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Abstract. We show the fundamental theorems of curves and surfaces in the 3-dimensional
Heisenberg group and find a complete set of invariants for curves and surfaces respectively.
The proofs are based on Cartan’s method of moving frames and Lie group theory. As an
application of the main theorems, a Crofton-type formula is proved in terms of p-area which
naturally arises from the variation of volume. The application makes a connection between
CR geometry and integral geometry.
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1 Introduction

In Euclidean spaces, the fundamental theorem of curves states that any unit-speed curve is
completely determined by its curvature and torsion. More precisely, given two functions k(s)
and τ(s) with k(s) > 0, there exists a unit-speed curve whose curvature and torsion are the
functions k and τ , respectively, uniquely up to a Euclidean rigid motion. We present the
analogous theorems of curves and surfaces in the 3-dimensional Heisenberg group H1. The
structure of the group of transformations in H1, which is similar to the group of rigid motions in
Euclidean spaces, is also studied. Moreover, we develop the concept of the geometric invariants
for curves and surfaces in the above sense. It should be emphasised that owning such invariants
helps us to understand the geometric structures in CR manifolds and to develop the applications
to integral geometry.

We give a brief review of the Heisenberg group. All the details can be found in [2, 3]. The
Heisenberg group H1 is the space R3 associated with the group multiplication

(x1, y1, z1) ◦ (x2, y2, z2) = (x1 + x2, y1 + y2, z1 + z2 + y1x2 − x1y2),

which is also a 3-dimensional Lie group. The standard left-invariant vector fields in H1

e̊1 =
∂

∂x
+ y

∂

∂z
, e̊2 =

∂

∂y
− x ∂

∂z
, and T =

∂

∂z

form a basis of the vector space of left-invariant vector fields, where ( ∂
∂x ,

∂
∂y ,

∂
∂z ) denotes the

standard basis in R3. The standard contact bundle ξ := span{̊e1, e̊2} in H1 is a subbundle of
the tangent bundle TH1. Equivalently, the contact bundle can be defined as

ξ = ker Θ,

mailto:hlchiu@math.ncu.edu.tw
mailto:972401001@cc.ncu.edu.tw
mailto:ychuang@xynu.edu.cn
https://doi.org/10.3842/SIGMA.2017.097


2 H.-L. Chiu, Y.-C. Huang and S.-H. Lai

where

Θ = dz + xdy − ydx

is the standard contact form. T is called the Reeb vector field and Θ(T ) = 1. A CR structure
on H1 is an endomorphism J : ξ → ξ defined by

J (̊e1) = e̊2 and J (̊e2) = −e̊1.

For any vectors X,Y ∈ ξ, we can associate a natural metric

h(X,Y ) := dΘ(X, JY )

called Levi-metric [3, Section 2]. The metric gΘ := h⊕Θ2 is the adapted metric defined on the
tangent bundle TH1.

The Heisenberg group H1 can be regarded as a pseudo-hermitian manifold by considering
H1 associated with the standard pseudo-hermitian structure (J,Θ). Recall that a pseudo-
hermitian transformation on H1 is a diffeomorphism on H1 preserving the pseudo-hermitian
structure (J,Θ). For more information about pseudo-hermitian structure, we refer the readers
to [4, 15, 16, 24]. Denote by PSH(1) the group of pseudo-hermitian transformations on H1, and
call any element in PSH(1) a symmetry. A symmetry in H1 plays the same role as a rigid motion
in Rn and will be characterized in Section 3.1.

Let γ : I → H1 be a parametrized curve. For any t ∈ I, the velocity γ′(t) has the natural
decomposition

γ′(t) = γ′ξ(t) + γ′T (t),

where γ′ξ(t) and γ′T (t) are, respectively, the orthogonal projection of γ′(t) on ξ along T and the
orthogonal projection of γ′(t) on T along ξ with respect to the adapted metric gΘ.

Definition 1.1. A horizontally regular curve is a parametrized curve γ(t) such that γ′ξ(t) 6= 0
for all t ∈ I. We say that γ(t) is a horizontal curve if γ′(t) = γ′ξ(t) for all t ∈ I.

In the context of contact geometry, some authors call the horizontally regular curves Le-
gendrian curves, for example, in [10, 11, 12, 17]. Proposition 4.1 shows that any horizontally
regular curve can be uniquely reparametrized by horizontal arc-length s, up to a constant, such
that |γ′ξ(s)| = 1 for all s, and called the curve being with horizontal unit-speed. Throughout the
article, we always take for granted that the length | · | and the inner product 〈·, ·〉 are defined
on the contact bundle in the sense of Levi-metric.

For a horizontally regular curve γ(s) parametrized by horizontal arc-length s, we define the
p-curvature k(s) and the contact normality τ(s) by

k(s) :=

〈
dX(s)

ds
, Y (s)

〉
, τ(s) := 〈γ′(s), T 〉,

where X(s) = γ′ξ(s), Y (s) = JX(s), and dX(s)
ds denotes the derivative of X(s) w.r.t. the arc-

length s. Note that k(s) is analogous to the curvature of the curve in Rn, while τ(s) measures
how far the curve is from being horizontal. We also point out that k(s) and τ(s) are invariant
under pseudo-hermitian transformations of horizontally regular curves. Recently we generalize
those invariants to the higher dimension Hn for any n ≥ 1 and study the problem of classification
of horizontal curves [8].

The first theorem shows that horizontally regular curves are completely characterized by the
functions k(s) and τ(s).
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Theorem 1.2 (the fundamental theorem for curves in H1). Given C1-functions k(s), τ(s),
there exists a horizontally regular curve γ(s) with horizontal unit-speed having k(s) and τ(s)
as its p-curvature and contact normality, respectively. In addition, any regular curve γ̃(s) with
horizontal unit-speed satisfying the same p-curvature k(s) and contact normality τ(s) differs
from γ(s) by a pseudo-hermitian transformation g ∈ PSH(1), namely,

γ̃(s) = g ◦ γ(s)

for all s.

Since a curve γ(s) is horizontal if and only if the contact normality τ(s) = 0, we immediately
have the corollary.

Corollary 1.3. Given a C1-function k(s), there exists a horizontal curve γ(s) with horizontal
unit-speed having k(s) as its p-curvature. In addition, any horizontal curve γ̃(s) with horizontal
unit-speed satisfying the same p-curvature differs from γ(s) by a pseudo-hermitian transforma-
tion g ∈ PSH(1), namely,

γ̃(s) = g ◦ γ(s)

for all s.

If the horizontally regular curve γ is not parametrized by horizontal arc-length, in Section 4.2
we also obtain the explicit formulae for the p-curvature and the contact normality.

Theorem 1.4. Let γ(t) = (x(t), y(t), z(t)) ∈ H1 be a horizontally regular curve, not necessarily
with horizontal unit-speed. The p-curvature k(t) and the contact normality τ(t) of γ(s) are

k(t) =
x′y′′ − x′′y′(

(x′)2 + (y′)2
) 3

2

(t), τ(t) =
xy′ − x′y + z′(
(x′)2 + (y′)2

) 1
2

(t). (1.1)

Notice that in (1.1) the p-curvature k(t) depends only on x(t), y(t). We observe that k(t) is
the signed curvature of the plane curve α(t) := π ◦ γ(t) =

(
x(t), y(t)

)
, where π is the projection

onto the xy-plane along the z-axis. It is the fact that the signed curvature of a given plane curve
completely describes the curve’s behavior, we have the corollary:

Corollary 1.5. Suppose two horizontally regular curves in H1 differ by a Heisenberg rigid
motion, then their projections onto the xy-plane along the z-axis differ by a Euclidean rigid
motion. In particular, two horizontal curves in H1 differ by a Heisenberg rigid motion if and
only if their projections are congruent in the Euclidean plane.

As an example, we calculate the p-curvature and contact normality for the geodesics, and
obtain the characteristic description of the geodesics.

Theorem 1.6. In H1, the geodesics are the horizontally regular curves with constant p-curvature
and zero contact normality.

The second part of the paper shows the fundamental theorem of surfaces in H1. Although
the theorem has been generalized to hypersurfaces embedded in Hn for any n ≥ 1 (see [9]), for
the sake of being self-contained and future studies, we give a simpler proof for the case n = 1
(Theorem 1.10). It is also worth to mention that Definition 1.7 and the proofs of Theorems 1.8
and 1.10 are more primitive but intuitive than the one in [9, Theorem 1.7].

Let Σ ⊂ H1 be an embedded regular surface. Recall that a singular point p ∈ Σ is a point
such that the tangent plane TpΣ coincides with the contact plane ξp at p. Therefore outside the
singular set (the non-singular part of Σ), the line bundle TΣ∩ξ forms one-dimensional foliation,
which is called characteristic foliation.
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Definition 1.7. Let F : U → H1 be a parametrized surface with coordinates (u, v) on U ⊂ R2.
We say that F is a normal parametrization if

1) F (U) is a surface without singular points,

2) Fu := ∂F
∂u defines the characteristic foliation on F (U),

3) |Fu| = 1 for each point (u, v) ∈ U , where the norm is with respect to the Levi-metric.

We call (u, v) normal coordinates of the surface F (U).

It is easy to see that normal coordinates always exist locally near a non-singular point p ∈ Σ.
In addition, for a normal parametrization F , denote X = Fu, Y = JX and T = ∂

∂z , we define
the smooth functions a, b, c, l and m on U by

a := 〈Fv, X〉, b := 〈Fv, Y 〉, c =: 〈Fv, T 〉, l := 〈Fuu, Y 〉, m := 〈Fuv, Y 〉, (1.2)

and call a, b and c the coefficients of the first kind of F , and l, m the coefficients of the second
kind. In Section 5 we calculate the Darboux derivatives (see Section 2 and (5.8)) of PSH(1)
and it is known that by the method of moving frame, the infinitesimal displacement dX on the
surface can be represented in terms of du and dv,

dX = Fuudu+ Fuvdv,

and so the functions ` and m are the coefficients of Darboux derivatives in terms of du and dv
respectively (5.1). By comparing (5.9) and (5.10), all coefficients satisfy the integrability con-
ditions

au = bl, bu = −al +m, cu = 2b, lv −mu = 0, (1.3)

where the subscripts denote the partial derivatives.

The following theorem states that these coefficients are the complete differential invariants
for the map F .

Theorem 1.8. Let U ⊂ R2 be a simply connected open set. Suppose that a, b, c, l and m are
functions defined on U satisfying the integrability conditions (1.3). Then there exists a normal
parametrization F : U → H1 having a, b, c and l, m as the coefficients of first kind and second
kind of F , respectively. In addition, any normal parametrization F̃ : U → H1 with the same
coefficients of first kind and second kind differ from F by a Heisenberg rigid motion, namely,
F̃ (u, v) = g ◦ F (u, v) for all (u, v) ∈ U for some g ∈ PSH(1).

We should point out that the regularity of F is, at least, C2. In (5.17), we will show that
the function l, up to a sign, is independent of the choice of normal coordinates, and hence
it is a differential invariant of the surface F (U). Actually l is the p-mean curvature for Hn,
n ≥ 2 (see [3]). In particular, F (U) is a p-minimal surface when l = 0; such a parametriza-
tion F : U → H1 is called a normal parametrization of p-minimal surface. In this case, the
integrability condition (1.3) becomes

au = 0, buu = 0, cu = 2b, (1.4)

bu = m, (1.5)

and the coefficients of first kind completely dominate those of second kind. We conclude all
above as the following result.
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Theorem 1.9. Let U ⊂ R2 be a simply connected open set. Suppose that a, b and c are smooth
functions defined on U satisfying the integrability conditions (1.4). Then there exists a normal
parametrization of p-minimal surface F : U → H1 having a, b and c as the coefficients of first
kind of F , which also determines the coefficient m of the second kind as in (1.5). In addition,
any normal parametrization of p-minimal surface F̃ : U → H1 with the same conditions differs
from F by a Heisenberg rigid motion, namely, F̃ (u, v) = g ◦ F (u, v) in U for some g ∈ PSH(1).

In Section 5, other invariants on the surface Σ will also be obtained, including

α :=
b

c

(up to a sign, called the p-variation), and the restricted adapted metric gΘ|Σ on the surface Σ.
Actually α is the function such that the vector field αe2 + T is tangent to the surface, where
e2 = Je1 and e1 is a unit vector field tangent to the characteristic foliation. Let

eΣ :=
αe2 + T√

1 + α2
,

be a unit vector field tangent to the surface. Then we observe that these invariants α, l, eΣ

satisfy the integrability condition:(
1 + α2

) 3
2 (eΣl) =

(
1 + α2

)
(e1e1α)− α(e1α)2 + 4α

(
1 + α2

)
(e1α)

+ α
(
1 + α2

)2
K + αl

(
1 + α2

) 1
2 (eΣα) + α

(
1 + α2

)
l2, (1.6)

where K is the Gaussian curvature with respect to gΘ|Σ.
After studying the invariants in H1, we show the second main theorem which says that

the three invariants (the Riemannian metric gΘ induced by the adapted metric, the p-mean
curvature l, and the p-variation α) comprise a complete set of invariants for a surface without
singular points.

Theorem 1.10 (the fundamental theorem for surfaces in H1). Let (Σ, g) be a 2-dimensional
Riemannian manifold with Gaussian curvature K, and α′, l′ two real-valued functions defined
on Σ. Assume that K, α′ and l′ satisfy the integrability condition (1.6). Then for every non-
singular point p ∈ Σ, there exists an open neighborhood U containing p and an embedding
f : U → H1 such that

g = f∗(gΘ), α′ = f∗α, l′ = f∗l,

where α, l are the induced p-variation and p-mean curvature on f(U) respectively. Moreover,
f is uniquely determined up to a Heisenberg rigid motion.

The third part of the paper is an application of the motion equations and the structure
equations obtained from the proof of fundamental theorem for curves. We derive the Crofton
formula in H1 which is a classical result of integral geometry, relating the length of a fixed curve,
and the number of intersections for the curve and randomly oriented lines passing through it.
Santaló generalized the result to compact Riemannian manifolds with boundary [21, 22]. In the
simple case R2, given a fixed piecewise regular curve γ, the Crofton formula states that∫

`∩γ 6=∅
n(` ∩ γ)dL = 4 · length(γ),

where dL is the kinematic density defined on the set of oriented lines in R2, and n(` ∩ γ) is the
number of intersections of the line ` with γ. We have the analogues formula in H1. A significant
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observation is that the geometric quantity on the right-hand side of the formula (1.7) is the
p-area which naturally arises from the variation of volume for domains in CR manifolds [3]. By
the similar technique, one of the authors also show the containment problem for the geometric
probability in H1 [13]. Recently Prandi, Rizzi, Seri [20] show a sub-Riemannian version of the
classical Santaló formula which is applied to finding the lower bound of sub-Laplacian in a com-
pact domain with boundary. The other approaches can be referred to [19] (sub-Riemannian),
and [18] (Carnot groups).

Theorem 1.11 (Crofton formula in H1). Suppose X : (u, v) ∈ Ω 7→ Σ ⊂ H1 is a C2-surface
for some domain Ω ⊂ R2. Let L be the set of oriented horizontal lines in H1 and n(` ∩ Σ) be
the number of intersections of the horizontal line ` ∈ L with the surface Σ. Then we have the
Crofton formula∫

`∈L, `∩Σ6=∅
n(` ∩ Σ)dL = 4 · p-area(Σ), (1.7)

where dL := dp ∧ dθ ∧ dt is the kinematic density on L.

We give the outline of the paper. In Section 2, we state two propositions about existence and
uniqueness of mappings from a smooth manifold into a Lie group G, which underlies our main
theorems. In Section 3, we not only express the representation of PSH(1) but discuss how the
matrix Lie group PSH(1) can be interpreted as the set of moving frames on the homogeneous
space H1 = PSH(1)/SO(2); the moving frame formula in H1 via the (left-invariant) Maurer–
Cartan form will be derived. In Section 4, we compute the Darboux derivatives of the lift
of a horizontally regular curve and give the proof of the first main theorem; moreover, the p-
curvature and the contact normality for horizontally regular curves and geodesics are calculated.
In Section 5, we compute the Darboux derivatives of the lift of normal parametrized surfaces,
and achieve the complete set of differential invariants for a normal parametrized surface. In
Section 6, by calculating the Darboux derivatives of the lift for f : Σ → H1, we show the
fundamental theorem for surfaces Σ in H1. In Section 7, we show the Crofton formula which
connects CR geometry and integral geometry.

2 Calculus on Lie groups

We recall two basic theorems from Lie groups, which play the essential roles in the proof of the
main theorems. For the details we refer the readers to [1, 7, 12, 14, 23].

Let M be a connected smooth manifold and G ⊂ GL(n,R) a matrix subgroup with Lie
algebra g. Recall that a (left-invariant) Maurer–Cartan form ω is a Lie algebra-valued 1-form
globally defined on G which is a linear mapping of the tangent space TgG at each g ∈ G into TeG

ω(v) :=
(
Lg−1

)
∗v, for all v ∈ TgG,

where e ∈ G is the identity element. In particular when G is a matrix Lie group, one has

ω = g−1dg.

We first introduce the theorem of uniqueness.

Theorem 2.1. Given two maps f, f̃ : M → G, then f̃∗ω = f∗ω if and only if f̃ = g · f for some
g ∈ G.

We call the pullback 1-form f∗ω the Darboux derivative of the map f : M → G. When
M = R and G = (R,+), the addition group, Theorem 2.1 can be rephrased as the Fundamental
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Theorem of Calculus: if two differentiable functions f(x) and f̃(x) have the same derivatives
df
dx = df̃

dx , then f(x) = f̃(x) + c for some constant c,
The second result is the theorem of existence.

Theorem 2.2. Suppose that φ is a g-valued 1-form on a simply connected manifold M . Then
there exists a map f : M → G satisfying f∗ω = φ if and only if dφ = −φ ∧ φ. Moreover, the
resulting map f is unique up to a group action.

In the case M = R and G = (R,+), this theorem implies the existence of derivatives for
differentiable functions. We mention that the proof of Theorem 2.2 relies on the Frobenius
theorem.

3 The group of pseudo-hermitian transformations on H1

3.1 The pseudo-hermitian transformations on H1

A pseudo-hermitian transformation on H1 is a diffeomorphism Φ on H1 preserving the CR
structure J and the contact form Θ; it satisfies

Φ∗J = JΦ∗ on ξ and Φ∗Θ = Θ in H1.

A trivial example of a pseudo-hermitian transformation is a left translation Lp in H1; the other
example is defined by ΦR : H1 → H1

ΦR

xy
z

 −→ (
R 0
0 1

)xy
z

 ,

where R ∈ SO(2) is a 2×2 special orthogonal matrix.
Let PSH(1) be the group of pseudo-hermitian transformations on H1. We shall show that

the group PSH(1) exactly consists of all the transformations of the forms Φp,R := Lp ◦ ΦR,
a transformation ΦR followed by a left translation Lp. More precisely, we have

Φp,R

xy
z

 =

 ax− by + p1

bx+ ay + p2

(ap2 − bp1)x+ (−bp2 − ap1)y + z + p3

 ,

where p = (p1, p2, p3)t ∈ H1 and R =
(
a −b
b a

)
∈ SO(2).

Theorem 3.1. Let Φ: H1 → H1 be a pseudo-hermitian transformation. Then Φ = Lp ◦ΦR for
some R ∈ SO(2) and p ∈ H1.

Proof. It suffices to consider the pseudo-hermitian transformation Φ: H1 → H1 such that
Φ(0) = 0. Indeed, if Φ(0) = p for some p ∈ H1 \ {0}, then the composition Lp−1 ◦ Φ is
a transformation fixing the origin. Therefore, we reduce the proof of Theorem 3.1 to the following
lemma:

Lemma 3.2. Let Φ be a pseudo-hermitian transformation on H1 such that Φ(0) = 0. Then, for
any p ∈ H1, the matrix representation of Φ∗(p) with respect to the standard basis

(
∂
∂x ,

∂
∂y ,

∂
∂z

)
of R3 is

Φ∗(p) =

cosα0 − sinα0 0
sinα0 cosα0 0

0 0 1

(
∂
∂x
, ∂
∂y
, ∂
∂z

) ,
for some real constant α0 which is independent of p, and hence Φ∗ is a constant matrix.
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To prove Lemma 3.2, first we calculate the matrix representation of Φ∗(p) with respect to
the basis (̊e1, e̊2, T ). Since

Θ (Φ∗e̊i) = (Φ∗Θ) (̊ei) = Θ (̊ei) = 0, for i = 1, 2,

the contact bundle ξ is invariant under Φ∗. In addition, let h be the Levi-metric on ξ defined
by h(X,Y ) = dΘ(X, JY ), then

Φ∗h(X,Y ) = h(Φ∗X,Φ∗Y ) = dΘ(Φ∗X, JΦ∗Y ) = dΘ(Φ∗X,Φ∗JY )

= Φ∗(dΘ)(X, JY ) = d(Φ∗Θ)(X,JY ) = dΘ(X,JY ) = h(X,Y ),

and hence h(Φ∗X,Φ∗Y ) = h(X,Y ) for every X,Y ∈ ξ. Thus, Φ∗ is orthogonal on ξ. On the
other hand, since

Θ(Φ∗T ) = Θ

(
Φ∗

∂

∂z

)
= Φ∗Θ

(
∂

∂z

)
= Θ

(
∂

∂z

)
= 1,

and

dΘ(X,Φ∗T ) = dΘ
(
Φ∗Φ

−1
∗ X,Φ∗T

)
= (Φ∗dΘ)

(
Φ−1
∗ X,T

)
= (dΦ∗Θ)

(
Φ−1
∗ X,T

)
= dΘ

(
Φ−1
∗ X,T

)
= 0

for all X ∈ ξ, we have Φ∗T = T . From the above argument, we conclude that the matrix
representation

Φ∗(p) =

cosα(p) − sinα(p) 0
sinα(p) cosα(p) 0

0 0 1


(̊e1 ,̊e2, ∂∂z )

,

for some real-valued function α on H1.
Next, we rewrite the matrix representation of Φ∗(p) from the basis

(̊
e1, e̊2,

∂
∂z

)
to the basis(

∂
∂x ,

∂
∂y ,

∂
∂z

)
. Let Φ = (Φ1,Φ2,Φ3), p = (p1, p2, p3), e̊1(p) = ∂

∂x + p2
∂
∂z and e̊2(p) = ∂

∂y − p1
∂
∂z ,

then

Φ∗(p)

(
∂

∂x

)
= Φ∗(p)

[̊
e1(p)− p2

∂

∂z

]
= Φ∗(p) [̊e1(p)]− p2

∂

∂z

= cosα(p)̊e1 [Φ(p)] + sinα(p)̊e2 [Φ(p)]− p2
∂

∂z

= cosα(p)
∂

∂x
+ sinα(p)

∂

∂y
+
[

cosα(p)Φ2(p)− sinα(p)Φ1(p)− p2

] ∂
∂z
,

and

Φ∗(p)

(
∂

∂y

)
= Φ∗(p)

[̊
e2(p) + p1

∂

∂z

]
= Φ∗(p) [̊e2(p)] + p1

∂

∂z

= − sinα(p)̊e1 [Φ(p)] + cosα(p)̊e2 [Φ(p)] + p1
∂

∂z

= − sinα(p)
∂

∂x
+ cosα(p)

∂

∂y
+
[
− sinα(p)Φ2(p)− cosα(p)Φ1(p) + p1

] ∂
∂z
.

Thus,

Φ∗(p) =

cosα(p) − sinα(p) 0
sinα(p) cosα(p) 0
Φ3
x(p) Φ3

y(p) 1

(
∂
∂x
, ∂
∂y
, ∂
∂z

) :=

Φ1
x Φ1

y Φ1
z

Φ2
x Φ2

y Φ2
z

Φ3
x Φ3

y Φ3
z

 , (3.1)



An Application of the Moving Frame Method 9

where

Φ3
x(p) :=

∂Φ3
x

∂x
= cosα(p)Φ2(p)− sinα(p)Φ1(p)− p2,

Φ3
y(p) :=

∂Φ3
y

∂y
= − sinα(p)Φ2(p)− cosα(p)Φ1(p) + p1,

and denote the subscripts as the partial derivatives for all Φi’s. By (3.1) that Φ1
z = Φ2

z = 0,
it follows that the functions Φ1 and Φ2 both depend only on x and y, and so is α. Moreover,
use (3.1) again and the facts Φ1

xy = Φ1
yx and Φ2

xy = Φ2
yx, we have(

cosα − sinα
sinα cosα

)(
αx
αy

)
=

(
0
0

)
,

which implies that αx = αy = 0. Thus α is a constant on H1, say α = α0. From (3.1) and notice
that Φ(0) = 0, we finally get

Φ1 = x cosα0 − y sinα0, Φ2 = x sinα0 + y cosα0,

which implies that Φ3
x = Φ3

y = 0. Therefore

Φ∗(p) =

cosα0 − sinα0 0
sinα0 cosα0 0

0 0 1

(
∂
∂x
, ∂
∂y
, ∂
∂z

) ,
and the result follows. �

3.2 Representation of PSH(1)

The pseudo-hermitian transformation Φp,R and the points (x, y, z)t in H1 can be respectively
represented as

Φp,R ↔M =


1 0 0 0
p1 a −b 0
p2 b a 0
p3 ap2 − cp1 bp2 − dp1 1

 ,

and xy
z

↔ X =


1
x
y
z


satisfying

MX =


1

Φp,R

xy
z


 ,

where a2 + b2 = 1. Therefore, PSH(1) can be represented as a matrix group

PSH(1) =

M ∈ GL(4,R)
∣∣∣ M =


1 0 0 0
p1 a −b 0
p2 b a 0
p3 ap2 − bp1 −bp2 − ap1 1

 , a2 + b2 = 1

 .
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Let psh(1) be the Lie algebra of PSH(1). It is easy to see that the element of psh(1) is of the
form 

0 0 0 0
x1 0 −x1

2 0
x2 x1

2 0 0
x3 x2 −x1 0

 .

and the corresponding Maurer–Cartan form of PSH(1) is of the form

ω =


0 0 0 0
ω1 0 −ω1

2 0
ω2 ω1

2 0 0
ω3 ω2 −ω1 0

 ,

where ω1
2 and ωj , j = 1, 2, 3, are 1-forms on PSH(1).

3.3 The oriented frames on H1

The oriented frame (p;X,Y, T ) on H1 consists of the point p ∈ H1 and the orthonormal vector
fields X ∈ ξp, Y = JX with respect to the Levi-metric. We can identify PSH(1) with the set of
all oriented frames on H1 as follows:

PSH(1) 3M =


1 0 0 0
p1 a −b 0
p2 b a 0
p3 ap2 − bp1 −bp2 − ap1 1

↔ (p;X,Y, T ),

where

p = (p1, p2, p3)t,

X = a
∂

∂x
+ b

∂

∂y
+ (ap2 − bp1)

∂

∂t
, Y = −b ∂

∂x
+ a

∂

∂y
+ (−bp2 − ap1)

∂

∂t
.

Actually, we have X = åe1(p) + b̊e2(p) and Y = −b̊e1(p) + åe2(p), and hence M is the unique
4× 4 matrix such that

(p;X,Y, T ) = (0; e̊1, e̊2, T )M.

3.4 Moving frame formula

Since PSH(1) is a matrix Lie group, the Maurer–Cartan form must be ω = M−1dM or dM =
Mω (see [6]). Immediately one has that

(dp; dX,dY, dT ) = (p;X,Y, T )


0 0 0 0
ω1 0 −ω1

2 0
ω2 ω1

2 0 0
ω3 ω2 −ω1 0

 .

Thus, we have reached the moving frame formula:

dp = ω1X + ω2Y + ω3T, dX = ω1
2Y + ω2T,

dY = −ω1
2X − ω1T, dT = 0. (3.2)
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4 Differential invariants of horizontally regular curves in H1

Proposition 4.1. Any horizontally regular curve γ(t) can be reparametrized by its horizontal
arc-length s such that |γ′ξ(s)| = 1.

Proof. Define s(t) =
∫ t

0 |γ
′
ξ(u)|du. Then any horizontal arc-length differs s up to a constant.

By the fundamental theorem of calculus, we have ds
dt = |γ′ξ(t)|. Since

dγ

ds
=

dγ

dt

dt

ds
=

γ′(t)

|γ′ξ(t)|
,

γ′ξ(s) =
γ′ξ(t)

|γ′ξ(t)|
, namely, |γ′ξ(s)| = 1. �

Definition 4.2. A lift of a mapping f : M → G/H is defined to be a map F : M → G such
that the following diagram commutes:

G

��
M

F

<<

f
// G/H,

where G is a Lie group, H is a closed Lie subgroup and G/H is the associated homogeneous
space. In additional, another lift F̃ of f has to satisfy

F̃ (x) = F (x)g(x)

for some map g : M → H.

Remark 4.3. In the next section, we shall set G = PSH(1), M = (a, b) ⊂ R, f = γ, F = γ̃,
G/H = PSH(1)/SO(2), and identify PSH(1)/SO(2) with H1.

4.1 The Proof of Theorem 1.2

By Proposition 4.1, we may assume that the horizontally regular curve γ(s) is parametrized by
the horizontal arc-length s. Each point on γ uniquely defines an oriented frame

(γ(s);X(s), Y (s), T ),

where X(s) = γ′ξ(s) is the horizontally tangent vector of γ(s) and Y (s) = JX(s). By Remark 4.3,
there exists a lift γ̃ of γ to PSH(1), which is unique up to a SO(2) group action. We abuse the
notation and denote the lift by

γ̃(s) = (γ(s);X(s), Y (s), T ).

Let ω be the Maurer–Cartan form of PSH(1). We shall derive the Darboux derivative γ̃∗ω of
the lift γ̃(s): by using the moving frame formula (3.2), we have

dγ̃(s) = γ̃∗dp = X(s)γ̃∗ω1 + Y (s)γ̃∗ω2 + T γ̃∗ω3, (4.1)

and observe that all pull-back 1-forms by γ̃ are the multiples of ds,

dγ̃(s) = γ′ξ(s)ds+ γ′T (s)ds = X(s)ds+ γ′T (s)ds. (4.2)



12 H.-L. Chiu, Y.-C. Huang and S.-H. Lai

Comparing (4.1) and (4.2) to get

γ̃∗ω1 = ds, γ̃∗ω2 = 0, γ̃∗ω3 = 〈γ′(s), T 〉ds = τ(s)ds.

Insert γ̃∗ω3 into (3.2),

dX(s) = Y (s)γ̃∗ω1
2 + T γ̃∗ω2 = Y (s)γ̃∗ω1

2,

one has

γ̃∗ω1
2 =

〈
dX(s)

ds
, Y (s)

〉
ds = k(s)ds.

As a consequence, the Darboux derivative of γ̃ is obtained

γ̃∗ω =


0 0 0 0
1 0 −k(s) 0
0 k(s) 0 0
τ(s) 0 −1 0

ds. (4.3)

For any functions k(s) and τ(s) defined on an open interval I. Suppose ϕ is the psh(1)-
valued 1-form defined by (4.3). It is easy to check that ϕ satisfies dϕ + ϕ ∧ ϕ = 0. Therefore,
Theorem 2.2 implies that there exists a curve

γ̃(s) = (γ(s);X(s), Y (s), T ) ∈ PSH(1)

such that γ̃∗ω = ϕ. By the moving frame formula (3.2), we have

dγ(s) = X(s)ds+ τ(s)Tds, dX(s) = k(s)Y (s)ds, dY (s) = −k(s)X(s)ds− Tds,

which means that

X(s) = γ′ξ(s), k(s) =

〈
dX(s)

ds
, Y (s)

〉
, τ(s) =

〈
dγ(s)

ds
, T

〉
.

This completes the proof of existence.
To prove uniqueness, suppose that two horizontally regular curves γ1 and γ2 have the same

p-curvature k(s) and contact normality τ(s). The identity (4.3) shows that they must have the
same Darboux derivatives

γ̃∗1ω = γ̃∗2ω.

Therefore, by Theorem 2.1, there exists a symmetry g ∈ PSH(1) such that γ̃2(s) = g ◦ γ̃1(s), and
hence γ2(s) = g ◦ γ1(s) for all s. This completes the proof of uniqueness up to a group action.

4.2 The derivation of the p-curvature and the contact normality

In the subsection, we will compute the p-curvature and the contact normality for horizontally
regular curves (Theorem 1.4) and for the geodesics in H1 (Theorem 1.6).

Proof of Theorem 1.4. Let γ(t) = (x(t), y(t), z(t)) be a horizontally regular curve. The ho-
rizontal arc-length s is defined by

s(t) =

∫ t

0
|γ′ξ(u)|du.
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We first observe that there is the natural decomposition

γ′(t) = (x′(t), y′(t), z′(t)) = x′(t)
∂

∂x
+ y′(t)

∂

∂y
+ z′(t)

∂

∂z

= x′(t)̊e1 + y′(t)̊e2︸ ︷︷ ︸
γ′ξ(t)

+ (z′(t) + xy′(t)− yx′(t)) ∂
∂z︸ ︷︷ ︸

γ′T (t)

, (4.4)

where we abuse the notation by ∂
∂z = T . Let γ̄(s) be the reparametrization of γ(t) by the

horizontal arc-length s. Since γ′(t) = γ̄′(s)ds
dt , by comparing with the decomposition (4.4), one

has

γ̄′ξ(s) =
dt

ds
(x′(t)̊e1 + y′(̊e2)), γ̄′T (s) =

dt

ds

(
(z′(t) + xy′(t)− yx′(t))T

)
. (4.5)

For the p-curvature, by (4.5), note that X(s) = dt
ds(x

′(t)̊e1 + y′(t)̊e2), and Y (s) = JX(s) =
dt
ds(x

′(t)̊e2 − y′(t)̊e1). A straight-forward computation shows

dX(s)

ds
=

d

ds

(
dt

ds

(
x′(t), y′(t), x′y(t)− xy′(t)

))
=

(
dt

ds

)2 (
x′′(t), y′′(t), x′′y(t)− xy′′(t)

)
+

d2t

ds2

(
x′(t), y′(t), x′y(t)− xy′(t)

)
=

(
x′′(t)

(
dt

ds

)2

+ x′(t)
d2t

ds2

)
e̊1 +

(
y′′(t)

(
dt

ds

)2

+ y′(t)
d2t

ds2

)
e̊2,

so

k(s) =

〈
dX(s)

ds
, Y (s)

〉
= −

(
x′′(t)

(
dt

ds

)2

+ x′(t)
d2t

ds2

)
y′(t)

dt

ds
+

(
y′′(t)

(
dt

ds

)2

+ y′(t)
d2t

ds2

)
x′(t)

dt

ds

= −
(
x′′(t)y′(t)− x′(t)y′′(t)

)(dt

ds

)3

=
x′y′′ − x′′y′(

(x′)2 + (y′)2
) 3

2

(t). (4.6)

Again by (4.5), the contact normality must be

τ(s) = 〈γ̄′(s), T 〉 = 〈γ̄′T (s), T 〉 =
dt

ds
(z′(t) + xy′(t)− yx′(t)) =

xy′ − x′y + z′(
(x′)2 + (y′)2

) 1
2

(t), (4.7)

and the result follows. �

Next we use (4.6) and (4.7) to compute the p-curvature and the contact normality for the
geodesics in H1.

Proof of Theorem 1.6. Recall [2] that the Hamiltonian system on H1 for the geodesics is

ẋk(t) = hkj(x(t))ξj(t), ξ̇k(t) = −1

2

3∑
i,j=1

∂hij(x)

∂xk
ξiξj , k = 1, 2, 3, (4.8)

where

hij
(
x1, x2, x3

)
=

 1 0 x2

0 1 −x1

x2 −x1
(
x1
)2

+
(
x2
)2
 .
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So the Hamiltonian system (4.8) can be expressed by

ẋ1(t) = ξ1 + x2ξ3,

ẋ2(t) = ξ2 − x1ξ3,

ẋ3(t) = x2ξ1 − x1ξ2 + ξ3

[(
x1
)2

+
(
x2
)2]

,

ξ̇1(t) = ξ2ξ3 − x1ξ2
3 ,

ξ̇2(t) = −ξ1ξ3 − x2ξ2
3 ,

ξ̇3(t) = 0.

Since ξ̇3(t) = 0, we have ξ3(t) = c3 for some constant c3. When c3 = 0, one has x(t) =
(c1t+ d1, c2t+ d2, (c1d2− c2d1)t+ d3), and this implies that k(t) = 0 and τ(t) = 0; when c3 > 0,
one has

x(t) =
(
x1(t), x2(t), x3(t)

)
, (4.9)

where

x1(t) = a1 sin(2c3t) + a2 cos(2c3t) + d1,

x2(t) = −a2 sin(2c3t) + a1 cos(2c3t) + d2,

x3(t) = (a2d1 + a1d2) sin(2c3t) + (a2d2 − a1d1) cos(2c3t) + 2c3

(
a2

1 + a2
2

)
t+ d3.

Hence k(t) = − 1

[(a21+a22)]
1
2
< 0 and τ(t) = 0; finally, when c3 < 0, one has

x(t) =
(
x1(t), x2(t), x3(t)

)
, (4.10)

where

x1(t) = a1 sin(−2c3t) + a2 cos(−2c3t) + d1,

x2(t) = a2 sin(−2c3t)− a1 cos(−2c3t) + d2,

x3(t) = (a1d1 + a2d2) sin(−2c3t)− (a2d1 − a1d2) cos(−2c3t) + 2c3

(
a2

1 + a2
2

)
t+ d3.

Hence k(t) = 1

[(a21+a22)]
1
2
> 0 and τ(t) = 0.

The calculations above show that a horizontal curve is congruent to a geodesic if it has positive
constant p-curvature. Conversely, it is easy to prove that any geodesic acted by a symmetry is
still a geodesic. Therefore we complete the proof of Theorem 1.6. �

Remark 4.4. Actually, the geodesics (4.9) for c3 > 0 and (4.10) for c3 < 0 travel along the
same path with reverse direction.

5 Differential invariants of parametrized surfaces in H1

5.1 The proof of Theorem 1.8

Let F : U → H1 be a normal parametrized surface with a, b, c, l and m as the coefficients in (1.2).
Denote the lift F̃ of F to PSH(1) as

F̃ = 〈F (u, v);X(u, v), Y (u, v), T 〉,

where X(u, v) := Fu(u, v), Y (u, v) := JX(u, v). As long as F is given, X = Fu, Y = JX and
the Reeb vector field T are uniquely determined, and so the lift F̃ is unique. For convenience,
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henceforward we denote F (u, v), by F , X(u, v) by X, and Y (u, v) by Y . We begin from deriving
the Darboux derivative F̃ ∗ω of F̃ .

On one hand, we can write the vector Fu in terms of the frame

dF

(
∂

∂u

)
= Fu = X + 〈Fu, Y 〉Y + 〈Fu, T 〉T ; (5.1)

actually the last two terms are zero since Fu = X,Y, T are orthonormal. On the other hand, by
the moving frame formula (3.2),

dF = X
(
F̃ ∗ω1

)
+ Y

(
F̃ ∗ω2

)
+ T

(
F̃ ∗ω3

)
. (5.2)

Apply ∂
∂u to (5.2)

dF

(
∂

∂u

)
= X

(
F̃ ∗ω1

)( ∂

∂u

)
+ Y

(
F̃ ∗ω2

)( ∂

∂u

)
+ T

(
F̃ ∗ω3

)( ∂

∂u

)
,

and compare the coefficients with those in (5.1) we have

(
F̃ ∗ω1

)( ∂

∂u

)
= 1, and

(
F̃ ∗ω2

)( ∂

∂u

)
=
(
F̃ ∗ω3

)( ∂

∂u

)
= 0. (5.3)

Similarly by applying ∂
∂v to (5.2), one has

(
F̃ ∗ω1

)( ∂

∂v

)
= 〈Fv, X〉 = a,

(
F̃ ∗ω2

)( ∂

∂v

)
= 〈Fv, Y 〉 = b,

(
F̃ ∗ω3

)( ∂

∂v

)
= 〈Fv, T 〉 = c. (5.4)

Combine (5.3) and (5.4) to get

F̃ ∗ω1 = du+ adv, F̃ ∗ω2 = bdv, F̃ ∗ω3 = cdv. (5.5)

To derive F̃ ∗ω1
2, we use (3.2) again and repeat the same process above. By (5.5),

dX

(
∂

∂u

)
= 〈Xu, X〉︸ ︷︷ ︸

=0

X + 〈Xu, Y 〉Y + 〈Xu, T 〉T = Y
(
F̃ ∗ω1

2
)( ∂

∂u

)
+ T

(
F̃ ∗ω2

)( ∂

∂u

)

= Y
(
F̃ ∗ω1

2
)( ∂

∂u

)
, (5.6)

and so 〈Xu, T 〉 = 0. Again,

dX

(
∂

∂v

)
= 〈Xv, X〉︸ ︷︷ ︸

=0

X + 〈Xv, Y 〉Y + 〈Xv, T 〉T = Y
(
F̃ ∗ω1

2
)( ∂

∂v

)
+ bT, (5.7)

one has 〈Xv, T 〉 = b. Since dX = dFu = Fuudu+ Fuvdv, (5.6) and (5.7) imply that

(
F̃ ∗ω1

2
)( ∂

∂u

)
= 〈Fuu, Y 〉 = l,

(
F̃ ∗ω1

2
)( ∂

∂v

)
= 〈Fuv, Y 〉 = m.

In conclusion, we have

ω1
2 = ldu+mdv, b = 〈Fuv, T 〉, 0 = 〈Fuu, T 〉 = 〈Fuv, X〉 = 〈Fuu, X〉.
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Therefore, by (5.5) and (5.1) we have reached the Darboux derivative

F̃ ∗ω =


0 0 0 0

du+ adv 0 −ldu−mdv 0
bdv ldu+mdv 0 0
cdv bdv −du− adv 0

 . (5.8)

Note that the coefficients a, b, c, l, m uniquely determine the Darboux derivative in (5.8), and
so the proof of uniqueness is completed.

For existence, suppose a, b, c and m, l are functions defined on U . Suppose φ is the psh(1)-
valued 1-form defined by (5.8). Then

dφ =


0 0 0 0
∂a
∂u 0 ∂l

∂v −
∂m
∂u 0

∂b
∂u − ∂l

∂v + ∂m
∂u 0 0

∂c
∂u

∂b
∂u − ∂a

∂u 0

 du ∧ dv, (5.9)

and

φ ∧ φ =


0 0 0 0
−lb 0 0 0

al −m 0 0 0
−2b −m+ al bl 0

 du ∧ dv. (5.10)

Thus, φ satisfies the integrability condition dφ = −φ ∧ φ if and only if the coefficients a, b, c, l
and m satisfy the integrability condition (1.3). Therefore Theorem 2.2 implies there exists a map

F̃ ∗(u, v) = (F (u, v);X(u, v), Y (u, v), T )

such that F̃ ∗ω = φ. Finally, the moving frame formula (3.2) implies that F : U → H1 is a map
with a, b, c, l and m as the coefficients of first kind and second kind respectively.

5.2 Invariants of surfaces

Let Σ ↪→ H1 be a surface such that all points on Σ are non-singular. For each point p ∈ Σ, one
can choose a normal parametrization F : (u, v) ∈ U → Σ around p such that

Fu =
∂F

∂u
= X,

where X is an unit vector field defining the characteristic foliation. The following lemma
characterizes the normal coordinates.

Lemma 5.1. The normal coordinates are determined up to a transformation of the form

ũ = ±u+ g(v), ṽ = h(v),

for some smooth functions g(v), h(v) with ∂h
∂v 6= 0.

Proof. Suppose that (ũ, ṽ) is any normal coordinates around p, i.e.,

Fũ = X̃,

where X̃ = ±X. We have the formula for the change of the coordinates

Fu = Fũ
∂ũ

∂u
+ Fṽ

∂ṽ

∂u
, Fv = Fũ

∂ũ

∂v
+ Fṽ

∂ṽ

∂v
. (5.11)
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Expand Fṽ = ãX̃ + b̃Ỹ + c̃T̃ by the orthonormal basis {X̃, Ỹ , T̃}. The first identity of (5.11)
implies

X = Fu = X̃
∂ũ

∂u
+

(
ã
∂ṽ

∂u
X̃ + b̃

∂ṽ

∂u
Ỹ + c̃

∂ṽ

∂u
T̃

)
=

(
∂ũ

∂u
+ ã

∂ṽ

∂u

)
X̃ + b̃

∂ṽ

∂u
Ỹ + c̃

∂ṽ

∂u
T̃ . (5.12)

Since p is a non-singular point, we see that c̃ 6= 0 around p, and so

∂ṽ

∂u
= 0,

namely, ṽ = h(v) for some function h(v). In addition, comparing the coefficient of X in (5.11),
(5.12), we have

±1 =
∂ũ

∂u
+ ã

∂ṽ

∂u
=
∂ũ

∂u
,

and hence ũ = ±u+ g(v) for some function g(v). Finally we compute

det

(
∂ũ
∂u

∂ũ
∂v

∂ṽ
∂u

∂ṽ
∂v

)
= det

(
±1 ∂g

∂v

0 ∂h
∂v

)
= ±∂h

∂v
6= 0,

and the result follows. �

As what we did in (5.8), we can also derive the Darboux derivatives F̃ ∗ω for the normal
parametrization. One obtains four 1-forms locally defined on the surface Σ:

I = F̃ ∗ω1 = du+ adv, II = F̃ ∗ω2 = bdv, III = F̃ ∗ω3 = cdv,

IV = F̃ ∗ω1
2 = ldu+mdv, (5.13)

where the functions a, b, c, m and l are defined as (1.2). Next we show that those 1-forms are
invariant under the change of coordinates.

Proposition 5.2. Suppose Ĩ, ĨI, ĨII, ĨV are those defined as (5.13) with respect to the other
normal coordinates (ũ, ṽ). Then we have

Ĩ = ±I, ĨI = ±II, ĨII = III, ĨV = IV. (5.14)

Proof. Suppose ã, b̃, c̃, l̃, m̃ are the coefficients of first and second kinds with respect to the
normal coordinates (ũ, ṽ). We point out that all such the coefficients have the same expression
as in (1.2) w.r.t. the new coordinates except for X̃ = ±X and Ỹ = JX̃ = ±Y .

By Lemma 5.1, there exists two functions g(v) and h(v) such that

ũ = ±u+ g(v), ṽ = h(v).

Now we compute the transformation laws of those coefficients:

a = 〈Fv, X〉 =

〈
Fũ
∂ũ

∂v
+ Fṽ

∂ṽ

∂v
,X

〉
=

〈
±X∂g

∂v
+ Fṽ

∂h

∂v
,X

〉
= ±

(
∂g

∂v
+
∂h

∂v
ã

)
. (5.15)

Similarly, we have

b = ±∂h
∂v
b̃, c =

∂h

∂v
c̃, (5.16)
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and so Fu = ±Fũ and Fuu = ±
(
Fũũ

∂ũ
∂u + Fũṽ

∂ṽ
∂u

)
= Fũũ. Thus

l = ±l̃. (5.17)

Similarly

m =
∂g

∂v
l̃ +

∂h

∂v
m̃. (5.18)

From the transformation laws (5.15), (5.16), (5.17), (5.18), the result (5.14) follows. �

Remark 5.3. In the proof (5.16), denote

α =
b

c
, α̃ =

b̃

c̃
, (5.19)

then we have α = ±α̃. Actually, α is a function defined on the non-singular part of Σ, indepen-
dent of the choice of the normal coordinates up to a sign, such that αe2 + T ∈ TΣ, and hence
an invariant of Σ on the non-singular part. Similarly, from (5.17), so is for l, which actually is
the p-mean curvature.

Remark 5.4. We point out that the signs appearing for α and l are due to the different
choices of the orientations. Indeed, if one chooses the normal coordinates with respect to a fixed
orientation of the characteristic foliation, then we have α = α̃ and l = l̃.

Besides the invariants α and l, we now proceed to the other invariant of Σ. Actually, by
Proposition 5.2, we have

I⊗ I + II⊗ II + III⊗ III = Ĩ⊗ Ĩ + ĨI⊗ ĨI + ĨII⊗ ĨII.

Therefore the differential form I ⊗ I + II ⊗ II + III ⊗ III again is independent of the choices of
the normal coordinates, and hence an invariant of Σ. Next we characterize this invariant.

Lemma 5.5. Let gΘ be the adapted metric on H1. Then we have

gΘ|Σ = I⊗ I + II⊗ II + III⊗ III

defined on the non-singular part of Σ.

Proof. This lemma is a direct consequence of (5.13), (3.2), and gΘ|Σ = dp⊗ dp. �

Finally we mention that although the 1-forms I, II, III, IV are only defined on the non-
singular points, the invariant I ⊗ I + II ⊗ II + III ⊗ III can be smoothly extended to the whole
surface Σ by Lemma 5.5.

5.3 A complete set of invariants for surfaces in H1

In this section, we will obtain the last invariant IV = F̃ ∗ω1
2, which is completely determined by

the invariants α, gΘ, l. We therefore have a complete set of invariants for the non-singular part
of the surfaces in H1.

Let f : Σ → H1 be an embedding oriented surface in H1. For convenience, we will not
distinguish the surfaces Σ and f(Σ). At any non-singular point p ∈ Σ, we choose the orthonormal
frame (p; e1, e2, T ), where e1 is tangent to the characteristic foliation and e2 = Je1. A Darboux
frame is a moving frame which is smoothly defined on Σ except for the singular points, and
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hence there exists a lifting of f to PSH(1) defined by F . Now we would like to compute the
Darboux derivative F ∗ω of F . In the following, we abuse the notation F ∗ω by taking

ω =


0 0 0 0
ω1 0 −ω1

2 0
ω2 ω1

2 0 0
ω3 ω2 −ω1 0

 ,

to express the Darboux derivative. It satisfies the integrability condition dω+ω∧ω = 0, that is,

dω1 = ω1
2 ∧ ω2, dω2 = −ω1

2 ∧ ω1, dω3 = 2ω1 ∧ ω2, dω1
2 = 0. (5.20)

Let gΘ = h + Θ2 be the adapted metric. By (5.13) we know ω2 = αω3 on the non-singular
part of Σ, and it is easy to see that

gΘ|Σ = ω1 ⊗ ω1 + ω2 ⊗ ω2 + ω3 ⊗ ω3 = ω1 ⊗ ω1 +
(
1 + α2

)
ω3 ⊗ ω3.

Set

ω̂1 = ω1, ω̂2 =
√

1 + α2ω3, (5.21)

which form an orthonormal coframe on Σ w.r.t. the metric gΘ|Σ; the corresponding dual frame is

ê1 = e1, ê2 = eΣ =
αe2 + T√

1 + α2
.

If ω̂1
2 is the Levi-Civita connection of gΘ|Σ with respect to the coframe ω̂1, ω̂2, by the funda-

mental theorem in Riemannian geometry, we have the structure equations

dω̂1 = −ω̂2
1 ∧ ω̂2, dω̂2 = −ω̂1

2 ∧ ω̂1, ω̂1
2 = −ω̂2

1. (5.22)

The following proposition shows that ω1
2 is completely determined by the induced first

fundamental form gΘ|Σ and the functions α and l defined in 5.19.

Proposition 5.6. We have

ω1
2 =

α√
1 + α2

ω̂1
2 +

l

1 + α2
ω̂1 +

e1α

(1 + α2)
3
2

ω̂2 = lω̂1 +
2α2 + (e1α)√

1 + α2
ω̂2,

ω̂1
2 =

α√
1 + α2

ω1
2 +

2α

1 + α2
ω̂2 =

lα√
1 + α2

ω̂1 +

(
2α+

α(e1α)

1 + α2

)
ω̂2.

Proof. By ω2 = αω3 and the second identity of (5.21), we have

dω2 = d

(
α

(1 + α2)
1
2

ω̂2

)
= d

(
α

(1 + α2)
1
2

)
∧ ω̂2 +

α

(1 + α2)
1
2

dω̂2

= e1

(
α

(1 + α2)
1
2

)
ω̂1 ∧ ω̂2 − α

(1 + α2)
1
2

ω̂1
2 ∧ ω̂1

= ω̂1 ∧

(
e1

(
α

(1 + α2)
1
2

)
ω̂2 +

α

(1 + α2)
1
2

ω̂1
2

)
,

where we have used the second formula of the structure equation (5.22) at the third equality
above. On the other hand, from the Maurer–Cartan structure equation (5.20)

dω2 = −ω1
2 ∧ ω1 = ω̂1 ∧ ω1

2.
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Combine two identities above and use the Cartan lemma, we see that there exists a function D
such that

ω1
2 =

e1α

(1 + α2)
3
2

ω̂2 +
α

(1 + α2)
1
2

ω̂1
2 +Dω̂1. (5.23)

Similarly,

−ω̂2
1 ∧ ω̂2 = dω̂1 = dω1 = ω1

2 ∧ ω2 =
α√

1 + α2
ω1

2 ∧ ω̂2.

Again, by Cartan lemma, there exists a function A such that

−ω̂2
1 =

α√
1 + α2

ω1
2 +Aω̂2. (5.24)

Finally, use (5.22) again

−ω̂1
2 ∧ ω̂1 = dω̂2 = d

((
1 + α2

) 1
2ω3
)

=
(
1 + α2

) 1
2 dω3 + d

(
1 + α2

) 1
2 ∧ ω3

= 2α
(
1 + α2

) 1
2 ω̂1 ∧ ω3 +

α

(1 + α2)
1
2

dα ∧ ω3 =

(
2α+

α(e1α)

1 + α2

)
ω̂1 ∧ ω̂2,

where we have used the third formula of (5.20) and ω̂2 ∧ ω3 = 0. Therefore, there exists
a function B such that

ω̂1
2 =

(
2α+

α(e1α)

1 + α2

)
ω̂2 +Bω̂1. (5.25)

By (5.23), (5.24), we get

D = ω1
2(e1)− α√

1 + α2
ω̂1

2(e1) =
ω1

2(e1)

1 + α2
=

l

1 + α2
.

Similarly, by (5.23), (5.24), (5.25), we obtain

A =
2α

1 + α2
, B =

lα√
1 + α2

.

These complete the proof. �

6 The derivation of the integrability condition (1.6)

Proof. Proposition 5.6 implies that

0 = dω1
2 = d

(
α√

1 + α2
ω̂1

2 +
l

1 + α2
ω̂1 +

e1α

(1 + α2)
3
2

ω̂2

)
=
{
−
(
1 + α2

) 3
2 (eΣl) +

(
1 + α2

)
(e1e1α)− α(e1α)2 + 4α

(
1 + α2

)
(e1α)

+ α
(
1 + α2

)2
K + αl

(
1 + α2

) 1
2 (eΣα) + α

(
1 + α2

)
l2
} ω̂1 ∧ ω̂2

(1 + α2)
5
2

.

Therefore the integrability condition (1.6) is equivalent to dω1
2 = 0. �
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7 The proof of Theorem 1.10

Proof. First we show existence. Define a psh(1)-valued 1-form φ on the non-singular part of Σ
by

φ =


0 0 0 0
ω̂1 0 −ω1

2 0
α′√

1+(α′)2
ω̂2 ω1

2 0 0

1√
1+(α′)2

ω̂2 α′√
1+(α′)2

ω̂2 −ω̂1 0

 ,

where

ω1
2 =

α′√
1 + (α′)2

ω̂1
2 +

l′

1 + (α′)2
ω̂1 +

e1α
′

(1 + (α′)2)
3
2

ω̂2.

It is easy to check that φ satisfies dφ+ φ ∧ φ = 0 if and only if the integrability condition (1.6)
holds. Therefore, by Theorem 2.2, for any point p ∈ Σ, there exists an open set U containing p
and an embedding f : U → H1 such that g = f∗(gΘ), α′ = f∗α and l′ = f∗l.

For uniqueness, by Proposition 5.6, the Darboux derivative is completely determined by the
induced metric gΘ|Σ, the p-variation α and the p-mean curvature l. Therefore, by Theorem 2.1,
the embedding into H1 is unique up to a Heisenberg rigid motion. �

8 Application: the Crofton formula

Since the singular set of a C2-surface in H1 consists of only isolated points or singular curves
[3, Theorem B], and the integral of the intersections of horizontal lines and the surface over the
singular set has zero measure, we may assume that Σ is a C2-surface without singular points
throughout this section.

Definition 8.1. An oriented horizontal line ` in H1 is an oriented line such that any point p ∈ `
the tangent vector of the line at p lies on the contact plane ξp. For convenience we sometimes
call a horizontal line or a line. Denote L by the set of all oriented horizontal lines in H1.

Proposition 8.2. Any horizontal line ` ∈ L can be parametrized by a triple (p, θ, t) ∈ R×S1×R,
and also be parametrized by a base point B = (p cos θ, p sin θ, t) with a horizontally unit-speed
vector U = (sin θ,− cos θ, p), namely,

`(s) : (p cos θ, p sin θ, t) + s(sin θ,− cos θ, p), ∀ s ∈ R. (8.1)

Proof. Consider the projection π(`) of the line l ∈ L onto the xy-plane. Since π(`) can be
uniquely determined by the pair (p, θ), where p ∈ R is the oriented distance from the origin to
the line π(l) (see [5] or the remark below) and θ ∈ [0, 2π) is the angle from the positive x-axis
to the normal (Fig. 1), the points (x, y) ∈ π(`) satisfy the equation

x cos θ + y sin θ = p. (8.2)

On the projection π(`), denote the foot point

b = (p cos θ, p sin θ),

and the unit tangent vector along the projection

u = (sin θ,− cos θ), |u|R2 = 1, (8.3)
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Figure 1.

where |u|R2 is the Euclidean length of u on the xy-plane; on the line ` ∈ H1, denote the lifting
of the foot point b, called the base point by

B = (p cos θ, p sin θ, t) for some t ∈ R.

Denote the tangent vector of ` at point B by T (B). Since ` is horizontal, which implies that
T (B) ∈ ξB := span{̊e1(B), e̊2(B)}, and we have

T (B) = αe̊1(B) + βe̊2(B) = α(1, 0, p sin θ) + β(0, 1,−p cos θ)

= (α, β, αp sin θ − βp cos θ) (8.4)

for some α, β ∈ R. Notice that the projection π(T (B)) is exactly the unit tangent vector u along
the projection π(`). Hence by comparing the first two components of (8.4) with (8.3) we have

α = sin θ, β = − cos θ, and T (B) = (sin θ,− cos θ, p).

Therefore by defining the horizontal vector

U := T (B) = sin θe̊1(B)− cos θe̊2(B),

we have |U |ξ(B) = 1, the horizontally unit-speed, and conclude that the line ` can be uniquely
determined by the triple (p, θ, t), i.e., the base point B, and be parametrized by B+ sU for any
s ∈ R as shown in (8.1). �

Remark 8.3. We point out that the lines we consider in H1 are all oriented lines. Indeed, by
convention in R2 there exists a bijection between the set of oriented lines and R2 × S1, and the
orientation of ` ∈ H1 follows that of π(`) ∈ R2. If we consider the non-oriented lines in R2 (and
hence in H1), then the coefficient on the right-hand side of (1.7) should be changed to 2.

Next, we consider the intersections of lines and a fixed surface

X : (u, v) ∈ Ω→ (x(u, v), y(u, v), z(u, v)) ∈ Σ

embedded in H1 for some domain Ω ⊂ R2. To describe the position of the intersection in R3, one
needs exact three variables. We have already known, by Proposition 8.2, a line can be represented
by a triple (p, θ, t). Hence if we regard lines and surfaces as a whole system (the configuration
space) and use five variables {(p, θ, t, u, v)} to describe the behavior of the intersections, two
additional constraints are necessarily required to make the number of the freedoms be three.
Those constraints can be obtained from the following proposition.
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Proposition 8.4. Let X(u, v) = (x(u, v), y(u, v), z(u, v)) ∈ Σ be the parametrized surface in H1.
Then the conf iguration space D which describes the horizonal oriented lines intersecting Σ should
be

D := {(p, θ, t, u, v) ∈ R× S1 × R× Ω

| the lines (p, θ, t) ∈ L pass through the point X(u, v) on Σ}
= {(p, θ, t, u, v) ∈ R× S1 × R× Ω | the variables p, θ, t, u, v satisfy (8.5) and (8.6)},

where

x(u, v) cos θ + y(u, v) sin θ = p, (8.5)

z(u, v) = t+ (x(u, v) sin θ − y(u, v) cos θ)p. (8.6)

Proof. Suppose the line `(s) parametrized by (8.1) intersects the surface Σ at the point q.

Figure 2.

At the point q, by Proposition 8.2, we have

x(u, v) = p cos θ + s · sin θ, (8.7)

y(u, v) = p sin θ − s · cos θ, (8.8)

z(u, v) = t+ s · p, (8.9)

for some s ∈ R. By (8.7), (8.8), one has

x(u, v) cos θ + y(u, v) sin θ = p,

which is compatible with (8.2) and we obtain the first constraint (8.5). Finally, use (8.7), (8.8)
again to solve for the parameter s, and substitute s into (8.9). It is easy to have the second
constraint (8.6) �

Remark 8.5. By a simple calculation and (8.5), we observe that

U(B) = sin θe̊1(B)− cos θe̊2(B) = sin θe̊1(X(u, v))− cos θe̊2(X(u, v)) = U(X(u, v)),

i.e., the horizontally unit-speed vector field U along the line have the same vector-value wherever
being evaluated at the based point B or at the intersection q = X(u, v).

Actually, the coordinates (u, v) determine where the intersections should be located on the
surface, and the angle θ decides how those lines penetrate through the surface. Thus, instead
of using (p, θ, t) as the coordinates for the configuration space, we can also take the triple
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{(u, v, θ) ∈ Ω × S1} as the coordinates. Since the intersection q is not only on the line but on
the surface, we can derive the change of the coordinates for those coordinates.

By Remark 8.5 we choose the frame {X(u, v); e1(θ), e2(θ), T} on D where (Fig. 2)

e1 := sin θe̊1 − cos θe̊2, e2 := Je1 = cos θe̊1 + sin θe̊2, T := (0, 0, 1), (8.10)

and denote the corresponding coframe {X(u, v);ω1, ω2,Θ} with the connection 1-form ω1
2. The

following formula connects the coordinates (p, θ, t) of the line and the coframe.

Proposition 8.6. Let {X(u, v); e1(θ), e2(θ), T} be a frame defined by (8.10) and the correspon-
ding coframe {X(u, v);ω1, ω2,Θ} with the connection 1-form ω1

2. We have

ω2 = dp+ 〈X, e1〉dθ, ω1
2 = dθ, Θ = dt, mod dθ,dp.

One concludes that

ω2 ∧ ω1
2 = dp ∧ dθ, ω2 ∧ ω1

2 ∧Θ = dp ∧ dθ ∧ dt = π∗dL, (8.11)

where π is the projection from D to L, and 〈 , 〉 is the Levi-metric.

Proof. On the surface since X = (x, y, z) = x(1, 0, y) + y(0, 1,−x) + (0, 0, z) = x̊e1 + ye̊2 + zT ,
we have

〈X, e1〉 = 〈x̊e1 + ye̊2 + zT, sin θe̊1 − cos θe̊2〉 = x sin θ − y cos θ.

Thus, by the moving frame formula (3.2) and the first constraint (8.5)

ω2 = 〈dX, e2〉 =

〈
dx e̊1 + dy e̊2 + Θ

∂

∂z
, e2

〉
= cos θdx+ sin θdy

= dp+ (x sin θ − y cos θ)dθ = dp+ 〈X, e1〉dθ;
ω1

2 = −ω2
1 = −〈de2, e1〉 = 〈sin θdθ e̊1 + cos θdθ e̊2, sin θe̊1 + cos θe̊2〉

= sin2 θ dθ + cos2 θ dθ = dθ.

By the second constraint (8.6) and the parametrization of the line (8.1)

Θ = dz + xdy − ydx =
(
dt+ (x sin θ − y cos θ)dp+ pd(x sin θ − y cos θ)

)
+ xdy − ydx

= dt+ (p sin θ − y)dx− (p cos θ − x)dy, mod dθ,dp

= dt+ s(cos θdx+ sin θdy), mod dθ,dp, for some s ∈ R
= dt, mod dθ,dp,

and the result follows. �

The next lemma characterizes the 1-dimension foliation.

Lemma 8.7. Let E = αXu+βXv be the tangent vector field defined on the surface
∑

= X(u, v).
Then the vector E is on the contact bundle ξ (and hence in TH1 ∩ ξ) if and only if pointwisely
the coefficients α and β satisfy

αtu + βtv + x(αyu + βyv)− y(αxu + βxv) = 0, (8.12)

equivalently,

α(tu + xyu − yxu) + β(tv + xyv − yxv) = 0. (8.13)
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Proof. First, we assume that E = αXu + βXv = α(xu, yu, zu) + β(xv, yv, zv) = c̊e1 + d̊e2 =
(c, d, cy − dx) for some constants c and d. Compare each component of E to have

αxu + βxv = c, αyu + βyv = d, αzu + βzv = cy − dx.

Substitute the last equation by the first two, we get the necessary condition αzu + βzv =
(αxu + βxv)y − (αyu + βyv)x.

The reverse part can be obtained by the direct computation

E = (αxu + βxv, αyu + βyv, αzu + βzv) = (αxu + βxv)(1, 0, y) + (αyu + βyv)(0, 1,−x)

+
(
0, 0, αzu + βzv − y(αxu + βxv) + x(αyu + βyv)

)
= (αxu + βxv )̊e1 + (αyu + βyv )̊e2.

We have used the condition (8.12) in the last equality. �

Next we show a formula for the change of coordinates between the coframe and the coordinates
of the surface.

Proposition 8.8. Suppose we choose the frames {X(u, v); e1(θ), e2(θ), T} on D and the coframe
with the connection 1-form defined by (8.10). We have the identity

Θ ∧ ω2 ∧ ω1
2 = 〈E, e2〉du ∧ dv ∧ dθ, (8.14)

where the singular foliation

E := (zu + xyu − yxu)Xv − (zv + xyv − yxv)Xu

defines the characteristic foliation of Σ, which is induced from the contact plane ξ.

Proof. By Proposition 8.6 and the moving frame formula (3.2)

Θ ∧ ω2 ∧ ω1
2 = (dz + xdy − ydx) ∧ 〈dX, e2〉 ∧ dθ

=
(
(zu + xyu − yxu)du+ (zv + xyv − yxv)dv

)
∧
(
〈Xu, e2〉du ∧ dθ + 〈Xv, e2〉dv ∧ dθ

)
= 〈(zu + xyu − yxu)Xv − (zv + xyv − yxv)Xu, e2〉du ∧ dv ∧ dθ

= 〈E, e2〉du ∧ dv ∧ dθ.

To prove the vector E ∈ TM∩ξ, it suffices to show that the coefficients α := (zu+xyu−yxu)
and β := −(zv+xyv−yxv) satisfy the condition (8.13), and we complete the proof by the previous
Lemma 8.7. �

Remark 8.9. In classical integral geometry [5, 22], the quantity dL := dp∧dθ∧dt is called the
(kinematic) density of the line (p, θ, t) ∈ R3, which is always chosen to be positive depending the
orientation. Hence, according to (8.11) and (8.14), in the following proof we have to consider
the orientation of {(u, v, θ)} to ensure the positivity of the quantity 〈E, e2〉.

Proof of Theorem 1.11. By Remark 8.9, we choose du∧dv∧dθ as the orientation of D. Let
D = D+ ∪D−, where

D+ := {(p, θ, t, u, v) | 〈E, e2〉 ≥ 0}, D− := {(p, θ, t, u, v) | 〈E, e2〉 ≤ 0},
Γ := D+ ∩D−.
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By the structure equation (5.20),

d
(
Θ ∧ ω1

)
= dΘ ∧ ω1 −Θ ∧ dω1

=
(
2ω1 ∧ ω2

)
∧ ω1 −Θ ∧

(
ω1

2 ∧ ω2
)

= Θ ∧ ω2 ∧ ω1
2. (8.15)

We also have

Θ ∧ ω1 = (dz + xdy − ydx) ∧ 〈dX, e1〉
=
(
(zu + xyu − yxu)du+ (zv + xyv − yxv)dv

)
∧
(
〈Xu, e1〉du+ 〈Xv, e1〉dv

)
= 〈E, e1〉du ∧ dv. (8.16)

Now we integrate the kinematic density dL over the set L. By using (8.11), (8.15), the Stock’s
theorem, and (8.16), we have∫

`∈L, `∩Σ6=∅
n(` ∩ Σ)dL = 2

(∫
D+

π∗dL−
∫
D−

π∗dL

)
= 2

(∫
D+

ω2 ∧ ω2
1 ∧Θ−

∫
D−

ω2 ∧ ω2
1 ∧Θ

)
= 2

(∫
∂D+

Θ ∧ ω1 −
∫
∂D−

Θ ∧ ω1

)
= 2

(∫
Γ+∪Γ

Θ ∧ ω1 −
∫

Γ−∪Γ
Θ ∧ ω1

)
, (8.17)

where Γ± := ∂D± \ Γ. We also point out that the number, 2, occurs in the first identity is due
to the orientations for each horizontal line.

Next, we show that du ∧ dv = 0 on Γ±. Indeed, by using the coordinates {(u, v, θ)} for the
configuration space D, any vector field defined on Γ+ can be represented by A ∧ ∂

∂θ ∈ ∂Σ× S1

for some vector A defined on the tangent bundle T∂Σ. The value du∧dv evaluated on Γ+ must
be

du ∧ dv

(
A ∧ ∂

∂θ

)
= du(A)

���
��

dv

(
∂

∂θ

)
=0

− dv(A)
���

��
du

(
∂

∂θ

)
=0

= 0.

Therefore, (8.17) becomes∫
`∈L, `∩Σ6=∅

n(` ∩ Σ)dL = 2

(
2

∫
Γ

Θ ∧ ω1 +

∫
Γ+

Θ ∧ ω1 −
∫

Γ−
Θ ∧ ω1

)
= 4

∫
Γ

Θ ∧ ω1 = 4

∫
Γ
|E|du ∧ dv = 4 · p-area(Σ),

we have used (8.16) and E is parallel to e1 on Γ at the third equality. �
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