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Abstract. We study the supersymmetric index of four dimensional theories obtained by
compactifications of the six dimensional E string theory on a Riemann surface. In particular
we derive the difference operator introducing certain class of surface defects to the index
computation. The difference operator turns out to be, up to a constant shift, an analytic
difference operator discussed by van Diejen.
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1 Introduction

Embedding four dimensional supersymmetric quantum field theories into a six dimensional model
compactified on a Riemann surface can lead to various insights into the physics in four dimen-
sions. Some examples of such insights include geometrization of the understandings of the
space of theories in four dimensions. In particular, this leads to a geometrical understandings
of conformal manifolds, deformations, symmetries, and dualities of the theories in four dimen-
sions. Another example is that of relating supersymmetric observables in models realized by
compactification to lower dimensional physics, such as two dimensional conformal field theories,
topological models, and quantum mechanical integrable models.

An interesting aspect of the latter insights is that the computations of some of the supersym-
metric observables in different four dimensional models, labeled by choices made upon compacti-
fication such as the six dimensional model and the two dimensional geometry, are related to lower
dimensional computation in models which are labeled only by the type of computation in four
dimensions and the choice of the six dimensional model. Here the choice of geometry enters
as the choice of the computation one performs in the two dimensional models. One example is
the AGT [1] correspondence between sphere partition functions of N = 2 theories obtained by
compactifications on a surface of (2, 0) theories, and computations of correlation functions in
Liouville–Toda models. The choice of the particular model in two dimensions is determined by
a choice of (2, 0) theory and the choice of correlation function is determined by compactification
geometry.

Yet another example is that of the supersymmetric index and the relation of it to integrable
quantum mechanical models [8, 9, 10].1 The (2, 0) models in six dimensions are labeled by
a choice of ADE algebra. Taking one of these models in six dimensions, the index of theories in
four dimensions is closely related to the ADE type Ruijsenaars–Schneider model. In particular,
the Hamiltonians of such models, when acting on the parameters of the index associated to

This paper is a contribution to the Special Issue on Elliptic Hypergeometric Functions and Their Applications.
The full collection is available at https://www.emis.de/journals/SIGMA/EHF2017.html

1The quantum mechanical integrable models make appearance in various contexts when studying supersym-
metric theories in four dimensions [5, 13, 23, 24, 32].
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punctures on the Riemann surface, introduce defect operators into the index [10]. This leads to
the expectation that determining the eigen-functions of the integrable model one can compute
index of any theory resulting in the compactifications by combining them in a way determined
by the geometry [9]. At the technical level the Hamiltonians appear as one computes certain
residues of the index of models with no defects and claiming that these correspond to indices of
other models with defects [10]. For similar derivation of difference operators corresponding to
Hamiltonians of integrable systems see [5].

The correspondence between integrable models and compactifications can be generalized to
situations where the six dimensional theory is a more generic (1, 0) model; leading to models in
four dimensions with N = 1 supersymmetry. The supersymmetric index is well defined for such
four dimensional theories and as it does not depend on continuous parameters it should define
a topological invariant of the Riemann surface on which the (1, 0) is compactified. Moreover,
the models in four dimensions can admit supersymmetric surface defects. The defects can
be engineered by giving a space-time dependent vacuum expectation values to certain chiral
operator and following the flow to the new infra-red fixed point [10]. The index of this fixed
point is obtained by computing a residue of the index of the UV theory [10]. The residue
calculus for the theories obtained by compactifications implies that the index of a theory with
a surface defect can be obtained from the index of the theory without a defect by acting on
it with a difference operator. As mentioned above, the difference operator in the case of (2, 0)
theories is the Ruijsenaars–Schneider analytic difference operator. If one considers type A M5
branes on type Ak−1 singularity we obtain a generalization of such operators [11, 17, 21, 31].2

We can consider a more general setup with the models in six dimensions labeled by a pair of
algebras (G, Ĝ) with the first one denoting the choice of the M5 branes and the second the choice
of singularity. In particular (ADE,A0) are the Ruijsenaars–Schneider models and the (A,A)
were computed in [11, 17, 21, 31].

In this note we show that the integrable model (A0, D4) corresponding to one M5 brane
on D4 singularity, also know as the E-string, is the BC1 van Diejen model [6]. What allows us
to have this computation done for the E-string theory is the fact that we know rather explicitly
the indices of all the models in this class of theories [18].

The E-string model has E8 symmetry in six dimensions and the theories in four dimensions
have symmetry which is some sub-group of E8. At the level of the difference operator the E8

structure is hidden with only U(1) × SU(8) appearing. A reason for this is that the difference
operators act on symmetries associated to punctures and the punctures break the E8 symmetry
to this group [18]. However, the symmetry of theories with no punctures can enhance to larger
groups and in particular to E8. The E8 structure has been observed also when studying the
difference operator in its own right, see [27].

For other types of compactifications, such as A type M5 branes probing ADE singularity, we
know some of the theories but not enough at the moment to have a derivation of the operators.
However, the general program of relating compactifications to integrable models suggests that
there might be integrable models labeled by some choices of a pair of ADE groups or in more
generality on a choice of (1, 0) theory. The (1, 0) theories recently underwent classification
attempts [3, 4, 12, 14, 15, 22]. A vast variety of such models exists and the ones giving rise to four
dimensional models with weakly coupled gauge fields in four dimensions, which is indicated by
a gauge description once theory is compactified on a circle to five dimensions, might be relevant
for deriving new difference operators. It will be very enlightening to understand this structure.

The note is organized as following. We begin with the review of the index ingredients we
need for the computation for the E-string theories. In section three we discuss the computation
of the operator introducing surface defects. In section four we relate the operator to the van
Diejen model. In section five we discuss a limit of the operator for which the eigen-functions are

2See [2] for appearance of similar looking operators in a different setting.
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known to be given in terms of Koornwinder polynomials. We have few appendices with more
technical details of the computations.

2 E-string compactifications

Let us review the essential details of the compactification program for the case of one M5 brane
probing D4 singularity, the E string theory, and introduce the basic building blocks of the
construction [18]. We compactify the E string theory on a Riemann surface with punctures in
presence of flux for abelian sub-groups of the E8 global symmetry supported on the surface. The
states of the six dimensional theory have to have good transformation properties in presence of
the flux and thus it needs to be properly quantized. We associate models in four dimensions
then to punctured Riemann surfaces and to choice of flux. The models have a subgroup of E8

as the symmetry. The subgroup is determined by the choice of the flux and punctures, that is it
is the subgroup of E8 commuting with the choice of flux in the case of closed Riemann surface.
For properly quantized flux this has rank eight, for fractional values of flux the rank might be
smaller. Every puncture is associated with additional factor of SU(2) symmetry. The punctures
come in different types which we refer to as different colors. We will continue the discussion in
the language of the index as it encodes all the needed physical information. For definitions see
Appendix A.

Models corresponding to different surfaces can be glued together by gauging a symmetry
corresponding to punctures of the same color. The color of the punctures determines what are
the details of the gluing. The punctures break the E8 symmetry of the six dimensional model
to U(1)× SU(8) sub group. The flux might break the symmetry further. In particular the color
is determined by the U(1) × SU(8) subgroup of E8 which the puncture keeps. The subgroup
preserved by given puncture is parametrized by fugacity t for U(1) and fugacities ai for SU(8)

(i = 1, . . . , 8 and
8∏
i=1

ai = 1). For different colors of punctures the fugacities of one are expressible

in terms of monomial products of the other. When we glue two punctures together the index of
the theory is

Tcombined = TAJ (u)×u TBJ (u) ≡ (q; q)(p; p)

∮
du

4πiu

8∏
j=1

Γe
(
(qp)

1
2

1
tJ

(
aJj
)−1

u±1
)

Γ(u±2)
TAJ (u)TBJ (u).

Here the indices A and B stand for Theory A and Theory B. The gamma functions appearing in
the denominator correspond to N = 1 vector fields and the gamma functions in the numerator
to a collection of eight chiral fields in fundamental representation of the gauged symmetry.
This collection of chiral fields couples to certain chiral operators of the two glued copies which
generalize the moment map operators of the class S case [18].

We will use the shorthand notation ×u to indicate the gluing. Here TJ(u) is an index of
a theory corresponding to some Riemann surface with puncture of color J with associated
symmetry SU(2)u. The parameters tJ and aJ label the U(1) × SU(8) symmetry preserved by
the puncture.

Let us define the basic building blocks of our construction. We define the tube TJ,J(z, u) to
be

TJ,J(u, z) = Γe
(
qpt4

) 8∏
j=1

Γe
(
(qp)

1
2 tajz

±1)Γe((qp) 1
2 ta−1j u±1

)Γe

(
1

t2
u±1z±1

)
.

This tube is the model obtained as compactification on sphere with two punctures and flux
−1/2 for U(1)t and zero flux for other symmetries. The model is an IR free Wess–Zumino
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theory. From this we can construct cap theories C
(M,L;i)
J (z), corresponding to a sphere with

single puncture, by computing residues [10]. We define these to be

C
(M,L;i)
J (z) =

1( ∏
j 6=i

Γe(ai/aj)
)

Γe
(
pqt2 1

a2i

)
(q; q)(p; p)

Resu→ 1

(qp)
1
2 qMpLt

ai

1

u
TJ,J(u, z).

The cap theory for zero values of M and L is a model corresponding to sphere with one puncture
and flux −3

4 for U(1)t,
7
8 for U(1)i, and −1

8 for U(1)j . See [18] for details of the derivation of the
flux. The index can be thought as partition function on S1 × S3, and for non vanishing values
of M and L the theory also has surface defects wrapping the S1 and one of the two equators
of S3. Finally we have a three punctured sphere TJB ,JC ,JD(w, u, v)

TJB ,JC ,JD(w, u, v) = Γe
(
(qp)

1
2 t
(
B−1A

)±1
w±1

)
Γe

(qp
t2

)
(q; q)(p; p)

×
∮

dh

4πih

Γe
( (pq) 12

t2

(
AB−1

)±1
h±1

)
Γe
(
h±2

) Γe
(
th±1w±1

)
H
(
u,D, v, C,

√
hB,
√
h−1B;A

)
,

where we have defined

H(z1, z2, v1, v2, a, b;A) = (q; q)2(p; p)2
∮

dw1

4πiw1

∮
dw2

4πiw2

Γe
( (pq) 12

t2
w±11 w±12

)
Γe
(
w±22

)
Γe
(
w±21

)
× Γe

(
(qp)

1
4 tA

1
2 b−1w±11 z±11

)
Γe
(
(qp)

1
4A

1
2 bw±11 z±12

)
Γe
(
(qp)

1
4 tA−

1
2 bw±12 z±11

)
× Γe

(
(qp)

1
4A−

1
2 b−1z±12 w±12

)
Γe
(
(qp)

1
4 tA−

1
2aw±11 v±11

)
Γe
(
(qp)

1
4A−

1
2a−1v±12 w±11

)
× Γe

(
(qp)

1
4 tA

1
2a−1w±12 v±11

)
Γe
(
(qp)

1
4A

1
2aw±12 v±12

)
. (2.1)

The above expressions are non trivial to derive. The theory corresponding to three punctured
spheres is constructed by starting from a gauge theory, index of which is roughly speaking H,
and arguing that at some point on the conformal manifold the U(1) symmetry corresponding
to fugacity

√
a/b enhances to SU(2). This is a non trivial fact which follows from dualities.

This SU(2) is then taken to be dynamical with addition of some chiral fields. The resulting
index is given above. The statement that this theory corresponds to three punctured sphere is
made by performing a variety of physical consistency checks [18]. Note that the construction
also gives a theory having only rank five symmetry as opposed to rank eight.

For the three punctured sphere we have flux 3/4 for U(1)t and vanishing flux for the Cartan
generators of SU(8). The three punctured sphere depends on four parameters (A,B,C,D) which
parametrize SO(8) inside SU(8). That is,

(a1, a2, a3, a4) = A±1B±1, (a5, a6, a7, a8) = C±1D±1. (2.2)

In principle there should be three punctured spheres depending on all eight parameters but the
particular construction of [18] gives us a three punctured sphere only depending on five with the
map to eight parameters written above.

The three punctures are of different color

w : JB =
(
t;A±1B±1, C±1D±1

)
,

u : JC =
(
t;A±1D±1, B±1C±1

)
,

v : JD =
(
t;A±1C±1, B±1D±1

)
.

Without loss of any generality let us assume that we will compute residues with respect to
a1 = AB−1. Then as we have only a subgroup of SU(8) we need to specify the flux for this. We
obtain that the flux for the cap is(

U(1)A,U(1)B,U(1)C ,U(1)D
)

=
(
1
4 ,−

1
4 , 0, 0

)
.
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JB JD

JC

(M,L; i)

J
J

J

Figure 1. The three basic ingredients. The tube on the left, the cap, and the three punctured sphere.

The punctures can be of various colors determined by an octet of variables J and the cap is labelled by

the residue used for its definition.

JC

JC
JC

=

JD

JB
JB

(0, 0; i)(0, 0; i)

Figure 2. Gluing two three punctured spheres with two punctures closed as indicated gives the original

model.

JD

JD
JD
×DJB ,(1,0;i)

JD
=

JC

JB JB

(1, 0; i)(0, 0; i)

Figure 3. Gluing two three punctured spheres with two punctures closed as indicated gives the original

model with surface defect, and for the index we act on the index of model with no defect by a difference

operator.

3 Defect operators

Using the building blocks of the previous section we can introduce surface defects into the index
computation. Given a model of some flux and corresponding to some surface we introduce
a defect operator by gluing to the surface first two three punctured spheres and then closing two
of the punctures with caps. In case one closes the two punctures with cap defined by residues
(0, 0; i) and (0, 0; i), where by i we mean aj such that ai = 1/aj , one adds tube with zero flux,
which gives us the original model without defect. We can indeed check, see Appendix B, that
the index satisfies such property

TJC (u) = TJC (z)×z
((
TJB ,JC ,JD(h, z, g)×h C

(0,0;i)
JB

(h)
)

×g
(
TJB ,JC ,JD(v, u, g)×v C(0,0;i)

JB
(v)
))
. (3.1)

However, when we close one of the punctures with (M,L; i) and other with (0, 0; i) we intro-
duce a surface defect. Performing the computation with M = 1 and L = 0, see Appendix C, we
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can see that the index is given by acting on the one with no defect by a difference operator

D
JB ,(1,0;i)
JD

TJD(u) = TJD(g)×g
((
TJB ,JC ,JD(h, z, g)×h C

(0,0;i)
JB

(h)
)

×z
(
TJB ,JC ,JD(v, z, u)×v C(1,0;i)

JB
(v)
))
.

The difference operator is given by

D
JB ,(1,0;AB

−1)
JD

TJD(z) ∼
θp
(
(pq)

1
2 t−1A±1C±1z

)
θp
(
(pq)

1
2 t−1B±1D±1z

)
θp
(
qz2
)
θp
(
z2
) TJD(qz)

+
θp
(
(pq)

1
2 t−1A±1C±1z−1

)
θp((pq)

1
2 t−1B±1D±1z−1)

θp
(
qz−2

)
θp
(
z−2
) TJD

(
qz−1

)
+W JB

JD,
(
1,0;AB−1

)(z)TJD(z), (3.2)

where ∼ means equal up to an overall factor which is independent of z. We have denoted

W JB
JD,(1,0;AB−1)

(z)

=
θp
(
q−1t−4

)
θp
(
q−1t−4A2B−2z2

)
θp
(
(pq)

1
2 t±1AC±1(qz)−1

)
θp
(
(pq)

1
2 t±1B−1D±1(qz)−1

)
θp
(
q−2t−4A2B−2

)
θp
(
z2
)
θp
(
q−1z−2

)
θp
(
t−4z2

)
+
θp
(
q−1t−4

)
θp
(
q−1t−4A2B−2z−2

)
θp
(
(pq)

1
2 t±1A−1C±1z−1

)
θp
(
(pq)

1
2 t±1BD±1z−1

)
θp
(
q−2t−4A2B−2

)
θp
(
z−2
)
θp
(
q−1z2

)
θp
(
t−4z−2

)
+
θp
(
q−1A2B−2

)
θp
(
(pq)

1
2 t2BD±1

(
t−1z

)±1)
θp
(
(pq)

1
2 t2A−1C±1

(
t−1z

)±1)
θp
(
q−2t−4A2B−2

)
θp
(
z2
)
θp
(
t4z−2

)
+
θp
(
q−1A2B−2

)
θp
(
(pq)

1
2 t2BD±1

(
t−1z−1

)±1)
θp
(
(pq)

1
2 t2A−1C±1

(
t−1z−1

)±1)
θp
(
q−2t−4A2B−2

)
θp
(
z−2
)
θp
(
t4z2

)
+
θp
(
t−2
)
θp
(
q−1t−2A2

)
θp
(
q−1A2B−2

)
θp
(
q−1t−2B−2

)
θp
(
q−1t−2AB−1C±1D±1

)
θp
(
p−1q−2t−4A2B−2

)
θp
(
q−2t−2A2B−2

) .

In Appendix C we give details of the computation leading to this operator. One could consider

more general residues by gluing the cap C
(L,M ;i)
J (v) and general L and M . We leave this as an

exercise to the interested reader.

4 Relation to van Diejen model

The difference operator of the previous section is the van Diejen difference operator. Using the
notations of [25] and the definitions of Appendix A the van Diejen operator is given as

AD(h; z)T (z) ≡ V (h; z)T (qz) + V
(
h; z−1

)
T
(
q−1z

)
+ Vb(h; z),

where

V (h; z) ≡

8∏
n=1

θ
(
(pq)

1
2hnz

)
θ(z2)θ

(
qz2
) , Vb(h; z) ≡

3∑
k=0

pk(h)[Ek(ξ; z)− Ek(ξ;ωk)]

2θ(ξ)θ
(
q−1ξ

) ,

where ωk are

ω0 = 1, ω1 = −1, ω2 = p
1
2 , ω3 = −p−

1
2 .
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The functions pk(h) are

p0(h) ≡
∏
n

θ(p
1
2hn), p1(h) ≡

∏
n

θ
(
−p

1
2hn
)
,

p2(h) ≡ p
∏
n

h
− 1

2
n θ(hn), p3(h) ≡ p

∏
n

h
1
2
nθ
(
−h−1n

)
,

and Ek is

Ek(ξ; z) ≡
θ
(
q−

1
2 ξω−1k z

)
θ
(
q−

1
2 ξωkz

−1)
θ
(
q−

1
2ω−1k z

)
θ
(
q−

1
2ωkz−1

) .

The van Diejen operator and the operator (3.2) are the same up to a constant function
(independent of z). It’s clear that V (h; z) coincides with the corresponding term in (3.2) if we
make the identifications

h1,2,3,4 = t−1A±1C±1, h5,6,7,8 = t−1B±1D±1.

Since Vb(h; z) is elliptic in z with periods 1 and p and it is easy to check that W JB
JD,(1,0;AB−1)

(z)

is also elliptic with the same period, it is enough to show that the two functions have the
same poles and residues to prove that they can differ only by a function independent of z.
In the fundamental parallelogram Vb has poles at (we assume with no loss of generality that
|p| < |q| � |t| < 1 and the rest of the variables are on unit circle)

z = ±q−
1
2 p, z = ±q

1
2 , z = ±p

1
2 q±

1
2 .

In addition to such poles the operator (3.2) seems to have poles at z = ±t−2p,±t2,±p
1
2 t±2 and

z = ±1,±p
1
2 , but computation of the residue at these poles yields zero. The computation of the

residue at the poles is straightforward, the result is (h is either 1 or −1)

Res
z→hq

1
2
W JB

JD,(1,0;AB−1)
(z) = −h(p; p)−2

θp
(
hp

1
2 t±1AC±1

)
θp
(
hp

1
2 t±1B−1D±1

)
2q−

1
2 θp
(
q−1
) ,

Res
z→hq−

1
2
W JB

JD,(1,0;AB−1)
(z) = h(p; p)−2

θp
(
hp

1
2 t±1AC±1

)
θp
(
hp

1
2 t±1B−1D±1

)
2q

1
2 θp
(
q−1
) ,

Res
z→hp

1
2 q

1
2
W JB

JD,(1,0;AB−1)
(z) = −h(p; p)−2

A−2B2θp
(
ht±1AC±1

)
θp
(
ht±1B−1D±1

)
2p−

3
2 q−

1
2 θp
(
q−1
) ,

Res
z→hp

1
2 q−

1
2
W JB

JD,(1,0;AB−1)
(z) = h(p; p)−2

A−2B2θp
(
ht±1AC±1

)
θp
(
ht±1B−1D±1

)
2p−

3
2 q

1
2 θp
(
q−1
) .

Using the ellipticity of Vb and some basic properties of the theta function this is exactly what we
get from computing the residues of Vb. Thus, we can conclude that the operators are the same
up to a constant function. The van Diejen operator does not depend on the type of residue we
took, that is what type of defect was introduced, but only on the color of puncture through the
choice of the eight parameters. The choice of the defect enters through the additive constant by
which the operator derived from the index differs from the van Diejen operator. In particular,
operators introducing different defects commute with each other as they differ by a constant.
We can compute operators which correspond to residues with q exchanged by p, these will
correspond to defects wrapping the other equator of S3. All the operators should commute and
indeed they do as this is true for the van Diejen operators. Our derivation of the operator had
only five parameters but the relation discussed here suggests generalization to eight parameters,
again up to the additive constant function.
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5 Koornwinder limit

We consider the following limit of the parameters. Define

p
1
2 Ã = AC, p

1
2 C̃ = BD B̃ = A/C, D̃ = B/D. (5.1)

We take p to zero keeping the new variables fixed. In the limit the difference operator is

D
JB ,
(
1,0;(ÃB̃/C̃D̃)

1
2

)
JD

TJD(u)

∼
(
1− q−

1
2 tÃ−1u−1

)(
1− q−

1
2 tC̃−1u−1

)(
1− q

1
2 t−1Ã−1u

)(
1− q

1
2 t−1C̃−1u

)(
1− u2

)(
1− qu2

) TJD(qu)

+

(
1− q−

1
2 tÃ−1u

)(
1− q−

1
2 tC̃−1u

)(
1− q

1
2 t−1Ã−1u−1

)(
1− q

1
2 t−1C̃−1u−1

)(
1− u−2

)(
1− qu−2

) TJD(qu−1)

+W JB

JD,
(
1,0;(ÃB̃/C̃D̃)

1
2

)TJD(u).

We note that conjugating the operator to be

O
JB ,
(
1,0;(ÃB̃/C̃D̃)

1
2

)
JD

= Γe
(
q

1
2 tÃ−1u±1

)−1
Γe
(
q

1
2 tC̃−1u±1

)−1
×D

JB ,
(
1,0;(ÃB̃/D̃C̃)

1
2

)
JD

Γe
(
q

1
2 tÃ−1u±1

)
Γe
(
q

1
2 tC̃−1u±1

)
.

We can write

O
JB ,
(
1,0;(ÃB̃/D̃C̃)

1
2

)
JD

F(u) =

4∏
l=1

(1− alu)(
1− u2

)(
1− qu2

)(F(qu)− F(u))

+

4∏
j=1

(
1− aju−1

)
(
1− u−2

)(
1− qu−2

)(F(qu−1)− F(u)
)

+ E
JB ,
(
1,0;(ÃB̃/D̃C̃)

1
2

)
JD

F(u),

a1 = q
1
2 tÃ−1, a2 = q

1
2 tC̃−1, a3 = q

1
2 t−1Ã−1, a4 = q

1
2 t−1C̃−1.

The first two terms define the rank one Koornwinder operator [20] and we have an additional
constant term. The eigenfunctions are the Askey–Wilson polynomials. In general these polyno-
mials have four independent parameters al but in our case they are restricted to a1a4 = a2a3.
The constant term is

E
JB ,(1,0;

(
ÃB̃/D̃C̃)

1
2

)
JD

=

[
− q3t2

(ÃC̃)2
− q2t2

(
1− B̃

C̃D̃Ã
− 1

C̃2
− 1 + t−2

ÃC̃

)

− q

(
− B̃

C̃3ÃD̃
+

B̃

C̃2D̃
+

B̃

ÃD̃C̃
+

1

C̃2
+

B̃t2

C̃2D̃

)
+
B̃Ã

D̃C̃

]
1

ÃB̃

C̃D̃
− q2t2

.

Let us take the limit of the three punctured sphere. We give details of the computation in
Appendix D with the final result given here (taking lim

p→0
of the right-hand side as in (5.1))

TJB ,JC ,JD(w, u, v) =
1(

qp 1
ABCD t

−2; q
) (qpt2 1

ABCD
; q

)2(
qp

1

BACD
; q

)
(5.2)

× 1(√
qp t

AC v
±1,
√
qp t

DBv
±1; q

) 1(√
qp t

ABw
±1,
√
qp t

DCw
±1; q

) 1(√
qp t

BCu
±1,
√
qp t

ADu
±1; q

) .
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The index factorizes. In particular on general grounds [9] we expect the index of the three
punctured sphere to be

1(√
qp t

AC v
±1,
√
qp t

DBv
±1; q

) 1(√
qp t

ABw
±1,
√
qp t

DCw
±1; q

)
× 1(√

qp t
BCu

±1,
√
qp t

ADu
±1; q

)∑
λ

Cλψλ(u)ψλ(w)ψλ(v),

where the sum is over all the eigenvalues of the Koornwinder operator and ψλ(z) are Askey–
Wilson polynomials. What we have shown above is that in the limit the three punctured sphere
we have defined has all Cλ vanishing but the one corresponding to the constant polynomial.
The Koornwinder polynomials have higher rank generalizations which should be relevant for
higher rank E string theories. In those cases we do not know the three punctured spheres and
the relation to Koornwinder polynomials can provide a useful tool to study the indices of these
models. The limit we considered does not have a special physical meaning a priori, however the
fact that the expressions become simple and the fact that one might generalize the discussion
to the higher rank case, make the limit of potential interest.

A Index definitions

We compute the supersymmetric index [19] using the standard definitions of [7]. The index of
chiral field charged under flavor U(1) symmetry with charge S and having R-charge R is

Γe
(
(qp)

R
2 uS

)
.

The parameter u is fugacity for the flavor symmetry. We define here

Γe(u) =

∞∏
i,j=0

1− 1
uq

i+1pj+1

1− upiqj
.

We will use the following definitions

(s; q) =
∞∏
i=1

(
1− sqi−1

)
, θr(u) =

∞∏
j=1

(
1− urj−1

)(
1− rj/u

)
.

Finally we use the condensed conventions

f
(
y±1
)

= f(1/y)f(y), (s1, . . . , sk; q) = (s1; q) · · · (sk; q).

Contour integrals in the paper are around the unit circle unless we state otherwise.

B Computation of the sphere with two punctures

We give here the derivation of equation (3.1). The computation involves calculating several con-
tour integrals over products of elliptic gamma functions and taking residues. In what follows we
will present the computation in a condensed manner by first computing the caps and then gluing
them to spheres with three punctures. As we will see this way of presenting the computation will
be somewhat singular. A proper way to define the computation is first computing the integrals
resulting in gluing together spheres with three punctures and tubes and then computing the
residues, that is turning tubes to caps. The reader should think about the singular parts of
the computation as done in this manner. We will use different relations between integrals of
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elliptic gamma functions which physically are manifestations of Seiberg dualities. The relevant
identities are derived in [26, 29] and one can consult the review [28].

We compute

C
(0,0;AB−1)
JB

(w)×w TJB ,JC ,JD(w, u, v)

= (q; q)(p; p)

∮
dw

4πiw

8∏
j=1

Γe
(
(qp)

1
2
1
t a
−1
j w±1

)
Γ
(
w±2

) C
(0,0;AB−1)
JB

(w)TJB ,JC ,JD(w, u, v)

= (q; q)4(p; p)4
∮

dw

4πiw

8∏
j=1

Γe
(
(qp)

1
2
1
t a
−1
j w±1

)
Γ
(
w±2

) Γe
(
pqt4

)∏
j 6=i

Γe

(
pqt2

aiaj

) 8∏
j=1

Γe
(
(pq)

1
2 tajw

±1)
× Γe

(
(pq)

1
2w±1

tai

)
Γe

(
aiw

±1

(pq)
1
2 t3

)
Γe
(
(qp)

1
2 t
(
B−1A

)±1
w±1

)
Γe

(qp
t2

)

×
∮

dy

4πiy

Γe
( (pq) 12

t2

(
AB−1

)±1
y±1
)

Γe(y±2)
Γe
(
ty±1w±1

) ∮ dw1

4πiw1

∮
dw2

4πiw2

Γe
( (pq) 12

t2
w±11 w±12

)
Γe
(
w±22

)
Γe
(
w±21

)
× Γe

(
(qp)

1
4 tA

1
2B−

1
2 y

1
2w±11 u±1

)
Γe
(
(qp)

1
4A

1
2B

1
2 y−

1
2w±11 D±1

)
× Γe

(
(qp)

1
4 tA−

1
2B

1
2 y−

1
2w±12 u±1

)
Γe
(
(qp)

1
4A−

1
2B−

1
2 y

1
2D±1w±12

)
× Γe

(
(qp)

1
4 tA−

1
2B

1
2 y

1
2w±11 v±1

)
Γe
(
(qp)

1
4A−

1
2B−

1
2 y−

1
2C±1w±11

)
× Γe

(
(qp)

1
4 tA

1
2B−

1
2 y−

1
2w±12 v±1

)
Γe
(
(qp)

1
4A

1
2B

1
2 y

1
2w±12 C±1

)
.

Plugging in the values of aj from (2.2) where ai = AB−1 and using the identity Γe
(pq
z

)
Γe(z) = 1

we get

(q; q)4(p; p)4
∮

dw

4πiw

1

Γ
(
w±2

)Γe
(
pqt4

)
Γe
(
pqt2

)
Γe
(
pqt2B2

)
Γe
(
pqt2A−2

)
× Γe

(
pqt2A−1BC±1D±1

)
Γe

(
AB−1w±1

(pq)
1
2 t3

)
Γe
(
(qp)

1
2 tA−1Bw±1

)
Γe

(qp
t2

)

×
∮

dy

4πiy

Γe
( (pq) 12

t2

(
AB−1

)±1
y±1
)

Γe
(
y±2
) Γe

(
ty±1w±1

)
×
∮

dw1

4πiw1

∮
dw2

4πiw2

Γe
( (pq) 12

t2
w±11 w±12

)
Γe
(
w±22

)
Γe
(
w±21

) Γe
(
(qp)

1
4 tA

1
2B−

1
2 y

1
2w±11 u±1

)
× Γe

(
(qp)

1
4A

1
2B

1
2 y−

1
2w±11 D±1

)
Γe
(
(qp)

1
4 tA−

1
2B

1
2 y−

1
2w±12 u±1

)
× Γe

(
(qp)

1
4A−

1
2B−

1
2 y

1
2D±1w±12

)
Γe
(
(qp)

1
4 tA−

1
2B

1
2 y

1
2w±11 v±1

)
× Γe

(
(qp)

1
4A−

1
2B−

1
2 y−

1
2C±1w±11

)
Γe
(
(qp)

1
4 tA

1
2B−

1
2 y−

1
2w±12 v±1

)
× Γe

(
(qp)

1
4A

1
2B

1
2 y

1
2w±12 C±1

)
.

We can perform the integral over w using the inversion formula [30] which sets y = AB−1

(pq)
1
2 t2

, and

we get

(q; q)2(p; p)2Γe
(
pqt2B2

)
Γe
(
pqt2A−2

)
Γe
(
pqt2A−1BC±1D±1

)
Γe(pq)Γe

(
t−4A2B−2

)
× Γe

(
pqA−2B2

) ∮ dw1

4πiw1

∮
dw2

4πiw2

Γe
( (pq) 12

t2
w±11 w±12

)
Γe
(
w±22

)
Γe
(
w±21

) Γe
(
AB−1u±1w±11

)
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× Γe
(
(qp)

1
2 tBD±1w±11

)
Γe
(
(qp)

1
2 t2A−1Bu±1w±12

)
Γe
(
t−1B−1D±1w±12

)
Γe
(
v±1w±11

)
× Γe

(
(qp)

1
2 tA−1C±1w±11

)
Γe
(
(qp)

1
2 t2v±1w±12

)
Γe
(
t−1AC±1w±12

)
.

Γe(pq) is zero but the integral over w1 is pinched at w1 = v±1 due to the term Γe(v
±1w±11 ) such

that the multiplication is finite and we get

(q; q)(p; p)Γe
(
pqt2B2

)
Γe
(
pqt2A−2

)
Γe
(
pqt2A−1BC±1D±1

)
Γe
(
t−4A2B−2

)
Γe
(
pqA−2B2

)
× Γe

(
AB−1u±1v±1

)
Γe
(
(qp)

1
2 tBD±1v±1

)
Γe
(
(qp)

1
2 tA−1C±1v±1

)
×
∮

dw2

4πiw2

1

Γe
(
w±22

)Γe
(
(qp)

1
2 t2A−1Bu±1w±12

)
Γe
(
t−1B−1D±1w±12

)
Γe
(
t−1AC±1w±12

)
.

Integral over w2 can be evaluated using the elliptic beta integral formula [29], and the final result
is

Γe
(
pqA−2B2

)
Γe
(
AB−1u±1v±1

)
Γe
(
(qp)

1
2 tBD±1v±1

)
Γe
(
(qp)

1
2 tA−1C±1v±1

)
× Γe

(
(pq)

1
2 tBC±1u±1

)
Γe
(
(pq)

1
2 tA−1D±1u±1

)
.

We glue this to another three punctured sphere closed with ai = A−1B and the claim is that
gluing this to a given model we get the same model. Indeed we have

TJC (u)×u
((
TJB ,JC ,JD(w, u, v)×w C(0,0;AB−1)

JB
(w)
)

×v
(
TJB ,JC ,JD(h, z, v)×h C

(0,0;A−1B)
JB

(h)
))

= (q; q)2(p; p)2Γe
(
pq
(
A−2B2

)±1)
Γe
(
(pq)

1
2 tB−1C±1z±1

)
Γe
(
(pq)

1
2 tAD±1z±1

)
×
∮

du

4πiu

Γe
(
(qp)

1
2 t−1A±1D±1u±1

)
Γe
(
(qp)

1
2 t−1B±1C±1u±1

)
Γ
(
u±2

)
× Γe

(
(pq)

1
2 tBC±1u±1

)
Γe
(
(pq)

1
2 tA−1D±1u±1

)
TJC (u)

×
∮

dv

4πiv

Γe
(
(qp)

1
2 t−1A±1C±1v±1

)
Γe
(
(qp)

1
2 t−1B±1D±1v±1

)
Γ
(
v±2
)

× Γe
(
AB−1u±1v±1

)
Γe
(
(qp)

1
2 tBD±1v±1

)
Γe
(
(qp)

1
2 tA−1C±1v±1

)
× Γe

(
A−1Bz±1v±1

)
Γe
(
(qp)

1
2 tB−1D±1v±1

)
Γe
(
(qp)

1
2 tAC±1v±1

)
.

Terms cancel in the second integral and we get

= (q; q)2(p; p)2Γe
(
pq
(
A−2B2

)±1)
Γe
(
(pq)

1
2 tB−1C±1z±1

)
Γe
(
(pq)

1
2 tAD±1z±1

)
×
∮

du

4πiu

Γe
(
(qp)

1
2 t−1A±1D±1u±1

)
Γe
(
(qp)

1
2 t−1B±1C±1u±1

)
Γ
(
u±2

)
× Γe

(
(pq)

1
2 tBC±1u±1

)
Γe
(
(pq)

1
2 tA−1D±1u±1

)
TJC (u)

×
∮

dv

4πiv

1

Γ
(
v±2
)Γe

(
AB−1u±1v±1

)
Γe
(
A−1Bz±1v±1

)
.

The integrals can be evaluated using the inversion formula which sets u = z:

= Γe
(
(pq)

1
2 tB−1C±1z±1

)
Γe
(
(pq)

1
2 tAD±1z±1

)
Γe
(
(qp)

1
2 t−1A±1D±1z±1

)
× Γe

(
(qp)

1
2 t−1B±1C±1z±1

)
Γe
(
(pq)

1
2 tBC±1z±1

)
Γe
(
(pq)

1
2 tA−1D±1z±1

)
TJC (z).

We see that all terms cancel so we get

TJC (u)×u
((
TJB ,JC ,JD(w, u, v)×w C(0,0;AB−1)

JB
(w)
)

×v
(
TJB ,JC ,JD(h, z, v)×h C

(0,0;A−1B)
JB

(h)
))

= TJC (z).
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C Computation of the sphere with two punctures and a defect

Here we compute the difference operator. The computation is a small twist on the one of the
previous section, however it is less straightforward and thus we discuss it in detail. We compute

TJB ,JC ,JD(w, u, v)×w C(1,0;AB−1)
JB

(w)

= (q; q)(p; p)

∮
dw

4πiw

8∏
j=1

Γe
(
(qp)

1
2
1
t a
−1
j w±1

)
Γ
(
w±2

) C
(1,0;AB−1)
JB

(w)TJB ,JC ,JD(w, u, v)

∼
∮

dw

4πiw

8∏
j=1

Γe
(
(qp)

1
2
1
t a
−1
j w±1

)
Γ
(
w±2

) 8∏
j=1

Γe
(
(pq)

1
2 tajw

±1)Γe((pq)
1
2 qw±1

tAB−1

)

× Γe

(
AB−1w±1

(pq)
1
2 qt3

)
Γe
(
(qp)

1
2 t
(
B−1A

)±1
w±1

)
Γe

(qp
t2

)∮ dy

4πiy

Γe
( (pq) 12

t2

(
AB−1

)±1
y±1
)

Γe
(
y±2
)

× Γe
(
ty±1w±1

) ∮ dw1

4πiw1

∮
dw2

4πiw2

Γe
( (pq) 12

t2
w±11 w±12

)
Γe
(
w±22

)
Γe
(
w±21

) Γe
(
(qp)

1
4 tA

1
2B−

1
2 y

1
2w±11 u±1

)
× Γe

(
(qp)

1
4A

1
2B

1
2 y−

1
2w±11 D±1

)
Γe
(
(qp)

1
4 tA−

1
2B

1
2 y−

1
2w±12 u±1

)
× Γe

(
(qp)

1
4A−

1
2B−

1
2 y

1
2D±1w±12

)
Γe
(
(qp)

1
4 tA−

1
2B

1
2 y

1
2w±11 v±1

)
× Γe

(
(qp)

1
4A−

1
2B−

1
2 y−

1
2C±1w±11

)
Γe
(
(qp)

1
4 tA

1
2B−

1
2 y−

1
2w±12 v±1

)
× Γe

(
(qp)

1
4A

1
2B

1
2 y

1
2w±12 C±1

)
,

where ∼ means equality up to overall factors independent of w, u, v. Using the identity
Γe
(pq
z

)
Γe(z) = 1 and the elliptic beta integral formula we evaluate the integral over w and

up to overall factors we get

Γe
(
pq2
) ∮ dy

4πiy

Γe
(
(pq)

1
2 qA−1By±1

)
Γe
(
(pq)−

1
2 q−1t−2AB−1y±1

)
Γe
(
y±2
) ∮

dw1

4πiw1

∮
dw2

4πiw2

×
Γe
( (pq) 12

t2
w±11 w±12

)
Γe
(
w±22

)
Γe
(
w±21

) Γe
(
(qp)

1
4 tA

1
2B−

1
2 y

1
2w±11 u±1

)
Γe
(
(qp)

1
4A

1
2B

1
2 y−

1
2w±11 D±1

)
× Γe

(
(qp)

1
4 tA−

1
2B

1
2 y−

1
2w±12 u±1

)
Γe
(
(qp)

1
4A−

1
2B−

1
2 y

1
2D±1w±12

)
× Γe

(
(qp)

1
4 tA−

1
2B

1
2 y

1
2w±11 v±1

)
Γe
(
(qp)

1
4A−

1
2B−

1
2 y−

1
2C±1w±11

)
× Γe

(
(qp)

1
4 tA

1
2B−

1
2 y−

1
2w±12 v±1

)
Γe
(
(qp)

1
4A

1
2B

1
2 y

1
2w±12 C±1

)
. (C.1)

We got a zero multiplying the integral, but we will see next that some of the integrals are pinched
giving finite result. We start by evaluating the integral over y using the residue theorem and we
get that the integral over w1 is pinched due to Γe

(
(qp)

1
4 tA−

1
2B

1
2 y

1
2w±11 v±1

)
term for the poles

y1 = (pq)−
1
2 t−2AB−1 and y2 = (pq)−

1
2 q−1t−2AB−1. For y1 the integral over w1 is pinched at

w1 = v±1 and we proceed exactly as in appendix B to get the same result up to some overall
factors

1

2

Γe
(
qt−2

)
Γe
(
pq2t2A−2B2

)
Γe
(
t−2B−2

)
Γe
(
t−2A2

)
Γe
(
(pq)−1q−1t−4A2B−2

)
Γe
(
(pq)−1t−4A2B−2

)
× Γe

(
t−2AB−1C±1D±1

)
Γe
(
AB−1u±1v±1

)
Γe
(
(qp)

1
2 tBD±1v±1

)
Γe
(
(qp)

1
2 tA−1C±1v±1

)
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× Γe
(
(pq)

1
2 tBC±1u±1

)
Γe
(
(pq)

1
2 tA−1D±1u±1

)
. (C.2)

Now we look at the pole y2. the integral over w1 is pinched at w1 = q±
1
2 v±1. Substituting these

values (C.1) now becomes

1

2

Γe
(
t−2
)
Γe
(
pq3t2A−2B2

)
Γe
(
pq3t4A−2B2

) Γe
(
v2
)

Γe
(
qv2
)Γe

(
q−

1
2AB−1u±1

(
q

1
2 v
)±1)

Γe
(
(qp)

1
2 q

1
2 tBD±1

(
q

1
2 v
)±1)

× Γe
(
(qp)

1
2 q

1
2 tA−1C±1

(
q

1
2 v
)±1) ∮ dw2

4πiw2

1

Γe
(
w±22

)Γe

(
(pq)

1
2

t2
q

1
2 vw±12

)
× Γe

(
(qp)

1
2 q

1
2 t2A−1Bw±12 u±1

)
Γe
(
q−

1
2 t−1B−1D±1w±12

)
× Γe

(
(qp)

1
2 q

1
2 t2w±12 v−1

)
Γe
(
q−

1
2 t−1Aw±12 C±1

)
+
{
v ↔ v−1

}
.

The integral here can be interpreted as index of the SU(2) gauge theory with four flavors. Using
the Intriligator–Pouliot [16] duality transformation (that is V (s) =

∏
1≤j<k≤8

Γe(sjsk)V (
√
pq/s)

in the notations of [28]) the expression becomes

1

2

Γe
(
t−2
)
Γe
(
pq3t2A−2B2

)
Γe
(
pq3t4A−2B2

) Γe
(
v2
)

Γe
(
qv2
)Γe

(
q−

1
2AB−1u±1

(
q

1
2 v
)±1)

Γe
(
(qp)

1
2 q

1
2 tBD±1

(
q

1
2 v
)±1)

× Γe
(
(qp)

1
2 q

1
2 tA−1C±1

(
q

1
2 v
)±1)

Γe
(
pq2A−1Bvu±1

)
Γe
(
(pq)

1
2 t−3B−1vD±1

)
× Γe

(
(pq)

1
2 t−3AvC±1

)
Γe
(
pq2t4A−2B2

)
Γe
(
(pq)

1
2 tA−1u±1D±1

)
Γe
(
(pq)

1
2 tBu±1C±1

)
× Γe

(
pq2t4A−1Bv−1u±1

)
Γe
(
q−1t−2B−2

)
Γe
(
q−1t−2AB−1C±1D±1

)
× Γe

(
(pq)

1
2 tB−1v−1D±1

)
Γe
(
q−1t−2A2

)
Γe
(
(pq)

1
2 tAv−1C±1

)
Γe
(
pq2
)

×
∮

dw2

4πiw2

1

Γe
(
w±22

)Γe
(
q−

1
2 t2v−1w±12

)
Γe
(
q−

1
2 t−2AB−1w±12 u±1

)
× Γe

(
(pq)

1
2 q

1
2 tBD±1w±12

)
Γe
(
(qp)

1
2 q

1
2 tA−1w±12 C−1

)
Γe
(
q−

1
2 t−2vw±12

)
+
{
v ↔ v−1

}
.

We have zero multiplying the integral but the integral is pinched at w2 =
(
q±

1
2 t−2v

)±1
due to

the colliding of poles of the first and last elliptic gamma functions in the last integral. We get
different contribution for each choice of sign of q. Substituting each one of the values of w2 and
using the identities Γe(qz) = θp(z)Γe(z) and Γe

(
pq2z−1

)
Γe(z) = θp

(
q−1z

)
we get

1

2

Γe(t
−2)Γe

(
pq3t2A−2B2

)
Γe
(
q−1t−2B−2

)
Γe
(
q−1t−2B2

)
θp(pq2t4A−2B2)

× Γe
(
q−1t−2AB−1C±1D±1

)
Γe
(
(pq)

1
2 tA−1D±1u±1

)
Γe
(
(pq)

1
2 tBD±1u±1

)
× Γe

(
q−

1
2AB−1u±1

(
q

1
2 v
)±1)

Γe
(
(pq)

1
2 q

1
2 tBD±1

(
q

1
2 v
)±1)

Γe
(
(pq)

1
2 q

1
2 tA−1C±1

(
q

1
2 v
)±1)

×
θp
(
q−1t−4AB−1vu±1

)
θp
(
(pq)

1
2 q−1tB−1v−1D±1

)
θp
(
(pq)

1
2 q−1tAv−1C±1

)
θp
(
t−4v2

)
θp
(
v2
)

+
1

2

Γe(t
−2)Γe

(
pq3t2A−2B2

)
Γe
(
q−1t−2B−2

)
Γe
(
q−1t−2B2

)
θp
(
pq2t4A−2B2

)
× Γe

(
q−1t−2AB−1C±1D±1

)
Γe
(
(pq)

1
2 tA−1D±1u±1

)
Γe
(
(pq)

1
2 tBD±1u±1

)
× Γe

(
AB−1u±1v±1

)
Γe
(
(pq)

1
2 q

1
2 tBD±1

(
q

1
2 v
)±1)

Γe
(
(pq)

1
2 q

1
2 tA−1C±1

(
q

1
2 v
)±1)

×
θp
(
(pq)

1
2 q−1t−3B−1vD±1

)
θp
(
(pq)

1
2 q−1t−3AvC±1

)
θp
(
t4v−2

)
θp
(
v2
) +

{
v ↔ v−1

}
.
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Adding the contribution of (C.2) and taking away overall factors the final result is

TJB ,JC ,JD(w, u, v)×w C(1,0;AB−1)
JB

(w)

∼
θp
(
pq2t2A−2B2

)
θp
(
(pq)−1q−1t−4A2B−2

)
θp(t−2)θp

(
q−1t−2B−2

)
θp
(
q−1t−2A2

)
θp
(
pq2t4A−2B2

)
θp
(
q−1t−2AB−1C±1D±1

)
×
θp
(
q−1t−4AB−1vu±1

)
θp
(
(pq)

1
2 q−1tB−1v−1D±1

)
θp
(
(pq)

1
2 q−1tAv−1C±1

)
θp
(
t−4v2

)
θ
(
v2
)

× Γe
(
q−

1
2AB−1u±1

(
q

1
2 v
)±1)

Γe
(
(pq)

1
2 q

1
2 tBD±1

(
q

1
2 v
)±1)

Γe
(
(pq)

1
2 q

1
2 tA−1C±1(q

1
2 v)±1

)
× Γe

(
(pq)

1
2 tA−1u±1D±1

)
Γe
(
(pq)

1
2 tBu±1C±1

)
+

θp
(
pq2t2A−2B2

)
θp
(
(pq)−1q−1t−4A2B−2

)
θp
(
t−2
)
θp
(
q−1t−2B−2

)
θp
(
q−1t−2A2

)
θp
(
pq2t4A−2B2

)
θp
(
q−1t−2AB−1C±1D±1

)
× Γe

(
(pq)

1
2 tA−1u±1D±1

)
Γe
(
(pq)

1
2 tBu±1C±1

)
× Γe

(
AB−1u±1v±1

)
Γe
(
(pq)

1
2 q

1
2 tBD±1

(
q

1
2 v
)±1)

Γe
(
(pq)

1
2 q

1
2 tA−1C±1

(
q

1
2 v
)±1)

×
θp
(
(pq)

1
2 q−1t−3B−1vD±1

)
θp
(
(pq)

1
2 q−1t−3AvC±1

)
θp
(
v2
)
θp
(
t4v−2

) +
{
v ↔ v−1

}
+ Γe

(
AB−1u±1v±1

)
Γe
(
(pq)

1
2 tBD±1v±1

)
Γe
(
(pq)

1
2 tA−1C±1v±1

)
× Γe

(
(pq)

1
2 tA−1u±1D±1

)
Γe
(
(pq)

1
2 tBu±1C±1

)
. (C.3)

Now we glue this as indicated in Fig. 3

TJD(v)×v
((
TJB ,JC ,JD(w, u, v)×w C(0,0;A−1B)

JB
(w)
)

×u
(
TJB ,JC ,JD(h, u, z)×h C

(1,0;AB−1)
JB

(h)
))

∼
∮

du

4πiu

Γe
(
(qp)

1
2 t−1A±1D±1u±1

)
Γe
(
(qp)

1
2 t−1B±1C±1u±1

)
Γ
(
u±2

)
× Γe

(
(pq)

1
2 tB−1C±1u±1

)
Γe
(
(pq)

1
2 tAD±1u±1

)
×
∮

dv

4πiv

Γe
(
(qp)

1
2 t−1A±1C±1v±1

)
Γe
(
(qp)

1
2 t−1B±1D±1v±1

)
Γ(v±2)

× Γe
(
A−1Bu±1v±1

)
Γe
(
(qp)

1
2 tB−1D±1v±1

)
Γe
(
(qp)

1
2 tAC±1v±1

)
TJD(v)

× TJB ,JC ,JD(h, u, z)×h C
(1,0;AB−1)
JB

(h).

Let’s perform the computation for each term in (C.3) separately. From the first term we get

θp
(
pq2t2A−2B2

)
θp
(
(pq)−1q−1t−4A2B−2

)
θp
(
t−2
)
θp
(
q−1t−2B−2

)
θp
(
q−1t−2A2

)
θp
(
pq2t4A−2B2

)
θp
(
q−1t−2AB−1C±1D±1

)
×
∮

du

4πiu

Γe
(
(qp)

1
2 t−1A±1D±1u±1

)
Γe
(
(qp)

1
2 t−1B±1C±1u±1

)
Γ
(
u±2

)
× Γe

(
(pq)

1
2 tB−1C±1u±1

)
Γe
(
(pq)

1
2 tAD±1u±1

)
×
∮

dv

4πiv

Γe
(
(qp)

1
2 t−1A±1C±1v±1

)
Γe
(
(qp)

1
2 t−1B±1D±1v±1

)
Γ
(
v±2
)

× Γe
(
A−1Bu±1v±1

)
Γe
(
(qp)

1
2 tB−1D±1v±1

)
Γe
(
(qp)

1
2 tAC±1v±1

)
TJD(v)
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×
θp
(
(pq)

1
2 q−1tB−1z−1D±1

)
θp((pq)

1
2 q−1tAz−1C±1)

θp
(
t−4z2

)
θ
(
z2
)

× Γe
(
q−

1
2AB−1u±1

(
q

1
2 z
)±1)

Γe
(
(pq)

1
2 q

1
2 tBD±1

(
q

1
2 z
)±1)

Γe
(
(pq)

1
2 q

1
2 tA−1C±1

(
q

1
2 z
)±1)

× Γe
(
t−4AB−1zu±1

)
Γe
(
pq2t4A−1Bz−1u±1

)
Γe
(
(pq)

1
2 tA−1u±1D±1

)
Γe
(
(pq)

1
2 tBu±1C±1

)
+
{
z ↔ z−1

}
.

Terms cancel and the integral over u reduces to an integral over 6 gamma functions which can
be evaluated as before using the elliptic beta integral formula. We get

θp
(
pq2t2A−2B2

)
θp
(
(pq)−1q−1t−4A2B−2

)
θp
(
t−2
)
θp
(
q−1t−2B−2

)
θp
(
q−1t−2A2

)
θp
(
pq2t4A−2B2

)
θp
(
q−1t−2AB−1C±1D±1

)
×
θp
(
(pq)

1
2 q−1tB−1z−1D±1

)
θp
(
(pq)

1
2 q−1tAz−1C±1

)
Γe
(
(pq)

1
2 q

1
2 tBD±1

(
q

1
2 z
)±1)

θp
(
t−4z2

)
×

Γe
(
(pq)

1
2 q

1
2 tA−1C±1

(
q

1
2 z
)±1

)

θ
(
z2
)

×
∮

dv

4πiv

Γe
(
(qp)

1
2 t−1A±1C±1v±1

)
Γe
(
(qp)

1
2 t−1B±1D±1v±1

)
Γ
(
v±2
)

× Γe
(
zv±1

)
Γe
(
(qp)

1
2 tB−1D±1v±1

)
Γe
(
(qp)

1
2 tAC±1v±1

)
Γe
(
q−1A2B−2

)
Γe
(
pq2t4

)
× Γe

(
t−4A2B−2z2

)
Γe
(
pqt4z−2

)
Γe
(
q−1t−4A2B−2

)
Γe
(
q−1z−1v±1

)
Γe
(
pq2
)

× Γe
(
pq2t4A−2B2z−1v±1

)
Γe
(
t−4zv±1

)
Γe
(
A−2B2

)
TJD(v) +

{
z ↔ z−1

}
.

The integral over v is pinched at v = z±1, (qz)±1 due to collision of poles of Γe
(
zv±1

)
and

Γe
(
q−1z−1v±1

)
and we get

θp(pq
2t2A−2B2)θp

(
(pq)−1q−1t−4A2B−2

)
θp
(
t−2
)
θp
(
q−1t−2B−2

)
θp
(
q−1t−2A2

)
θp
(
pq2t4A−2B2

)
θp
(
q−1t−2AB−1C±1D±1

)
×
θp
(
(pq)

1
2 q−1tB−1z−1D±1

)
θp
(
(pq)

1
2 q−1tAz−1C±1

)
Γe
(
(pq)

1
2 q

1
2 tBD±1

(
q

1
2 z
)±1)

θp
(
t−4z2

)
θ
(
z2
)

×
Γe
(
(pq)

1
2 q

1
2 tA−1C±1

(
q

1
2 z
)±1)

Γe
(
(qp)

1
2 t−1A±1C±1z±1

)
Γe
(
(qp)

1
2 t−1B±1D±1z±1

)
Γ
(
z±2
)

×Γe
(
(qp)

1
2 tB−1D±1z±1

)
Γe
(
(qp)

1
2 tAC±1z±1

)
Γe
(
q−1A2B−2

)
Γe
(
pq2t4

)
Γe
(
t−4A2B−2z2

)
×Γe

(
zz±1

)
Γe
(
pqt4z−2

)
Γe
(
q−1t−4A2B−2

)
Γe
(
q−1z−1z±1

)
×Γe

(
pq2
)
Γe
(
pq2t4A−2B2z−1z±1

)
Γe
(
t−4zz±1

)
Γe
(
A−2B2

)
TJD(z)

+
θp
(
pq2t2A−2B2

)
θp
(
(pq)−1q−1t−4A2B−2

)
θp
(
t−2
)
θp
(
q−1t−2B−2

)
θp
(
q−1t−2A2

)
θp
(
pq2t4A−2B2

)
θp
(
q−1t−2AB−1C±1D±1

)
×
θp
(
(pq)

1
2 q−1tB−1z−1D±1

)
θp
(
(pq)

1
2 q−1tAz−1C±1

)
Γe
(
(pq)

1
2 q

1
2 tBD±1

(
q

1
2 z
)±1)

θp
(
t−4z2

)
θ
(
z2
)

×
Γe
(
(pq)

1
2 q

1
2 tA−1C±1

(
q

1
2 z
)±1)

Γe
(
(qp)

1
2 t−1A±1C±1(qz)±1

)
Γe
(
(qp)

1
2 t−1B±1D±1(qz)±1

)
Γ
(
(qz)±2

)
×Γe

(
(qp)

1
2 tB−1D±1(qz)±1

)
Γe
(
(qp)

1
2 tAC±1(qz)±1

)
Γe
(
q−1A2B−2

)
×Γe

(
pq2t4

)
Γe
(
t−4A2B−2z2

)
Γe
(
z(qz)±1

)
Γe
(
pqt4z−2

)
Γe
(
q−1t−4A2B−2

)
Γe
(
(qz)−1(qz)±1

)
×Γe

(
pq2
)
Γe
(
pq2t4A−2B2z−1(qz)±1

)
Γe
(
t−4z(qz)±1

)
Γe
(
A−2B2

)
TJD(qz) +

{
z ↔ z−1

}
,
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which simplifies to

θp
(
pq2t2A−2B2

)
θp
(
(pq)−1q−1t−4A2B−2

)
Γe
(
q−1A2B−2

)
Γe
(
A−2B2

)
θp
(
t−2
)
θp
(
q−1t−2B−2

)
θp
(
q−1t−2A2

)
θp
(
pq2t4A−2B2

)
θp
(
q−1t−2AB−1C±1D±1

)
×
θp
(
(pq)

1
2 t±1BD±1z

)
θp
(
(pq)

1
2 t±1A−1C±1z

)
θp
(
q−1t−4

)
θp
(
q−1t−4A2B−2z2

)
θp
(
t−4z2

)
θp
(
z2
)
θp
(
q−1z2

) TJD(z)

+
θp
(
pq2t2A−2B2

)
θp
(
(pq)−1q−1t−4A2B−2

)
Γe
(
q−1A2B−2

)
Γe
(
A−2B2

)
θp
(
t−2
)
θp
(
q−1t−2B−2

)
θp
(
q−1t−2A2

)
θp
(
q−1t−2AB−1C±1D±1

)
×
θp
(
(pq)

1
2 t−1B±1D±1z

)
θp
(
(pq)

1
2 t−1A±1C±1z

)
θp
(
qz2
)
θ
(
z2
) TJD(qz) +

{
z ↔ z−1

}
.

From the second term of (C.3) we get

θp
(
pq2t2A−2B2

)
θp
(
(pq)−1q−1t−4A2B−2

)
θp
(
t−2
)
θp
(
q−1t−2B−2

)
θp
(
q−1t−2A2

)
θp
(
pq2t4A−2B2

)
θp
(
q−1t−2AB−1C±1D±1

)
×
∮

du

4πiu

Γe
(
(qp)

1
2 t−1A±1D±1u±1

)
Γe
(
(qp)

1
2 t−1B±1C±1u±1

)
Γ
(
u±2

)
× Γe

(
(pq)

1
2 tB−1C±1u±1

)
Γe
(
(pq)

1
2 tAD±1u±1

)
Γe
(
(pq)

1
2 tA−1u±1D±1

)
Γe
(
(pq)

1
2 tBu±1C±1

)
× Γe

(
AB−1u±1z±1

)
Γe
(
(pq)

1
2 q

1
2 tBD±1

(
q

1
2 z
)±1)

Γe
(
(pq)

1
2 q

1
2 tA−1C±1

(
q

1
2 z
)±1)

×
∮

dv

4πiv

Γe
(
(qp)

1
2 t−1A±1C±1v±1

)
Γe
(
(qp)

1
2 t−1B±1D±1v±1

)
Γ
(
v±2
)

×
θp
(
(pq)

1
2 q−1t−3B−1zD±1

)
θp
(
(pq)

1
2 q−1t−3AzC±1

)
θp
(
z2
)
θp
(
t4z−2

)
× Γe

(
A−1Bu±1v±1

)
Γe
(
(qp)

1
2 tB−1D±1v±1

)
Γe
(
(qp)

1
2 tAC±1v±1

)
TJD(v) +

{
z ↔ z−1

}
.

Terms cancel in the integral over u and what is left can be evaluated using the inversion formula
as before which sets v = z, after some cancelations we get

Γe
((
AB−1

)2)
θp
(
pq2t2A−2B2

)
θp
(
(pq)−1q−1t−4A2B−2

)
θp
(
t−2
)
θp
(
q−1t−2B−2

)
θp
(
q−1t−2A2

)
θp
(
pq2t4A−2B2

)
θp
(
q−1t−2AB−1C±1D±1

)
×
θp
(
(qp)

1
2 tA−1C±1z

)
θp
(
(qp)

1
2 tBD±1z

)
θp
(
(pq)

1
2 q−1t−3B−1zD±1

)
θp
(
(pq)

1
2 q−1t−3AzC±1

)
θp
(
z2
)
θp
(
t4z−2

)
×TJD(z) +

{
z ↔ z−1

}
.

We compute the contribution from the last term in (C.3)∮
du

4πiu

Γe
(
(qp)

1
2 t−1A±1D±1u±1

)
Γe
(
(qp)

1
2 t−1B±1C±1u±1

)
Γ
(
u±2

)
× Γe

(
(pq)

1
2 tB−1C±1u±1

)
Γe
(
(pq)

1
2 tAD±1u±1

)
Γe
(
(pq)

1
2 tA−1u±1D±1

)
Γe
(
(pq)

1
2 tBu±1C±1

)
× Γe

(
AB−1u±1z±1

)
Γe
(
(pq)

1
2 tBD±1z±1

)
Γe
(
(pq)

1
2 tA−1C±1z±1

)
×
∮

dv

4πiv

Γe
(
(qp)

1
2 t−1A±1C±1v±1

)
Γe
(
(qp)

1
2 t−1B±1D±1v±1

)
Γ
(
v±2
)

× Γe
(
A−1Bu±1v±1

)
Γe
(
(qp)

1
2 tB−1D±1v±1

)
Γe
(
(qp)

1
2 tAC±1v±1

)
TJD(v).
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Integrals can be evaluated using the inversion formula which sets v = z almost everything cancel
and we get

Γe
((
AB−1

)2)
TJD(z).

Dividing by this factor Γe
((
AB−1

)2)
and adding all contributions we get

θp
(
pq2t2A−2B2

)
θp
(
(pq)−1q−1t−4A2B−2

)
θp
(
t−2
)
θp
(
q−1t−2B−2

)
θp
(
q−1t−2A2

)
θp
(
q−1t−2AB−1C±1D±1

)
θp
(
q−1A2B−2

)
×
θp
(
(pq)

1
2 t−1B±1D±1z

)
θp
(
(pq)

1
2 t−1A±1C±1z

)
θp
(
qz2
)
θ
(
z2
) TJD(qz)

+
θp
(
pq2t2A−2B2

)
θp
(
(pq)−1q−1t−4A2B−2

)
θp
(
t−2
)
θp
(
q−1t−2B−2

)
θp
(
q−1t−2A2

)
θp
(
pq2t4A−2B2

)
θp
(
q−1t−2AB−1C±1D±1

)
×
θp
(
(pq)

1
2 t±1BD±1z

)
θp
(
(pq)

1
2 t±1A−1C±1z

)
θp
(
q−1t−4

)
θp
(
q−1t−4A2B−2z2

)
θp
(
q−1A2B−2

)
θp
(
t−4z2

)
θp
(
z2
)
θp
(
q−1z2

) TJD(z)

+
θp
(
pq2t2A−2B2

)
θp
(
(pq)−1q−1t−4A2B−2

)
θp
(
t−2
)
θp
(
q−1t−2B−2

)
θp
(
q−1t−2A2

)
θp
(
pq2t4A−2B2

)
θp
(
q−1t−2AB−1C±1D±1

)
×
θp
(
(qp)

1
2 tA−1C±1z

)
θp
(
(qp)

1
2 tBD±1z

)
θp
(
(pq)

1
2 t3BD±1z−1

)
θp
(
(pq)

1
2 t3A−1C±1z−1

)
θp
(
z2
)
θp
(
t4z−2

)
× TJD(z) +

{
z ↔ z−1

}
+ TJD(z).

Taking away overall factor of

θp
(
pq2t2A−2B2

)
θp
(
(pq)−1q−1t−4A2B−2

)
θp
(
t−2
)
θp
(
q−1t−2B−2

)
θp
(
q−1t−2A2

)
θp
(
q−1t−2AB−1C±1D±1

)
θp
(
q−1A2B−2

) ,
we get

θp
(
(pq)

1
2 t−1B±1D±1z

)
θp
(
(pq)

1
2 t−1A±1C±1z

)
θp
(
qz2
)
θ
(
z2
) TJD(qz)

+
θp
(
q−1t−4

)
θp
(
q−1t−4A2B−2z2

)
θp
(
(pq)

1
2 t±1BD±1z

)
θp
(
(pq)

1
2 t±1A−1C±1z

)
θp
(
q−2t−4A2B−2

)
θp
(
t−4z2

)
θp
(
z2
)
θp
(
q−1z2

) TJD(z)

+
θp
(
q−1A2B−2

)
θp
(
(pq)

1
2 t2BD±1(t−1z)±1

)
θp
(
(pq)

1
2 t2A−1C±1(t−1z)±1

)
θp
(
q−2t−4A2B−2

)
θp
(
z2
)
θp
(
t4z−2

) TJD(z)

+
{
z ↔ z−1

}
+
θp
(
t−2
)
θp
(
q−1t−2B−2

)
θp
(
q−1t−2A2

)
θp
(
q−1t−2AB−1C±1D±1

)
θp
(
q−1A2B−2

)
θp
(
pq2t2A−2B2

)
θp
(
(pq)−1q−1t−4A2B−2

) TJD(z).

To summarize, we have shown that

TJD(v)×v
((
TJB ,JC ,JD(w, u, v)×w C(0,0;A−1B)

JB
(w)
)

×u
(
TJB ,JC ,JD(h, u, z)×h C

(1,0;AB−1)
JB

(h)
))
,

is proportional to

D
JB ,(1,0;AB

−1)
JD

TJD(z),

where D
JB ,(1,0;AB

−1)
JD

is given by (3.2).
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D Koornwinder limit of the trinion

We compute here the index of the three punctured sphere in the Koornwinder limit. The only
subtle issue is the evaluation of the integrals in the function H (2.1). The integral can be
interpreted as index of two coupled SU(2) gauge theories with five flavors. The integrand does
not have a good limit however by manipulating it using Seiberg dualities we can show that the
limit is well defined and evaluate all the integrals. We will discuss the evaluation of this function
here.

To evaluate H we first perform Seiberg duality on w2 splitting to five flavors in particular
way, leading to SU(3) theory with five flavors(

(qp)
1
4A−

1
2 tbz±11 , (qp)

1
4A

1
2a−1tv±11 , (qp)

1
4A−

1
2 b−1z−12

)
,(

(qp)
1
2

1

t2
w±11 , (qp)

1
4A

1
2av±12 , (qp)

1
4A−

1
2 b−1z2

)
,

which leads to no w2 flavors having negative powers of p. We have the mesons

(qp)
3
4A−

1
2 t−1bz±11 w±11 , (qp)

3
4A

1
2a−1t−1w±11 v±11 , (qp)

3
4 t−2A−

1
2 b−1z−12 w±11 ,

(qp)
1
2 batz±11 v±12 , (qp)

1
2 tAv±12 v±11 , (qp)

1
2A−1b−2,

(qp)
1
2A−1z2tz

±1
1 , (qp)

1
2ab−1v±12 z−12 , (qp)

1
2 tb−1a−1z2v

±1
1 ,

and the new charged fields are

�SU(3)w2
: (pq)

1
6A

1
3 b−

2
3 t

1
3a−

2
3 z
− 1

3
2 z±11 , (pq)

1
6A−

2
3 b

1
3 t

1
3a

1
3 z
− 1

3
2 v±11 , (qp)

1
6A

1
3 b

4
3 t

4
3a−

2
3 z

2
3
2 ,

�SU(3)w2
: (qp)

1
12 t

2
3A

1
6a

2
3 b−

1
3 z

1
3
2 w
±1
1 , (qp)

1
3A−

1
3 b−

1
3 t−

4
3a−

1
3 z

1
3
2 v
±1
2 , (qp)

1
3A

2
3 b

2
3 t−

4
3a

2
3 z
− 2

3
2 ,

and all of these fields have a good limit when p goes to zero and the fugacities are scaled. We
note that some of the mesons charged under w1 form mass terms with some of the quarks and
after the first Seiberg duality we have four flavors of w1(

(qp)
1
4A

1
2 bz2, (qp)

1
12A

1
6 t

2
3a

2
3 b−

1
3 z

1
3
2

(
wj2
)−1)

,(
(qp)

1
4A

1
2 bz−12 , (qp)

1
4A−

1
2a−1v±12 , (qp)

3
4A−

1
2 t−2b−1z−12

)
,

for which we perform another duality operation. After the duality the p vanishing limit is well
defined for all fields. Let us write the fields surviving after scaling

(pq)
1
6A

1
3 b−

2
3 t

1
3a−

2
3 z
− 1

3
2 z±11 wj2, (pq)

1
6A−

2
3 b

1
3 t

1
3a

1
3 z
− 1

3
2 v±11 wj2,

(qp)t−2, (qp)
1
3A−

1
3 t−

4
3 b−

1
3a−

1
3 z

1
3
2 v
−1
2

(
wj2
)−1

, (qp)
1
3A−

1
3 t

2
3 b−

1
3a−

1
3 z

1
3
2 v
−1
2

(
wj2
)−1

, ab−1tw±11 ,

(qp)
1
2ab−1v−12 z−12 , (qp)

1
2 b−1t−1A−1w±11 a−1,

(qp)
1
2a−1bz2v2, (qp)

1
2 z−12 t−1w±11 v−12 , bta−1w±11 , (qp)

1
2 tv2Av

±1
1 , (qp)

1
2abtv2z

±1
1 ,

and we can evaluate the index of the three punctured sphere to be (5.2).
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