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Abstract. In this paper we construct the general solutions of two families of quad-equations,
namely the trapezoidal H4 equations and the H6 equations. These solutions are obtained
exploiting the properties of the first integrals in the Darboux sense, which were derived in
[Gubbiotti G., Yamilov R.I., J. Phys. A: Math. Theor. 50 (2017), 345205, 26 pages]. These
first integrals are used to reduce the problem to the solution of some linear or linearizable
non-autonomous ordinary difference equations which can be formally solved.
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1 Introduction

Since its introduction the integrability criterion denoted consistency around the cube (CAC) has
been a source of many results in the classification of quad-equations. We define a quad-equation
to be a relation of the form:

Q(x, x1, x2, x12) = 0, (1.1)

where Q ∈ C[x, x1, x2, x12] is an irreducible multi-affine polynomial. This equation is defined
on the four points displayed in Fig. 1 which form a square quad graph.

Roughly speaking the CAC approach consist in adding third direction, defined by the label 3
to a quad-equation (1.1) and extend it to a system of six equations living on the faces of a cube,
usually labeled A, Ā, B, B̄, C and C̄, see Fig. 2. We say that the system of six equations
given by A, Ā, B, B̄, C and C̄ possess the Consistency Around the Cube if three ways of
computing x123 from Ā, B̄, and C̄ coincide up to the values of x12, x23 and x13 obtained
from A, B and C respectively.

The CAC criterion has proved to be important in studying the integrability properties of
quad-equations since from the CAC it is possible to find Bäcklund transformations [5, 10, 15,
37, 38] and, as a consequence, Lax pairs. It is well known [45] that Lax pairs and Bäcklund
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Figure 1. Quad-equation on a square.

transforms are associated with both linearizable and integrable equations. We point out that to
be bona fide a Lax pair has to give rise to a genuine spectral problem [13], otherwise the Lax pair
is called fake Lax pair [11, 12, 14, 28, 29]. A fake Lax pair is useless in proving (or disproving)
the integrability, since it can be equally found for integrable and non-integrable equations. In
the linearizable case Lax pairs must be then fake ones, even though proving this statement is
usually a nontrivial task [22]. For a complete, pedagogical explanation of the CAC method we
refer to [6, 32, 33].
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Figure 2. Equations on a cube.

Being algorithmically applicable the CAC criterion proved to be a well suited method to
find and classify integrable quad-equations. The first attempt to classify, with some additional
assumptions, all the quad-equations possessing CAC was carried out in [1]. The result was the
existence of three classes of discrete autonomous equations with this property: the H equations,
the Q equations and the A. The A equations can be transformed in particular cases of the Q
equations through non-autonomous Möbius transformation, therefore they are usually removed
from the general classification. Releasing one of the technical hypothesis of [1], i.e., that face
of the cube (Fig. 2) carries the same equation, the same authors in [2] presented some new
equations without classification purposes. A complete classification in this extended setting
was then accomplished by R. Boll in a series of papers culminating in his Ph.D. Thesis [7, 8, 9].
In these papers the classification of all the consistent sextuples of quad-equations. The only
technical assumption used in [7, 8, 9] is the tetrahedron property, i.e., the requirement that x123
is independent from x. The obtained equations may fall into three disjoint families depending



Darboux Integrability of Trapezoidal H4 and H6 Families of Lattice Equations II 3

on their bi-quadratics

hij =
∂Q

∂yk

∂Q

∂yl
−Q ∂2Q

∂yk ∂yl
, Q = Q(y1, y2, y3, y4),

where we use a special notation for variables of Q, and the pair {k, l} is the complement of the
pair {i, j} in {1, 2, 3, 4}. A bi-quadratic is called degenerate if it contains linear factors of the
form yi − c, where c is a constant, otherwise a bi-quadratic is called non-degenerate. The three
families are classified depending on how many bi-quadratics are degenerate:

• Q-type equations: all the bi-quadratics are non-degenerate,

• H4-type equations: four bi-quadratics are degenerate,

• H6-type equations: all of the six bi-quadratics are degenerate.

Let us notice that the Q family is the same as the one introduced in [1]. The H4 equations are
divided into two subclasses: rhombic and trapezoidal, depending on their discrete symmetries.
We remark that all classification results hold locally in the sense that they relate to a single
quadrilateral cell or a single cube. The extension on the whole lattice Z2 is obtained through
reflection considering an elementary cell of size 2×2. This implies that the H4 and H6 equations
as lattice equations are non-autonomous equations with two-periodic coefficients. For more
details on the construction of equations on the lattice from the single cell equations, we refer to
[7, 8, 9, 44] and to the Appendix in [21].

A detailed study of all the lattice equations derived from the rhombic H4 family, including the
construction of their three-leg forms, Lax pairs, Bäcklund transformations and infinite hierar-
chies of generalized symmetries, has been presented in [44]. So there was plenty of results about
the Q and the rhombic H4 equations. On the contrary, besides the CAC property little was
known about the integrability features of the trapezoidal H4 equations and of the H6 equations.
Therefore these equations where thoroughly studied in a series of papers [21, 22, 23, 24, 25]
with some unexpected results. First in [21] was presented their explicit non-autonomous form.
Indeed it was shown that on the Z2 lattice with independent variables (n,m) and dependent
variable un,m the trapezoidal H4 equations had the following expression

tH
ε
1 : (un,m − un+1,m)(un,m+1 − un+1,m+1)

− α2ε
2
(
F (+)
m un,m+1un+1,m+1 + F (−)

m un,mun+1,m

)
− α2 = 0, (1.2a)

tH
ε
2 : (un,m − un+1,m)(un,m+1 − un+1,m+1) + α2(un,m + un+1,m + un,m+1 + un+1,m+1)

+
εα2

2

(
2F (+)

m un,m+1 + 2α3 + α2

)(
2F (+)

m un+1,m+1 + 2α3 + α2

)
+
εα2

2

(
2F (−)

m un,m + 2α3 + α2

)(
2F (−)

m un+1,m + 2α3 + α2

)
+ (α3 + α2)

2 − α2
3 − 2εα2α3(α3 + α2) = 0, (1.2b)

tH
ε
3 : α2(un,mun+1,m+1 + un+1,mun,m+1)

− (un,mun,m+1 + un+1,mun+1,m+1)− α3

(
α2
2 − 1

)
δ2

− ε2(α2
2 − 1)

α3α2

(
F (+)
m un,m+1un+1,m+1 + F (−)

m un,mun+1,m

)
= 0, (1.2c)

and the H6 equations had the following expression

1D2 :
(
F

(−)
n+m − δ1F (+)

n F (−)
m + δ2F

(+)
n F (+)

m

)
un,m

+
(
F

(+)
n+m − δ1F (−)

n F (−)
m + δ2F

(−)
n F (+)

m

)
un+1,m

+
(
F

(+)
n+m − δ1F (+)

n F (+)
m + δ2F

(+)
n F (−)

m

)
un,m+1
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+
(
F

(−)
n+m − δ1F (−)

n F (+)
m + δ2F

(−)
n F (−)

m

)
un+1,m+1

+ δ1
(
F (−)
m un,mun+1,m + F (+)

m un,m+1un+1,m+1

)
+ F

(+)
n+mun,mun+1,m+1 + F

(−)
n+mun+1,mun,m+1 = 0, (1.3a)

2D2 :
(
F (−)
m − δ1F (+)

n F (−)
m + δ2F

(+)
n F (+)

m − δ1λF (−)
n F (+)

m

)
un,m

+
(
F (−)
m − δ1F (−)

n F (−)
m + δ2F

(−)
n F (+)

m − δ1λF (+)
n F (+)

m

)
un+1,m

+
(
F (+)
m − δ1F (+)

n F (+)
m + δ2F

(+)
n F (−)

m − δ1λF (−)
n F (−)

m

)
un,m+1

+
(
F (+)
m − δ1F (−)

n F (+)
m + δ2F

(−)
n F (−)

m − δ1λF (+)
n F (−)

m

)
un+1,m+1

+ δ1
(
F

(−)
n+mun,mun+1,m+1 + F

(+)
n+mun+1,mun,m+1

)
+ F (+)

m un,mun+1,m + F (−)
m un,m+1un+1,m+1 − δ1δ2λ = 0, (1.3b)

3D2 :
(
F (−)
m − δ1F (−)

n F (−)
m + δ2F

(+)
n F (+)

m − δ1λF (−)
n F (+)

m

)
un,m

+
(
F (−)
m − δ1F (+)

n F (−)
m + δ2F

(−)
n F (+)

m − δ1λF (+)
n F (+)

m

)
un+1,m

+
(
F (+)
m − δ1F (−)

n F (+)
m + δ2F

(+)
n F (−)

m − δ1λF (−)
n F (−)

m

)
un,m+1

+
(
F (+)
m − δ1F (+)

n F (+)
m + δ2F

(−)
n F (−)

m − δ1λF (+)
n F (−)

m

)
un+1,m+1

+ δ1
(
F (−)
n un,mun,m+1 + F (+)

n un+1,mun+1,m+1

)
+ F (−)

m un,m+1un+1,m+1 + F (+)
m un,mun+1,m − δ1δ2λ = 0, (1.3c)

D3 : F (+)
n F (+)

m un,m + F (−)
n F (+)

m un+1,m + F (+)
n F (−)

m un,m+1

+ F (−)
n F (−)

m un+1,m+1 + F (−)
m un,mun+1,m + F (−)

n un,mun,m+1 + F
(−)
n+mun,mun+1,m+1

+ F
(+)
n+mun+1,mun,m+1 + F (+)

n un+1,mun+1,m+1 + F (+)
m un,m+1un+1,m+1 = 0, (1.3d)

1D4 : δ1
(
F (−)
n un,mun,m+1 + F (+)

n un+1,mun+1,m+1

)
+ δ2

(
F (−)
m un,mun+1,m + F (+)

m un,m+1un+1,m+1

)
+ un,mun+1,m+1 + un+1,mun,m+1 + δ3 = 0, (1.3e)

2D4 : δ1
(
F (−)
n un,mun,m+1 + F (+)

n un+1,mun+1,m+1

)
+ δ2

(
F

(−)
n+mun,mun+1,m+1 + F

(+)
n+mun+1,mun,m+1

)
+ un,mun+1,m + un,m+1un+1,m+1 + δ3 = 0, (1.3f)

where the coefficients F
(±)
k are given by

F
(±)
k =

1± (−1)k

2
. (1.4)

Then in [21] the algebraic entropy [4, 34, 42, 43] of the trapezoidal H4and the H6 equations
was computed. The result of this computation showed that the rate of growth of all the trape-
zoidal H4 (1.2) and of all H6 equations (1.3) is linear. This fact according to the algebraic
entropy conjecture [16, 34] implies linearizability. To support this result two explicit examples
of linearization were given.

Remark 1.1. In [35] it was shown that sometimes it is possible to construct different consistent
embedding in the Z2 and in Z3 lattices. However, in the same paper it was shown that these
different embedding need not to be integrable. In this paper we will consider equations (1.2)
and (1.3) which are given by the embedding procedure of [2, 7, 8, 9]. As we underlined above
this procedure gives equations which, in the sense of the algebraic entropy, are only integrable or
linearizable [21, 41]. Clearly, it may exist a different embedding in the Z2 for which the results
presented in this paper do not hold. For an example where two different embedding give both
rise to linearizable equations, but with different properties, see [20].
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In [22] the tH
ε
1 equation (1.2a) was studied and it was found that it possessed three-point

generalized symmetries depending on arbitrary functions. This property was then linked in [23]
to the fact that the tH

ε
1 is Darboux integrable [3]. We say that a quad-equation on the Z2 lattice,

possibly non-autonomous:

Qn,m (un,m, un+1,m, un,m+1, un+1,m+1) = 0, (1.5)

is Darboux integrable if there exist two independent first integrals, one containing only shifts in
the first direction and the other containing only shifts in the second direction. This means that
there exist two functions

W1 = W1,n,m(un+l1,m, un+l1+1,m, . . . , un+k1,m),

W2 = W2,n,m(un,m+l2 , un,m+l2+1, . . . , un,m+k2),

where l1 < k1 and l2 < k2 are integers, such that the relations

(Tn − Id)W2 = 0, (1.6a)

(Tm − Id)W1 = 0 (1.6b)

hold true identically on the solutions of (1.5). By Tn, Tm we denote the shift operators in the
first and second directions, i.e., Tnhn,m = hn+1,m, Tmhn,m = hn,m+1, and by Id we denote the
identity operator Idhn,m = hn,m. The number ki − li, where i = 1, 2, is called the order of the
first integral Wi.

In addition to this result concerning the tH
ε
1 equation in [23] it was proved that other quad-

equations consistent around the cube, which were known to be linearizable [30, 31], were in
fact Darboux integrable. These facts provide some evidence of an intimate connection between
linearizable equations possessing CAC and Darboux integrability. Following these ideas in [26]
it was shown that all the trapezoidal H4 equations and all the H6 equations are Darboux
integrable. This result was proved by explicitly constructing the first integrals with a new
algorithm based on those proposed in [17, 18, 27]. This new algorithm relies on the fact that
in the case of non-autonomous quad-equations (1.5) with two-periodic coefficients we can, in
general, represent the first integrals in the form

Wi = F (+)
n F (+)

m W
(+,+)
i + F (−)

n F (+)
m W

(−,+)
i + F (+)

n F (−)
m W

(+,−)
i + F (−)

n F (−)
m W

(−,−)
i ,

where F
(±)
k are given by (1.4) and the W

(±,±)
i are functions. The existence of the first integrals

provides a rigorous proof of the linearizability of the trapezoidal H4 equation (1.2) and of the H6

equations (1.3). Indeed equation (1.6) implies that the following two transformations

un,m → ũn,m = W1,n,m, (1.7a)

un,m → ûn,m = W2,n,m, (1.7b)

bring the quad-equation (1.5) into two trivial linear equations

ũn,m+1 − ũn,m = 0, (1.8a)

ûn+1,m − ûn,m = 0. (1.8b)

Therefore any Darboux integrable equation is linearizable in two different ways, i.e., using trans-
formation (1.7a) bringing to (1.8a) or using the transformation (1.7b) bringing to (1.8b).

In the final section of [26] it was shown, in the case of the tH
ε
1 equation, how it is possible

to find the general solution using the first integrals, applying a modification of the procedure
presented in [17]. In particular we showed how it is possible to obtain a general solution using
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first integrals of order greater than one. We note that equations with first integrals of first
order one are trivial, since possessing a first integral of order one means that the equation itself
is a first integral.

In this paper we show that from the knowledge of the first integrals and from the properties
of the equations it is possible to construct, maybe after some complicate algebra, the general
solutions of all the remaining trapezoidal H4 equations (1.2) and of the H6 equations (1.3).
By general solution we mean a representation of the solution of any of the equations in (1.2)
and (1.3) in terms of the right number of arbitrary functions of one lattice variable n or m.
Since the trapezoidal H4 equations (1.2) and the H6 equations (1.3) are quad-equations, i.e., the
discrete analogue of second-order hyperbolic partial differential equations, the general solution
must contain an arbitrary function in the n direction and another one in the m direction, i.e.,
a general solution is an expression of the form

un,m = Fn,m(an, αm), (1.9)

where an and αm are arbitrary functions of their variable. Initial conditions are then imposed
through substitution in equation (1.9). Nonlinear equations usually possesses also other kinds
of solutions, namely the singular solutions which satisfy only specific set of initial values. In this
work we outlined when the existence of singular solutions is possible. Moreover we remark that
general solutions, in the range of validity of their parameters, enclose also periodic solutions.
Periodic initial values will reflect into periodic solution which will arise by fixing properly the
arbitrary functions. Indeed let us consider as an example the (N,−M) reduction of a quad-
equation (1.5), with N,M ∈ N∗ coprime [39, 40]. This implies to make the following requirement

un+N,m−M = un,m. (1.10)

If we possess the general solution of the quad-equation in the form (1.9) then the periodicity
requirement (1.10) is equivalent to

Fn+N,m−M (an+N , αm−M ) = Fn,m(an, αm). (1.11)

The existence of the associated periodic solution is subject to the ability to invert formula (1.11).
When the integers N and M are not coprime a similar reasoning can be done: taking K =
gcd(N,M) we have just to decompose the reduction condition into K superimposed staircases
and convert the scalar condition (1.10) to a vector condition for K fields. The associated
reduction will be possible if the associated system possesses a solution.

To obtain the desired solution we will need only the W1 integrals derived in [26] and the
fact that the relation (1.6b) implies W1 = ξn with ξn an arbitrary function of n. The equation
W1 = ξn can be interpreted as an ordinary difference equation in the n direction depending para-
metrically on m. Then from every W1 integral we can derive two different ordinary difference
equations, one corresponding to m even and one corresponding to m odd. In both the resulting
equations we can get rid of the two-periodic terms by considering the cases n even and n odd
and defining

u2k,2l = vk,l, u2k+1,2l = wk,l, (1.12a)

u2k,2l+1 = yk,l, u2k+1,2l+1 = zk,l. (1.12b)

This transformation brings both equations to a system of coupled difference equations. This
reduction to a system is the key ingredient in the construction of the general solutions for the
trapezoidal H4 equations (1.2) and for the H6 equations (1.3).
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We note that the transformation (1.12) can be applied to the trapezoidal H4 equations1

and H6equations themselves. This casts these non-autonomous equations with two-periodic co-
efficients into autonomous systems of four equations. We recall that in this way some examples
of direct linearization (i.e., without the knowledge of the first integrals) were produced in [21].
Finally we note that if we apply the even/odd splitting of the lattice variables given by equa-
tion (1.12) to describe a general solution we will need two arbitrary functions in both directions,
i.e., we will need a total of four arbitrary functions.

In practice to construct these general solutions, we need to solve Riccati equations and non-
autonomous linear equations which, in general, cannot be solved in closed form. Using the fact
that these equations contain arbitrary functions we introduce new arbitrary functions so that
we can solve these equations. This is usually done reducing to total difference, i.e., to ordinary
difference equations which can be trivially solved. Let us assume we are given the difference
equation

un+1,m − un,m = fn, (1.13)

depending parametrically on another discrete index m. Then if we can express the function fn
as a discrete derivative

fn = gn+1 − gn,

then the solution of equation (1.13) is simply

un,m = gn + γm,

where γm is an arbitrary function of the discrete variable m. This is the simplest possible
example of reduction to total difference. The general solutions will then be expressed in terms
of these new arbitrary functions obtained reducing to total differences and in terms of a finite
number of discrete integrations, i.e., the solutions of the simple ordinary difference equation

un+1 − un = fn, (1.14)

where un is the unknown and fn is an assigned function. We note that the discrete integra-
tion (1.14) is the discrete analogue of the differential equation u′(x) = f(x).

To give a very simple example of the method of solution we consider how it applies to the
prototypical Darboux integrable equation: the discrete wave equation

un+1,m+1 + un,m = un+1,m + un,m+1. (1.15)

It is easy to check that the discrete wave equation (1.15) is Darboux integrable with two first-
order first integrals

W1 = un+1,m − un,m, (1.16a)

W2 = un,m+1 − un,m. (1.16b)

From the first integrals (1.16) it is possible to construct the well known discrete d’Alembert
solution as follows. From the W1 first integral we can write W1 = ξn with ξn arbitrary function
of its argument. Then we have

un+1,m − un,m = ξn. (1.17)

1In fact, in the case of the trapezoidal H4 equations (1.2), we use a simpler transformation instead of (1.12),
see Section 2.3.
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This means that choosing the arbitrary function as ξn = an+1 − an, with an arbitrary function
of its argument, we transform (1.17) into the total difference

un+1,m + an+1 = un,m + an,

which readily implies

un,m = an + αm,

where αm is an arbitrary function of its argument. This is of course the discrete analog of the
d’Alembert solution of the wave equation and it is the simplest example of solution through the
first integrals of a Darboux integrable equation.

Now to summarize, in this paper we prove the following result:

Theorem 1.2. The trapezoidal H4 equations (1.2) and H6 equations (1.3) are exactly solvable
and we can represent the solution in terms of a finite number of discrete integration (1.14).

The rest of the paper is devoted to the proof of Theorem 1.2. In Section 2 we present
the general solutions of all the H4 and H6 equations, except the tH

ε
1 equation (1.2a) which

was treated in [26]. In particular in Section 2.1 we treat the 1D2, 2D2 and 3D2 equations. In
Section 2.2 we treat the D3, 1D4 and 2D4 equations. In Section 2.3 we treat the tH

ε
2 and the tH

ε
3

equations. The partition in subsection is dictated by the procedure used to obtain the general
solution, as we will explain below. Due to the technical nature of the procedures we will present
only one example per type. The interested reader will find the remaining procedures of solution
in Appendix A. In Section 3 we give some conclusions.

Remark 1.3. We remark that the H equations of the ABS classification [1] and their rhombic
deformations [2, 7, 44] should not be Darboux integrable. This can be confirmed directly
excluding the existence of integrals up to a certain order as it was done in [17] for some other
equations. Moreover it was proved rigorously in [41] using the gcd-factorization method that
all the equations of the ABS list [1] possess quadratic growth of the degrees. At heuristic level
a similar result was presented in [21] for the rhombic H4 equations. According to the Algebraic
entropy conjecture these result means that the ABS equations and the rhombic H4 equations
are integrable, but not linearizable. Since we have recalled the fact that Darboux integrability
for lattice equations implies linearizability we expect that these equations will not possess first
integrals of any order. So the results obtained in [26] and in this paper about the trapezoidal H4

and H6 equations do not imply anything for H equations and their rhombic deformations.

2 General solutions of the H4 and H6 equations

In this section we present the general solutions of the H4 equations (1.2) and of the H6 equa-
tions (1.3). We choose to divide this section in three subsections since we have three main
different kinds of procedures leading to three different representations of the solution.

First in Section 2.1 we present the general solutions of the 1D2, 2D2 and 3D2 equations
(1.3a)–(1.3c). In this case the construction of the general solution is carried out from the sole
knowledge of the first integral and the equation acts only as a compatibility condition for the
arbitrary functions obtained by solving the equations defined by the first integral. The solution
therein obtained is completely explicit and no discrete integration is required.

The in Section 2.2 we present the general solution of the D3, 1D4 and 2D4 equations (1.3d)–
(1.3f). In this case the construction of the general solution is carried out through a series of
manipulations in the equation itself and from the knowledge of the first integral. The key point
will be that the equations defined by the first integrals can be reduced to a single linear equation.
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The solution is no longer completely explicit since it is obtained up to two discrete integrations,
one in every direction.

Finally in Section 2.3 we present the general solutions of the tH
ε
2 equation (1.2b) and of

the tH
ε
3 equation (1.2c). In this case the construction of the general solution is carried out

reducing the equation to a partial difference equation defined on six points and then using the
equations defined by the first integrals. The equations defined by the first integrals are reduced
to discrete Riccati equations. The solution is then given in terms of four discrete integrations.

Summing up these results and the fact that the general solution of the tH
ε
1 equation (1.2a)

was presented in [26] we prove Theorem 1.2.

2.1 The iD2 equations i = 1, 2, 3

We have that the following propositions hold true:

Proposition 2.1. The 1D2 equation (1.3a) is exactly solvable. If δ1 6= 0 and δ 6= 0, where δ is
defined by

δ = 1− δ1(1 + δ2) (2.1)

the general solution is given by

vk,l = αl −
δ1
δ

bkbk−1
bk − bk−1

(ck − ck−1), (2.2a)

wk,l = bk(βl + ck) +
δ

δ1
αl, (2.2b)

zk,l = 1− 1

δ1
− bk

βl+1 − βl
αl+1 − αl

, (2.2c)

yk,l =
1

δ1

βlαl+1 − βl+1αl
βl+1 − βl

+
1

δ

bkbk−1 (ck − ck−1)
bk − bk−1

+

[
(ck − ck−1)bk−1
(bk − bk−1)δ1

+
ck
δ1

]
αl+1 − αl
βl+1 − βl

, (2.2d)

where bk, ck, αl and βl are arbitrary functions of their arguments. If δ = 0 its general solution
is given by

vk,l = ak + βl, (2.3a)

wk,l = bkαl, (2.3b)

zk,l = −bk
αl+1 − αl
βl+1 − βl

− δ2, (2.3c)

yk,l = −(1 + δ2)

(
βlαl+1 − βl+1αl

αl+1 − αl
+ ak

)
, (2.3d)

where ak, bk, αl and βl are arbitrary functions of their arguments. If δ1 = 0 then its general
solution is given by

vk,l =
ck − ck−1
bk − bk−1

+ αl, (2.4a)

wk,l = ck + αlbk + βl, (2.4b)

zk,l = −δ2 −
βl+1 − βl
αl+1 − αl

− bk, (2.4c)

yk,l =
βl+1αl − αl+1βl

αl+1 − αl
+
βl+1 − βl
αl+1 − αl

ck − ck−1
bk − bk−1

+ bk
ck − ck−1
bk − bk−1

− ck, (2.4d)

where bk, ck, αl and βl are arbitrary functions of their arguments.
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Proof. From [26] we know that the 1D2 equation (1.3a) is Darboux integrable, and that the
form of the first integral depends on the value of the parameter δ1. We will begin with the
general case when δ1 6= 0 and δ 6= 0 and then consider the particular cases.

Case δ 6= 0 and δ1 6= 0. In this case the W1 first integral of the 1D2 equation (1.3a) is
given by [26]

W1 = F (+)
n F (+)

m α
[(1 + δ2)un,m + un+1,m]δ1 − un,m
[(1 + δ2)un,m + un−1,m]δ1 − un,m

+ F (+)
n F (−)

m α
1 + (un+1,m − 1)δ1
1 + (un−1,m − 1)δ1

+ F (−)
n F (+)

m β(un+1,m − un−1,m)

− F (−)
n F (−)

m β
(un+1,m − un−1,m)[1− (1− un,m)δ1]

δ2 + un,m
. (2.5)

As stated in the introduction, from the relation W1 = ξn this first integral defines a three-point,
second-order ordinary difference equation in the n direction which depends parametrically on m.
From the parametric dependence we find two different three-point non-autonomous ordinary
difference equations corresponding to m even and m odd. We treat them separately.

Casem = 2l. If m = 2l we have the following non-autonomous ordinary difference equation

F (+)
n

[(1 + δ2)un,2l + un+1,2l]δ1 − un,2l
[(1 + δ2)un,2l + un−1,2l]δ1 − un,2l

+ F (−)
n (un+1,2l − un−1,2l) = ξn,

where without loss of generality we have chosen α = 1 and β = 1. We can easily see, that once
solved for un+1,2l the equation is linear

un+1,2l −
F

(+)
n (1− δ1δ2 − δ1)(1− ξn)un,2l

δ1
−
(
F (+)
n ξn + F (−)

n

)
un−1,2l − F (−)

n ξn = 0. (2.6)

Tackling this equation directly is very difficult, but we can separate again the cases when n is
even and odd and convert (2.6) into a system using the standard transformation (1.12a)

wk,l − ξ2kwk−1,l =
δ

δ1
(1− ξ2k) vk,l, (2.7a)

vk+1,l − vk,l = ξ2k+1, (2.7b)

where δ is given by (2.1). Now we have two first-order ordinary difference equations. Equa-
tion (2.7b) is uncoupled from equation (2.7a). Furthermore, since ξ2k and ξ2k+1 are independent
functions we can write ξ2k+1 = ak+1− ak. So the second equation possesses the trivial solution2

vk,l = αl + ak. (2.8)

Now introduce (2.8) into (2.7a) and solve the equation for wk,l

wk,l − ξ2kwk−1,l =
δ

δ1
(1− ξ2k)(αl + ak).

We define ξ2k = bk/bk−1 and perform the change of dependent variable: wk,l = bkWk,l.
Then Wk,l solves the equation

Wk,l −Wk−1,l =
δ

δ1

(
1

bk
− 1

bk−1

)
(αl + ak).

2From now on we use the convention of naming the arbitrary functions depending on k with Latin letters and
the functions depending on l by Greek ones.
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The solution of this difference equation is given by

Wk,l = βl +
δ

δ1

αl
bk

+ ck,

where ck is such that

ck − ck−1 =
δ

δ1

(
1

bk
− 1

bk−1

)
ak. (2.9)

Equation (2.9) is not a total difference, but it can be used to define ak in terms of the arbitrary
functions bk and ck

ak = −δ1
δ

bkbk−1
bk − bk−1

(ck − ck−1). (2.10)

This means that we have the following solution for the system (2.7)

vk,l = αl −
δ1
δ

bkbk−1
bk − bk−1

(ck − ck−1), (2.11a)

wk,l = bk(βl + ck) +
δ

δ1
αl, (2.11b)

Case m = 2l+ 1. If m = 2l+ 1 we have the following non-autonomous ordinary difference
equation

F (+)
n

1 + (un+1,2l+1 − 1)δ1
1 + (un−1,2l+1 − 1)δ1

+ F (−)
n

(un−1,2l+1 − un+1,2l+1)[1− δ1(1− un,2l+1)]

δ2 + un,2l+1
= ξn, (2.12)

We can easily see that the equation is genuinely nonlinear. However we can separate the
cases when n is even and odd and convert (2.12) into a system using the standard transforma-
tion (1.12b)

zk,l − ξ2kzk−1,l =

(
1− 1

δ1

)
(1− ξ2k), (2.13a)

yk+1,l − yk,l =
ξ2k+1

δ1

δ − 1 + δ1(1− zk,l)
1− δ1(1− zk,l)

, (2.13b)

where we used the definition (2.1). This is a system of two first-order difference equation, and
equation (2.13a) is linear and uncoupled from (2.13b). As ξ2k = bk/bk−1 we have that (2.13a) is
a total difference

zk,l
bk
−
zk−1,l
bk−1

=

(
1− 1

δ1

)(
1

bk
− 1

bk−1

)
. (2.14)

Hence the solution of (2.14) is given by

zk,l = 1− 1

δ1
+ bkγl. (2.15)

Inserting (2.15) into (2.13b) and using the definition of ξ2k+1 in terms of ak, i.e., ξ2k+1 =
ak+1 − ak we obtain

yk+1,l − yk,l = −
(

1

δ1
+

δ

δ21bkγl

)
(ak+1 − ak). (2.16)
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We can then represent the solution of (2.16) as

yk,l = ζl +
δdk
δ21γl

− ak
δ1
,

where dk satisfies the first-order linear difference equation

dk+1 − dk =
ak+1 − ak

bk
. (2.17)

Inserting the value of ak given by (2.10) inside (2.17) we obtain that this equation is a total
difference. Then dk is given by

dk = −(ck − ck−1)bk−1δ1
(bk − bk−1)δ

− δ1ck
δ
.

This means that finally we have the following solutions for the fields zk,l and yk,l

zk,l = 1− 1

δ1
+ bkγl, (2.18a)

yk,l = ζl −
(ck − ck−1)bk−1
(bk − bk−1)δ1γl

− ck
δ1γl

+
1

δ

bkbk−1 (ck − ck−1)
bk − bk−1

. (2.18b)

Equations (2.11), (2.18) provide the value of the four fields, but we have too many arbitrary
functions in the l direction, namely αl, βl, γl and ζl. Introducing (2.11), (2.18) into (1.3a) and
separating the terms even and odd in n and m we obtain two independent equations

(αl + δ1ζl)γl + βl = 0, (αl+1 + δ1ζl)γl + βl+1 = 0, (2.19)

which allow us to reduce by two the number of independent functions in the l direction. Solving
equations (2.19) with respect to γl and ζl we obtain

γl = − βl+1 − βl
αl+1 − αl

, ζl =
1

δ1

βlαl+1 − βl+1αl
βl+1 − βl

. (2.20)

Inserting (2.20) into (2.11), (2.18) we obtain that the general solution of 1D2 equation (1.3a)
is given by (2.2), provided that δ1 6= 0 and δ 6= 0. Indeed the solution (2.2) is ill-defined if
δ1 = 0 or δ = 0 and we proceed to treat the relevant cases separately.

Case δ = 0. If δ = 0 we can solve (2.1) with respect to δ1

δ1 =
1

1 + δ2
. (2.21)

The first integral (2.5) is not singular for δ1 given by (2.21). The procedure of solution becomes
different only when we arrive to the systems of ordinary difference equations (2.7) and (2.13).
So we will present the solution of the systems in this case.

Case m = 2l. If δ1 is given by equation (2.21) the system (2.7) becomes

wk,l − ξ2kwk−1,l = 0, (2.22a)

vk+1,l − vk,l = ξ2k+1. (2.22b)

The system (2.22) is uncoupled and imposing ξ2k = bk/bk−1 and ξ2k+1 = ak+1 − ak it is readily
solved to give

vk,l = ak + βl. (2.23a)

wk,l = bkαl, (2.23b)
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Case m = 2l+ 1. If δ1 is given by equation (2.21) the system (2.13) becomes

δ2 + zk,l
bk

=
δ2 + zk−1,m

bk−1
, −

yk+1,l − yk,l
1 + δ2

= ak+1 − ak,

where we used the fact that ξ2k = bk/bk−1 and ξ2k+1 = ak+1 − ak. The solution to this system
is immediate and it is given by

zk,l = bkγl − δ2, (2.24a)

yk,l = (1 + δ2)(ζl − ak). (2.24b)

As in the general case we obtained the expressions of the four fields, but we have too many
arbitrary functions in the l direction, namely αl, βl, γl and ζl. Substituting the obtained
expressions (2.23), (2.24) in the equation 1D2 (1.3a) with δ1 given by equation (2.21) separating
the even and odd terms we obtain two compatibility conditions

αl + γlβl + γlζl = 0, αl+1 + γlβl+1 + γlζl = 0.

We can solve this equation with respect to γl and ζl and we obtain

γl = −αl+1 − αl
βl+1 − βl

, ζl = −βlαl+1 − βl+1αl
αl+1 − αl

. (2.25)

Inserting (2.25) into (2.23), (2.24) we obtain that the general solution of 1D2 equation (1.3a)
when δ = 0 is given by (2.3).

Case δ1 = 0. If δ1 = 0 the first integral (2.5) is singular. Then following [26] the 1D2

equation (1.3a) with δ1 = 0 possesses in the direction n the following three-point, second-order
integral

W
(0,δ2)
1 = F (+)

n F (+)
m α

un+1,m − un−1,m
un,m

− F (+)
n F (−)

m α(un+1,m − un−1,m)

+ F (−)
n F (+)

m β(un+1,m − un−1,m) + F (−)
n F (−)

m β
un−1,m − un+1,m

δ2 + un,m
. (2.26)

In order to solve the 1D2 equation (1.3a) in this case we use the first integral (2.26). We start
separating the cases even and odd in m.

Case m = 2l. If m = 2l we obtain from the first integral (2.26)

F (+)
n

un+1,2l − un−1,2l
un,2l

+ F (−)
n (un+1,2l − un−1,2l) = ξn, (2.27)

where we have chosen without loss of generality α = β = 1. This equation is nonlinear. Applying
the transformation (1.12a) we transform equation (2.27) into the system

wk,l − wk−1,l = ξ2kvk,l, (2.28a)

vk+1,l − vk,l = ξ2k+1. (2.28b)

The system (2.28) is linear and equation (2.28b) is uncoupled from equation (2.28a). If we put
ξ2k+1 = ak+1 − ak then equation (2.28b) has the solution

vk,l = ak + αl.

Substituting into (2.28a) we obtain

wk,l − wk−1,l = ξ2k(ak + αl). (2.29)
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Equation (2.29) becomes a total difference if we set

ξ2k = bk − bk−1, ak =
ck − ck−1
bk − bk−1

(2.30)

and then the solution of the system (2.22) is given by

vk,l =
ck − ck−1
bk − bk−1

+ αl, (2.31a)

wk,l = ck + αlbk + βl. (2.31b)

Case m = 2l+ 1. If m = 2l + 1 we obtain from the first integral (2.26)

F (+)
n (un−1,2l+1 − un+1,2l+1)− F (−)

n

(un+1,2l+1 − un−1,2l+1)

δ2 + un,2l+1
= ξn, (2.32)

where we have chosen without loss of generality α = β = 1. This equation is nonlinear. Applying
the transformation (1.12b) we transform equation (2.32) into the system

zk−1,l − zk,l = bk − bk−1, (2.33a)

yk,l − yk+1,l = (ak+1 − ak)(δ2 + zk,l), (2.33b)

where we used the values of ξ2k and ξ2k+1. The system is now linear and equation (2.33a) is
solved by

zk,l = γl − bk.

Substituting into (2.33b) we obtain

yk,l − yk+1,l = (ak+1 − ak)(δ2 + γl − bk).

Then we have that yk,l is given by

yk,l = ζl − (γl + δ2)ak + dk,

where dk solves the ordinary difference equation

dk+1 − dk = bk+1
ck+1 − ck
bk+1 − bk

− ck+1 − bk
ck − ck−1
bk − bk−1

+ ck. (2.34)

In (2.34) we inserted the value of ak according to (2.30). Equation (2.34) is a total difference
and then dk is given by

dk = bk
ck − ck−1
bk − bk−1

− ck.

Then the solution of the system (2.33) is

zk,l = γl − bk, (2.35a)

yk,l = ζl − (γl + δ2)
ck − ck−1
bk − bk−1

+ bk
ck − ck−1
bk − bk−1

− ck. (2.35b)

As in the general case we obtained the expressions of the four fields, but we have too many
arbitrary functions in the l direction, namely αl, βl, γl and ζl. Substituting the obtained expres-
sions (2.31), (2.35) in the equation 1D2 (1.3a) with δ1 = 0 separating the even and odd terms
we obtain two compatibility conditions

(γl + δ2)αl + ζl + βl = 0, (γl + δ2)αl+1 + βl+1 + ζl = 0. (2.36)
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We can solve equation (2.36) with respect to γl and ζl and to obtain

γl = −δ2 −
βl+1 − βl
αl+1 − αl

, ζl =
βl+1αl − αl+1βl

αl+1 − αl
. (2.37)

Inserting (2.37) into (2.31), (2.35) we obtain that the general solution of 1D2 equation (1.3a)
when δ = 0 is given by (2.4).

This discussion exhausts the possible cases. For any value of the parameters we have the
general solution of the 1D2 equation (1.3a) and this concludes the proof. �

Proposition 2.2. The 2D2 equation (1.3b) is exactly solvable. If δ1 6= 0 its general solution is
given by

vk,l = bk + βl + δ
ck
αl

+
1

δ1
− 1− δ, (2.38a)

wk,l = αl
bk+1 − bk
ck+1 − ck

+
1

δ1
− 1− δ, (2.38b)

zk,l = δbk +
bk+1 − bk
ck+1 − ck

[
αl(βl+1 − βl) +

α2
l (βl+1 − βl)
αl+1 − αl

− δck
]

+ δ
βl+1δ1 − 1− δ21λ+ δδ1 + δ1

δ1
+
δαl(βl+1 − βl)
αl+1 − αl

, (2.38c)

yk,l = −βl+1δ1 − 1− δ21λ+ δδ1 + δ1
δ21

− αl(βl+1 − βl)
(αl+1 − αl)δ1

− bk
δ1
, (2.38d)

where bk, ck, αl and βl are arbitrary functions of their arguments. If δ1 = 0 then its general
solution is given by

vk,l = akαl, (2.39a)

wk,l = −δ2 −
1

αl

bk+1 − bk
ak+1 − ak

, (2.39b)

yk,l = bk + βl, (2.39c)

zk,l = ak
bk+1 − bk
ak+1 − ak

− bk − βl, (2.39d)

where ak, bk, αl and βl are arbitrary functions of their arguments.

Proof. The proof of the two solution (2.38) and (2.39) proceeds as the one outlined in Propo-
sition 2.1. The interested reader can find it in Appendix A. �

Proposition 2.3. The 3D2 equation (1.3c) is exactly solvable. If δ1 6= 0 and δ 6= 0, where δ is
give by (2.1), its general solution is given by

vk,l = −δ1
δ
bk + ckαl, (2.40a)

wk,l =
δ1 − 1 + δ

δ1
+

δ(bk+1 − bk)
δαl(ck+1 − ck)− (bk+1 − bk)δ1

, (2.40b)

zk,l =
bk
δ
− 1

δ1

(
βl − λδ1 − αl

βl+1 − βl
αl+1 − αl

)
+

1

δ

bk+1 − bk
ck+1 − ck

(
βl+1 − βl
αl+1 − αl

+ ck

)
, (2.40c)

yk,l = −bk +
δ

δ1

(
βl − λδ1 − αl

βl+1 − βl
αl+1 − αl

)
, (2.40d)
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where bk, ck, αl and βl are arbitrary functions of their arguments. If δ = 0 then its general
solution is given by

vk,l = ck + bkαl + βl, (2.41a)

wk,l = −δ2 +
bk+1 − bk

ck+1 − ck + αl(bk+1 − bk)
, (2.41b)

yk,l = − βl+1 − βl
αl+1 − αl

− bk, (2.41c)

zk,l = −(δ2 + 1)

[(
bk+1 −

βl+1 − βl
αl+1 − αl

)
ck+1 − ck
bk+1 − bk

− ck+1

]
+ (δ2 + 1)

βl+1αl − αl+1βl
αl+1 − αl

+ λ, (2.41d)

where bk, ck, αl and βl are arbitrary functions of their arguments. If δ1 = 0 then its general
solution is given by

vk,l =
bk + ζ0
αl

, (2.42a)

wk,l = −δ2 − αl
ck+1 − ck
bk+1 − bk

, (2.42b)

yk,l = ck + γl, (2.42c)

zk,l =
ck+1 − ck
bk+1 − bk

ζ0 − γl +
bkck+1 − ckbk+1

bk+1 − bk
, (2.42d)

where bk, ck, αl and γl are arbitrary functions of their arguments and ζ0 is a constant.

Proof. The proof of the three solution (2.40), (2.41) and (2.42) proceeds as the one outlined
in Proposition 2.1. The interested reader can find it in Appendix A. �

2.2 The D3 and the iD4 equations, i = 1, 2

We have the following propositions:

Proposition 2.4. The D3 equation (1.3d) is exactly solvable. We have that the expression of
the fields yk,l and vk,l is given by

yk,l = αlck + dk + βl (2.43a)

vk,l = (αlck + dk + βl)
2

+ [(αl − αl−1) ck + βl − βl−1]
[
γl +

ek − αl−1 (αl−1ck + 2dk)

αl − αl−1

]
,

(2.43b)

where the function functions ck, dk, αl and βl are arbitrary functions of their arguments, whereas
the function ek and γl are given through the discrete integrations

ek+1 = ek −
(dk+1 − dk)2

ck+1 − ck
, (2.44a)

(αl+1 − αl) γl+1 − (αl − αl−1) γl − αl−1βl−1 + αlβl + αlβl−1 − αl−1βl = 0. (2.44b)

The fields zk,l and wk,l are then given in terms of yk,l and vk,l as

zk,l =
(yk+1,lyk,l−1 − yk+1,l−1yk,l) yk,l − (yk+1,l + yk,l−1 − yk+1,l−1 − yk,l) vk,l

(yk+1,l + yk,l−1 − yk+1,l−1 − yk,l) yk,l − yk+1,lyk,l−1 + yk+1,l−1yk,l
(2.45a)

wk,l = −
yk+1,lyk,l−1 − yk+1,l−1yk,l

yk+1,l + yk,l−1 − yk+1,l−1 − yk,l
. (2.45b)
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Remark 2.5. We remark that we can say that equation (2.44b) defines a discrete integration
for the function γl since it can be expressed in the form (1.14). Defining a the new function ζl
by

γl = −αl−1βl−1 + ζl
αl − αl−1

we have that ζl satisfies the following difference equation

ζl+1 − ζl = αlβl−1 − αl−1βl, (2.46)

i.e., it is given by a discrete integration.

Proof. To find general of the D3 equation (1.3d) we start from the equation itself. Applying
the general transformation (1.12) to the D3 equation (1.3d) we obtain the following system of
four equations:

vk,l + wk,lyk,l + wk,lzk,l + yk,lzk,l = 0, (2.47a)

vk,l+1 + yk,lwk,l+1 + zk,lwk,l+1 + yk,lzk,l = 0, (2.47b)

vk+1,l + wk,lyk+1,l + wk,lzk,l + zk,lyk+1,l = 0, (2.47c)

vk+1,l+1 + yk+1,lwk,l+1 + zk,lwk,l+1 + zk,lyk+1,l = 0. (2.47d)

From the system (2.47) we have four different way for calculating zk,l. This means that we
have some compatibility conditions. Indeed from (2.47a) and (2.47c) we obtain the following
equation for vk+1,l:

vk+1,l =
(wk,l + yk+1,l)vk,l

wk,l + yk,l
+

(yk,l − yk+1,l)w
2
k,l

wk,l + yk,l
, (2.48)

while from (2.47b) and (2.47d) we obtain the following equation for vk+1,l+1:

vk+1,l+1 =
(wk,l+1 + yk+1,l)vk,l+1

wk,l+1 + yk,l
+

(yk,l − yk+1,l)w
2
k,l+1

wk,l+1 + yk,l
. (2.49)

Equations (2.48) and (2.49) give rise to a compatibility condition between vk+1,l and its shift
in the l direction vk+1,l+1 which is given by(

yk,lwk,l+1 + yk+1,l+1wk,l+1 + yk+1,l+1yk,l
−yk,l+1wk,l+1 − yk+1,lwk,l+1 − yk+1,lyk,l+1

)(
vk,l+1 − w2

k,l+1

)
= 0.

Discarding the trivial solution vk,l = w2
k,l we obtain the following value for the field wk,l

wk,l = −
yk+1,lyk,l−1 − yk+1,l−1yk,l

yk+1,l + yk,l−1 − yk+1,l−1 − yk,l
, (2.50)

which makes (2.48) and (2.49) compatible. Equation (2.50) gives wk,l in terms of yk,l alone and
therefore it is the first part of the solution represented by (2.45b). Inserting equation (2.50)
into (2.48) we are left with the following equation for vk,l

vk+1,l =
yk+1,l − yk+1,l−1
yk,l − yk,l−1

vk,l +
(yk+1,l−1yk,l − yk+1,lyk,l−1)

2

(yk+1,l−1 + yk,l − yk+1,l − yk,l−1)(yk,l − yk,l−1)
. (2.51)

Applying the transformation

vk,l = (yk,l − yk,l−1)Vk,l + y2k,l−1 (2.52)
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we can simplify (2.51) to the equation

Vk+1,l = Vk,l +
(yk,l−1 − yk+1,l−1)

2

yk+1,l−1 + yk,l − yk+1,l − yk,l−1
. (2.53)

To go further we need to specify the form of the field yk,l. This can be obtained from the
Darboux integrability of the D3 equation (1.3d). From [26] we know that the D3 equation (1.3d)
possesses the following W1 four-point, third-order integral

W1 = F (+)
n F (+)

m α
(un+1,m − un−1,m)(un+2,m − un,m)

u2n+1,m − un,m

+ F (+)
n F (−)

m α
(un+1,m − un−1,m)(un+2,m − un,m)

un,m + un−1,m

− F (−)
n F (+)

m β
(un+1,m − un−1,m)(un+2,m − un,m)

un+1,m − u2n,m

+ F (−)
n F (−)

m β
(un+1,m − un−1,m)(un+2,m − un,m)

un+1,m + un+2,m
. (2.54)

Consider now the equation W1 = ξn with W1 given as in (2.54). This relation defines a third-
order, four-point ordinary difference equation in the n direction depending parametrically on m.
In particular if we choose the case when m = 2l + 1 we have the equation

F (+)
n

(un+1,2l+1 − un−1,2l+1)(un+2,2l+1 − un,2l+1)

un,2l+1 + un−1,2l+1

+ F (−)
n

(un+1,2l+1 − un−1,2l+1)(un+2,2l+1 − un,2l+1)

un+1,2l+1 + un+2,2l+1
= ξn, (2.55)

where we have taken without loss of generality α = β = 1. Using the transformation (1.12b)
equation (2.55) is converted into the system

(yk+1,l − yk,l)(zk,l − zk−1,l) = ξ2k(yk,l + zk−1,l), (2.56a)

(yk+1,l − yk,l)(zk+1,l − zk,l) = ξ2k+1(yk+1,l + zk+1,l). (2.56b)

This system is nonlinear, but if we solve (2.56b) with respect to zk+1,l and we substitute it along
with its shift in the k direction into (2.56a) we obtain a linear second-order ordinary difference
equation involving only the field yk,l

ξ2k−1yk+1,m − (ξ2k + ξ2k−1)yk,m + ξ2kyk−1,m + ξ2kξ2k−1 = 0. (2.57)

We can lower the order of equation (2.57) by one using the potential transformation

Yk,l = yk+1,l − yk,l. (2.58)

Then Yk,l solves the equation

Yk,l −
ξ2k
ξ2k−1

Yk−1,l + ξ2k = 0.

Imposing that

ξ2k = −ak(bk − bk−1), ξ2k−1 = −ak−1(bk − bk−1)

we obtain that Yk,l can be expressed as

Yk,l = ak(bk + αl).
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From (2.58) we have that

yk+1,l − yk,l = ak(bk + αl).

Setting

ak = ck+1 − ck, bk =
dk+1 − dk
ck+1 − ck

,

we have that the solution of is given by

yk,l = αlck + dk + βl, (2.59)

i.e., by equation (2.43a).
Inserting now the obtained value of yk,l from (2.59) into the equation (2.53) we obtain

Vk+1,l = Vk,l −
(dk + αl−1ck − dk+1 − αl−1ck+1)

2

(αl − αl−1)(ck+1 − ck)
.

This means that we can write down the following solution for Vk,l

Vk,l = γl − αl−1
αl−1ck + 2dk
αl − αl−1

+
ek

αl − αl−1
, (2.60)

up to a discrete integration for the function ek

ek+1 = ek −
(dk+1 − dk)2

ck+1 − ck
,

i.e., up to the condition (2.44a). Substituting the value of Vk,l from (2.60) and of yk,l from (2.59)
into equation (2.52) we have that vk,l is given by equation (2.43b). Plugging the obtained
value of vk,l we can compute wk,l from (2.50). Finally we can compute zk,l from the original
system (2.47) and we obtain a single compatibility condition given by

(αl+1 − αl)γl+1 − (αl − αl−1)γl − αl−1βl−1 + αlβl + αlβl−1 − αl−1βl = 0, (2.61)

i.e., just by (2.44b). Given this conditions all the equations in (2.47) are compatible and zk,l is
indifferently given by solving one of the equation. E.g., solving (2.47a) we can say that zk,l is
given by equation (2.45a). This ends the procedure of solution of the D3 equation (1.3d). �

Proposition 2.6. The 1D4 equation (1.3e) is exactly solvable. We have that the expression of
the fields yk,l and vk,l is given by

yk,l = ck(αldk + βl), (2.62a)

vk,l = ck[(αl − αl−1)dk + βl − βl−1]
{
γl +

δ1δ3
βl−1αl − βlαl−1

[
αl−1

c2k(αl−1dk + βl−1)
+ ek

]}
+

δ1δ3
ck (αl−1dk + βl−1)

− δ2ck (αl−1dk + βl−1) , (2.62b)

where the function functions ck, dk, αl and βl are arbitrary functions of their arguments, whereas
the function ek and γl are given through the discrete integrations

ek+1 − ek = − (ck − ck+1)
2

c2kc
2
k+1(dk+1 − dk)

, (2.63a)

(βlαl+1 − βl+1αl)γl+1 − (βl−1αl − βlαl−1)γl = (βl−1αl − βlαl−1)δ2. (2.63b)
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The fields zk,l and wk,l are then given in terms of yk,l and vk,l as

zk,l = −

[
δ3 (yk+1,lyk,l−1 − yk+1,l−1yk,l)

+δ1δ3yk,l(yk+1,l−1 − yk+1,l − yk,l−1 + yk,l)

]
[

(vk,l + δ2yk,l)(yk+1,lyk,l−1 − yk+1,l−1yk,l)

+δ1δ3(yk+1,l−1 − yk+1,l − yk,l−1 + yk,l)

] , (2.64a)

wk,l = δ3
yk+1,l−1 − yk+1,l − yk,l−1 + yk,l
yk+1,lyk,l−1 − yk+1,l−1yk,l

. (2.64b)

Remark 2.7. We remark that we can say that equation (2.63b) defines a discrete integration
for the function γl since it can be expressed in the form (1.14). Defining a new function ζl by

γl =
ζlδ2

βl−1αl − βlαl−1

we have that ζl is given by the following difference equation

ζl+1 − ζl = αlβl−1 − αl−1βl, (2.65)

i.e., it is given by a discrete integration. Note that (2.65) is exactly the same as (2.46).

Proof. The proof of the solution of the 1D2 equation (1.3e) proceeds as the one outlined in
Proposition 2.4. The interested reader can find the details in Appendix A. �

Proposition 2.8. The 2D4 equation (1.3f) is exactly solvable. We have that the expression of
the fields yk,l and vk,l is given by

yk,l = ck(αldk + βl), (2.66a)

vk,l = ck[(αl − αl−1)dk + βl − βl−1]

×
{
γl −

αlδ1δ3
(αldk + βl)c

2
k(βlαl−1 − βl−1αl)

+
δ3δ1ek

βlαl−1 − βl−1αl

}
+

δ1δ3
ck(αldk + βl)

− δ2ck(αldk + βl), (2.66b)

where the function functions ck, dk, αl and βl are arbitrary functions of their arguments, whereas
the function ek and γl are given through the discrete integrations

ek+1 − ek =
(ck+1 − ck)2

(dk+1 − dk)c2kc2k+1

, (2.67a)

(βlαl+1 − βl+1αl)γl+1 − (βl−1αl − βlαl−1)γl = (βlαl+1 − βl+1αl)δ2. (2.67b)

The fields zk,l and wk,l are then given in terms of yk,l and vk,l as

zk,l = − 1

δ1

[
δ1δ3(yk,l−1 + yk+1,l − yk,l − yk+1,l−1)

+(vk,l + δ2yk,l)(yk+1,l−1yk,l − yk+1,lyk,l−1)

]
[

yk+1,l−1yk,l − yk+1,lyk,l−1

+yk,l(yk,l−1 + yk+1,l − yk,l − yk+1,l−1)

] , (2.68a)

wk,l =
1

δ1

yk+1,l−1yk,l − yk+1,lyk,l−1
yk,l−1 + yk+1,l − yk,l − yk+1,l−1

. (2.68b)
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Remark 2.9. We remark that we can say that equation (2.63b) defines a discrete integration
for the function γl since it can be expressed in the form (1.14). Defining a new function ζl by

γl =
ζlδ2

βl−1αl − βlαl−1

we have that ζl is given by the following difference equation

ζl+1 − ζl = αl+1βl − αlβl+1,

i.e., it is given by a discrete integration.

Proof. The proof of the solution of the 2D2 equation (1.3f) proceeds as the one outlined in
Proposition 2.4. The interested reader can find the details in Appendix A. �

2.3 The tH
ε
2 and the tH

ε
3 equations

In this subsection we construct a general solution of the tH
ε
2 and the tH

ε
3 equations. As we

recalled in the introduction, the solution of the tH
ε
1 through the first integrals was already

presented in [26], so we will not discuss it again. Moreover we also recall that the general
solution of the tH

ε
1 equation was first found in [21, 22] without the knowledge of the first

integrals. The first integrals of the tH
ε
1 equation were first presented in [23].

The procedure we will follow will make use of the first integrals, in a similar way than in
the cases presented in Section 2.2. The main difference is in the fact that the H4 are non-

autonomous only in the direction m, i.e., they depend only on the non-autonomous factors F
(±)
m

as given by (1.4). Therefore instead of the general transformation (1.12) we can use the simplified
transformation

un,2l = pn,l, un,2l+1 = qn,l. (2.69)

Then to describe the general solution of a H4 we only need three arbitrary functions: one in
the n direction and two in the m direction.

We have then that the following propositions hold true:

Proposition 2.10. The tH
ε
2 equation (1.2b) is exactly solvable. If ε 6= 0 and the field qn,l do

not satisfy the discrete wave equation

qn+1,l+1 + qn,l = qn+1,l + qn,l+1, (2.70)

then the solution of the tH
ε
2 equation (1.2b) is given by

qn,l = βl +
γl + ζlen + fn

cn + ζl
, (2.71a)

pn,l =



(qn,l − α3)qn+1,l−1 − (qn,l−1 − α3)qn+1,l

− (α2 + α3)(qn,l − qn,l−1)− εα2
3(qn,l − qn,l−1)

+ ε
[
α3

2 + 2α3(qn,l−1 + α2)− (qn,l − qn,l−1)qn+1,l−1
]
qn+1,l

+ ε(α2 + qn,l)(α2 + qn,l−1)qn+1,l

−εqn+1,l−1
[
α3

2 − 2(qn,l + α2)α3 + (α2 + qn,l)(α2 + qn,l−1)
]


qn+1,l − qn,l + qn,l−1 − qn+1,l−1

, (2.71b)

where cn, ζl and βl are arbitrary functions of their arguments and en is a solution of the equation

en+1 −
cn+1 − cn−1
cn − cn−1

en +
cn+1 − cn
cn − cn−1

en−1 − α2
cn+1 − cn−1
cn − cn−1

= 0, (2.72)
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while fn and γl are given by the discrete integrations

fn − fn−1 = encn−1 − cnen−1, (2.73a)

γl+1 − γl = −(ζl+1 − ζl)
(
α2 + βl+1 + βl + 2α3 −

1

ε

)
. (2.73b)

If ε = 0, but the field qn,l do not satisfy the discrete wave equation (2.83) then the solution of
the tH

ε
2 equation (1.2b) is given by

qn,l = βl +
γl + ζ0en + fn

cn + ζ0
, (2.74a)

pn,l =

[
(qn,l − α3)qn+1,l−1 − (qn,l−1 − α3)qn+1,l

− (α2 + α3)(qn,l − qn,l−1)

]
qn+1,l − qn,l + qn,l−1 − qn+1,l−1

, (2.74b)

where cn, βl and γl are arbitrary functions of their arguments, ζ0 is a constant and en is a solution
of (2.72) and fn is a solution of (2.73a). If the field qn,l satisfies the discrete wave equation (2.70)
regardless of the value of the parameter ε the solution of the tH

ε
2 equation (1.2b) is given by

qn,l = an + ζ0, (2.75a)

pn,l = bn(βl + cn), (2.75b)

where bn and βl are arbitrary functions of their arguments, ζ0 is a constant and an and cn are
given by the discrete integration

an+1 − an + α2

an+1 − an − α2
=
bn+1

bn
, (2.76a)

cn+1 − cn =
(an + ζ0 − α3)bn+1 + bn(α2 + α3 − ζ0 − an)

bnbn+1

− ε
[
(α2 + ζ0 + an + α3)

2bn+1 − bn(α3 + an + ζ0)
2
]

bnbn+1
. (2.76b)

Remark 2.11. We remark that the function en can be obtained from (2.72) as the result of
two discrete integrations. Indeed defining

En =
en+1 − en
cn+1 − cn

, (2.77)

and substituting in (2.72) we obtain that En must solve the equation

En − En−1 = α2

(
1

cn+1 − cn
+

1

cn − cn−1

)
. (2.78)

Note that the right-hand side of (2.78) is not a total difference. So the function en can be
obtained by integrating (2.78) and subsequently integrating (2.77). This provides the value
of en. The obtained value can be plugged in (2.73a) to give fn after discrete integration.
This reasoning shows that we can obtain the non-arbitrary functions en and fn as result of a
finite number of discrete integrations. Therefore we can conclude that the solution of the tH

ε
2

equation (1.2b) in the general case is given in terms of four discrete integrations. If ε = 0 then
the general solution is given in terms of three discrete integrations and finally in the singular
case, when qn,l solves the discrete wave equation (2.70), we need only two discrete integrations.
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Proof. We start the procedure of solution of the tH
ε
2 equation (1.2b) by looking at the equation

itself. We apply the transformation (2.69) to the tH
ε
2 equation (1.2b) and we obtain the following

system of two coupled equations

(pn,l − pn+1,l)(qn,l − qn+1,l)− α2(pn,l + pn+1,l + qn,l + qn+1,l)

+
εα2

2
(2qn,l + 2α3 + α2)(2qn+1,l + 2α3 + α2) +

εα2

2
(2α3 + α2)

2 + (α2 + α3)
2

− α2
3 − 2εα2α3(α2 + α3) = 0, (2.79a)

(qn,l − qn+1,l)(pn,l+1 − pn+1,l+1)− α2(qn,l + qn+1,l + pn,l+1 + pn+1,l+1)

+
εα2

2
(2qn,l + 2α3 + α2)(2qn+1,l + 2α3 + α2) +

εα2

2
(2α3 + α2)

2 + (α2 + α3)
2 − α2

3

− 2εα2α3(α2 + α3) = 0. (2.79b)

We have that equation (2.79a) depends on pn,l and pn+1,l and that equation (2.79b) depends
on pn,l+1 and pn+1,l+1. So we apply the translation operator Tl to (2.79a) to obtain two equations
in terms of pn,l+1 and pn+1,l+1

(pn,l+1 − pn+1,l+1)(qn,l+1 − qn+1,l+1)− α2(pn,l+1 + pn+1,l+1 + qn,l+1 + qn+1,l+1)

+
εα2

2
(2qn,l+1 + 2α3 + α2)(2qn+1,l+1 + 2α3 + α2) +

εα2

2
(2α3 + α2)

2 + (α2 + α3)
2

− α2
3 − 2εα2α3(α2 + α3) = 0, (2.80a)

(qn,l − qn+1,l)(pn,l+1 − pn+1,l+1)− α2(qn,l + qn+1,l + pn,l+1 + pn+1,l+1)

+
εα2

2
(2qn,l + 2α3 + α2)(2qn+1,l + 2α3 + α2) +

εα2

2
(2α3 + α2)

2 + (α2 + α3)
2 − α2

3

− 2εα2α3(α2 + α3) = 0. (2.80b)

The system (2.80) is equivalent to the original system (2.79). We can solve (2.80) with respect
to pn,l+1 and pn+1,l+1

pn,l+1 =



(qn,l+1 − α3)qn+1,l − (qn,l − α3)qn+1,l+1

− (α2 + α3)(qn,l+1 − qn,l)− εα2
3(qn,l+1 − qn,l)

+ ε
[
α3

2 + 2α3(qn,l + α2)− (qn,l+1 − qn,l)qn+1,l

]
qn+1,l+1

+ ε(α2 + qn,l+1)(α2 + qn,l)qn+1,l+1

−εqn+1,l

[
α3

2 − 2(qn,l+1 + α2)α3 + (α2 + qn,l+1)(α2 + qn,l)
]


qn+1,l+1 − qn,l+1 + qn,l − qn+1,l

, (2.81a)

pn+1,l+1 =



(qn+1,l − α3)qn,l+1 + (α3 − qn+1,l+1)qn,l

− (α2 + α3)(qn+1,l − qn+1,l+1) + εα2
3(qn+1,l+1 − qn+1,l)

+ εqn,l+1

[
(qn+1,l+1 − qn+1,l)qn,l − α2

3 − 2α3(qn+1,l + α2)
]

− εqn,l+1(α2 + qn+1,l+1)(α2 + qn+1,l)

+ εqn,l
[
α2
3 + 2(α2 + qn+1,l+1)α3 + (α2 + qn+1,l+1)(α2 + qn+1,l)

]


qn+1,l+1 − qn,l+1 + qn,l − qn+1,l

. (2.81b)

We see that the right-hand sides of (2.81) are functions only of qn,l, qn+1,l, qn,l+1 and qn+1,l+1

and well defined unless qn,l solves the discrete wave equation (2.70), which is therefore a singular
case. Therefore at this point the procedure of solution bifurcates into two cases. We treat them
separately.

Singular case: qn,l solves (2.70). Let us assume that the field qn,l satisfies the discrete
wave equation in the form (2.70). Then as discussed in the introduction the discrete wave
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equation is a simplest example of Darboux integrable equation and its solution is given by the
discrete d’Alembert formula

qn,l = an + ζl, (2.82)

where both an and ζl are arbitrary functions of their argument. Substituting (2.82) into (2.80)
we obtain the compatibility condition

ζl+1 − ζl = 0, (2.83)

i.e., ζl = ζ0 = const and the system (2.79) is now consistent. This yield us the first part of
the solution of this case (2.75a). We are therefore left with one equation for pn,l, e.g., (2.79a).
Inserting (2.82) with ζl = ζ0 in (2.79a) and solving with respect to pn+1,l we obtain

pn+1,l =
an+1 − an + α2

an+1 − an − α2
pn,l +

α2(α2 − an + 2α3 − 2ζ0 − an+1)

α2 + an − an+1

+
α2ε
[
α2
2 + (2ζ0 + an+1 + 2α3 + an)α2 + 2(an+1 + α0 + α3)(α3 + an + ζ0)

]
α2 + an − an+1

.

We can introduce a new function bn through discrete integration

an+1 − an + α2

an+1 − an − α2
=
bn+1

bn
,

which is just formula (2.76a). Then we have that pn,l must solve the equation

pn+1,l

bn+1
=
pn,l
bn

+
(an + ζ0 − α3)bn+1 + bn(α2 + α3 − ζ0 − an)

bnbn+1

− ε
[
(α2 + ζ0 + an + α3)

2bn+1 − bn(α3 + an + ζ0)
2
]

bnbn+1
. (2.84)

The solution of equation (2.84) is given by

pn,l = bn(βl + cn),

where cn is given by the discrete integration

cn+1 − cn =
(an + ζ0 − α3)bn+1 + bn(α2 + α3 − ζ0 − an)

bnbn+1

− ε
[
(α2 + ζ0 + an + α3)

2bn+1 − bn(α3 + an + ζ0)
2
]

bnbn+1
,

i.e., through formula (2.76b). This yields the solution of the tH
ε
2 equation (1.2b) when qn,l

satisfy the discrete wave equation (2.70).
General case: qn,l do not solve (2.70). When qn,l is not a solution of the discrete wave

equation (2.70) the equations (2.81) are well defined. Moreover we have that (2.81a) and (2.81b)
must be compatible. To impose the compatibility condition we apply T−1l to (2.81b) and we
impose to the obtained expression to be equal to (2.81a). We find that qn,l must solve the
following equation

α2(qn−1,l+1 − qn−1,l − qn+1,l+1 + qn+1,l) + (qn,l − qn+1,l)qn−1,l+1

− (qn,l − qn−1,l)qn+1,l+1 + qn,l+1(qn+1,l − qn−1,l)
+ εα2

2(qn+1,l+1 − qn+1,l + qn−1,l − qn−1,l+1)
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+ εα2(qn+1,l+1 − qn+1,l + qn−1,l − qn−1,l+1)(qn,l+1 + 2α3 + qn,l)

+ ε(qn+1,l − qn−1,l)qn+1,l+1qn−1,l+1 + ε(qn,l+1 − qn,l + qn+1,l)qn−1,lqn−1,l+1

+ ε
[
2α3qn+1,l − (qn,l+1 + 2α3)qn,l

]
qn−1,l+1

+ ε
[
(qn,l+1 + 2α3)qn,l − (2α3 + qn+1,l)qn−1,l − (qn,l+1 − qn,l)qn+1,l

]
qn+1,l+1

− ε(2α3 + qn,l)(qn+1,l − qn−1,l)qn,l+1 = 0. (2.85)

This partial difference equation for qn,l is not defined on the square quad graph of Fig. 1, but
it is defined on the six-point lattice shown in Fig. 3.

(n− 1, l)

(n− 1, l + 1)

(n, l)

(n, l + 1) (n+ 1, l + 1)

(n+ 1, l)

Figure 3. The six-point lattice.

In the general case we have proved that the tH
ε
2 equation (1.2b) is equivalent to the sys-

tem (2.79) which in turn is equivalent to the solution of equations (2.81a) and (2.85). How-
ever (2.81a) merely defines pn,l+1 in terms of qn,l and its shifts. Therefore if we find the general
solution of equation (2.85) the value of pn,l will follow. Applying T−1l to equation (2.80a) we
obtain then the value of pn,l as displayed in (2.71b). To find the solution for qn,l solution we
turn to the first integrals. Like in the case of the H6 equations (1.3) we will find an expression
for qn,l using the first integrals, and then we will insert it into (2.85) to reduce the number of
arbitrary functions to the right one. From [26] we know that tH

ε
2 equation (1.2b) possesses the

following four-point, third-order integral in the n direction

W1 = F (+)
m

(un+1,m − un−1,m)(un+2,m − un,m)

ε2α4
2 + 4εα3

2 +
[
(8α3 − 2un,m − 2un+1,m)ε− 1

]
α2
2 + (un,m − un+1,m)2

− F (−)
m

(−un+1,m + un−1,m)(un,m − un+2,m)

(−un−1,m + un,m + α2)(un+1,m + α2 − un+2,m)
. (2.86)

We consider the equation W1 = ξn, where W1 is given by (2.86), with m = 2l + 1

(un−1,2l+1 − un+1,2l+1)(un+2,2l+1 − un,2l+1)

(un,2l+1 − un−1,2l+1 + α2)(un+1,2l+1 − un+2,2l+1 + α2)
= ξn.

Using the substitutions (2.69) we have

(qn−1,l − qn+1,l) (qn+2,l − qn,l)
(qn,l − qn−1,l + α2) (qn+1,l − qn+2,l + α2)

= ξn. (2.87)

This equation contains only qn,l and its shifts. From equation (2.87) it is very simple to obtain
a discrete Riccati equation. Indeed the transformation

Qn,l =
qn,l − qn−1,l + α2

qn+1,l − qn−1,l
(2.88)
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brings (2.87) into:

Qn+1,l +
1

ξnQn,l
= 1 (2.89)

which is a discrete Riccati equation. Let us assume an to be a particular solution of (2.89), then
we express ξn as

ξn =
1

an(1− an+1)
. (2.90)

Using the standard linearization of the discrete Riccati equation

Qn,l = an +
1

Zn,l
(2.91)

from (2.90) we obtain the following equation for Zn,l

Zn+1,l =
anZn,l + 1

1− an+1
.

Introducing

an =
bn−1

bn + bn−1
(2.92)

we obtain

Zn+1,l −
bn−1bn+1 + bn−1bn
bnbn+1 + bn−1bn+1

Zn,l =
bn−1bn+1 + bn−1bn + bnbn+1 + b2n

bnbn+1 + bn−1bn+1
. (2.93)

If we assume that (2.93) can be written as a total difference, i.e.,

(Tn − Id)(dnZn,l − cn) = 0,

we obtain

bn = cn+1 − cn, dn =
(cn+1 − cn)(cn − cn−1)

cn+1 − cn−1
. (2.94)

So bn must be a total difference and therefore we can represent Zn,l as

Zn,l =
(cn+1 − cn−1)(cn + ζl)

(cn+1 − cn)(cn − cn−1)
.

From (2.91) and (2.92) we obtain the form of Qn,l

Qn,l =
(cn − cn−1)(cn+1 + ζl)

(cn + ζl)(cn+1 − cn−1)
. (2.95)

Introducing the value of Qn,l from (2.95) into (2.88) we obtain the following equation for qn,l

qn+1,l − qn−1,l
qn,l − qn−1,l + α2

=
(cn + ζl)(cn+1 − cn−1)
(cn − cn−1)(cn+1 + ζl)

.

Performing the transformation

Rn,l = (cn + ζl)qn,l (2.96)
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we obtain the following second-order ordinary difference equation for the field Rn,l

Rn+1,l −
cn+1 − cn−1
cn − cn−1

Rn,l +
cn+1 − cn
cn − cn−1

Rn−1,l − α2(cn + ζl)
cn+1 − cn−1
cn − cn−1

= 0. (2.97)

Then we can represent the solutions of the equation (2.97) as

Rn,l = Pn,l + ζlen + fn, (2.98)

where en and fn are particular solutions of

en+1 −
cn+1 − cn−1
cn − cn−1

en +
cn+1 − cn
cn − cn−1

en−1 − α2
cn+1 − cn−1
cn − cn−1

= 0, (2.99a)

fn+1 −
cn+1 − cn−1
cn − cn−1

fn +
cn+1 − cn
cn − cn−1

fn−1 − α2cn
cn+1 − cn−1
cn − cn−1

= 0. (2.99b)

Pn,l will be then solve the following equation

Pn+1,l −
cn+1 − cn−1
cn − cn−1

Pn,l +
cn+1 − cn
cn − cn−1

Pn−1,l = 0. (2.100)

The equations (2.99a) and (2.99b) are not independent. Indeed defining

An =
encn−1 − en−1cn − fn + fn−1

cn − cn−1
, (2.101)

and using (2.99) it is possible to show that the function An lies in the kernel of the operator
Tn − Id. This implies that An = A0 = const. We can without loss of generality assume the
constant A0 to be zero, since if we perform the transformation

en = ẽn −A0, (2.102)

the equation (2.101) is mapped into

ẽncn−1 − ẽn−1cn − fn + fn−1
cn − cn−1

= 0. (2.103)

Furthermore since (2.99a) is invariant under the transformation (2.102) we can safely drop the
tilde in (2.103) and assume that the functions en and fn are solutions of the equations

en+1 −
cn+1 − cn−1
cn − cn−1

en +
cn+1 − cn
cn − cn−1

en−1 − α2
cn+1 − cn−1
cn − cn−1

= 0, (2.104a)

fn − fn−1 = encn−1 − cnen−1. (2.104b)

The system (2.104) is just gives the constraints expressed in formulas (2.72) and (2.73a).

Now we turn to the solution of the homogeneous equation (2.100). We can reduce (2.100) to
a total difference using the potential substitution Tn,l = Pn,l − Pn−1,l

Tn+1,l

cn+1 − cn
−

Tn,l
cn − cn−1

= 0.

This clearly implies

Pn,l − Pn−1,l
cn − cn−1

= βl,
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where βl is an arbitrary function. The solution to this equation is given by3

Pn,l = (cn + ζl)βl + γl, (2.105)

where γl is an arbitrary function. Using (2.96), (2.98), (2.105) we obtain then the following
expression for qn,l

qn,l = βl +
γl + ζlen + fn

cn + ζl
, (2.106)

where en and fn are solutions of (2.104).

Equation (2.106) is formally the solution presented in (2.71a), but depends on three arbitrary
functions in the l direction, namely ζl, βl and γl. This means that there is a constraint between
these functions, which can be recovered by plugging (2.106) into (2.85). At this point we have
a second bifurcation, depending on the value of ε.

Case ε 6= 0. If ε 6= 0 inserting (2.106) into (2.85) and factorizing out the n dependent part
away we are left with

γl+1 − γl = −(ζl+1 − ζl)
(
α2 + βl+1 + βl + 2α3 −

1

ε

)
.

This equation tells us that the function γl can be expressed after a discrete integration in
terms of the two arbitrary functions ζl and βl. This is just the final constraint expressed in
formula (2.73b). This yields the general solution of the tH

ε
2 equation (1.2b).

Case ε = 0. If ε = 0 inserting (2.106) into (2.85) we obtain the compatibility condition
ζl+1 − ζl = 0, i.e., ζl = ζ0 = const. It is easy to check that the obtained value of qn,l through
formula (2.106) is consistent with the substitution of ε = 0 in (2.79). This means that in the
case ε = 0 the value of qn,l is given by

qn,l = βl +
γl + ζ0en + fn

cn + ζ0
, (2.107)

where the functions en and fn are defined implicitly and can be found by discrete integration
from (2.104), i.e., from formula (2.74a). Since formula (2.71b) is not singular with respect to ε
the value of pn,l can be recovered just by substituting ε = 0 and the form of qn,l found in (2.107).
This yields equation (2.74b). This concludes the procedure of solution of the tH

ε
2 equation (1.2b)

in the case when ε = 0. �

Proposition 2.12. The tH
ε
3 equation (1.2c) is exactly solvable. If δ 6= 0 and the field qn,l do

not satisfy the equation

qn+1,l+1qn,l = qn+1,lqn,l+1 (2.108)

then the solution of the tH
ε
3 equation (1.2c) is given by

qn,l = γlen
fn + βl
cn + ζl

, (2.109a)

pn,l =

[
α2(qn+1,l − qn+1,l−1)

(
ε2qn,l−1qn,l + δ2α3

2
)

+ δ2α2
2α

2
3(qn,l−1 − qn,l) + ε2qn+1,lqn+1,l−1(qn,l−1 − qn,l)

]
(qn+1,lqn,l−1 − qn+1,l−1qn,l)α3α2

, (2.109b)

3The arbitrary functions are taken in a convenient way.
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where en, βl and γl are arbitrary functions of their arguments and cn is a solution of the equation

cn+1 − cn
cn − cn−1

=
en+1 − α2en
α2en − en−1

, (2.110)

while fn and ζl are given by the discrete integrations

fn − fn−1 =
cn−1 − cn
enen−1

, (2.111a)

ζl+1 − ζl =
ε2

α2δ2α2
3

γl+1γl(βl+1 − βl). (2.111b)

If ε = 0, but the field qn,l do not satisfy the equation (A.93) then the solution of the tH
ε
3

equation (1.2c) is given by

qn,l = γlen
fn + β0
cn + ζl

, (2.112a)

pn,l =
ε2

α2α3

α2(qn+1,l − qn+1,l−1)qn,l−1qn,l + qn+1,lqn+1,l−1(qn,l−1 − qn,l)
qn+1,lqn,l−1 − qn+1,l−1qn,l

, (2.112b)

where en, ζl and γl are arbitrary functions of their arguments β0 is a constant and cn is a so-
lution of (2.110) and fn is a solution of (2.111a). If the field qn,l satisfies the equation (2.108)
regardless of the value of the parameter ε the solution of the tH

ε
3 equation (1.2c) is given by

qn,l = ζ0an, (2.113a)

pn,l = bn(βl + cn), (2.113b)

where bn and βl are arbitrary functions of their arguments, ζ0 is a constant and an and cn are
given by the discrete integration

α2an+1 − an
an+1 − α2an

=
bn+1

bn
, (2.114a)

cn+1 − cn =
δ2α2

3α
2
2bn − bn+1

(
δ2α2

3 + ε2a2nζ
2
0

)
α2 + ε2a2nζ

2
0bn

bnanζ0α2α3bn+1
. (2.114b)

Remark 2.13. We remark that the function cn can be obtained from (2.110) as the result of
two discrete integrations. Indeed defining

zn = cn+1 − cn, (2.115)

and substituting in (2.110) we obtain that zn must solve the equation

zn
zn−1

=
en+1 − α2en
α2en − en−1

. (2.116)

Note that the right-hand side of (2.116) is not a total difference. So the function cn can be
obtained by integrating (2.116) and subsequently integrating (2.115). This provides the value
of cn. The obtained value can be plugged in (2.111a) to give fn after discrete integration.
This reasoning shows that we can obtain the non-arbitrary functions cn and fn as result of
a finite number of discrete integrations. Therefore we can conclude that the solution of the tH

ε
3

equation (1.2c) in the general case is given in terms of four discrete integrations. If ε = 0 the
general solution is given in terms of three discrete integration and finally in the singular case,
when qn,l solves the equation (2.108), we need only two discrete integrations.

Proof. The proof of the solution of the tH
ε
3 equation (1.2c) proceeds as the one outlined in

Proposition 2.10. The interested reader can find the details in Appendix A. �
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3 Conclusions

In this paper we presented a detailed procedure to construct the general solutions for all the H4

and H6 equations. As stated in the introduction, these general solutions were obtained in
three different ways, but the common feature is that they can be found through some linear or
linearizable (discrete Riccati) equations. This is the great advantage of the first integral approach
over the direct one which was pursued in [21]. The Darboux integrability therefore yields
extra information that it is useful to get the final result, i.e., the general solutions. Moreover
linearization arises very naturally from first integrals also in the most complicated cases, whereas
in the direct approach can be quite tricky, see, e.g., the examples in [21]. The linearization of
the first integrals is another proof of the deep linear nature of the H4 and H6 equations. This
result is even stronger than Darboux integrability alone, since a priori the first integrals do not
need to define linearizable equations.

We also note that our procedure of construction of the general solution, based on the ideas
from [18], is likely to be the discrete version of the procedure of linearization and solutions for
continuous Darboux integrable equations presented in [46]. The preeminent rôle of the discrete
Riccati equation in the solutions is reminiscent of the importance of the usual Riccati equation
in the continuous case. Recall, e.g., that the first integrals of the Liouville equation [36]

uxt = eu,

which is the most famous Darboux integrable system, are Riccati equations. Many other ex-
amples of solutions presented in [46] use the reduction of higher-order differential equations to
Riccati-like equation in order to obtain the solution, as we have done in the discrete case.

In this paper we constructed the general solutions of the trapezoidal H4 and of the H6 equa-
tions. Therefore we possess an almost complete theory about these equations ranging from the
geometrical background to their analytic properties. For a discussion of the open problems in
this field we refer to our previous paper [26].

A Procedure to find the general solution in the remaining cases

A.1 2D2 equation (1.3b)

From [26] we know that the first integrals of the 2D2 equation (1.3b) can be different depending
on the value of the parameter δ1. For this reason we treat separately the various cases.

Case δ1 6= 0. If δ1 6= 0 the W1 first integrals of the 2D2 equation (1.3b) is given by [26]

W1 = F (+)
n F (+)

m α
δ2 + un+1,m

δ2 + un−1,m
+ F (+)

n F (−)
m α

[1− (1 + δ2)δ1]un,m + un+1,m

[1− (1 + δ2)δ1]un,m + un−1,m

+ F (−)
n F (+)

m β
(un+1,m − un−1,m)(un,m + δ2)

1 + (un,m − 1)δ1
− F (−)

n F (−)
m β(un+1,m − un−1,m).

As stated in the introduction, from the relation W1 = ξn this first integral defines a three-point,
second-order ordinary difference equation in the n direction which depends parametrically on m.
From this parametric dependence we find two different three-point non-autonomous ordinary
difference equations corresponding to m even and m odd. We treat them separately.

Casem = 2l. If m = 2l we have the following non-autonomous nonlinear ordinary difference
equation

F (+)
n α

δ2 + un+1,2l

δ2 + un−1,2l
− F (−)

n β
(un−1,2l − un+1,2l)(un,2l + δ2)

1 + (un,2l − 1)δ1
= ξn. (A.1)
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Without loss of generality we set α = 1 and β = δ1. Then making the transformation

un,2l = Un,2l − δ2 (A.2)

and putting

δ =
1− δ1 − δ1δ2

δ1
(A.3)

equation (A.1) is mapped to

F (+)
n

Un+1,2l

Un−1,2l
− F (−)

n

(Un−1,2l − Un+1,2l)Un,2l
Un,2l + δ

= ξn. (A.4)

From the definition (1.12a) applied to Un,2l instead of un,2l
4 we can separate again the even

and the odd part in (A.4). We obtain the following system of two coupled first-order ordinary
difference equations

Wk,l − ξ2kWk−1,l = 0, (A.5a)

Vk+1,l − Vk,l = ξ2k+1

(
1 +

δ

Wk,l

)
. (A.5b)

Putting ξ2k = ak/ak−1 the solution to (A.5a) is given by

Wk,l = akαl. (A.6)

Inserting the value of Wk,l from (A.6) into (A.5b) we obtain

Vk+1,l − Vk,l = ξ2k+1

(
1 +

δ

akαl

)
. (A.7)

If we define

ξ2k+1 = bk+1 − bk, ak =
bk+1 − bk
ck+1 − ck

, (A.8)

then (A.7) becomes a total difference. So we obtain the following solutions for the Wk,l and
the Vk,l fields

Wk,l = αl
bk+1 − bk
ck+1 − ck

, Vk,l = bk + βl + δ
ck
αl
.

Inverting the transformation (A.2) we obtain for the fields wk,l and vk,l

wk,l = αl
bk+1 − bk
ck+1 − ck

+
1

δ1
− 1− δ, (A.9a)

vk,l = bk + βl + δ
ck
αl

+
1

δ1
− 1− δ. (A.9b)

Case m = 2l+ 1. If m = 2l+ 1 we have the following non-autonomous ordinary difference
equation

F (+)
n

δδ1un,2l+1 + un+1,2l+1

δδ1un,2l+1 + un−1,2l+1
+ F (−)

n δ1(un−1,2l+1 − un+1,2l+1) = ξn,

4We will denote the corresponding fields with capital letters.
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where we already substituted δ as defined in (A.3). Using the standard transformation (1.12b)
to get rid of the two-periodic factors we obtain

δδ1yk,l + zk,l
δδ1yk,l + zk−1,l

= ξ2k, (A.10a)

δ1(yk,l − yk+1,l) = ξ2k+1. (A.10b)

Both equations in (A.10) are linear in zk,l, yk,l and their shifts. As ξ2k+1 = bk+1 − bk we have
that the solution of equation (A.10b) is given by

yk,l = γl −
bk
δ1
. (A.11)

As ξ2k = ak/ak−1 and yk,l is given by (A.11) we obtain

zk,l
ak
−
zk−1,l
ak−1

=

(
1

ak
− 1

ak−1

)
(δbk − δδ1γl).

Recalling the definition of ak in (A.8) we represent zk,l as

zk,l = δbk +
bk+1 − bk
ck+1 − ck

(ζl − δck)− δδ1γl. (A.12)

Equations (A.9), (A.11), (A.12) provide the value of the four fields, but we have too many
arbitrary functions in the l direction, namely αl, βl, γl and ζl. Inserting (A.9), (A.11), (A.12)
into (1.3b) and separating the terms even and odd in n and m we obtain two independent
equations

δ1ζl + αlδ
2
1γl − δ12λαl + βlαlδ1 + δαlδ1 − αl + αlδ1 = 0, (A.13a)

δ1ζl + αl+1δ
2
1γl − δ21λαl+1 + βl+1αl+1δ1 + δαl+1δ1 − αl+1 + αl+1δ1 = 0, (A.13b)

which allow us to reduce by two the number of independent functions in the l direction. Sol-
ving (A.13) with respect to γl and ζl we find

γl = −βl+1δ1 − 1− δ21λ+ δδ1 + δ1
δ21

− αl(βl+1 − βl)
(αl+1 − αl)δ1

, (A.14a)

ζl = αl(βl+1 − βl) +
α2
l (βl+1 − βl)
αl+1 − αl

. (A.14b)

Inserting (A.14) into equations (A.9), (A.11), (A.12) we have the general solution (2.38) of
the 2D2 equation (1.3b) provided that δ1 6= 0. Indeed the solution of the 2D2 equation (1.3b)
given by (2.38) is ill-defined if δ1 = 0. Therefore we now discuss this case separately.

Case δ1 = 0. Following [26] we have the 2D2 equation (1.3b) with δ1 = 0 possesses the
following two-point, first-order first integral in the direction n

W
(0,δ2)
1 = F (+)

n F (+)
m α(δ2 + un+1,m)un,m − F (+)

n F (−)
m α(un+1,m + un,m)

+ F (−)
n F (+)

m β(δ2 + un,m)un+1,m − F (−)
n F (−)

m β(un+1,m + un,m). (A.15)

To solve the 2D2 equation (1.3b) with δ1 = 0 we use the first integral (A.15). Again we start
separating the cases m even and odd in (A.15).

Case m = 2l. If m = 2l we obtain from the first integral (A.15)

F (+)
n (δ2 + un+1,2l)un,2l + F (−)

n (δ2 + un,2l)un+1,2l = ξn, (A.16)
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where we have chosen without loss of generality α = β = 1. Applying the transformation (1.12a)
equation (A.16) becomes the system

vk,l(δ2 + wk,l) = ξ2k, (A.17a)

vk+1,l(δ2 + wk,l) = ξ2k+1. (A.17b)

In this case the system (A.17) do not consist of purely difference equations. Indeed from (A.17a)
we can derive immediately the value of the field wk,l

wk,l = −δ2 +
ξ2k
vk,l

. (A.18)

Inserting (A.18) into (A.17b) we obtain that vk,l solves the equation

vk+1,l −
ξ2k+1

ξ2k
vk,l = 0. (A.19)

Defining

ξ2k+1 =
ak+1

ak
ξ2k, (A.20)

we have that (A.19) becomes a total difference. So we have that the system (A.17) is solved by

vk,l = akαl, (A.21a)

wk,l = −δ2 +
ξ2k
akαl

. (A.21b)

Case m = 2l+ 1. If m = 2l + 1 we obtain from the first integral (A.15)

F (+)
n (un+1,2l+1 + un,2l+1) + F (−)

n (un+1,2l+1 + un,2l+1) = −ξn. (A.22)

Applying the transformation (1.12b) equation (A.22) becomes the system

yk,l + zk,l = −ξ2k, (A.23a)

zk,l + yk+1,l = −ak+1

ak
ξ2k, (A.23b)

where ξ2k+1 is given by (A.20). Equation (A.23a) is not a difference equation and can be solved
to give

zk,l = −ξ2k − yk,l,

which inserted in (A.23b) gives

yk+1,l − yk,l =

(
1− ak+1

ak

)
ξ2k. (A.24)

Defining

ξ2k = −ak
bk+1 − bk
ak+1 − ak

equation (A.24) becomes a total difference. Therefore we can write the solution of the sys-
tem (A.23) as

yk,l = bk + βl, (A.25a)

zk,l = ak
bk+1 − bk
ak+1 − ak

− bk − βl. (A.25b)

In this case we have the right number of arbitrary functions in both directions. So the
solution of the 2D2 equation with δ1 = 0 is just given by combining (A.21) and (A.25), gi-
ving (2.39). It can be directly checked that (2.39) is the general solution by inserting it into
the 2D2 equation (1.3b) with δ1 = 0.
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A.2 3D2 equation (1.3c)

From [26] we know that the 3D2 equation (1.3c) is Darboux integrable, and that the form of
the first integral depends on the value of the parameter δ. We will begin with the general case
when δ1 6= 0 and δ 6= 0 and then consider the particular cases.

Case δ1 6= 0 and δ 6= 0. In this case we know that the W1 first integrals of the 3D2

equation (1.3c) is given by [26]

W1 = F (+)
n F (+)

m α
(un−1,m + δ2)[1 + (un+1,m − 1)δ1]

(un+1,m + δ2)[1 + (un−1,m − 1)δ1]

+ F (+)
n F (−)

m α
un,m + (1− δ1 − δ1δ2)un−1,m
un,m + (1− δ1 − δ1δ2)un+1,m

+ F (−)
n F (+)

m β(un+1,m − un−1,m)(δ2 + un,m)− F (−)
n F (−)

m β(un+1,m − un−1,m). (A.26)

As stated in the introduction, from the relation W1 = ξn this first integral defines a three-point,
second-order ordinary difference equation in the n direction which depends parametrically on m.
From this parametric dependence we find two different three-point non-autonomous ordinary
difference equations corresponding to m even and m odd. We treat them separately.

Casem = 2l. If m = 2l we have the following non-autonomous nonlinear ordinary difference
equation

F (+)
n

(un−1,2l + δ2)[1 + (un+1,2l − 1)δ1]

(un+1,2l + δ2)[1 + (un−1,2l − 1)δ1]
+ F (−)

n (un+1,2l − un−1,2l)(δ2 + un,2l) = ξn, (A.27)

where we have chosen without loss of generality α = β = 1. We can apply the usual transfor-
mation (1.12a) in order to separate the even and odd part in (A.27)

1 + (wk,l − 1)δ1
wk,l + δ2

= ξ2k
1 + (wk−1,l − 1)δ1

wk−1,l + δ2
, (A.28a)

vk+1,l − vk,l =
ξ2k+1

(δ2 + wk,l)
. (A.28b)

This system of equations is still nonlinear, but the equation (A.28a) is uncoupled from (A.28b).
Moreover equation (A.28a) is a discrete Riccati equation which can be linearized through the
Möbius transformation

wk,l = −δ2 +
1

Wk,l
, (A.29)

into

Wk,l − ξ2kWk−1,l =
δ1
δ

(ξ2k − 1), (A.30a)

vk+1,l − vk,l = ξ2k+1Wk,l, (A.30b)

where δ is given by equation (2.1). Putting ξ2k = ak/ak−1 we have the following solution
for (A.30a)

Wk,l = akαl −
δ1
δ
. (A.31)

Plugging (A.31) into equation (A.30b) and defining

ξ2k+1 = bk+1 − bk, ak =
ck+1 − ck
bk+1 − bk

, (A.32)



Darboux Integrability of Trapezoidal H4 and H6 Families of Lattice Equations II 35

we have that equation (A.30b) becomes a total difference. Then the solution of (A.30b) can be
written as

vk,l = −δ1
δ
bk + ckαl + βl.

So using (A.29) we obtain the following solution for the original system (A.28):

wk,l =
δ1 − 1 + δ

δ1
+

δ(bk+1 − bk)
δαm(ck+1 − ck)− (bk+1 − bk)δ1

, (A.33a)

vk,l = −δ1
δ
bk + ckαl + βl. (A.33b)

Case m = 2l+ 1. If m = 2l+ 1 we have the following non-autonomous ordinary difference
equation

F (+)
n

un,2l+1 + δun−1,2l+1

un,2l+1 + δun+1,2l+1
− F (−)

n (un+1,2l+1 − un−1,2l+1) = ξn.

where without loss of generality α = β = 1 and δ is given by (2.1). Solving with respect
to un+1,2l+1 it is immediate to see that the resulting equation is linear. Then separating the
even and the odd part using the transformation (1.12b) we obtain the following system of linear,
first-order ordinary difference equations

zk,l −
1

ξ2k
zk−1,l =

1

δ

(
1− 1

ξ2k

)
yk,l, (A.34a)

yk+1 − yk = −ξ2k+1. (A.34b)

As ξ2k+1 = bk+1 − bk we obtain the solution of equation (A.34b)

yk,l = −bk + γl. (A.35)

Substituting yk,l given by (A.35) into equation (A.34a) being ξ2k = ak/ak−1, we obtain

akzk,l − ak−1zk−1,l =
ak − ak−1

δ
(bk − γl).

Then, in the usual way, we can represent the solution as

zk,l =
bk − γl
δ

+
bk+1 − bk
ck+1 − ck

(
ζl −

ck
δ

)
, (A.36)

where we have used the explicit definition of ak given in (A.32). So we have the explicit
expression for both fields yk,l and zk,l.

Equations (A.33), (A.35), (A.36) provide the value of the four fields, but we have too many
arbitrary functions in the l direction, namely αl, βl, γl and ζl. Inserting (A.33), (A.35), (A.36)
into (1.3c) and separating the terms even and odd in n and m we obtain we obtain two equations

ζlδ
2αl + (βl − δ1λ)δ − δ1γl = 0, (A.37a)

ζlδ
2αl+1 + (βl+1 − δ1λ)δ − δ1γl = 0, (A.37b)

which allow us to reduce by two the number of independent functions in the l direction. Indeed
solving (A.37) with respect to γl and ζl we find

γl =
δ

δ1

(
βl − λδ1 − αl

βl+1 − βl
αl+1 − αl

)
, (A.38a)
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ζl = −1

δ

βl+1 − βl
αl+1 − αl

. (A.38b)

Inserting (A.38) into (A.33), (A.35), (A.36) we obtain the general solution (2.40) of the 3D2

equation (1.3c) provided that δ1 6= 0 and δ 6= 0. It is easy to see that the solution (2.40) is
ill-defined if δ1 = 0 and if δ = 0. We will treat these two particular cases separately.

Case δ = 0. If δ = 0 we have that δ1 is given by equation (2.21). In this case the first
integral (A.26) is singular since the coefficient of α goes to a constant. Following [26] we
have that the 3D2 equation with δ1 given by (2.21) possesses the following first integral in the
direction n

W
((1+δ2)−1,δ2)
1 = F (+)

n F (+)
m α

un+1,m − un−1,m
(δ2 + un+1,m)(δ2 + un−1,m)

+ F (+)
n F (−)

m α
un+1,m − un−1,m

(δ2 + 1)un,m

− F (−)
n F (+)

m β(un−1,m − un+1,m)(δ2 + un,m)

− F (−)
n F (−)

m β(un+1,m − un−1,m). (A.39)

This first integral is a three-point, second-order first integral. As in the general case we consider
separately the m even and odd cases.

Case m = 2l. If m = 2l then the first integral (A.39) becomes the following nonlinear
three-point, second-order difference equation

Fpn
un+1,2l − un−1,2l

(δ2 + un+1,2l)(δ2 + un−1,2l)
− F (−)

n (un−1,2l − un+1,2l)(δ2 + un,2l) = ξn,

where without loss of generality α = β = 1. If we separate the even and the odd part using the
general transformation given by (1.12a) we obtain the system

wk,l − wk−1,l
(wk,l + δ2)(wk−1,l + δ2)

= ξ2k, (A.40a)

(vk+1,l − vk,l)(wk,l + δ2) = ξ2k+1. (A.40b)

This is a system of first-order nonlinear difference equations. However (A.40a) is uncoupled
from (A.28b), and it is a discrete Riccati equation which can be linearized through the Möbius
transformation (A.29). This linearize the system (A.40) to

Wk,l −Wk−1,l = ξ2k, (A.41a)

vk+1,l − vk,l = ξ2k+1Wk,l. (A.41b)

Defining ξ2k = ak − ak−1 equation (A.41a) is solved by

Wk,l = ak + βl. (A.42)

Introducing (A.42) into equation (A.41b) we have

vk+1,l − vk,l = ξ2k+1(ak + αl). (A.43)

Equation (A.43) becomes a total difference if

ξ2k+1 = bk+1 − bk, ak =
ck+1 − ck
bk+1 − bk

. (A.44)

This yields the following solution of the system (A.40)

vk,l = ck + bkαl + βl, (A.45a)
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wk,l = −δ2 +
bk+1 − bk

ck+1 − ck + αl(bk+1 − bk)
. (A.45b)

Case m = 2l+ 1. If m = 2l + 1 the first integral (A.39) becomes the following nonlinear,
three-point, second-order difference equation

F (+)
n

un+1,2l+1 − un−1,2l+1

(δ2 + 1)un,2l+1
− F (−)

n (un+1,2l+1 − un−1,2l+1) = ξn, (A.46)

where without loss of generality α = β = 1. As usual we can separate the even and odd part in n
using the transformation (1.12b). This transformation brings equation (A.46) into the following
linear system

zk,l − zk−1,l = (δ2 + 1)yk,l

(
ck − ck−1
bk − bk−1

− ck+1 − ck
bk+1 − bk

)
, (A.47a)

yk+1,l − yk,l = −bk+1 + bk, (A.47b)

where we used (A.44) and the definition ξ2k+1 = ak+1 − ak. Equation (A.47b) is readily solved
and gives

yk,l = γl − bk. (A.48)

Inserting (A.48) into (A.47a) we obtain

zk,l − zk−1,l = (δ2 + 1)(γl − bk)
(
ck − ck−1
bk − bk−1

− ck+1 − ck
bk+1 − bk

)
.

We can then write for zk,l the following expression

zk,l = −(δ2 + 1)

(
γl
ck+1 − ck
bk+1 − bk

+ dk

)
+ ζl,

where dk solves the equation

dk − dk−1 = −bk
(
ck − ck−1
bk − bk−1

− ck+1 − ck
bk+1 − bk

)
. (A.49)

Equation (A.49) is a total difference with dk given by

dk = bk+1
ck+1 − ck
bk+1 − bk

− ck+1.

Therefore we have the following solution to the system (A.47)

yk,l = γl − bk, (A.50a)

zk,l = −(δ2 + 1)

[
(γl + bk+1)

ck+1 − ck
bk+1 − bk

− ck+1

]
+ ζl. (A.50b)

Equations (A.45), (A.50) provide the value of the four fields, but we have too many arbitrary
functions in the l direction, namely αl, βl, γl and ζl. Inserting (A.45), (A.50) into (1.3c) with δ1
given by (2.21) and separating the terms even and odd in n and m we obtain we obtain two
equations

γl(δ2 + 1)αl − λ+ ζl + βl(δ2 + 1) = 0,

γl(δ2 + 1)αl+1 − λ+ ζl + βl+1(δ2 + 1) = 0.
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Solving this compatibility condition with respect to γl and ζl we obtain

γl = − βl+1 − βl
αl+1 − αl

, (A.51a)

ζl = (δ2 + 1)
βl+1αl − αl+1βl

αl+1 − αl
+ λ. (A.51b)

Inserting then (A.51) into (A.45), (A.50) we obtain general solution (2.41) of the 3D2 equa-
tion (1.3c) provided that δ = 0.

Case δ1 = 0. The first integral (A.26) is non-singular when δ1 = 0. Therefore the proce-
dure of solution becomes different only when we arrive to the systems of ordinary difference
equations (A.28) and (A.34). So we present the solution of the systems in this case.

Case m = 2l. If δ1 = 0 the system (A.28) becomes

wk,l + δ2 =
wk−1,l + δ2

ξ2k
, (A.52a)

vk+1,l − vk,l =
ξ2k+1

(δ2 + wk,l)
. (A.52b)

The system (A.52) is nonlinear, but equation (A.52a) is uncoupled from equation (A.52a).
Defining ξ2k = ak−1/ak equation (A.52a) is solved by

wk,l = −δ2 + akαl. (A.53)

Substituting wk,l given by (A.53) into equation (A.52b) we obtain

vk+1,l − vk,l =
ξ2k+1

akαl
. (A.54)

Defining

ξ2k+1 = −ak(bk+1 − bk), (A.55)

we have that equation (A.54) is a total difference. Therefore we have the following solution of
the system (A.52)

vk,l = βl +
bk
αl
, (A.56a)

wk,l = −δ2 + akαl. (A.56b)

Case m = 2l+ 1. If δ1 = 0 the system (2.13) becomes

zk,l −
ak
ak−1

zk−1,l =

(
ak
ak−1

− 1

)
yk,l, (A.57a)

yk+1,l − yk,l = −ak(bk+1 − bk), (A.57b)

where we used (A.55) and ξ2k = ak−1/ak. The system is linear and equation (A.57b) is uncoupled
from (A.57a). If we put

ak = −ck+1 − ck
bk+1 − bk

,

then equation (A.57a) becomes a total difference whose solution is

yk,l = ck + γl. (A.58)



Darboux Integrability of Trapezoidal H4 and H6 Families of Lattice Equations II 39

Substituting yk,l given by (A.58) into equation (A.57a) we obtain

bk+1 − bk
ck+1 − ck

zk,l −
bk − bk−1
ck − ck−1

zk−1,l =

(
bk − bk−1
ck − ck−1

− bk+1 − bk
ck+1 − ck

)
(ck + γl).

We can therefore represent the solution as

zk,l =
ck+1 − ck
bk+1 − bk

(dk + ζl)− γl,

where dk solves the equation

dk − dk−1 = bk+1 −
bk+1 − bk
ck+1 − ck

ck+1 − bk−1 +
bk − bk−1
ck − ck−1

ck−1. (A.59)

Equation (A.59) is a total difference and dk is given by

dk = bk −
bk+1 − bk
ck+1 − ck

ck.

Therefore we have that the solution of the system (A.57) is given by

yk,l = ck + γl, (A.60a)

zk,l =
ck+1 − ck
bk+1 − bk

ζl − γl +
bkck+1 − ckbk+1

bk+1 − bk
. (A.60b)

From equations (A.56), (A.60) we have the value of the four fields, but we have too many
arbitrary functions in the l direction, namely αl, βl, γl and ζl. Inserting (A.56), (A.60) into
(1.3c) with δ1 = 0 and separating the terms even and odd in n and m we obtain we obtain two
equations

βlαl − ζl = 0, βl+1αl+1 − ζl = 0.

We can solve this compatibility conditions with respect to βl and ζl we obtain

βl =
ζ0
αl
, ζl = ζ0, (A.61)

where ζ0 is a constant.

Inserting then (A.61) into (A.56), (A.60) we obtain general solution (2.42) of the 3D2 equa-
tion (1.3c) provided that δ1 = 0.

This discussion exhausts the possible cases. So for any value of the parameters we have the
general solution of the 3D2 equation (1.3c).

A.3 1D4 equation (1.3e)

To find the general solution we start from the 1D4 equation (1.3e) itself. Applying the general
transformation (1.12) we transform the 1D4 into the following system

vk,lzk,l + wk,lyk,l + δ1wk,lzk,l + δ2yk,lzk,l + δ3 = 0, (A.62a)

yk,lwk,l+1 + zk,lvk,l+1 + δ1zk,lwk,l+1 + δ2yk,lzk,l + δ3 = 0, (A.62b)

wk,lyk+1,l + vk+1,lzk,l + δ1wk,lzk,l + δ2zk,lyk+1,l + δ3 = 0, (A.62c)

zk,lvk+1,l+1 + yk+1,lwk,l+1 + δ1zk,lwk,l+1 + δ2zk,lyk+1,l + δ3 = 0. (A.62d)
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From the system (A.62) we have four different way for calculating zk,l. This means that we
have some compatibility conditions. Indeed from (A.62a) and (A.62c) we obtain the following
equation for vk+1,l

vk+1,l =
δ3 + wk,lyk+1,l

δ3 + wk,lyk,l
vk,l +

(yk+1,l − yk,l)
(
δ1w

2
k,l − δ2δ3

)
δ3 + wk,lyk,l

, (A.63)

while from (A.62b) and (A.62d) we obtain the following equation for vk+1,l+1

vk+1,l+1 =
δ3 + yk+1,lwk,l+1

δ3 + yk,lwk,l+1
vk,l+1 +

(yk+1,l − yk,l)
(
δ1w

2
k,l+1 − δ2δ3

)
yk,lwk,l+1 + δ3

. (A.64)

Equations (A.63) and (A.64) give rise to a compatibility condition between vk+1,l and its shift
in the l direction vk+1,l+1 which is given by[

(yk+1,l+1yk,l − yk+1,lyk,l+1)wk,l+1

+ δ3(yk+1,l+1 + yk,l − yk,l+1 − yk+1,l)

] (
vk,l+1wk,l+1 − δ2δ3 + δ1w

2
k,l+1

)
= 0.

Discarding the trivial solution

vk,l = −δ1wk,l +
δ2δ3
wk,l

we obtain the following value for the field wk,l

wk,l = δ3
yk+1,l−1 − yk+1,l − yk,l−1 + yk,l
yk+1,lyk,l−1 − yk+1,l−1yk,l

, (A.65)

which makes (A.63) and (A.64) compatible. This gives us the first piece of the solution in (2.64b).
Then we have to solve the following equation for vk,l

vk+1,l =
yk+1,l − yk+1,l−1
yk,l − yk,l−1

vk,l +
δ1δ3(yk+1,l−1 − yk,l−1 − yk+1,l + yk,l)

2

(yk+1,l−1yk,l − yk+1,lyk,l−1)(yk,l − yk,l−1)

−
δ2(yk+1,l−1yk,l − yk+1,lyk,l−1)

yk,l − yk,l−1
.

Making the transformation

vk,l = (yk,l − yk,l−1)Vk,l +
δ1δ3
yk,l−1

− δ2yk,l−1 (A.66)

we obtain that Vk,l satisfies the difference equation

Vk+1,l = Vk,l +
δ1δ3(yk,l−1 − yk+1,l−1)

2

yk,l−1yk+1,l−1(yk+1,l−1yk,l − yk+1,lyk,l−1)
. (A.67)

To go further we need to specify the form of the field yk,l. This can be obtained from the
Darboux integrability of the 1D4 equation (1.3e). From [26] we know that the 1D4 equation (1.3e)
we have the following four-point, third-order W1 integral

W1 = F (+)
n F (+)

m α
u2n+1,mδ1 + un+1,mun+2,m + un−1,m(un,m − un+2,m)− δ2δ3

un+1,m(δ1 + un,m)− δ2δ3

+ F (+)
n F (−)

m α
(un,m − un+2,m + δ1un+1,m)un−1,m + un+1,mun+2,m

(un,m + δ1un−1,m)un+1,m
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+ F (−)
n F (+)

m β
(un+1,m − un−1,m)(un+2,m − un,m)

u2n,mδ1 + un+1,mun,m − δ2δ3

+ F (−)
n F (−)

m β
(un+1,m − un−1,m)(un+2,m − un,m)

un,m(un+2,mδ1 + un+1,m)
,

This first integral defines as always the relation W1 = ξn which is a third-order, four-point
ordinary difference equation in the n direction depending parametrically on m. In particular
when m = 2l + 1 we have the equation

F (+)
n

(un,2l+1 − un+2,2l+1 + δ1un+1,2l+1)un−1,2l+1 + un+1,2l+1un+2,2l+1

(un,2l+1 + δ1un−1,2l+1)un+1,2l+1

+ F (−)
n

(un+1,2l+1 − un−1,2l+1)(un+2,2l+1 − un,2l+1)

un,2l+1(un+2,2l+1δ1 + un+1,2l+1)
= ξn. (A.68)

where we have chosen without loss of generality α = β = 1. Using the transformation (1.12b)
then (A.68) is converted into the system

(yk,l − yk+1,l + δ1zk,l)zk−1,l + yk+1,lzk,l = ξ2k(yk,l + δ1zk−1,l)zk,l, (A.69a)

(yk,l − yk+1,l)(zk,l − zk+1,l) = ξ2k+1zk,l(zk+1,lδ1 + yk+1,l). (A.69b)

If we solve (A.69b) with respect to zk+1,l and then substitute into (A.69a) we obtain a linear,
second-order ordinary difference equation for yk,l

ξ2k−1yk+1,l + (1− ξ2k − ξ2kξ2k−1)yk,l − (1− ξ2k)yk−1,l = 0. (A.70)

We can find the solution to this equation in a similar manner than in the case of the D3 equation.
First of all let us consider Yk,l = akyk,l + bkyk−1,l such that Yk+1,l−Yk,l is equal to the left-hand
side of (A.70). To this end we define

ξ2k = −bk+1 − bk − ak
ak+1

, ξ2k−1 =
ak+1 − ak + bk+1 − bk

bk
.

Therefore yk,l must solve the following equation

akyk,l + bkyk−1,l = αl. (A.71)

Equation (A.71) is reduced to a total difference if we impose

ak =
1

ck

1

dk − dk−1
, bk = − 1

ck−1

1

dk − dk−1
.

Then the solution of (A.71) is then given by

yk,l = ck(αldk + βl). (A.72)

This is just equation (2.62a).

Inserting (A.72) into (A.67) we obtain

Vk+1,l = Vk,l +
δ1δ3αl−1

βl−1αl − βlαl−1

[
1

(αl−1dk+1 + βl−1)c
2
k+1

− 1

(αl−1dk + βl−1)c
2
k

]

− δ1δ3
βl−1αl − βlαl−1

(ck − ck+1)
2

c2kc
2
k+1(dk+1 − dk)

.



42 G. Gubbiotti, C. Scimiterna and R.I. Yamilov

This means that the solution of Vk,l can be represented as

Vk,l = γl +
δ1δ3

βl−1αl − βlαl−1

[
αl−1

c2k(αl−1dk + βl−1)
+ ek

]
, (A.73)

where ek is defined by the discrete integration

ek+1 − ek = − (ck − ck+1)
2

c2kc
2
k+1(dk+1 − dk)

,

which is just equation (2.63a). Inserting the value of Vk,l from (A.73) and the value of yk,l (A.72)
into equation (A.66) we obtain equation (2.62b). From the obtained value of vk,l we can com-
pute wk,l using (A.65). So finally we can compute zk,l from the original system (A.62), and we
obtain a single compatibility condition given by

(βlαl+1 − βl+1αl) γl+1 − (βl−1αl − βlαl−1) γl = (βl−1αl − βlαl−1) δ2,

which is just equation (2.63b). Since now the system (A.62) is compatible we can use any of
its equations to compute zk,l. E.g., using equation (A.62a) and the value of wk,l from equa-
tion (A.65) we obtain equation (2.64b). This concludes the procedure of solution of the 1D4

equation (1.3e).

A.4 2D4 equation (1.3f)

To find the general solution of the 2D4 equation (1.3f) we start from the equation itself. Applying
the general transformation (1.12) the 2D4 equation we obtain the following system

vk,lwk,l + δ2wk,lyk,l + δ1wk,lzk,l + yk,lzk,l + δ3 = 0, (A.74a)

vk,l+1wk,l+1 + δ2yk,lwk,l+1 + δ1zk,lwk,l+1 + yk,lzk,l + δ3 = 0, (A.74b)

wk,lvk+1,l + δ2wk,lyk+1,l + δ1wk,lzk,l + zk,lyk+1,l + δ3 = 0, (A.74c)

wk,l+1vk+1,l+1 + δ2yk+1,lwk,l+1 + δ1zk,lwk,l+1 + zk,lyk+1,l + δ3 = 0. (A.74d)

From the system (A.74) we have four different ways to compute zk,l. This means that we
have some compatibility conditions. Indeed from (A.74a) and (A.74c) we obtain the following
equation for vk+1,l

vk+1,l =
δ1wk,l + yk+1,l

δ1wk,l + yk,l
vk,l −

(yk+1,l − yk,l)(δ2w2
k,lδ1 − δ3)

(δ1wk,l + yk,l)wk,l
, (A.75)

while from (A.74b) and (A.74d) we obtain the following equation for vk+1,l+1

vk+1,l+1 =
δ1wk,l+1 + yk+1,l

δ1wk,l+1 + yk,l
vk,l+1 −

(yk+1,l − yk,l)(δ2w2
k,l+1δ1 − δ3)

(δ1wk,l+1 + yk,l)wk,l+1
. (A.76)

Equations (A.75) and (A.76) give rise to a compatibility condition between vk+1,l and its shift
in the l direction vk+1,l+1 which is given by[

yk+1,l+1yk,l + δ1(yk,lwk,l+1 + yk+1,l+1wk,l+1)

− yk+1,lyk,l+1 − δ1(yk+1,lwk,l+1 − yk,l+1wk,l+1)

] (
vk,l+1wk,l+1 + δ3 − δ1δ2w2

k,l+1

)
= 0.

Discarding the trivial solution

vk,l = δ1δ2wk,l −
δ3
wk,l
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we obtain the following value for the field wk,l

wk,l =
1

δ1

yk+1,l−1yk,l − yk+1,lyk,l−1
yk,l−1 + yk+1,l − yk,l − yk+1,l−1

, (A.77)

which makes (A.75) and (A.76) compatible. This gives us the first part of our solution, as
displayed in equation (2.68b). Inserting (A.77) into (A.75) we are left to solve the following
equation for vk,l

vk+1,l =
yk+1,l − yk+1,l−1
yk,l − yk,l−1

vk,l −
δ1δ3(yk,l−1 − yk+1,l−1)

2(yk,l − yk,l−1)
(yk+1,lyk,l−1 − yk+1,l−1yk,l)y

2
k,l−1

+
y2k,l−1yk+1,lδ2 − δ1δ3yk+1,l + δ1δ3yk+1,l−1 − δ2yk+1,l−1y

2
k,l−1

(yk,l − yk,l−1)yk,l−1

−
δ2yk+1,l−1y

2
k,l−1 + δ1δ3yk+1,l−1 − 2δ3δ1yk,l−1

y2k,l−1
.

Making the transformation

vk,l = (yk,l − yk,l−1)Vk,l +
δ1δ3
yk,l
− δ2yk,l (A.78)

we obtain that Vk,l satisfies the difference equation

Vk+1,l = Vk,l −
δ1δ3(yk,l − yk+1,l)

2

yk,lyk+1,l(yk+1,l−1yk,l − yk+1,lyk,l−1)
. (A.79)

To go further we need to specify the form of the field yk,l. This can be obtained from the
Darboux integrability of the 2D4 equation (1.3f). From [26] we know that in the case of the 2D4

equation (1.3f) we have the following four-point, third-order W1 first integral

W1 = F (+)
n F (+)

m α

[
(un,m − un+2,m − δ1δ2un−1,m)u2n+1,m

+ un+1,mun+2,mun−1,m + δ3un−1,m

]
(δ2u2n+1,mδ1 − δ3 − un,mun+1,m)un−1,m

− F (+)
n F (−)

m α
un+2,mun−1,m + (−un+2,m + un,m)un+1,m + δ3

un−1,mun,m + δ3

− F (−)
n F (+)

m β
(un+1,m − un−1,m)(un+2,m − un,m)un,m
un+2,m(δ2δ1un,m2 − un,mun+1,m − δ3)

+ F (−)
n F (−)

m β
(un+1,m − un−1,m)(un+2,m − un,m)

un+1,mun+2,m + δ3
.

This first integral implies the relation W1 = ξn which is a third-order, four-point ordinary
difference equation in the n direction depending parametrically on m. In particular if we choose
the case when m = 2l + 1 we have the equation

−F (+)
n

un+2,2l+1un−1,2l+1 − (un+2,2l+1 − un,2l+1)un+1,2l+1 + δ3
un−1,2l+1un,2l+1 + δ3

+ F (−)
n

(un+1,2l+1 − un−1,2l+1)(un+2,2l+1 − un,2l+1)

un+1,2l+1un+2,2l+1 + δ3
= ξn. (A.80)

where we have chosen without loss of generality α = β = 1. Using the transformation (1.12b)
then equation (A.80) is converted into the system

(yk+1,l − yk,l)zk,l − yk+1,lzk+1,l − δ3 = ξ2k(zk+1,lyk,l + δ3), (A.81a)
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(yk+1,l − yk,l)(zk+1,l − zk,l) = ξ2k+1(yk+1,lzk+1,l + δ3). (A.81b)

If we solve (A.81b) with respect to zk+1,l and substitute into (A.81a) we obtain a linear, second-
order ordinary difference equation for yk,l

ξ2k−1yk+1,l − (1 + ξ2k − ξ2kξ2k−1)yk,l + (1 + ξ2k)yk−1,l = 0. (A.82)

We can find the solution of equation (A.82) exploiting the arbitrariness of the functions ξ2k and
ξ2k+1 as in the case of the 1D4 equation (1.3e). Let us introduce the field Yk,l = akyk,l+ bkyk−1,l
and assume that Yk+1,l − Yk,l equals the left-hand side of (A.82). Then we must have

ξ2k =
bk+1 − bk +−ak

ak+1
, ξ2k−1 = −bk+1 − bk + ak+1 − ak

bk
.

This implies that yk,l will solve the equation

akyk,l + bkyk−1,l = αl. (A.83)

If we define

ak =
1

ck

1

dk − dk−1
, bk = − 1

ck−1

1

dk − dk−1
,

equation (A.83) is solved by

yk,l = ck(αldk + βl). (A.84)

This gives the second part of our solution displayed in equation (2.66a).
Inserting the value of yk,l from (A.84) into equation (A.79) we obtain

Vk+1,l = Vk,l +
δ3δ1(ck+1 − ck)2

(dk+1 − dk)(βlαl−1 − βl−1αl)c2kc2k+1

− αlδ1δ3
βlαl−1 − βl−1αl

[
1

(αldk+1 + βl)c
2
k+1

− 1

(αldk + βl)c
2
k

]
. (A.85)

Therefore we can represent the solution to this equation as

Vk,l = γl −
αlδ1δ3

(αldk + βl)c
2
k(βlαl−1 − βl−1αl)

+
δ3δ1ek

βlαl−1 − βl−1αl
, (A.86)

where ek is given by the discrete integration

ek+1 − ek =
(ck+1 − ck)2

(dk+1 − dk)c2kc2k+1

,

which is just equation (2.67a). Inserting the value of Vk,l from equation (A.86) and the value
of yk,l from equation (A.84) into equation (A.78) we obtain equation (2.66b) which is the third
part of our solution. Using this value alongside with the value of wk,l from equation (A.65) we
can compute zk,l from the original system (A.74). We obtain a single compatibility condition
given by

(βlαl+1 − βl+1αl)γl+1 − (βl−1αl − βlαl−1)γl = (βlαl+1 − βl+1αl)δ2,

which is just equation (2.67b). This concludes the procedure of solution of the 2D4 equa-
tion (1.3f).
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A.5 tH
ε
3 equation (1.2c)

To solve the tH
ε
3 equation (1.2c) we start from the equation itself. We apply the transforma-

tion (2.69) to write down the tH
ε
3 equation (1.2c) as the following system of two coupled equations

α2(pn,lqn+1,l + pn+1,lqn,l)− pn,lqn,l − pn+1,lqn+1,l

− α3

(
α2
2 − 1

)(
δ2 + ε2

qn,lqn+1,l

α2
3α2

)
= 0, (A.87a)

α2(qn,lpn+1,l+1 + qn+1,lpn,l+1)− qn,lpn,l+1 − qn+1,lpn+1,l+1

− α3

(
α2
2 − 1

)(
δ2 + ε2

qn,lqn+1,l

α2
3α2

)
= 0. (A.87b)

As in the case of the tH
ε
2 equation (1.2b) we have that equation (A.87a) depends on pn,l and pn+1,l

and that equation (A.87b) depends on pn,l+1 and pn+1,l+1. So we can apply the translation
operator Tl to (A.87a) to obtain two equations in terms of pn,l+1 and pn+1,l+1

α2(pn,l+1qn+1,l+1 + pn+1,l+1qn,l+1)− pn,l+1qn,l+1 − pn+1,l+1qn+1,l+1

− α3

(
α2
2 − 1

)(
δ2 + ε2

qn,l+1qn+1,l+1

α2
3α2

)
= 0, (A.88a)

α2(qn,lpn+1,l+1 + qn+1,lpn,l+1)− qn,lpn,l+1 − qn+1,lpn+1,l+1

− α3

(
α2
2 − 1

)(
δ2 + ε2

qn,lqn+1,l

α2
3α2

)
= 0. (A.88b)

The system (A.88) is equivalent to the original system (A.87). Then since we can assume
α2, α3 6= 05 we can solve (A.88) with respect to pn,l+1 and pn+1,l+1:

pn,l+1 =

[
α2(qn+1,l+1 − qn+1,l)

(
ε2qn,lqn,l+1 + δ2α3

2
)

+ δ2α2
2α

2
3(qn,l − qn,l+1) + ε2qn+1,l+1qn+1,l(qn,l − qn,l+1)

]
(qn+1,l+1qn,l − qn+1,lqn,l+1)α3α2

, (A.89a)

pn+1,l+1 =

[
α2

(
ε2qn+1,l+1qn+1,l + δ2α3

2
)
(qn,l − qn,l+1)

+ δ2α2
2α

2
3(qn+1,l+1 − qn+1,l) + ε2qn,lqn,l+1(qn+1,l+1 − qn+1,l)

]
(qn+1,l+1qn,l − qn+1,lqn,l+1)α3α2

. (A.89b)

We see that the right-hand sides of (A.89) are functions only of qn,l, qn+1,l, qn,l+1 and qn+1,l+1

and are well defined as long as qn,l is not a solution of equation (2.108), which is therefore
a singular case. Therefore at this point the procedure of solution bifurcates into two cases. We
treat them separately.

Singular case: qn,l solve (2.108). If qn,l solves equation (2.108) we first solve this equation
with respect to qn,l and then use the system (A.87) to specify pn,l. Indeed equation (2.108) is
a trivial Darboux integrable equation, since it possesses the following two-point, first-order first
integrals

W1 =
qn+1,l

qn,l
, (A.90a)

W2 =
qn,l+1

qn,l
. (A.90b)

As remarked in the introduction the existence of a two-point, first-order first integral means
that the equation is itself a first integral. Therefore the equation (2.108) can be alternatively

5If α2 = 0 or α3 = 0 in (A.87) we have that the system becomes trivially equivalent to qn,l = 0 and pn,l is left
unspecified. Therefore we can discard this trivial case.
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written as (Tl − Id)W1 or (Tn − Id)W2 with W1 and W2 given by (A.90). From (A.90a) we
obtain

qn+1,l = ξnqn,l (A.91)

being ξn an arbitrary function of its argument. Equation (A.91) is casted into total difference
form by defining ξn = an+1/an, with αn a new arbitrary function of its argument. Then we
obtain that the general solution of equation (2.108) is

qn,l = anζl, (A.92)

where ζl is an arbitrary function of its argument.
Let us remark that equation (2.108) is the logarithmic discrete wave equation, since it can be

mapped into the discrete wave equation (2.70) exponentiating (2.70) and then taking qn,l → eqn,l ,
and it is a discretization of the hyperbolic partial differential equation

uuxt − uxut = 0,

which is obtained from the wave equation vxt = 0 using the transformation v = log u. This fact
is worth to note since being the transformation connecting (2.70) and (2.108) not bi-rational,
integrability properties, in this case linearization and Darboux integrability, are not a priori
preserved [19].

Substituting (A.92) into (A.88) we obtain the compatibility condition

ζl+1 − ζl = 0, (A.93)

i.e., ζl = ζ0 = const and the system (A.87) is now consistent. With this we find the first piece
of the general solution in this case given by (2.113a). Therefore we are left with one equation
for pn,l, e.g., (A.87a). Therefore inserting (A.92) with ζl = ζ0 in (A.87a) and solving with respect
to pn+1,l we obtain

pn+1,l −
α2an+1 − an
an+1 − α2an

pn,l =
(
α2
2 − 1

)δ2α2
3α2 + ε2anζ

2
0an+1

α3α2ζ0(α2an − an+1)
.

Defining

α2an+1 − an
an+1 − α2an

=
bn+1

bn
, (A.94)

we have that pn,l solves the equation

pn+1,l

bn+1
−
pn,l
bn

=
δ2α2

3α
2
2bn − bn+1

(
δ2α2

3 + ε2a2nζ
2
0

)
α2 + ε2a2nζ

2
0bn

bnanζ0α2α3bn+1
. (A.95)

Note that bn in (A.94) is given in terms of an and an+1 through discrete integration and it is
the constraint given in equation (2.114a). Equation (A.95) is solved by

pn,l = bn(βl + cn),

where cn is given by the discrete integration

cn+1 = cn +
δ2α2

3α
2
2bn − bn+1

(
δ2α2

3 + ε2a2nζ
2
0

)
α2 + ε2a2nζ

2
0bn

bnanζ0α2α3bn+1
,

i.e., as in equation (2.114b). This yields the solution of the tH
ε
3 equation (1.2c) when qn,l satisfy

equation (2.108).
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General case: qn,l do not solve (2.108). If the field qn,l do not solve (2.108) we have that
we can define pn,l+1 and pn+1,l+1 as in (A.89a) and (A.89b) respectively. Furthermore these two
equations must be compatible. The compatibility condition is obtained applying T−1l to (A.89b)
and imposing to the obtained expression to be equal to (A.89a). We then find that qn,l must
solve the following equation

δ2α2
2α

2
3

[
qn+1,l+1qn,l − qn,lqn−1,l+1 + qn,l+1(qn−1,l − qn+1,l)

]
− α2

(
ε2qn,lqn,l+1 + δ2α2

3

)
(qn+1,l+1qn−1,l − qn−1,l+1qn+1,l)

+ ε2
[
qn,lqn+1,l+1(qn−1,l − qn+1,l)− qn,l+1qn−1,lqn+1,l

]
qn−1,l+1

+ ε2qn+1,l+1qn+1,lqn,l+1qn−1,l = 0. (A.96)

As in the case of the tH
ε
2 equation (1.2b) the partial difference equation for qn,l is not defined

on the square quad graph of Fig. 1, but it is defined on the six-point lattice shown in Fig. 3.
Moreover once equation (A.96) is solved we can use indifferently (A.89a) or (A.89b) to obtain
the value of the field pn,l since these two merely defines pn,l+1 in terms of qn,l and its shifts.
Therefore if we find the general solution of (A.96) the value of pn,l will follow. E.g., if we
solve (A.96) applying T−1l to (A.89a) we will obtain (2.109b) which is then the first part of the
general solution. To find the solution of equation (A.96) we turn to the first integrals. Like in
the case of the tH

ε
2 equation (1.2b) we will find an expression for qn,l using the first integrals,

and then we will insert it into (A.96) to reduce the number of arbitrary functions to the right
one. From [26] we know that the tH

ε
3 equation (1.2c) possesses a four-point, third-order integral

in the n direction

W1 = F (+)
m

(un+1,m − un−1,m)(un+2,m − un,m)

α4
2ε

2δ2 − α3
2un+1,mun,m + α2

2

(
u2n,m + u2n+1,m − 2ε2δ2

)
− α2un,mun+1,m + ε2δ2

− F (−)
m

(un+1,m − un−1,m)(un+2,m − un,m)

α2(−un−1,m + α2un,m)(−un+2,m + un+1,mα2)
. (A.97)

We consider the equation W1 = ξn/α2
6, where W1 is given by (A.97), with m = 2l + 1

(un+1,2l+1 − un−1,2l+1)(un+2,2l+1 − un,2l+1)

(α2un,2l+1 − un−1,2l+1)(un+2,2l+1 − α2un+1,2l+1)
= ξn.

Using the substitutions (2.69) we have

(qn+1,l − qn−1,l)(qn+2,l − qn,l)
(α2qn,l − qn−1,l)(qn+2,l − α2qn+1,l)

= ξn. (A.98)

This equation contains only qn,l and its shifts. By the transformation

Qn,l =
α2qn,l − qn−1,l
qn+1,l − qn−1,l

(A.99)

equation (A.98) becomes

Qn+1,l +
1

ξnQn,l
= 1, (A.100)

which is the same discrete Riccati equation as in (2.89). This means that the solution of (A.100)
is given by (2.95) with the appropriate definitions (2.90), (2.92), (2.94). We can substitute
into (A.99) the solution (2.95)

qn+1,l − qn−1,l
α2qn,l − qn−1,l

=
(cn + ζl)(cn+1 − cn−1)
(cn+1 + ζl)(cn − cn−1)

6The extra α2 is due to the arbitrariness of ξn and is inserted in order to simplify the formulas.
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and we obtain an equation for qn,l. Introducing

Pn,l = (cn + ζl)qn,l (A.101)

we obtain that Pn,l solves the equation

Pn+1,l − α2
cn+1 − cn−1
cn − cn−1

Pn,l +
cn+1 − cn
cn − cn−1

Pn−1,l = 0. (A.102)

Using the transformation

Pn,l =
Rn,l
Rn−1,l

, (A.103)

we can cast equation (A.102) in discrete Riccati equation form

Rn+1,l +
cn+1 − cn
cn − cn−1

1

Rn,l
= α2

cn+1 − cn−1
cn − cn−1

. (A.104)

Let dn be a particular solution of equation (A.104)

dn+1 +
cn+1 − cn
cn − cn−1

1

dn
= α2

cn+1 − cn−1
cn − cn−1

. (A.105)

Assuming dn as the new arbitrary function we can express cn as the result of two discrete
integrations. Indeed introducing zn = cn − cn−1 in (A.105) we have

zn+1

zn
=

(dn+1 − α2)dn
α2dn − 1

. (A.106)

Equation (A.106) represents the first discrete integration, whereas the second one is given by
the definition

cn − cn−1 = zn. (A.107)

Now we can linearize the discrete Riccati equation (A.104) by the transformation

Rn,l = dn +
1

Sn,l
(A.108)

and we get the following linear equation for Sn,l

Sn+1,l −
d2n(cn − cn−1)
cn+1 − cn

Sn,l =
dn(cn − cn−1)
cn+1 − cn

. (A.109)

Defining

dn =
en
en−1

, (A.110a)

fn − fn−1 =
cn − cn−1
enen−1

, (A.110b)

the solution of (A.109) is

Sn,l =
(fn−1 + βl)e

2
n−1

cn − cn−1
. (A.111)
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Here we have the final form of the constraint fn, which is the same as the one given in (2.111a).
Inserting (A.111) and (A.110) into (A.108) we obtain

Rn,l =
en(fn + βl)

en−1(fn−1 + βl)
. (A.112)

Inserting the definition of Rn,l (A.103) into (A.112) we obtain

Pn,l
en(fn + βl)

=
Pn−1,l

en−1(fn−1 + βl)
,

i.e.,

Pn,l = γlen(fn + βl). (A.113)

Introducing (A.113) into (A.101) we obtain

qn,l =
γlen(fn + βl)

cn + ζl
, (A.114)

where fn is defined by (A.110b), and cn is given by (A.106) and (A.107), i.e., cn is the solution
of the equation

cn+1 − cn
cn − cn−1

=
en+1 − α2en
α2en − en−1

, (A.115)

and en is an arbitrary function, i.e., we have that cn must solve equation (2.110).

Formally equation (A.114) has the form of the solution presented in formula (2.109a), but it
depends on three arbitrary functions in the l direction, namely ζl, βl and γl. Therefore there must
be a constraint between these functions. This constraint can be obtained by plugging (A.114)
into (A.96), but here we have another bifurcation depending on the value of parameter δ. Indeed
it is easy to see that we must distinguish the cases when δ 6= 0 and when δ = 0.

Case δ 6= 0. Inserting (A.114) into (A.96) if δ 6= 0 factorizing the n dependent part away
we are left with

ζl+1 − ζl =
ε2

α2δ2α2
3

γl+1γl(βl+1 − βl).

This equation tells us that the function ζl can be expressed after a discrete integration in terms
of the two arbitrary functions βl and γl. This condition is just (2.111b). This yields the general
solution of the tH

ε
3 equation (1.2c) when δ 6= 0 and the field qn,l do not satisfy equation (2.108).

Case δ = 0. Inserting (A.114) into (A.96) if δ 6= 0 factorizing the n dependent part the
compatibility condition is just βl+1 − βl = 0, i.e., βl = β0 = const. It is easy to check that
the obtained value of qn,l through formula (A.114) is consistent with the substitution of δ = 0
in (A.87) and therefore that in the case δ = 0 the value of qn,l is given by

qn,l =
γlen(fn + β0)

cn + ζl
,

where the functions cn and fn are defined implicitly and can be found by discrete integration
from (A.110b) and (A.115) respectively. This is just equation (2.112a). Since equation (2.109b)
is not singular if δ = 0 we obtain that in this case the general solution for the field pn,l is given
by substituting δ = 0 into (2.109b), i.e., just by equation (2.112b) where qn,l is simply given
by (2.112a). This yields the general solution of the tH

ε
3 equation (1.2c) in the case when δ = 0.
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transformations for known Volterra and Toda type semidiscrete equations, J. Phys. Conf. Ser. 621 (2015),
012005, 18 pages, arXiv:1405.1835.

[19] Grammaticos B., Ramani A., Viallet C.M., Solvable chaos, Phys. Lett. A 336 (2005), 152–158, math-
ph/0409081.

[20] Gubbiotti G., Scimiterna C., Reconstructing a lattice equation: a non-autonomous approach to the Hietar-
inta equation, SIGMA 14 (2018), 004, 21 pages, arXiv:1705.00298.

[21] Gubbiotti G., Scimiterna C., Levi D., Algebraic entropy, symmetries and linearization of quad equations
consistent on the cube, J. Nonlinear Math. Phys. 23 (2016), 507–543, arXiv:1603.07930.

https://doi.org/10.1007/s00220-002-0762-8
https://arxiv.org/abs/nlin.SI/0202024
https://doi.org/10.1007/s10688-009-0002-5
https://arxiv.org/abs/0705.1663
https://doi.org/10.1007/BF02557219
https://arxiv.org/abs/solv-int/9902016
https://doi.org/10.1007/s002200050652
https://arxiv.org/abs/chao-dyn/9805006
https://doi.org/10.1155/S1073792802110075
https://arxiv.org/abs/nlin.SI/0110004
https://doi.org/10.1007/978-3-7643-8621-4
https://doi.org/10.1007/978-3-7643-8621-4
https://doi.org/10.1142/S1402925111001647
https://arxiv.org/abs/1009.4007
https://doi.org/10.1007/s10208-012-9133-9
https://arxiv.org/abs/1308.5473
https://arxiv.org/abs/1311.2406
https://doi.org/10.1063/1.4912469
https://doi.org/10.1063/1.529096
https://doi.org/10.1016/S0375-9601(97)00456-8
https://arxiv.org/abs/solv-int/9612007
https://doi.org/10.1007/BF02096835
https://doi.org/10.1007/BF02096835
https://arxiv.org/abs/hep-th/9212105
https://doi.org/10.1088/1751-8113/45/34/345205
https://arxiv.org/abs/1203.4369
https://doi.org/10.1088/1742-6596/621/1/012005
https://arxiv.org/abs/1405.1835
https://doi.org/10.1016/j.physleta.2005.01.026
https://arxiv.org/abs/math-ph/0409081
https://arxiv.org/abs/math-ph/0409081
https://doi.org/10.3842/SIGMA.2018.004
https://arxiv.org/abs/1705.00298
https://doi.org/10.1080/14029251.2016.1237200
https://arxiv.org/abs/1603.07930


Darboux Integrability of Trapezoidal H4 and H6 Families of Lattice Equations II 51

[22] Gubbiotti G., Scimiterna C., Levi D., Linearizability and a fake Lax pair for a nonlinear nonautonomous
quad-graph equation consistent around the cube, Theoret. and Math. Phys. 189 (2016), 1459–1471.

[23] Gubbiotti G., Scimiterna C., Levi D., On partial differential and difference equations with symmetries
depending on arbitrary functions, Acta Polytechnica 56 (2016), 193–201, arXiv:1512.01967.

[24] Gubbiotti G., Scimiterna C., Levi D., The non-autonomous YdKN equation and generalized symmetries of
Boll equations, J. Math. Phys. 58 (2017), 053507, 18 pages, arXiv:1510.07175.

[25] Gubbiotti G., Scimiterna C., Levi D., A two-periodic generalization of the QV equation, J. Integrable Syst.
2 (2017), xyx004, 13 pages.

[26] Gubbiotti G., Yamilov R.I., Darboux integrability of trapezoidal H4 and H4 families of lattice equations I:
First integrals, J. Phys. A: Math. Theor. 50 (2017), 345205, 26 pages, arXiv:1608.03506.

[27] Habibullin I.T., Characteristic algebras of fully discrete hyperbolic type equations, SIGMA 1 (2005), 023,
9 pages, nlin.SI/0506027.

[28] Hay M., A completeness study on discrete, 2 × 2 Lax pairs, J. Math. Phys. 50 (2009), 103516, 29 pages,
arXiv:0806.3940.

[29] Hay M., A completeness study on certain 2 × 2 Lax pairs including zero terms, SIGMA 7 (2011), 089,
12 pages, arXiv:1104.0084.

[30] Hietarinta J., A new two-dimensional lattice model that is ‘consistent around a cube’, J. Phys. A: Math.
Gen. 37 (2004), L67–L73, nlin.SI/0311034.

[31] Hietarinta J., Searching for CAC-maps, J. Nonlinear Math. Phys. 12 (2005), suppl. 2, 223–230.

[32] Hietarinta J., Definitions and predictions of integrability for difference equations, in Symmetries and Inte-
grability of Difference Equations (Beijing, 2009), London Math. Soc. Lecture Note Ser., Vol. 381, Editors
D. Levi, P. Olver, Z. Thomova, P. Winternitz, Cambridge University Press, Cambridge, 2011, 83–114.

[33] Hietarinta J., Joshi N., Nijhoff F.W., Discrete systems and integrability, Cambridge Texts in Applied Math-
ematics, Cambridge University Press, Cambridge, 2016.

[34] Hietarinta J., Viallet C.M., Searching for integrable lattice maps using factorization, J. Phys. A: Math.
Theor. 40 (2007), 12629–12643, arXiv:0705.1903.

[35] Hietarinta J., Viallet C.M., Weak Lax pairs for lattice equations, Nonlinearity 25 (2012), 1955–1966,
arXiv:1105.3329.
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Glasg. Math. J. 43A (2001), 109–123, nlin.SI/0001054.

[39] Papageorgiou V.G., Nijhoff F.W., Capel H.W., Integrable mappings and nonlinear integrable lattice equa-
tions, Phys. Lett. A 147 (1990), 106–114.

[40] Quispel G.R.W., Capel H.W., Papageorgiou V.G., Nijhoff F.W., Integrable mappings derived from soliton
equations, Phys. A 173 (1991), 243–266.

[41] Roberts J.A.G., Tran D.T., Algebraic entropy of (integrable) lattice equations and their reductions,
arXiv:1703.01069.

[42] Viallet C.M., Algebraic entropy for lattice equations, math-ph/0609043.

[43] Viallet C.M., Integrable lattice maps: QV, a rational version of Q4, Glasg. Math. J. 51 (2009), 157–163,
arXiv:0802.0294.

[44] Xenitidis P.D., Papageorgiou V.G., Symmetries and integrability of discrete equations defined on a black-
white lattice, J. Phys. A: Math. Theor. 42 (2009), 454025, 13 pages, arXiv:0903.3152.

[45] Yamilov R., Symmetries as integrability criteria for differential difference equations, J. Phys. A: Math. Gen.
39 (2006), R541–R623.

[46] Zhiber A.V., Sokolov V.V., Exactly integrable hyperbolic equations of Liouville type, Russian Math. Surveys
56 (2001), no. 1, 61–101.

https://doi.org/10.1134/S0040577916100068
https://doi.org/10.14311/AP.2016.56.0193
https://arxiv.org/abs/1512.01967
https://doi.org/10.1063/1.4982747
https://arxiv.org/abs/1510.07175
https://doi.org/10.1093/integr/xyx004
https://doi.org/10.1088/1751-8121/aa7fd9
https://arxiv.org/abs/1608.03506
https://doi.org/10.3842/SIGMA.2005.023
https://arxiv.org/abs/nlin.SI/0506027
https://doi.org/10.1063/1.3177197
https://arxiv.org/abs/0806.3940
https://doi.org/10.3842/SIGMA.2011.089
https://arxiv.org/abs/1104.0084
https://doi.org/10.1088/0305-4470/37/6/L01
https://doi.org/10.1088/0305-4470/37/6/L01
https://arxiv.org/abs/nlin.SI/0311034
https://doi.org/10.2991/jnmp.2005.12.s2.16
https://doi.org/10.1017/CBO9780511997136.005
https://doi.org/10.1017/CBO9781107337411
https://doi.org/10.1017/CBO9781107337411
https://doi.org/10.1088/1751-8113/40/42/S09
https://doi.org/10.1088/1751-8113/40/42/S09
https://arxiv.org/abs/0705.1903
https://doi.org/10.1088/0951-7715/25/7/1955
https://arxiv.org/abs/1105.3329
https://doi.org/10.1016/S0375-9601(02)00287-6
https://arxiv.org/abs/nlin.SI/0110027
https://doi.org/10.1017/S0017089501000106
https://arxiv.org/abs/nlin.SI/0001054
https://doi.org/10.1016/0375-9601(90)90876-P
https://doi.org/10.1016/0378-4371(91)90258-E
https://arxiv.org/abs/1703.01069
https://arxiv.org/abs/math-ph/0609043
https://doi.org/10.1017/S0017089508004874
https://arxiv.org/abs/0802.0294
https://doi.org/10.1088/1751-8113/42/45/454025
https://arxiv.org/abs/0903.3152
https://doi.org/10.1088/0305-4470/39/45/R01
https://doi.org/10.1070/rm2001v056n01ABEH000357

	1 Introduction
	2 General solutions of the H4 and H6 equations
	2.1 The iD2 equations i=1,2,3
	2.2 The D3 and the iD4 equations, i=1,2
	2.3 The tH2 and the tH3 equations

	3 Conclusions
	A Procedure to find the general solution in the remaining cases
	A.1 2D2 equation (1.3b)
	A.2 3D2 equation (1.3c)
	A.3 1D4 equation (1.3e)
	A.4 2D4 equation (1.3f)
	A.5 tH3 equation (1.2c)

	References

