
degenerate symmetric bilinear form h 5. Denote by X4 the standard coordinates on V. As
before, we realise Q*™*+2 as a smooth quadric of PV with twistor spaces PT and Iﬁl‘l induced
from the irreducible spinor representations Sand § of (X~7, h 45)- Now, fix a unit vector U4 in YN/,
so that V=U &V, where U := (UA), and V := Ut is its orthogonal complement in V. Then V
is equipped with a non-degenerate symmetric bilinear form hyg := h A5 — UUp, and we can
realise Q%" *! as a smooth quadric of PV with twistor space PT induced from the irreducible
spinor representation S of (V, h4p).
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Observe that U4 defines two invertible linear maps,
Ub, =UAT, P § =S, U =UAT, F§oF,
B/ generate the Clifford algebra C/¢ (@' h AB). These maps allow us to identi-

fy S with S’ and thus PT W1th PT . Further, usmg the Clifford property, it is straightforward
to check that I’Aa = hBI’BO‘Y UB, = —hB UY FBy UBF Ba generate the Clifford algebra
CL(V, hap). More generally, the relatlon between the spanning elements of C/(V, h 45) and those
of CU(V, h4p) is given by

where T Ao B and f

k k
F( ) CAgap T hBl h ( ) - Brap’ k=m+2 (mod 2), (2.28)

k k k
F( ) A T UBF( ) e ABop = (= 1)khf\1 : th U F( ) kE=m+1 (mod 2).

< BrY'B’

If we now introduce homogeneous coordinates [Z%] on IP’S, we can identify the twistor space PT
equipped with its canonical distribution with the twistor space IPT, as can be seen by inspection

of (2.14) and (2.27). Note that we could have played the same game with PT .

Let us interpret this more geometrically. Clearly, the embedding of Q*™*! into Q"+ arises
as the intersection of the hyperplane U4X# = 0 in PV with the cone over 92m+2. A y-plane
of @*™+1 then arises as the intersection of an a-plane of Q*™*+2 with Q?™*! and similarly for (-
planes. An a-plane Z and a 3-plane W define the same ~-plane if and only if their corresponding
twistors satisfy Z% = U g‘,Wﬁl. In particular, such a pair must intersect maximally, i.e., in an

m-plane in Q*™*2. This much is already outlined in the appendix of [31].

Finally, we can see how the canonical distribution D on PT arises geometrically from PT
and PT . Fix a point [E%] in PT. This represents an a-plane Z in Q>"*2, and so a ~-plane
in Q2m+1 which also corresponds to the unique 5 plane with associated primed twistor [U "":B}

in IP"]I‘ We claim that the S-planes intersecting = rnaxnnally are in one-to-one correspondence
with the points of Dz. To see this, let [Z%] be a point in T=PT C PS so that

f%Z“Eﬁ =0, forall k<m, k=m (mod 2).
We can then conclude [Z%] € T=PT by virtue of (2.16) and (2.28) as expected. Now, consider the

. , —~/
set of all B-planes intersecting = maximally: these correspond to all primed twistors [W*'] € PT
satisfying

TWY=P =0,  forall k<m+1, k=m+1 (mod?2).

« W8 and using (2.28) again

Identifying B-planes and a-planes on Q*™*1 ie., setting Z% = Y

precisely yield that [Z%] € Dz by virtue of (2.17).
2.3 Correspondence space

We now formalise the correspondence between Q™ and PT.

2.3.1 0Odd dimensions

Assume n = 2m + 1.

Definition 2.18. The correspondence space F of Q™ and PT is the projective complex subvariety
of Q" x PT defined as the set of points ([X4],[Z%]) satisfying the incidence relation

xAz8 = o, (2.29)

where Zﬁ = FA“BZ“.
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The usual way of understanding the twistor correspondence is by means of the double
fibration

F
N
on PT,

where p and v denote the usual projections of maximal rank.
Clearly, since, by definition, a twistor [Z%] in PT corresponds to a y-plane of Q" namely the
set of points [X] in Q" satisfying (2.29), we see that each fiber of y is isomorphic to CP™.
Now, a point x of Q" is sent to a compact complex submanifold % of PT isomorphic to the
fiber F, of F over x, and similarly, a subset & of Q™ will correspond to a subset U of PT swept
out by those complex submanifolds {Z} parametrised by the points = € U, i.e.,

re Q"= F, :=v z)— i:= u,), Uco"—Fy = UI/_l(l‘) —U = Uy(]Fz)
zeUd zeUl

To describe Z, it is enough to describe the fiber F,. By definition, this is the set of all y-planes
incident on z. If Z is a y-plane incident on z, the intersection Z N T, Q" is an m-dimensional
subspace totally null with respect to the bilinear form on T, Q™ = CE"™, which we shall also refer
to a y-plane. This descends to a v-plane in Q*"~! viewed as the projectivisation of the null cone
thr0121gh 13;. Thus, & = F, is isomorphic to the %m(m + 1)-dimensional twistor space PT g,,_1)
of 9“m~—1,

We can get a little more information about F by viewing it as the homogeneous space G/Q
where ) := PN R is the intersection of P, the stabiliser of a null line in V, and R the stabiliser
of a totally null (m + 1)-plane containing that line. The Lie algebra q of @) induces a |3|-grading
ong,le,g=q-309-2Dq-1Dqo D q1 D2 @ q3, where q = qo © q1 B q2 ® q3. For convenience,
we split q41 and qio further as qu1 = q%; ® g, and qi0 = q¥, ® q4,. Also, qo = gl(m,C) & C,
qf, =2 Cm, qf ) = (C™)*, qF, 2 C, qF, = A2C™ and q_3 = (C™)* with (q;)* = q_;. In matrix
form, g reads as

doiqr a5 g3 0 h
: .
h
}m
h
These modules satisfy the commutation relations [q;, q;] C qi4; where q; = {0} for |i| > 3. More

precisely, the action of q; on these modules, carefully distinguishing qf and qf , can be recorded
in the form of a diagram:




Twistor Geometry of Null Foliations in Complex Euclidean Space 17

where the dotted arrows give the relations between gg-modules, and po- and tp-modules. Invari-
ance follows from the inclusions q¥ C v, qf C po, ¥ C p1 and qf C 1.

Beside the filtration of vector subbundles of TF determined by the grading on g, we distin-
guish three Q-invariant distributions of interest on F:

e the rank—%m(m + 1) distribution T}QF corresponding to qf 9 @ qt 1- It is integrable and
tangent to the fibersof v : G/Q — G / P, each isomorphic to the homogeneous space P/Q.
This follows from the relations [qf;, q¥;] € q%5, [qF;,qF5] = 0, and [q€2, q%,] = 0, and the
fact that the kernel of the projection g/q — g/p is precisely ¥y ©q'; = p/q. In fact, since
[q 15 qf 1] C qf o, €ach fiber is itself equipped with the canonical dlstrlbutlon on PT(g,,1).

e the rank-m distribution TElF corresponding to q¥;. It is integrable and tangent to the
fibers of u: G/Q — G/ R each isomorphic to the homogeneous space R/Q. This follows
from the relatlons (9%, 9%,] = 0 and the fact that the kernel of the projection g/q — g/t

is precisely q¥; = t/q.

e the rank-(2m+ 1) distribution TEQIF corresponding to qiEQ Equ 1P q§ 1- It is non-integrable
and bracket generates TTF since we have [q’fl, qul] C qgga [qglv qgg] =0, [qﬂ, qu] C q-_3,
(a7, q%,] C q_3. Further, the quotient T;°F/T,'F descends to the canonical distribution
T-1PT.

The twistor space and correspondence space of CE?"t!, At this stage, we introduce
a splitting (2.3) of V, and as before denote by XA Y4 and Z{l‘l vectors in Vq, V_; and Vg respec-
tively. There is an induced splitting (2.8) of S, and we shall accordingly split the homogeneous
twistor coordinates as Z% = (w®, ™), or, using the injectors, as

7% = I%w™ + 0% (2.30)

Needless to say that Cartan’s theory of spinors applies to S_1 and S1 in the obvious way and

2 2
notation, as we have done in Section 2.2. In particular, a spinor 7® is pure if and only if the
kernel of the map w2 := ﬂ'B’}/aBA is of maximal dimension m, and so on. The purity condition

on Z% can then be re-expressed as follows.

Lemma 2.19. Let Z% = (w®,7™) be a non-zero spinor in S = S_% &) S%. Then Z% is pure,
e., satisfies (2.14), if and only if w® and ™™ satisfy
’y‘(A])37rA7TB 0, forall k<m, k=m+1,m (mod 4), (2.31a)
vgéwAwB 0, forall k<m, k=m+1,m (mod4), (2.31Db)
'y&%u}AﬂB 0, forall k<m—1. (2.31c)

Proof. This is a direct computation using (2.15), (2.9) and (2.30). Writing 72 := 7B+, g# and

wh = wBPyaBA, we find

7r“A7rB + 7278 =0, waAwB + whwB =0, W“Awf' — mAWB 4+ 2078 =0,

which are equivalent to (2.31a), (2.31b) and (2.31c) respectively [35]. [ |

By Cartan’s theory of spinors, condition (2.31a) is equivalent to 7* being pure provided it
is non-zero, and similarly for condition (2.31b) and w?. Condition (2.31c) is equivalent to the
y-planes of 7 and w” intersecting in an m- or (m — 1)-plane in Vq provided these are non-zero.
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Remark 2.20. The annihilator (2.25) of the canonical distribution of PT can be re-expressed
as

a‘(AB )= wdwB + 2wBdwA — WwAdw®B,

w,w

a?B) = W“Adﬂf’ + 27BdrA — 7AdnB,

T,

a?B = w8 4+ wAdrB + AxlAdw®B

w,m) T

alB) = 1A dwp + rhdw® + 4wt dr®,

(2.32)

where we have used (2.30) and (2.9), and it is understood that w® and 7# satisfy (2.31).

The twistor correspondence associates to the point co in @™, with coordinates [)Q/A], a complex
submanifold 50 of PT defined by the locus Y4Z% = 0 in PT, i.e.,

00 € Q" Fo =1 (00) = 30 := pu(Foo) = o v 1(o0).

Points of 50 are parametrised by [w?,0]. Since removing oo from Q" yields complex Euclidean
space CE™, we accordingly remove 50 to obtain the twistor space PT\ {0} = por~(CE") of CE".
This will be denoted by PT\s. This region of twistor space is parametrised by {[wh, 4]
A #£ 0}

The correspondence space of CE" will be denoted Fcgr, and is parametrised by the coordi-
nates (2%, [r2]), where {z} are the flat standard coordinates on CE” and [7] are homogeneous
pure spinor coordinates on the fibers of F. These parametrise the -planes of the tangent space
T,CE™ at a point 2 in CE”, and are related to [w®, 78] by means of the incidence relation (2.29)

wh = %xawf, (2.33)
which can be obtained from (2.7), (2.9) and (2.30). Indeed, the y-plane defined by [r*] through
the origin is given by the locus %xawc"}, so that the y-plane defined by [7rA] through any other
point £¢ is given by (2.33) with wh = %%“Wﬁ.

Remark 2.21. By (2.33) and (2.31a), for a holomorphic function f on F to descend to PT, it
must be annihilated by the differential operator 7lA7*Blv, .

2.3.2 Even dimensions

The double fibration picture in dimension n = 2m is very similar to the odd-dimensional case,
and we only summarise the discussion here.

We realise F as a homogeneous space G/Q. Here, the Lie algebra q of @ induces a |2|-grading
0=020q-1DqoDq1 Dqz on g, where q = qo D1 D 2. We split q1 further as g1 = qF, ®qly,
and we have qg = gl(m,C) ®C, q¥; =2 C™, q¥'; 2 A2C™ and q_3 = (C™)* with (q;)* = q_;. The
action of q; on these go-modules is recorded below together with the matrix form of the splitting:

Do a%
o : qF =
Qg 9 92:0 | h !
PRI q_Q/
-1ido i 41 id2 [ Jm
[ O R o qE\
d-2:9°1 do 4y [ bm Togf,
0 §q72§CI§1§CI0 }1 k \\
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The modules q%; and g%, give rise to two integrable Q-invariant distributions T;lF and
TTEIIE‘ on F of rank %m(m — 1) and m respectively, and tangent to the fibers of G/Q — G/P
and G/Q — G/R respectively.

The twistor space and correspondence space of CE?". The even-dimensional analogue
of Lemma 2.19 is recorded below.

Lemma 2.22. Let Z% = (w™,72) be a spinor in S=S_1 &S. Then Z* is pure if and only
1 1

2
if A and ™ satisfy

’&,)B,WAIWB, =0, forall kE<m, k=m (mod4), (2.34a)
’yX%wAwB =0, forall k<m, k=m (mod4), (2.34Db)
WX%,wAﬂB' =0, forall k<m—-—1, k=m—1 (mod 2). (2.34c¢)

Conditions (2.34a), (2.34b) and (2.34c) can equivalently be expressed as

B =, w“A/w(]?/ =0, W“Awf’/ + 20278 =0,
respectively. By Cartan’s theory of spinors, condition (2.34a) is equivalent to 72" being pure
provided it is non-zero, and similarly for conditions (2.34b) for w®. Condition (2.34c) is equiva-
lent to the a-plane of 74" and the B-plane of w® intersecting in an (m —1)-plane in Vj provided
these are non-zero.

Just as in the odd-dimensional case, the twistor space of CE?™ is obtained by removing the
%m(m — 1)-dimensional complex submanifold 56 corresponding to co on Q*™ from PT. We can
use [74]
can be expressed as w

as homogeneous coordinates on the fibers of Fcgn, and the incidence relation (2.29)
A _ an,ﬂ.A
= J5aimg

2.4 Co-v-planes and mini-twistor space

In odd dimensions, there is an additional geometric object of interest.

Definition 2.23. A co-y-plane is an (m + 1)-dimensional affine subspace of CE?™*! with the
property that the orthogonal complement of its tangent space at any of its point is totally null
with respect to the metric.

The space of all co-y-planes in CE?™*! is called the mini-twistor space of CE*™*+1 and is
denoted MT.

Viewed as a vector subspace of T,CE"™ = CE", a co-y-plane through a point x in CE” is the
orthogonal complement of a ~-plane through x. Consider a co-y-plane through the origin, and
let [7A] be a projective pure spinor associated to the y-plane orthogonal to it. Then, it is easy
to check that this co-vy-plane consists of the set of points z® satisfying tm = %xam’} where

t € C with 2%, = —2t2. Shifting the origin to £ say, a point in a co-y-plane containing % now
satisfies w + 1At = %x“ﬁﬁ for some ¢ € C, and where w® := %j’c“ﬂf‘. Thus, a co-y-plane
through % consists of the set of points satisfying the incidence relation

wiA7Bl = %x”m[lAWB], (2.35)
where [7€] is a projective pure spinor and w® := L z%A. In particular, a co-y-plane consists

V2
of a 1-parameter family of v-planes, and thus corresponds to the curve

C>tr [wh + 78,74 € PT\x. (2.36)
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The relation between MT and PT\g5 can be made precise by involving our choice of ‘infini-

ty’ [Y4] to define CE™. Let us write (Y - Z)% := ?AFAB“ZB. We can then define the vector
field
Y =—(Y - Z = —1"t—F 2.37
V- 2) 5z = 5" aor (2:37)
on PT\g, the factors having been added for later convenience. It is now pretty clear that the
A _A
, .

curve (2.36) is an integral curve of the vector field (2.37) passing through the point |[w
We therefore conclude

Lemma 2.24. Mini-twistor space MIT is the quotient of PT\s5 by the flow of Y defined by (2.37).

An alternative geometric interpretation can be obtained by introducing weighted homoge-
neous coordinates on MT as follows. Since 7® is pure, we can view [ﬂ'A] as homogeneous

coordinates on PT(9p,_1). Let w,, , ~, be an (m — 1)-form satisfying

T, e =0, m>1 (2.38)
Write [Wo, a1 7851 for the equivalence class of pairs (Wayoam_ 1> 7A) defined by the relation

(ﬂal...am,laﬂA) ~ (Az%l_._amil, /\7rA) for some M\ e C*.
Then [Qal...am_laWA]ll constitute weighted homogeneous coordinates on MT. To see this, we
note that for any choice of representative, the condition (2.38) is equivalent to

Yay.am-1 = VC(LTf;i_lABWAwB (2.39)

for some pure spinor w?® satisfying (2.31b). Then, the projection of any [w?, %] in PT\s to

A

[w 7851 is independent of the choice of representative of [w?, 7], and further, since 7

ai...Qm—1"
is pure, i.e., satisfies (2.31a), sending w® to w® + t7# for any ¢ € C leaves (2.39) unchanged.

With these coordinates, we can rewrite the incidence relation (2.35) as

Waroam1 = %:E“v((lz)“_am_lABﬂAﬂB. (2.40)

Now, turning to the geometrical interpretation, we fix a point 7 in PT s, 1) with a choice
of pure spinor 7&. Since T 1]P”]I‘(2m,1) is a dense open subset of an m-dimensional linear
subspace of PT(y,,_1) containing 7, we can identify a vector in T;l]P’T(Qm_l) with a point in this
subspace, which can be represented by a pure spinor w? satisfying (2.31b). At this stage, this
identification is valid provided the scale of 7# is fived. Clearly the origin in T 1[[”’]1‘(2”1,1) is mA
itself, so that (w®,7®) maps injectively to (W 4y .a,._>7)
follows immediately from (2.39). Hence, we can conclude

n). That this map is also surjective

Proposition 2.25. The mini-twistor space MT of CE>™*1 is q %m(m+3)-dimensi0nal complex
manifold isomorphic to the total space of the canonical rank-m distribution T_1PT(2m,1) of the
twistor space PT (o, 1y of Q2m—1,

For clarity, we represent MT by means of an extended double fibration

F(C]En

CE" v P

MT



Twistor Geometry of Null Foliations in Complex Euclidean Space 21

where p, v, 7 and n are the usual projections. We shall introduce the following notation for
submanifolds of MT corresponding to points in CE™:

€ CE" = F, = v Y (z) = 2 := 7(2) = n(F,),

UCCE" =Ty = v (=)= U:=rU)=nFy).
zeU
Remark 2.26. For a holomorphic function on F to descend to MT, it must be annihilated by
the differential operator m*AV,.

2.5 Normal bundles

It will also be convenient to think of the correspondence space as an analytic family {2} of
compact complex submanifolds of twistor space parametrised by the points x of Q™. The way
each Z is embedded in PT is described by its (holomorphic) normal bundle Nz in PT, which is
the rank-(m + 1) vector bundle defined by the short exact sequence

0— Tz — TPT|, - Nz — 0.

As we shall see there are some crucial difference between the odd- and even-dimensional cases.

2.5.1 0Odd dimensions

Assume n = 2m+ 1. We first note that the canonical distribution D on PT defines a subbundle
D|; + T& of TPT|; containing T#. How much of this subbundle descends to N& is answered by
the following lemma.

Lemma 2.27. Let x be a point in Q> Then, for any Z € & C PT, the intersection of Dy
and Tz has dimension m. In particular, T is equipped with a maximally non-integrable rank-m

distribution T~1% := D|z N T&. Further, there is a distinguished line subbundle of the normal
bundle N of & given by N~'4 := (D|; + T2)/Tz.

Proof. Denote by [X“] the homogeneous coordinates of z € Q*"t! and let Z € # C PT so
that X““Ef“l = 0. Then, by Lemma 2.7 and Proposition 2.8, a vector tangent to Dz can be
identified with a point Z% = Z% + 5(Z(_;) - )% of a dense open subset of D=z C PT. Here,
Ziiy €v = =~ C™* lies in a complement of the stabiliser v of = as explained in Section 2.2.
The condition that this vector is also tangent to % is equivalent to 0 = XAZA = —2XAZ( 1)_ ,
by (2.1), i.e., XAZ(_I) = 0. This gives a single additional algebraic condition on Z(—1)7 and thus
the intersection of Dz and Tz is m-dimensional (for a description in affine coordinates, see
the end of Appendix A.1). This defines a rank-m distribution T~# := D|; N T4 on Z. Since D
is maximally non-integrable, so must be T~!'#. That the subbundle N=12 := (D|; + T#)/T&
of Nz is of rank 1 follows from the isomorphism D|;/(D|; N Tz) = (D|; + T:c)/Tx [

That £ is endowed with a canonical rank-m distribution comes as no surprise since each Z is
isomorphic to the generalised flag manifold P/Q = PT s, _1).

As explained in [24], the tangent space at a point x of Q?™*! injects into H°(Z, O(NZ)),
the space of global holomorphic sections of N&. If V¢ is a vector in T, @*™t1 and y the point
infinitesimally separated from z by V@, then the corresponding section of H’(%, O(N%)) can
be identified with ¢. Let us fix = to be the origin in CE*™*! C Q2m+1. Then V* can be
identified with y®. We view 7® as coordinates on & given by the locus w® = 0. The infinitesimal
displacement of & along V' at the origin is VA 1= VoV,wA, ie., VA = \}V“ . This represents
a global holomorphic section YA/I of NZ, and can be identified with the complex submanifold g
given by w = ﬂy“ﬂ'A

Before describing such sections, we shall need the following two lemmata.
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Lemma 2.28. Let V be a non-zero vector in CE*™+1 and let VA]? = V“’yaAB be the corre-
sponding spin endomorphism. Then V¢ is null if and only if VE has a zero eigenvalue. Further,

o if V% isnull, VE has a single zero eigenvalue of algebraic multiplicity 2™, and its eigenspace
is isomorphic to the 2™ ' -dimensional spinor space of CE?™~1,

e if V? is non-null, VAB has a pair of eigenvalues +i/VaV,, each of algebraic multiplici-
ty 2™~ L, and their respective eigenspaces are isomorphic to the 2™ -dimensional chiral
spinor spaces of CE*™.

Proof. By the Clifford property, we have Vf Vg = —VV,08, and it follows that any eigenvalue
of VE must be equal to +iy/V2V,. Hence V® is null if and only if it has a zero eigenvalue. This
zero eigenvalue must be of algebraic multiplicity 2" since in this case VE is nilpotent. One can
check that the kernel of Vf can be identified with the 27~ !-dimensional spinor space of CE?™~!
as the orthogonal complement of V¢ in CE>™*! quotiented by (V).

If V¢ is non-null, the square of VE is proportional to the identity, and thus, each of the
eigenvalues +i/VV, must have algebraic multiplicity 2"~!. Each of the eigenspaces can be
identified with each of the chiral spinor spaces of CE?™ as the orthogonal complement of (V%)
in CE?™*! — see, e.g., [31]. [ |

Lemma 2.29. Let  and y be two points in Q> infinitesimally separated by a non-null
vector V. Then, for every Z € & C PT such that V® is tangent to the co-y-plane Z+ C
T,Q%" 1 Dy intersects § in a unique point W, say, such that the corresponding v-planes Z
and W intersect mazimally.

Proof. With no loss of generality, we may assume that x is the origin in CE*™*+1 ¢ Q?m+1
We then have V¢ = y®. Since V¢ is non-null, it must lie on some co-vy-plane of some twistor Z.
Following the discussion of Section 2.4, it can be represented by a l-parameter family of ~-
planes. In particular, y must lie on one such v-plane. If Z is a point on &, then [Z%] = [0, 74]
for some 7. The condition that y lies on the co-y-plane Z+ is that 7 is an eigenspinor of V¢
with eigenvalue ¢ or —t where t := iy/V4V,. For definiteness, let us assume that the eigenvalue
is t. With reference to (2.36), the point y® lies in the y-plane W given by [W¢] = [tn®, 74].
Re-expressing this twistor as W% = Z% — %}O’AFAB“E“, we see, by Lemma 2.7, that W lies in
the intersection of Dz and g. In fact, one can see that the connecting vector from Z to W is
given by /VeV,Y, where Y is given by (2.37). Finally, by Proposition 2.12, Z and W must

intersect maximally. |

Proposition 2.30. Let = be a point in Q>+ with corresponding submanifold & in PT. Let V
be a tangent vector at x, and Vi its corresponding global holomorphic section of Nz.

e Suppose V is null. When m = 1, 1735 vanishes at a single point on &, which corresponds
to the unique ~y-plane (i.e., null line) to which V is tangent. When m > 1, there is
a %m(m — 1)-dimensional algebraic subset of & biholomorphic to PT (2mm—3) on which V;

vanishes. Each point of this subset corresponds to a v-plane to which V is tangent.

° guppose V is non-null. When m = 1, there are precisely two points, Z+ say, on &, at which
Vi(Zy) € Ngii’ Further, V is tangent to the two co-y-planes determined by Z. When
m > 1, there are two disjoint %m(m— 1)-dimensional algebraic subsets of &, biholomorphic

to PT 2,2y and ]P’T'(Qm_z), over which ‘7x is a section of N"14&. Each point of these subsets
corresponds to a co-y-plane to which V is tangent.

Conversely, if ‘736 vanishes at a point, then V must be null, and if VI(Z) € Nglzf: for some Z € %,
then V. must be non-null.
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Proof. Again, let us assume that z is the origin in CE?>™+1 ¢ Q?™*! and set VE =V, AB
If V@ is null, the vanishing of ‘793 of a point 7 of Z is simply equivalent to VETI’A =0, i.e.,
7 is a pure eigenspinor of Vf. By Lemma 2.28, we can immediately conclude that ‘A/m vanishes
at a point when m = 1, and on a subset of Z biholomorphic to PT(y,,_3) when m > 1. Clearly,
each point of this subset corresponds to a «y-plane to which V¢ is tangent.
If V* is non-null, we know by Lemma 2.28 that V}f has eigenvalues +iy/V@V,. In particular,
the pure eigenspinors up to scale determine two distinct points on & when m = 1, and two

disjoint subsets of Z biholomorphic to the twistor spaces PT(g,,_2) and IPT’(ZmJ) when m > 1.
A point Z on any of these sets corresponds to a co-y-plane Zt to which V¢ is tangent. By
Lemma 2.29, the corresponding submanifold ¢ intersects Dz at a point W. The connecting
vector from Z to W clearly lies in Dz, but is not tangent to . In particular, 1t descends to an
element of N, 1%. Thus, the restriction of V to these subsets is a section of N~1z.

Finally, if Vx vanishes at a point Z say, then V is tangent to the ~v-plane Z, and so must be
null. The non-null case is similar. |

2.5.2 Mini-twistor space

In this case, NZ can be identified with T~'%, i.e., mini-twistor space itself, as follows from the
description of Section 2.4: taking x in CE"™ to be the origin, then the complex submanifold &
in MT is defined by w,, , , =0, 7 will be coordinates on &, and we shall view w,, Lay,_, @S
coordinates off Z.

Again, for any = € CE", T,CE" injects into H(&, O(Nz)). If 2 is the origin and V' € T,CE"
be the vector connecting  to a point y, we can identify the global holomorphic section V; of N2

as in the previous section. If 7® are coordinates on & given by the locus w® = 0, V; can be

1dent1f1ed with the complex submanifold § given by w,, , fy“'y((lz) a1 AB7rA7r where

=V

Proposition 2.31. Let x be a point in CE>™ 1 with corresponding submanifold & in MT. Let V
be a tangent vector at x, and Vy its corresponding global holomorphic section of NZ.

e Suppose V is null. Whenm =1, ‘A/g has a double zero, which corresponds to the y-plane to

which V' is tangent. Whenm > 1, ‘72 vanishes on a %m(m—l)—dimensional algebraic subset

of & biholomorphic to PT o,,_1y of multiplicity 2™. Each point of this subset corresponds
to a y-plane to which V is tangent.

e Suppose V is non-null. When m =1, YA/Q has two simple zeros, each of which determines
a co-y-plane to which V' is tangent. When m > 1, V; vanishes on two disjoint %m(m— 1)-
dimensional algebraic subsets of T bihomolomorphic to PTop,_o) and IP"]I"(2m_2), each of

2m—1

multiplicity . Each point of these subsets corresponds to a co-y-plane to which V is

tangent.

Proof. With no loss, we assume that  is the origin in CE*™*! c Q?™*1 and set VP :=
Vay, AB. To determine the zero set of KQ , we simply remark that V‘Wé;nl) a1 ABT('Aﬂ'B =0is

[A

equivalent to the eigenspinor equation 7TCVC 7Bl = 0. We can then proceed as in the proof of
Proposition 2.30 according to whether V¢ is null or non-null, and obtain the required zero sets
of the section Vg in each case, the multiplicities being given by the algebraic multiplicities of
the eigenvalues of Vé. In particular, when m = 1, the solution set is defined by the vanishing
of a single homogeneous polynomial of degree 2, which has two distinct roots generically, but
a single root of multiplicity two when V' is null — see, e.g., [21]. [
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2.5.3 Even dimensions

The analysis when n = 2m is very similar to the odd-dimensional case without the added
complication of the canonical distribution. Again, for any x of Q%" T,CE?" injects into
HO(# O(N#)). A null vector in V is T,CE>™ defines a global section V; of N&, which vanishes
at a single point when m = 2, and on a %(m — 1)(m — 2)-dimensional algebraic subset of &,
isomorphic to PT(,,_), when m > 2. Each point of this subset corresponds to an a-plane to

which V¢ is tangent.

2.5.4 Kodaira’s theorem and completeness

Let us now turn to the question of whether T, Q" maps to H°(#, O(N#)) bijectively, and not
merely injectively, for any z € Q". By Kodaira’s theorem [24], T, Q" = H%(%, O(N%)) = C" if
and only if the family {Z} in PT is complete, i.e., any infinitesimal deformation of & arises from
an element of T, Q". As we have seen in Section 2.2.3, the twistor space PT of Q?m+1 and the
twistor space PT of Q*"2 are both (m + 1)(m + 2)-dimensional complex projective varieties
in (CIP’QmH_l, and it is the embedding Q?m+l = 9?m+2 that induces the canonical distribution D
on PT. The issue here is that Kodaira’s theorem is only concerned with the holomorphic structure
of the underlying manifolds, and does not depend on the additional distribution on PT.

Now, by the twistor correspondences, any point = in @*™*+! and Q*™*2 gives rise to a %m(m—i—
1)-dimensional complex submanifold z of PT and PT respectively. This means that the ana-
lytic family {#} parametrised by the points {z} of Q?"*! can be completed to a larger fa-
mily parametrised by the points {z} of Q*"*? via the embedding Q*"*+! ¢ Q?™*2. Further,
a complex submanifold & corresponds to a point z in @*™*+1 if and only if 4 is tangent to an
m-~dimensional subspace of Dz at every point Z € .

We also need to check whether the family of & is complete when z € Q?™*2. If it were
not, one would be able to find a group of biholomorphic automorphisms of PT larger than
Spin(2m + 4,C) and a parabolic subgroup such that the quotient models PT. But the work of
[13, 28] tells us that there is no such group. The same applies to each &, and since these are
biholomorphic to flag varieties, the normal bundle Nz can be identified with a rank-(m + 1)
holomorphic homogeneous vector bundle over Z. In the notation of [5], we find that for a point x
in Q?>m*+1 or Q?"*2 the normal bundle Nz in PT = PT is given by

m=1 m>1

0
11 1 0 0
X X 0

m + 1 nodes

Here, the mutilated Dynkin diagram corresponds to the parabolic subalgebra underlying the flag
variety &, and the coefficients over the nodes to the irreducible representation that determines
the vector bundle. When m = 1, i.e., for Q3 and Q*, we recover the well-known result Ny =2
O:(1) @ Oz(1), where O4(1) is the hyperplane bundle over # = CP'. We can compute the
cohomology using the Bott—Borel-Weil theorem, and verify that indeed H%(%, O(N#)) = C2"+2
and H!(#, O(NZ)) = 0 — this latter condition tells us that there is no obstruction for the existence
of our family.

We can play the same game with the family of compact complex submanifolds {z} in MT
parametrised by the points x of CE?™*!. But in this case, for any x of CE?™*! the normal
bundle Nz is essentially the total space of T~'4# — &, and is described, in the notation of [5], as
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the rank-m holomorphic homogeneous vector bundle

m=1 m > 1

2 1 0 0_0
X o

m nodes

When m = 1, ie., Q% & = CP!, and we recover the well-known result O(NZ) = O4(2) :=
®20;(1). Again, the Bott—Borel-Weil theorem confirms that H°(z, O(Nz)) = C*"*! and

Remark 2.32. When n = 3, this analysis was already exploited in [25] in the curved setting,
where the twistor space of a three-dimensional holomorphic conformal structure is identified
with the space of null geodesics. See also [18].

3 Null foliations

As before, we work in the holomorphic category throughout, i.e., vector fields and distributions
will be assumed to be holomorphic.

Definition 3.1. An almost null structure is a holomorphic totally null m-plane distribution
on Q" where n = 2m or 2m + 1.

In other words, an almost null structure is a v-plane, a-plane or §-plane distribution. From
the discussion of Section 2.3, an almost null structure, self-dual when n = 2m, can be viewed as
a holomorphic section of F — Q" or equivalently as a projective pure spinor field on O™, that
is a spinor field defined up to scale, and which is pure at every point. The geometric properties
of an almost null structure on a general spin complex Riemannian manifold can be expressed in
terms of the differential properties of its corresponding projective pure spinor field as described
in [34, 35].

The question we now wish to address is the following one: given an almost null structure,
how can we encode its geometric properties in twistor space PT?

3.1 0Odd dimensions

When n = 2m + 1, an almost null structure is more adequately expressed as an inclusion of
distributions N € N+ where N is a holomorphic totally null m-plane distribution and N+ is
its orthogonal complement. One can then investigate the geometric properties of N and N-*
independently. In the following, T'(U/, O(N)) denotes the space of holomorphic sections of N
over an open subset U of Q", and similarly for Nt.

Definition 3.2. Let N € Nt be an almost null structure on some open subset U of Q". We
say that N is

o integrable if [X,Y] € I'(U,O(N)) for all X, Y € I'(U, O(N)),

o totally geodetic if Vy X € T'(U,O(N)) for all X,Y € I'(U, O(N)),

e co-integrable if [X,Y] € T(U,O(N™1)) for all X, Y € T(U, O(N*1)),

e totally co-geodetic if Vy X € T(U,O(N*1)) for all X, Y € I'(U, O(N1)).

An integrable almost null structure will be referred to as a null structure.

There is however some dependency regarding the geometric properties of N and N-*.
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Lemma 3.3 ([35]). Let N be an almost null structure. Then

e if N is totally co-geodetic, it is also integrable and co-integrable,
e if N is integrable and co-integrable, it is also geodetic,
e if N is totally geodetic, it is also integrable.

Another important point is the conformal invariance of the above properties. All with the
exception of the totally co-geodetic property are conformal invariant — see [35].

3.1.1 Local description

The next theorems will be local in nature. That means that we shall work on CE" viewed
as a dense open subset of Q™. For their proofs, we shall make use of the local coordinates
on CE", Fcgn» and PT\55 given in Appendix A.1. Let N be an almost null structure on some
open subset U of CE" = {zA, z4,u}, and view N as a local holomorphic section of F — CE",
i.e., a holomorphic projective pure spinor field [¢4]. We may assume that locally, [€A] defines
a complex submanifold of U x Uy, where (Uy, (74, 748)) is a coordinate chart on the fibers of Fy,
given by the graph

Te = {(z,7) €U x Up: 7B = ¢AB (), 7t = §A(x)}, (3.1)

for some %m(m — 1) and m holomorphic functions ¢AB — ¢lAB] and ¢4 respectively on Y. In
this case, the distribution N is spanned by the m holomorphic vector fields

A _ 8A + (gAD o %é-AgD) aD +§A8, (32)

while its orthogonal complement N+ by the m + 1 holomorphic vector fields

A=t + (e - LetP)op+¢to,  U=0-¢P0p, (3.3)
where 04 := aZA 04 = 8%‘ and 0 := %. Here, we shall make a slight abuse of notation by

denoting the vector fields spanning N and N+, and their lifts to Fy;, both by (3.2) and (3.3).

Remark 3.4. It will be understood that when m = 1 there are no coordinates 74Z. This does
not affect the veracity of the following results in this case — see however Remark 3.7.

3.1.2 Totally geodetic null structures

Let W be an (m + 1)-dimensional complex submanifold of PT and let & be an open subset
of Q?™*1  Suppose that for every point x of U, # € U intersects W transversely in a point.
Then each point of W N & determines a point in the fiber F,, and thus a -plane through z.
Smooth variations of the point = in U thus define a holomorphic section of F;; — U and an
(m + 1)-dimensional analytic family of y-planes, each of which being the totally geodetic leaf
of an integrable almost null structure. Conversely, consider a local foliation by totally null and
totally geodetic m-dimensional leaves. Then, each leaf must be some affine subset of a ~-plane.
The (m + 1)-dimensional leaf space of the foliation constitutes an (m + 1)-dimensional analytic
family of -planes, and thus defines an (m + 1)-dimensional complex submanifold of PT.

Theorem 3.5. A totally geodetic null structure_on some open subset U of Q*m+1 gives rise to
an (m+1)-dimensional complex submanifold ofl/{ C PT intersecting & C u transversely for each
x € U. Conversely, any totally geodetic null structure locally arises in this way.
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Proof. Let N be an almost null structure as described in Section 3.1.1. The condition that N
be totally geodetic is g(Vz4ZB, Z¢) = g(Vz4ZB,U) =0, i.e.,

(8A + (gAD o %é—AgD) op +§Aa) é—BC’ -0

(04 + (€7D — LeAeP) ay + £49) €8 = 0 (34)
We re-express the system (3.4) of holomorphic partial differential equations as
ABC | (WAD %FAT‘_D) pBC 4 pA,BC — 55)
4B + (7P — LrArPY o + 0P =0, '
where pABC .= 9gAxBC, pﬁ = O BC, pAB .= gnAB oAB .= pArB, af = OB, 04 = onA.

In the language of jets, the locus (3.5) defines a complex submanifold of the first jet space
JH(CE™, Up), of which the prolongation of the section I'¢ is a submanifold. Now, the distribution
TEF = (Z4) tangent to the fibers of F — PT is annihilated by the 1-forms dz4, dz48, 64
and 0° as defined in Appendix A.1, which can be pulled back to J'(CE"”,Uy). The 1-forms
defined by

o ::dﬂA—aéOC—(oA—a T )00

¢AB — d’]TAB o péBac o (pAB o péBWC) 00

(3.6)

Y

vanish on the locus (3.5), and this implies in particular that, for generic pc , pBC, pé, 0%,
the section I'c must be constant along the fibers of T 1IF, i.e., the functions (§A fAB) depend
only on the coordinates (w°, wA, A 7AB ) of the chart Vy of PT. Thus, quotienting I's along the
fibers of F — PT yields an (m + 1)-dimensional complex submanifold of PT intersecting each &
transversely in a point.

The converse is also true: we start with an (m + 1)-dimensional complex submanifold W,
say, of PT, which can be locally represented by the vanishing of %m(m + 1) holomorphic func-
tions (FAB F4) on the chart (Vy, (W°,w?, 74, 748)). Then (dFA8 dF4) are a set of 1-forms
vanishing on W. We shall assume that for each z € U, the submanifold & C U intersects W
transversely in a point. This singles out a local holomorphic section [¢4] of U xUy C F — U. By
the implicit function theorem, we may assume with no loss of generality that this is the graph I'¢
given by (3.1). The pullbacks of (dFAB, dF4) to F vanish on I'¢ and give the restriction

Q& Qdp\ [ dn® L(YFA O XePAY (60 (0 .
Q&% Q) \an®P) T\Y AP XcrAP ) 6¢) ~ \o)" (3.7)

where

o 1 0 ON .. [ 0 o\
<87rc + 2400 Z08w0> F <8TrCD + Z[Cf)wD]> E

(@c AN
QAB QAB |- 0 1 0 0 AB 0 0 AB
¢ 520 T 5%950 ~ g ) T \ grop tAcH D ) T

. (3.8)

At generic points, the matrix (3.8) is invertible, and equations (3.7) can immediately be seen to
be equivalent to the vanishing of the forms (3.6). In particular, 748 = ¢48(z) and 74 = ¢4(x)
satisfy (3.4), i.e., the distribution associated to the graph I'¢ is integrable and totally geo-
detic. |
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3.1.3 Co-integrable null structures

Let us now suppose that our almost null structure N is integrable and co-integrable on U. We
then have two foliations of U, one for N and the other for N*. By Lemma 3.3, we know that each
leaf of N is totally geodetic and therefore a y-plane. Since N C N+, each (m + 1)-dimensional
leaf of N+ contains a one-parameter holomorphic family {Z;} of y-planes, i.e., of leaves of N.
Thus each leaf of N1 descends to a holomorphic curve on the leaf space of N. In particular,
by Theorem 3.5, we can identify the leaf space of N with an (m + 1)-dimensional complex
submanifold W of PT foliated by curves, each of which being a one-parameter of twistors {Z;}
and, as we shall show, tangent to the canonical distribution D of PT.

We start by the remark that at any point Z of W, any submanifold Z intersects W transversely,
ie., TZzPT = Tzz & TzW. Hence, by Lemma 2.27 the intersection of Dz with TzW can only
be at most one-dimensional. Now, let Zy and Z; be two points on W corresponding to two
infinitesimally separated - planes Zo and Z; in {Zt} contained in the co-vy-plane Zo Let x
and y be points on Zo and Z; respectively, so that their corresponding complex submanifolds &
and ¢ of U intersect W in Zy and Z; respectively. The vector V¢ in T, tangent to ZL
connecting z to y is non-null, and we know by Lemma 2.29 that the vector connectmg Zy to Zy
must lie in Dy,. This is clearly independent of the choice of points z and y on Zo and Z.
Assigning a vector tangent to Dy, at every point of {Z;} yields a curve corresponding to a leaf
of N*+. Proceeding in this way for each leaf of N+ gives rise to a foliation by holomorphic curves
tangent to D on W. Conversely, any such foliation by curves on a given (m + 1)-submanifold
of PT gives rise to an integrable and co-integrable almost null structure.

Theorem 3.6. An integrable and co-integrable almost null structure on some open subset U
of Q*"F1 gives rise to an (m + 1)-dimensional complex submanifold on;{\ C PT foliated by
holomorphic curves tangent to D and intersecting & C U transversely for each x € U. Conversely,
any integrable and co-integrable almost null structure locally arises in this way.

Proof. We recycle the setting and notation of the proof of Theorem 3.5. In particular, we
take N and Nt to be spanned by the vector fields (3.2) and (3.3). The assumption that N
be integrable and co-integrable, i.e., g(Vz4ZB, Z) = g(Vz4ZP,U) = g(VuZ®?,2Z%) = 0,
gives (3.4) and in addition,

(8- €Pap)ePC + ((0 - Pap)elP) e = 0. (3.9)

Thus, the system {(3.4), (3.9)} can be encoded as the complex submanifold of J(CE",Uy)
arising from the intersection of the locus (3.5) and the locus

pBC — 7P pBC 4 olBrCl WDU%B “l=o, (3.10)
and the prolongation of I'c must lie in this intersection. Now, let us define PYAB .= pAB _lAgBl
where ¢* and @48 are the 1-forms (3.6). From the proof of Theorem 3.5, the 1-forms PpAB
and ¢4 vanish on the locus (3.5). On the other hand, on restriction to the locus (3.10), we have
PpAB = aAB — (,oév — g ]> 6, where (a4B,04) annihilate the rank-(2m + 1) distribution
TE2IF = <U WA, VA A> One can further check that (9458, ¢4) annihilate the m + 1 vector fields
U+ (J —opm ) W, and Z4. These span a rank-(m + 1) subdistribution L, say, of TEQF
tangent to I'c. By Theorem 3.5, I's descends to an (m + 1)-dimensional complex submanifold
of PT. The quotient L/T,'F is a rank-1 subbundle of T;*F/T,'F, which also descends to
a rank-1 subdistribution of D = T~'PT tangent to /. This proves the first part of the theorem.

Conversely, consider a complex submanifold W of PT, transverse to every Z in & given
by the vanishing of holomorphic functions (FAZ, F4) on the chart (Vy, (w0, w?, 74, ’/TAB )). By
Theorem 3.5, we can associate to W a local sectlon [SA] of  x Uy C F with graph I'¢, so that
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equations (3.5) hold. Assume further that the intersection of TV and D], is one-dimensional at
every point. Then the pullbacks of (dF' AB qF A) to U xUy C F must vanish on I'¢ and annihilate
both T;F and a rank-(m + 1) subbundle of T;JzF D T;;lIF. Thus, there exists a vector field
V = U + VAW, for some holomorphic functions V4 on T, annihilating the 1-forms (3.6). It
is then straightforward to check that this gives us precisely the additional restrictions (3.10). In
particular, 747 = ¢4B(x) and 74 = ¢4(x) satisfy (3.4) and (3.9), i.e., the distribution associated
to the graph I'¢ is integrable and co-integrable. |

Remark 3.7. When n = 3, Theorems 3.5 and 3.6 are equivalent: since PT is 3-dimensional
and D has rank 2, any 2-dimensional complex submanifold of PT satisfying the transversality
property of the theorems must have non-trivial intersection with D.

3.1.4 Totally co-geodetic null structures

Finally, we consider a totally co-geodetic null structure N. The key point here is that this
stronger requirement is not conformally invariant, and for this reason, the appropriate arena
is the mini-twistor space MT of CE?™*l. 1In this case, each leaf of the foliation of Nt is
totally geodetic, and must therefore be a co-vy-plane. The m-dimensional leaf space can then be
identified as an m-dimensional complex submanifold W of MT.

Alternatively, we can recycle the setting of Theorems 3.5 and 3.6: since N is in particular inte-
grable and co-integrable, its leaf space is an (m+1)-dimensional complex submanifold W of PT\ 5
foliated by curves. However, these curves are very particular since they correspond to totally
geodetic leaves of N*-. Breaking of the conformal invariance can be translated into these curves
being the integral curves of the vector field Y induced by the point co on Q™. Quotienting the
submanifold W by the flow of Y thus yields an m-dimensional complex submanifold YW of MT.

Theorem 3.8. A totally co-geodetic null structure on some open subset U of (CIE2m+1 gives rise
to an m-dimensional complex submanifold on/{ C MT intersecting each & C Z/l transversely for
each x € U. Conversely, any totally co-geodetic null structure locally arises in this way.

Proof. Suppose N and N1 are both integrable as in the previous section. As already pointed
out the integral manifolds of N are totally geodetic. We now impose the further assump-
tion that the integral manifolds of N+ are also totally geodetic on U, i.e., g(VzaZB Z%) =
9g(VzaZB U)=g(VuyZPB,Z%) = g(VyZA,U) = 0. Then, in addition to (3.4), we have

(0—&Pap)etP =0,  (0-¢&Pap)et =0, (3.11)

which can be seen to imply (3.9). As before, using the same notation as in the proof of Theo-
rem 3.5, we express the system (3.4), (3.11) as a complex submanifold of J!(CE",Uy) defined
by (3.5) and

pAB — 7P pdB — 0, o —nPof =0. (3.12)

In particular, the 1-forms dr48 — pAP0C and dr? — 040 vanish on the locus (3.5) and (3.12),
and this implies in particular that, for generic péB , pBC, pé, p©, the section I'¢ must be constant
along the fibers of F — MT, i.e., the functions (£4,£45) depend only on the coordinates
(w, w4, 74B) on the chart Y, of MT. Thus, quotienting I'¢ along the fibers of F — MT yields
an m-dimensional complex submanifold of MT.

For the converse, we simply run the argument backwards as in the proof of Theorem 3.5. W
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3.2 Even dimensions

The even-dimensional case is somewhat more tractable than the odd-dimensional case. For one,
the orthogonal complement of an a-plane or S-plane distribution N is N itself, i.e., N*- = N.
Definition 3.2 still applies albeit with much redundancy. In particular, NV is integrable if and
only if it is co-integrable. The question now reduces to whether NN is integrable or not, and if
so, whether it is totally geodetic. But it turns out that these two questions are equivalent.

Lemma 3.9. An almost null structure is integrable if and only if it is totally geodetic.

For a proof, see for instance [33, 34]. The argument leading up to Theorem 3.5 equally
applies to the even-dimensional case — simply substitute y-plane for a-plane. For the sake of
completeness, we restate the theorem, which was first used in four dimensions in [23], reformu-
lated in twistor language in [29], and generalised to higher even dimensions in [20]. The proof

of Theorem 3.5 can be recycled entirely by ‘switching off’ the coordinates u, w®, 74, and so on.

Theorem 3.10 ([20]). A self-dual null structure on some open subset U of Q*™ gives rise to an
m-dimensional complex submanifold of U C PT intersecting T in U transversely for each x € U.
Conversely, any self-dual null structure locally arises in this way.

4 Examples

We now give two examples of co-integrable null structures that will illustrate the mechanism of
Theorems 3.6 and 3.10. These arise in connections with conformal Killing spinors and conformal
Killing—Yano 2-forms, and are more transparently constructed in the language of tractor bundles
reviewed in Section 2.1.1. As before, we work in the holomorphic category.

4.1 Conformal Killing spinors

For definiteness, let us stick to odd dimensions, i.e., n = 2m + 1. The even-dimensional case is
similar. A (holomorphic) conformal Killing spinor on Q" is a section &4 of O that satisfies

vaéA + \%YaBACB = 07 (41)

where (4 = %y“BAV,ﬁB is a section of OA[—1].
The prolongation of equation (4.1) is given by (see for instance [6] and references therein)
Vaeh + v (P =0, Vo(h + HPuy'sAeP = 0. (4.2)
These equations are equivalent to the tractor spinor Z% = (¢4, () being parallel with respect
to the tractor spinor connection, i.e., V,=% = 0. In a conformal scale for which the metric is
flat, integration of (4.2) yields

§A = éA - %xa’YaBACOBv CA = COAa (43>

where foA and SA denote the constants of integrations at the origin.

A pure conformal Killing spinor ¢ defines an almost null structure. The following propo-
sition combines results from [34, 35] recast in the language of tractors using Lemmata 2.19
and 2.22. It is valid on any conformal manifold of any dimension.

Proposition 4.1 ([34, 35]). The almost null structure of a pure conformal Killing spinor is
locally integrable and co-integrable if and only if its associated tractor spinor is pure.

By Theorems 3.6 and 3.10 one can associate to any such conformal Killing spinor on Q"
a complex submanifold in PT. These are described in the next two propositions.



Twistor Geometry of Null Foliations in Complex Euclidean Space 31

4.1.1 Odd dimensions

Proposition 4.2. Let =% = (§A,CA) be a constant pure tractor spinor on Q*™tl = its as-
sociated twistor in PT, Z its corresponding v-plane in Q> and U := Q*™ 1\ E. Then A
is a pure conformal Killing spinor on Q> with zero set =, and its associated integrable and
co-integrable almost null structure N¢ on U arises from the submanifold D=z \ {Z} in U C PT,
where Dz is given by (2.17). In particular, each leaf of N¢ consists of a y-plane intersecting =
in an (m — 1)-plane. Each leaf of Né consists of a 1-parameter family of v-planes intersecting

1B

in an (m — 1)-plane. Any two ~y-planes contained in two distinct leaves of Né intersect in an
(m — 2)-plane.

Proof. The line spanned by =% descends to a point Z (i.e., [2%]) in PT, and thus singles out
a y-plane Z in Q", which by (4.3) can be immediately identified with the zero set of ¢4, Off
that set, Proposition 4.1 tells us that V¢ is integrable and co-integrable. Correspondingly, the
conformal Killing spinor £ gives rise to a section [€4] of F, which we can re-express as

Te = {([X4],[2%]) e U x PT: Z2* = X429} CF.

Clearly, a point on I'¢ descends to a twistor Z on D¢ \ {Z} with v-plane Z tangent to Ne.
Thus, for each Z on Dz \ {E} in UCPT, Zis precisely a leaf of V¢. The point Z itself must be
excluded from Ds= since the foliation becomes singular there in the sense the leaves intersect in =.
The geometric interpretation of the leaves of Ng and Ng follows directly from Theorem 2.11
and Corollary 2.14. In particular, each distinguished curve on D= can be identified with a leaf
of Né. |

Local form. Let us re-express the (m + 1)-plane Dz as (2.18). We work in a conformal
scale for which g is the flat metric. Since Z% is constant, we can substitute the fields for their
constants of integration at the origin. Using (2.30) and 2% = IXfA + OXCA, we obtain, in the
obvious notation,

waAé(]? 4 2EALB _ WALB
FaAéaB + 2CO-A7TB _ 7_‘_ACO-B — 07
WHACB L AB L rlAEB g

W“AéaB + 7TA§OB + 4w[AéB] =0.

(4.4)

Evaluating at w® = %a}avaBAwB, using the second and third of (4.4) together with the purity

of 2%, we find that 7 must be proportional to ¢4 = §°A — ix“’yaBACOB as expected. This

V2
solution then satisfies the first and fourth equations.
Let us now work in the coordinate chart (Vy, (w?,w?, 74, 745)) as defined in Section A.1,
and write

. . 1. 1.
¢h =™ + 155A5ff - ZfABdﬁB +oy

: : : L oamt0 nias (4.5)
S (icooA + 0% — 4{0 (6450 — 26ACP) o + - ) :

V2

where the remaining components of giA and éA depend only on COO, QOA, 5‘4 and SAB by the
purity of 2%, and where we have assumed &0 # 0. Substituting (A.7) and (4.5) into the last of
equations (4.4) yields

oA L EA L (0,4 0FA _ E0AB _ EAB | o JAFB] _
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while the remaining equations do not yield any new information. Now, at every point Z of D=,
the 1-forms

IBA . godﬂ_A + fode . <°Adw0, ,BAB - godﬂ_AB + 2dw[Aé—B},
annihilate the vectors tangent to D= at Z and the line in Dz spanned by
V =V + vy, (4.6)

where V0 := 50 + %éowo and VA = fA + %foﬂA. This corroborates the claims of Theorem 3.6
and Proposition 4.2. Note that the vector field V' vanishes at the point [E%] of D=z. With no
loss, we can set (* = —2. The integral curve, with complex parameter ¢, of (4.6) passing through
the point
(wo’ W A, 7TAB)
. 1 . . . . 1 . o .
— <§0 +a, _5(514 +OZCA o é—OaA)’CA +OéA, 570(&AB +§[A<—B]) _ O[[ACB]> ,

A

for some a, o, is given by

(@200, 70,748 (0) = (£, 56464 GE7 )

1, ° .
+ (oz7 —Q(aCA — 500/4), o, —a[ACB]> e,
Writing A4 = aYA + A°Z2 + b XA and A® = A469 + A0 + A%u? with
1 500 1
— *AO 0 ZA C
a=-a—A¢ + A0,
CKA _ 250 (ACECCA _ A0§0<A _ 2€ABAB _ AOgA _ 2§0AA),

1 o
b= & (A% —¢9Ac),

b

one can recast this integral curve tractorially as Z%(t) (E“ + %e_t/i““éﬁ), which is one of

the distinguished curves of Lemma 2.10 as expected.

4.1.2 Even dimensions

In even dimensions, the story is entirely analogous except for the choice of chirality of the tractor
spinor. We leave the details to the reader.

Proposition 4.3. Let 2o = ({A/,(A) be a constant pure tractor spinor on Q*™, and let
U = Q¥ \ = where = is the B-plane defined by 2 Then & is a pure conformal Killing
spinor on Q>™, and its associated null structure N¢ on U arises from the submanifold in U C PT
defined by

"), z02p = ¢

op’ ’

for ' k<m, k=m (mod 2). (4.7)

Each leaf of N¢ consists of an a-plane intersecting = in an (m — 1)-plane.

Remark 4.4. In four dimensions, tractor-spinors are always pure, and so almost null structures
associated to conformal Killing spinors are always integrable. In this case, the submanifold (4.7)
is a complex projective hyperplane in PT 2 CP? given by Z4Z% = 0 where we have used the
canonical isomorphism PT* = PT’. This example was highly instrumental in the genesis of
twistor theory [29]. The null structure arising from the intersection of this submanifold with
real twistor space generates a shearfree congruence of null geodesics in Minkowski space known
as the Robinson congruence.
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4.2 Conformal Killing—Yano 2-forms

A (holomorphic) conformal Killing-Yano (CKY) 2-form on Q" is a section oap of Ojqy[3] that
satisfies

vtzUb(: — Habe — an[b(pc} - 07 (48>

where figpe = V(404 and ¢, = ﬁvboba. The CKY 2-form equation (4.8) is prolonged to the
following system

vao-bc — Habe — 2ga[b¢c} =0,
Vallpeqd + 3ga[bpcd] +3Papoeq =0,

. (4.9)
Va‘Pb — Pab + Pa o =0,
VaPbe — Pad:udbc + 2Pa[b§‘7c] =0.
This system can be seen to be equivalent to the existence of a parallel tractor 3-form, i.e.,
VaXuase =0, (4.10)

where Xasc = (0ab; Habes Pas Pab) € Olane) = Opan)[3] + (Ojapg [3] © Oa[1]) + Opap[1]. For an
arbitrary conformal manifold, equation (4.10) no longer holds in general, and necessitates the
addition of a ‘deformation’ term as explained in [15].

In flat space, i.e., with Py, = 0, we can integrate equations (4.9) to obtain

Oy = G + 22(0Pp) + frabet® — 2(x(afp)c® + 1 (2°2c) Pab),
Frabe = Frabe = 3T Ppe)»

o = Pa — poabxb7

Pab = Pab>

(4.11)

for some constants 7, fi ., P, and p -

Remark 4.5. In three dimensions, conformal Killing—Yano 2-forms are Hodge dual to conformal
Killing vector fields. These latter are in one-to-one correspondence with parallel sections of
tractor 2-forms.

In four dimensions, a 2-form o, is a CKY 2-form if and only if its self- dual part o, aty and
its anti-self-dual part o, are CKY 2-forms, with, in the obvious notation, 5 e = (xpT)
Self-duality obviously carries over to tractor 3-forms.

abe®

4.2.1 Eigenspinors of a 2-form

Let us first assume n = 2m + 1. We recall that an eigenspinor A of a 2-form o, is a spinor
satisfying
b [A
oay A EBIEC = 0, (4.12)

ie., oy = A\¢A for some function \. Here, V“b A= v[aCB bl A. When €4 is pure,

another convenient way to express the eigenspinor equation (4 12) is given by

ab AéC

b (m+1) A/:B _
ot fyabcg <:m+1ABE S =0

Therefore, to any 2-form o, we can associate a complex submanifold of ' given by the graph

T, := {(x“, [WA]) € CE" x PT(3p,—1): 0 V(Ebc?l)cmHABﬂ'AWB 0}- (4.13)
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For o4 generic, this submanifold will have many connected components, each of which corre-
sponding to a local section of F — Q2™ i.e., a projective pure spinor field that is an eigenspinor
of o4p. To be precise, in 2m+ 1 dimensions, a generic 2-form o, viewed as an endomorphism aab
of the tangent bundle, always has m distinct pairs of non-zero eigenvalues opposite to each other,

e., (A,—A), and a zero eigenvalue. In this case, a generic 2-form viewed as an element of the
Clifford algebra has 2™ distinct eigenvalues, and thus 2™ distinct eigenspaces, all of whose
elements are pure [26].

When n = 2m, the analysis is very similar: the pure eigenspinor equation is now
o 'Yc(LbC3 emAB/S ¥

and similarity for spinors of the opposite chirality. Such a 2-form generically has m distinct
pairs of non-zero eigenvalues opposite to each other, and as an element of the Clifford algebra,
has 2™ eigenspaces that split into two sets of 277! eigenspaces according to the chirality of
the eigenspinors. The eigenspinor equation lifts to a submanifold Ty := {(z%, [r2]) € CE" x
PT (9m—9): o Wébcl o A,B,7TAI7TB = 0} of F, whose connected components correspond to the
distinct primed spinor eigenspaces of ggp.

4.2.2 The null structures of a conformal Killing—Yano 2-forms

The next question to address is when the almost null structure of an eigenspinor of a 2-form is
integrable and co-integrable.

Proposition 4.6 ([26]). Let o, be a generic conformal Killing 2-form on Q™ (or any complex
Riemannian manifold). Let pigp. := V(a0p- Let N be the almost null structure of some eigen-
spinor of oqy, and suppose that papX*Y?Z¢ =0 for any sections X, Y%, Z% of N*. Then N
1s integrable and, when n is odd, co-integrable too.

In the light of Theorems 3.6 and 3.10, the foliations arising from the eigenspinors of a CKY
2-form o, can be encoded as complex submanifolds of the twistor space PT of Q™. As we shall
see in a moment, these submanifolds can be constructed from the corresponding tractor 3 g45¢.

The additional condition on pgp. in Proposition 4.6 can also be understood in terms of the
graph of a connected component of ', defined by (4.13). For such a graph to descend to a com-
plex submanifold of PT, its defining equations should be annihilated by the vectors tangent to
F — PT. Such a condition, in odd dimensions, can be expressed as 0 = 7lCrPlvy, (04 p A rtB ),
and using (4.8) gives papemA7?B7bC = 0. Thus, we shall be interested in the local sections of
F — Q" defined by

Ty o= { (2% [7*]) € CE" x PT(3,_1):
b, (m+1) A_B _ be_ (m+1) A_B _
T Vabey.cpr ABT T =05 7 Yopei g ABTT =0}. (4.14)

In even dimensions, this is entirely analogous except that (4.14) is now

Loy = {(a% [7*]) € CE" x PTy,3):
b, (m) A'_B' _ be, (m) A’ B _
ot Vabes...cmam T T =0, I c%bcd4 dnA'B T T —0}'
Proposition 4.7. Set n = 2m + ¢, where € € {0,1}. Let o4, be a generic conformal Killing—
Yano 2-form on some open subset U of Q", with associated tractor 3-form X apc. Then if the
almost null structure associated to some eigenspinor of oup s integrable and co-integrable, it
must arise from the submanifold in U C PT defined by

EABCF(m+1+6)

ABCD;... m+1+€oq3Z‘xZB = 0. (4.15)
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Proof. We focus on the odd-dimensional case only, and leave the even-dimensional case to the
reader. Let us write

Sse = 3YLAZb 2y + (22 Lt + SX WY ZEy0) + 3K Zh e e

Since ¥ 45¢ is constant, we can substitute the fields for their constants of integration at the
origin, &, flaper Pa and p,,, so that using (2.30) we can re-express (4.15) as

= —3\[oab aZZli_l)derzABW B + 2Nabc%(£zjl_42.?.dm+2ABwA7rB - 12¢ayéz)---dm+2ABwA7rB
| 3y azgl m+2ABWA°JB’
0= \/iﬁabC'Y((IZZLI) dm+1AB7TA7rB Gﬁab’yt(zbd)zx dm+1ABwA7T
0= V2t o a0 + 6600 4 ane T,
0= Qﬁabcvcg,bcilél dmABwA”B

Evaluating this system of equations on the intersection of (4.15) and U amounts to setting

whA = %x“%BAﬂB, and we find, after some algebraic manipulations,

_ b (m+1 be, (m+1) A_B
0= _3\[( “Vabds.. deABW Q )JF\[( )(w[d4|ﬂa C'Yaqus dmio] ABT T ),
_ be, (m+1) A B
0= v2u C%bcd4 dm  ABT T

(xexe) abe, (m+1) (m+1)

B A ab,.c B, B
0=— \/§ ’yabcd4 dm+1AB7T ™ +3\/>0- Wab0d4--~dm+1AB7r T

ab (m+1) BB
+‘[(m 2)@pq, 1 aly Vabef|ds...dmir ] ABT T
_ b (m+1) ArB
0= fua ¢ abcde5 em+1AB7T T
where we have made use of (4.11) and the identity

1 (@70 ™) (barra") (2%9a8") = (waprer® + 1 (2°2e) pan) '™

In particular, we immediately recover, that on the intersection of the twistor submanifold (4.15)
with U,

b_(m+1) A_B abe,, (m+1) A B _
o “Yabcd em ABT T =0, abeds..dmi ABT T = 0.

But these are precisely the zero set (4.14) corresponding to the eigenspinors of . |

Remark 4.8. In three dimensions, the twistor submanifold is simply a smooth quadric in
PT = CP3.

In four dimensions, the submanifold (4.15) restricts to an anti-self-dual tractor 3-form ¥, 4.
corresponding to a self-dual CKY 2-form o,,. Setting Z;B = E;‘BCFABC“B, we recover the
quadratic polynomial ¥ ,2%Z B = 0 given in [31]. Under appropriate reality conditions, this
submanifold produces a shearfree congruence of null geodesics in Minkowski space known as
the Kerr congruence. A suitable perturbation of Minkowski space by the generator of such
a congruence leads to the solution of Einstein’s equations known as the Kerr metric [22, 23].
A Euclidean analogue is also given in [32].

In six dimensions, we have a splitting of pgp. = ,u;fb . + 1. into a self-dual part and an
anti-self-dual part. Since £aA§bB§CC/fL:b . = 0 for any €A the obstruction to the integrability of
a positive eigenspinor of a generic CKY 2-form o4, is the anti-self-dual part u_; . of pape.
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5 Curved spaces

Let M be a complex manifold equipped with a holomorphic non-degenerate symmetric bili-
near form g,,. The pair (M, gqe) will be referred to as a complex Riemannian manifold. We
assume that M is equipped with a holomorphic complex orientation and a holomorphic spin
structure. We may also assume that one merely has a holomorphic conformal structure rather
than a metric one. For definiteness, we set n = 2m + 1 as the dimension of M. The analogue
of the correspondence space [ is the projective pure spinor bundle v: F — M: for any x € M,
a point p in a fiber v~!(x) is a totally null m-plane in T,M, and sections of F are almost
null structures on M. To define the twistor space of (M, gqp), one must replace the notion of
~v-plane by that of v-surface, i.e., an m-dimensional complex submanifold of M such that at any
point of such a surface, its tangent space is totally null with respect to the metric and totally
geodetic with respect to the metric connection. The integrability condition for the existence of
a y-surface N through a point x is [35]

Copea XY ZWe = 0, for all X% Y% Z¢e€ T,N, W*»eT,N. (5.1)

If we define the twistor space of (M, gap) to be the 3 (m+1)(m+2)-dimensional complex manifold
parametrising the vy-surfaces of (M, g45), we must have a %m(m + 1)-parameter family of ~-
surfaces through each point of M. From the integrability condition (5.1), we must conclude that
for the twistor space of (M, gqp) to exist, (M, gqp) must be conformally flat in odd dimensions
greater than three. In even dimensions the story is similar: one replaces the notion of a-plane
by that of an a-surface in the obvious way. We then find that for (M, g,p) to admit a twistor
space, it must be conformally flat in even dimensions greater than four, and anti-self-dual in
dimension four.

Curved twistor theory in dimensions three and four is pretty well-known. In dimension four,
we have the Penrose correspondence, whereby twistor space is a three-dimensional complex
manifold containing a complete analytic family of rational curves with normal bundle O(1)®O(1)
parameterised by the points of an anti-self-dual complex Riemannian manifold [30]. In dimension
three, the LeBrun correspondence can be seen as a special case of the Penrose correspondence: if
we endow twistor space with a holomorphic ‘twisted’ contact structure, then a three-dimensional
conformal manifold arises as the umbilic conformal infinity of an Einstein anti-self-dual four-
dimensional complex Riemannian manifold [25]. Finally, the mini-twistor space in the Hitchin
correspondence is a two-dimensional complex manifold containing a complete analytic family
of rational curves with normal bundle O(2) parameterised by the points of an Einstein—Weyl
space [18, 21].

Theorems 3.5 (or 3.6), 3.8 and 3.10 can be adapted to the curved setting by interpreting
the leaf space of a totally geodetic null foliation as a complex submanifold of twistor space.
See [8] for an application of a ‘curved’ Theorem 3.8 in the investigation of three-dimensional
Einstein—Weyl spaces.

A Coordinate charts on twistor space and correspondence space

In this appendix, we construct atlases of coordinates charts covering PT and F. We refer to the
setup of Section 2 throughout. In particular, we work with the splittings (2.3), (2.8) and (2.12).

A.1 0Odd dimensions

Let us introduce a splitting of Vj as

Vo2Wo W aU, (A.1)
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where W 2= C™ is a totally null m-plane of (Vg, gap), and U = C is the one-dimensional comple-
ment of W & W* in Vy. Elements of W and W* will carry upstairs and downstairs upper-case
Roman indices respectively, i.e., VA € W, and W4 € W*. The vector subspace U will be spanned
by a unit vector u®. Denote by %4 the injector from W* to V, and 0% the injector from W
to Vo satisfying 640% = 04, where 67 is the identity on W and W*. We shall think of {§%4}
as a basis for W with dual basis {6%} for W*. The splitting (A.1) allows us to identify the two
copies S 1 of the spinor space of (Vy, gq,) with its Fock representation, i.e.,

Syt ZA"Wo A" 'We---aWeC.

[NIES

This is essentially the strategy adopted in Section 2.2 for the spinors of Spin(2m + 3,C). To

realise it explicitly, we proceed as follows: let o™ be a (pure) spinor annihilating W so that oA

is a spanning element of A™W. A (Fock) basis for S, 1 can then be produced by acting on oA
2

by basis elements of A*W*, i.e.,

A A A
S:l:%:<0 75A175A1A27"‘>7 (AZ)
where
A L ar A A A
5A1...Ak T 6ﬁ;1 U 6,4’;}0 O’Yale L. /y(lkAkfl ’

for each k = 1,...,m. With this notation, the Clifford multiplication of Vo C C¢(Vy, gep) on S_
is given explicitly by

N

A, CsB C A CB C
0" VeB 531_._3,, = —2]95[31...Bp_153p]a 047aB 531...3,, = 531...3,,,47

C B . C C¢B - ¢C
u'y,g "0- =io", u'Y,B 531_._37):(—1)1)1531._.3]). (A.3)

An arbitrary spinor 7® in S1 can then be expressed in the Fock basis (A.2) as
2

m/2l N E
A A Aq.. Aol SA
T = 7TOO + Z (_4> Hﬂ' E Qk(sAl...Agk

k=1
. [m/2] k
! 1 1 AlA A
9 ] <_4> i VTR A m>1,
A L SR (A4

where [%] is %5 when m is even, mTfl when m is odd, and 7° and =

the components of 7. Let us now assume that 7 is pure, i.e., satisfies (2.31a). When m =1
and 2, there are no algebraic constraints, and the space of projective pure spinors is isomorphic
to CP' and CP? respectively. When m > 2, the pure spinor variety is then given by the complete
intersections of the quadric hypersurfaces

A1Ag Ay — o [A1As Ak] g

aOpArdz. Ak — 7T[A17TA2"'A2k+1], k=1,...,[m/2],
pOgArdzds.. A 7r[A1A27rA3"‘A2"’], k=1,...,[m/2], (A.5)
in CP?"~!. We can therefore cover a fibre of F with 2 open subsets Uy, Ua, ... 4, , Where 70 #0

on Uy and AL Ak # 0 on Ua, .. 4,, and thus obtain 2™ coordinate charts in the obvious way.
This induces an atlas of charts on Fcgr given by the open subsets CE" x Uy, CE™ X Ua, ... a,-
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Let us now write the spinor w® in S_1 in the Fock basis as

1
2

1 1
wh = Wl + —wAéﬁ,

V2 V2

; ; [m/2] 1\ 1 1
A _ 0 A 4 Aj.. Ay A
w —\/iw o+ o) E_ ( 4> 7(/“7 — 1)!W 5A1A2...A2k

k=1
1 [m/2] INF 1 o A
+ﬁ <—4) Ew L 2k+15A1...A2k+17 m > 1, (AG)
k=0

where w0 and wAt42-Ar = A2 Al are the components of w®. The condition for Z% =

(w®, 72) to be pure, so that (2.31) hold, is that the relations
a0 AL Azk—1A2k — p[A1Agpoa  Ask] iﬂ'Al'“A%wO,
ﬂ-OwAl---AQkAQk+1 — ﬂ-[Al---AkaAQk+l]’

hold for & > 1 when m > 1, and that (A.5) hold too when m > 2. Hence, we can cover PT\g

with 2™ open subsets Vg, where 7° # 0, and VA, .4, where AL Ak # 0 in the obvious way.

Coordinates on the complement 56 parametrised by [w?, 0] satisfy the conditions
WAL A2k Agk 1 — _ka[Al---AkaA2k+l]’ WAL Aze—1 Aokl — (.
Let (24, 24,u) be null coordinates on CE" in the sense that ¢ = 246% + 2464 + uu® so

that the flat metric on CE"™ takes the form g = 2dz? ® dzs + du ® du. Then the incidence
relation (2.33) reads

WO = 7% — 7B2p,
wA =794 + WABZB + %TFA’U,,

Ay Agp 1Ay A1 Agg g Agg] | 4k+2 _Ar. Agp 1 Asp Aoy 1 A Agy
w =7 < T “Aokt1 — 2K u,

Aq.. Ag A Aq.. Aoy LA Aq.. Az A A 1, A1 A
WAk A2k41 :W[ 1o A2k o 2k+1]+7T 1---A2k A2k+1 2k+22A2k+2+§ﬂ- Lo A2k41g,

We now work in the chart Uy, and since 7 # 0 there, we can set with no loss of gene-
rality 70 = 1. Let (2,7) be a point in Fcgn and let (Up, (74, 748)) be a coordinate chart
containing 7w € F,. Let (w,w) be the image of (z,7) under the projection p: F — PT so
that (Vp, (w?,w?, 74, 748)) is a coordinate chart containing (w, 7). Then, in these charts,
(A.6) and (A.4) reduce to

wA

% (iwooA + wieh — i(ﬂABwO - 27rAwB)6ﬁB +t), (A.7a)
A

A = oA 4 Irdsh — IpABshp o (A.7Db)

More succinctly, 78 = exp(—%ﬂab'yabBA)oB, where 7% = 1485%45% + 277‘451[211{’} belongs to the
complement of the stabiliser of 0® in s0(Vy, gap), i.e., (74, 748) are coordinates on a dense open
subset of the homogeneous space P/Q). We can also rewrite w® more compactly in the two

alternative forms

wh =1L (wAch‘Zl + %woua)ﬂf‘ + w074,

V2 2v2
A_ 1 a_ A a . A 1 0_A\sa 0, a
wh = pwitg, where w®:= (w” — Fw'm*)0% + w u,

from which it is easy to check that 74 and w? indeed satisfy the conditions given in Lemma 2.19.
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Finally, in the coordinate chart (CE™ x Uy, (2, 24, u; 74, 745)), we have
a7l =i(u—7Pzp)o™ + (28 + 7P%c + tunB)of + -
so that the incidence relation (2.33) reduces to
wh =224+ 7485 + 177Au W =u—nBzp. (A.8)
Tangent and cotangent spaces. Let us introduce the short-hand notation
Dy = 8(; =%V, 04 = afA 64V, 9= % = uV,,
so that T, Q" = p_1 = (Ja, 04,0), and define 1-forms
a? = dw? + %WAdwO - %deWA, aB = dn1P — 7r[Ad7rB], (A.9)
and vectors
X = &uaA’ X = 87543’
:(ﬁo_;wc&fc, Yy = 0 —wBaﬂiBle OaaA (A.10)

Then bases for the cotangent and tangent spaces of PT at (w, ) are given by

T}, oPT =t} @15 = (du’ dr) & (o, a?P),
TwmPT Zto @1 = (XaXap) ®(Y,Ya),

respectively.

Remark A.1. Using (A.7), one can check that the expressions for the set (A.9) of 1m(m + 1)
1-forms are none other than the 1-forms (2.32), and thus (2.25). These forms annihilate the
rank-(m + 1) canonical distribution D on PT spanned by Y and Y4. Further, the vector Y
clearly coincides with (2.37) to describe mini-twistor space — this can be checked by using

transformations (A.7).

Now, define the 1-forms and vectors

04 = dz" + (WAD - % A D)dzD + nldu, 6° .= du — 7%z,
A= 94 + (nP - Lr7P)op + 7o, U :=0-7"0p,
Wy = ? 5_0

orA ~ " 9pAB

Then bases for the cotangent and tangent spaces of F at (z,7) are given by

T;, nF=ai” o ai” @ 03" © 37 @ g5 = (dza) © (dr?) @ (6°) ® (a*P) & (67),
TamF = a3 0" @ 9% @ q", ®q% = (04) ® (Xap) ® (U) @ (Wa) @ (Z4),

respectively.
A A _AB

We note that the coordinates (w”,w?, 74, 748) on V), are indeed annihilated by the vec-
tors Z4 tangent to the fibres of F — ]PT. Further, the pullback of a? to F is given by
p*(a?) = a*Bzp+04, ie., the annihilator of D = T~!'PT pulls back to the annihilator of T°F

corresponding to q% &5, qul S q?l.
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Mini-twistor space. By Lemma 2.24, the mini-twistor space MT of CE" is the leaf space
of the vector field Y defined by (2.37), given in (A.10) in the coordinate chart (V, (w°, w4, 74,

74B)). Accordingly, we have a local coordinate chart (V,, (w4, 745, 74)) on MT where
QA = wA + %WAwO

which can be seen to be annihilated by Y. The incidence relation (2.35) or (2.40) can then be
expressed as

A

w? =24 + (nt

B _ %T{'ATI‘B)ZB + 7TAu,

which are indeed annihilated by Z4 and U. The tangent space of MT at a point (w, ) in Vo is
clearly

9
OwA’

Normal bundle of & in PT\s. Let z be a point in CE™. In the chart (Vp, (w°, wA, w4 7AB)Y),
the corresponding & is given by (A.8). In particular, the 1-forms

BA(x) := dw? — dn?B2p — %dWAu, B%(x) := dw® + dnP2p,

vanish on Z, and the tangent space of & at (w,n) is spanned by the vectors Y4 — z4Y and
X ap — 24X p]. This distinguishes the m-dimensional subspace (Y4 — 24Y") tangent to both
and the canonical distribution D at (w, ).

A.2 Even dimensions

The local description of F and PT in even dimensions can be easily derived from the one above.

We split Vi as Vo =2 W@ W* where W = C™ is a totally null m-plane of (V, gqp), with adapted

basis {5“‘4, 0%}. The Fock representations of the irreducible spinor spaces S_1 and S’ ; on Vj
1 _

»

are given by

1

> AW AW - 'S 1 XA W AW - -

S: ¢
2

N|=
N|=

1
2
Let o®' be a (pure) spinor annihilating W. Then bases for S1 and S_ 1 can then be produced
by acting on o by basis elements of A2*W* and of A2k~ 1W* Exp11c1t1y,

A’ _ /sA A
Sl—<0 A1A27"'>7 S—%_<A176A1A2A37"'>’
where
ai | azk ,Ag A . A/
5 o Agy 5[A1 5A2k] 07a1A6 VasrAgk—1
= §or ... g2kt A’ Ay
5A1--~A2k71 T 6[141 6A2k 1] O,yalAé) ’ya%—1A’2k_2

The Clifford action of Vo C C(Vo, gap) on S 1 follows the same lines as (A.3) with appropriate
priming of spinor indices.

Coordinate charts in even dimensions can be obtained from the odd-dimensional case by
switching off 741-4% for all odd k, and w?14* for all even k. We therefore have a covering of
each fibre of F by 2™~! open subsets Uy, Ua, .. Ay, and a covering of PT\ g5 by 2m=1 open subsets
Vo, VA,...4,, in the obvious way. In particular, in (Vp, (w”, 748)), the homogeneous coordinates

[wh, 7A'] are given by

A 1

w :%(w‘%ﬁ—zw TrBC(SA —i—-'-), oA = oA — AB(SAB+
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where the former can also be rewritten as w® = %w“wf‘ with w® := wA34. Finally, the

even-dimensional version of the incidence relation (2.33) can be rewritten as w? = 24 + 74825,

As for the tangent spaces of Q2™ its twistor space and their correspondence space, we find,
in the obvious notation, T(, Q" = p_1 = (04,04,0), TenF =920 g, @ qf, = (04) @
(Xap) @ (Z24), and T, PT = v_y = (X4, Xap), where Z4 := 04 + 74805, Xup = 555,

X4 = 6%4’ and so on.

w, T

Acknowledgements

The author would like to thank Boris Doubrov, Lionel Mason and Jan Slovéak for helpful discus-
sions and comments, and the anonymous referees for their reports. He is also grateful to Lukas
Vokifek and Andreas Cap for clarifying some aspects of Section 2.5. This work was funded by
a GACR (Czech Science Foundation) post-doctoral grant GP14-27885P.

References

[1] Bailey T.N., Eastwood M.G., Gover A.R., Thomas’s structure bundle for conformal, projective and related
structures, Rocky Mountain J. Math. 24 (1994), 1191-1217.

[2] Baird P., Eastwood M., CR geometry and conformal foliations, Ann. Global Anal. Geom. 44 (2013), 73-90,
arXiv:1011.4717.

[3] Baird P., Wood J.C., Bernstein theorems for harmonic morphisms from R® and S®, Math. Ann. 280 (1988),
579-603.

[4] Baird P., Wood J.C., Harmonic morphisms between Riemannian manifolds, London Mathematical Society
Monographs. New Series, Vol. 29, The Clarendon Press, Oxford University Press, Oxford, 2003.

[5] Baston R.J., Eastwood M.G., The Penrose transform. Its interaction with representation theory, Ozford
Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1989.

[6] Baum H., Juhl A., Conformal differential geometry. Q-curvature and conformal holonomy, Oberwolfach
Seminars, Vol. 40, Birkh&user Verlag, Basel, 2010.

[7] Budinich P., Trautman A., Fock space description of simple spinors, J. Math. Phys. 30 (1989), 2125-2131.

[8] Calderbank D.M.J., Pedersen H., Selfdual spaces with complex structures, Einstein-Weyl geometry and
geodesics, Ann. Inst. Fourier (Grenoble) 50 (2000), 921-963, math.DG/9911117.

=

Cap A., Slovék J., Parabolic geometries. I. Background and general theory, Mathematical Surveys and
Momnographs, Vol. 154, Amer. Math. Soc., Providence, RI, 2009.

[10] Cartan E., The theory of spinors, Dover Publications, Inc., New York, 1981.
1] Cox D., Flaherty Jr. E.J.; A conventional proof of Kerr’s theorem, Comm. Math. Phys. 47 (1976), 75-79.

[12] Curry S., Gover A.R., An introduction to conformal geometry and tractor calculus, with a view to applica-
tions in general relativity, arXiv:1412.7559.

[13] Doubrov B., Slovdk J., Inclusions between parabolic geometries, Pure Appl. Math. Q. 6 (2010), 755-780,
arXiv:0807.3360.

[14] Eells J., Salamon S., Twistorial construction of harmonic maps of surfaces into four-manifolds, Ann. Scuola
Norm. Sup. Pisa Cl. Sci. (4) 12 (1985), 589-640.

[15] Gover A.R., Silhan J., The conformal Killing equation on forms — prolongations and applications, Differential
Geom. Appl. 26 (2008), 244-266, math.DG/0601751.

[16] Harnad J., Shnider S., Isotropic geometry and twistors in higher dimensions. I. The generalized Klein
correspondence and spinor flags in even dimensions, J. Math. Phys. 33 (1992), 3197-3208.

[17] Harnad J., Shnider S., Isotropic geometry and twistors in higher dimensions. II. Odd dimensions, reality
conditions, and twistor superspaces, J. Math. Phys. 36 (1995), 1945-1970.

1itchin N.J., Complex manifolds an nstein’s equations, in Twistor Geometry an onlinear Systems
18] Hitchin N.J., C 1 ifold d Ei in’ i in Twi G d Nonli S
(Primorsko, 1980), Lecture Notes in Math., Vol. 970, Springer, Berlin — New York, 1982, 73-99.

[19] Hughston L.P., Hurd T.R., A CP® calculus for space-time fields, Phys. Rep. 100 (1983), 273-326.


http://dx.doi.org/10.1216/rmjm/1181072333
http://dx.doi.org/10.1007/s10455-012-9356-7
http://arxiv.org/abs/1011.4717
http://dx.doi.org/10.1007/BF01450078
http://dx.doi.org/10.1093/acprof:oso/9780198503620.001.0001
http://dx.doi.org/10.1093/acprof:oso/9780198503620.001.0001
http://dx.doi.org/10.1007/978-3-7643-9909-2
http://dx.doi.org/10.1007/978-3-7643-9909-2
http://dx.doi.org/10.1063/1.528214
http://dx.doi.org/10.5802/aif.1779
http://arxiv.org/abs/math.DG/9911117
http://dx.doi.org/10.1090/surv/154
http://dx.doi.org/10.1090/surv/154
http://dx.doi.org/10.1007/BF01609355
http://arxiv.org/abs/1412.7559
http://dx.doi.org/10.4310/PAMQ.2010.v6.n3.a7
http://arxiv.org/abs/0807.3360
http://dx.doi.org/10.1016/j.difgeo.2007.11.014
http://dx.doi.org/10.1016/j.difgeo.2007.11.014
http://arxiv.org/abs/math.DG/0601751
http://dx.doi.org/10.1063/1.529538
http://dx.doi.org/10.1063/1.531096
http://dx.doi.org/10.1007/BFb0066025
http://dx.doi.org/10.1016/0370-1573(83)90003-0

42 A. Taghavi-Chabert

[20] Hughston L.P., Mason L.J., A generalised Kerr—Robinson theorem, Classical Quantum Gravity 5 (1988),
275-285.

[21] Jones P.E., Tod K.P., Minitwistor spaces and Einstein—-Weyl spaces, Classical Quantum Gravity 2 (1985),
565-577.

[22] Kerr R.P., Gravitational field of a spinning mass as an example of algebraically special metrics, Phys. Rev.
Lett. 11 (1963), 237-238.

[23] Kerr R.P., Schild A., Republication of: A new class of vacuum solutions of the Einstein field equations,
Gen. Relativity Gravitation 41 (2009), 2485-2499.

[24] Kodaira K., A theorem of completeness of characteristic systems for analytic families of compact submani-
folds of complex manifolds, Ann. of Math. 75 (1962), 146-162.

[25] LeBrun C.R., H-space with a cosmological constant, Proc. Roy. Soc. London Ser. A 380 (1982), 171-185.

[26] Mason L., Taghavi-Chabert A., Killing-Yano tensors and multi-Hermitian structures, J. Geom. Phys. 60
(2010), 907-923, arXiv:0805.3756.

[27] Nurowski P., Construction of conjugate functions, Ann. Global Anal. Geom. 37 (2010), 321-326,
math.DG/0605745.

[28] Onishchik A.L., On compact Lie groups transitive on certain manifolds, Soviet Math. Dokl. 1 (1960), 1288—
1291.

[29] Penrose R., Twistor algebra, J. Math. Phys. 8 (1967), 345-366.

[30] Penrose R., Nonlinear gravitons and curved twistor theory, Gen. Relativity Gravitation 7 (1976), 31-52.

[31] Penrose R., Rindler W., Spinors and space-time. Vol. 2. Spinor and twistor methods in space-time geometry,
Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge, 1986.

[32] Salamon S., Viaclovsky J., Orthogonal complex structures on domains in R*, Math. Ann. 343 (2009),
853-899, arXiv:0704.3422.

[33] Taghavi-Chabert A., The complex Goldberg—Sachs theorem in higher dimensions, J. Geom. Phys. 62 (2012),
981-1012, arXiv:1107.2283.

[34] Taghavi-Chabert A., Pure spinors, intrinsic torsion and curvature in even dimensions, Differential Geom.
Appl. 46 (2016), 164-203, arXiv:1212.3595.

[35] Taghavi-Chabert A., Pure spinors, intrinsic torsion and curvature in odd dimensions, arXiv:1304.1076.

[36] Tod K.P., Harmonic morphisms and mini-twistor space, in Further Advances in Twistor Theory. Vol. II.
Integrable Systems, Conformal Geometry and Gravitation, Pitman Research Notes in Mathematics Series,
Vol. 232, Editors L.J. Mason, L.P. Hughston, P.Z. Kobak, Longman Scientific & Technical, Harlow, 1995,
45-46.

[37] Tod K.P., More on harmonic morphisms, in Further Advances in Twistor Theory. Vol. II. Integrable Systems,

Conformal Geometry and Gravitation, Pitman Research Notes in Mathematics Series, Vol. 232, Editors L.J.
Mason, L.P. Hughston, P.Z. Kobak, Longman Scientific & Technical, Harlow, 1995, 47-48.


http://dx.doi.org/10.1088/0264-9381/5/2/007
http://dx.doi.org/10.1088/0264-9381/2/4/021
http://dx.doi.org/10.1103/PhysRevLett.11.237
http://dx.doi.org/10.1103/PhysRevLett.11.237
http://dx.doi.org/10.1007/s10714-009-0857-z
http://dx.doi.org/10.2307/1970424
http://dx.doi.org/10.1098/rspa.1982.0035
http://dx.doi.org/10.1016/j.geomphys.2010.02.008
http://arxiv.org/abs/0805.3756
http://dx.doi.org/10.1007/s10455-009-9186-4
http://arxiv.org/abs/math.DG/0605745
http://dx.doi.org/10.1063/1.1705200
http://dx.doi.org/10.1007/BF00762011
http://dx.doi.org/10.1017/CBO9780511524486
http://dx.doi.org/10.1007/s00208-008-0293-5
http://arxiv.org/abs/0704.3422
http://dx.doi.org/10.1016/j.geomphys.2012.01.012
http://arxiv.org/abs/1107.2283
http://dx.doi.org/10.1016/j.difgeo.2016.02.006
http://dx.doi.org/10.1016/j.difgeo.2016.02.006
http://arxiv.org/abs/1212.3595
http://arxiv.org/abs/1304.1076

	1 Introduction
	2 Twistor geometry
	2.1 Smooth quadric hypersurface
	2.1.1 The tractor bundle
	2.1.2 The tractor spinor bundle

	2.2 Twistor space
	2.2.1 Odd dimensions
	2.2.2 Even dimensions
	2.2.3 From even to odd dimensions

	2.3 Correspondence space
	2.3.1 Odd dimensions
	2.3.2 Even dimensions

	2.4 Co-gamma-planes and mini-twistor space
	2.5 Normal bundles
	2.5.1 Odd dimensions
	2.5.2 Mini-twistor space
	2.5.3 Even dimensions
	2.5.4 Kodaira's theorem and completeness


	3 Null foliations
	3.1 Odd dimensions
	3.1.1 Local description
	3.1.2 Totally geodetic null structures
	3.1.3 Co-integrable null structures
	3.1.4 Totally co-geodetic null structures

	3.2 Even dimensions

	4 Examples
	4.1 Conformal Killing spinors
	4.1.1 Odd dimensions
	4.1.2 Even dimensions

	4.2 Conformal Killing–Yano 2-forms
	4.2.1 Eigenspinors of a 2-form
	4.2.2 The null structures of a conformal Killing–Yano 2-forms


	5 Curved spaces
	A Coordinate charts on twistor space and correspondence space
	A.1 Odd dimensions
	A.2 Even dimensions

	References

