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Abstract. We establish (gl,, gly)-dualities between quantum Gaudin models with irre-
gular singularities. Specifically, for any M, N € Z>; we consider two Gaudin models: the
one associated with the Lie algebra gl,, which has a double pole at infinity and N poles,
counting multiplicities, in the complex plane, and the same model but with the roles of M
and NV interchanged. Both models can be realized in terms of Weyl algebras, i.e., free bosons;
we establish that, in this realization, the algebras of integrals of motion of the two models
coincide. At the classical level we establish two further generalizations of the duality. First,
we show that there is also a duality for realizations in terms of free fermions. Second, in the
bosonic realization we consider the classical cyclotomic Gaudin model associated with the
Lie algebra gl;, and its diagram automorphism, with a double pole at infinity and 2V poles,
counting multiplicities, in the complex plane. We prove that it is dual to a non-cyclotomic
Gaudin model associated with the Lie algebra sp,p, with a double pole at infinity and M
simple poles in the complex plane. In the special case N = 1 we recover the well-known
self-duality in the Neumann model.
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1 Introduction

Fix a set of N distinct complex numbers {z;}¥, C C, and an element A € gl},. The quadratic
Hamiltonians of the quantum Gaudin model [12, 13] associated to gl,; are the following elements
of U(Q[M)®N

)E(J) N

Hi=) Z Eabi 4 S~ \(EL)ED,

J#i a,b=1 “ % a,b=1

where {Eq} Y ap—1 denote the standard basis of gl; and E( g
The J(; belong to a large commutative subalgebra Z C U(g[M)®N called the Gaudin [11] or
Bethe [19] subalgebra, for which an explicit set of generators is known [6, 19, 31].

If the element A € gl}, is regular semisimple, i.e., if we can choose bases such that A\(Eq) =

AaOgp for some distinct numbers {/\a}g/il C C, then one can also consider the following elements
of U(gly)®M:

means E,; in the ith tensor factor.

a)~ M

%ZZ' Zuv

b#a 1,57=1 =1
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where {Eij}i;zl denote the standard basis of gly. They belong to a large commutative subal-

gebra 2 C U(gly)®M.
Let CM denote the defining representation of gl;,;. Then Z can be represented as a subalgebra
of

End ((CM)®") = End (CMM) = End ((C)®").

So can Z. In fact their images in End ((CN M ) coincide. This is the (gl,;, gly)-duality for
quantum Gaudin models first observed between the quadratic Gaudin Hamiltonians and the
dynamical Hamiltonians in [33], see also [32]. It was later proved in [21], see also [4]. (Under
this realization the Hamiltonians 5~{a € 2 of the dual model coincide with suitably defined
dynamical Hamiltonians [10] of the original gl); Gaudin model. See [20, 21].) The classical
counterpart of this duality goes back to the works of J. Harnad [1, 14].

In this paper we generalize this (gl,;, gl )-duality in a number of ways, for both the quantum
and classical Gaudin models. Let us describe first the main result. Two natural generalizations
of the Gaudin model above are to

(a) models in which the quadratic Hamiltonians (and the Lax matrix, see below) have higher
order singularities at the marked points z; € C, ¢ =1,..., N. Such models are called Gaudin
models with irreqular singularities.!

(b) models in which A € gl is not semisimple, i.e., has non-trivial Jordan blocks.?

We show that these two generalizations are natural (gl,;, gl )-duals to one another. Namely, we
show that there is a correspondence among models generalized in both directions, (a) and (b),
and that under this correspondence the sizes of the Jordan blocks get exchanged with the degrees
of the irregular singularities at the marked points in the complex plane. See Theorem 4.8 below.

The heart of the proof is the observation that the generating functions for the generators of
both algebras Z and 2 can be obtained by evaluating, in two different ways, the column-ordered
determinant of a certain Manin matrix. (A similar trick was also used in [4, Proposition 8§].)
Given that observation, the duality between (a) and (b) above is essentially a consequence of
the simple fact that the inverse of a Jordan block matrix

z 0 ... 0 210 ... 0

-1 x ... 0 x=2 71 . 0
is of the form . ) . . ;

o ... -1 =z x kL ? g

here the higher-order poles in = will give rise to the irregular singularities of the dual Gaudin
model.

Now let us give an overview of the results of the paper in more detail. Consider the direct
sum of Lie algebras

N
g[%[v) = @g[M@glcom, (1.1)
i=1

!The reason for this terminology is that the spectrum of such models is described in terms of opers with
irregular singularities; see [9] and also [35]. Strictly speaking, the term A(Eqp)Eqy in H; is already an irregular
singularity of order 2 at co in the same sense: namely, the opers describing the spectrum have a double pole at oco.
For that reason we refer to a Gaudin model with such terms in the Hamiltonians H; as having a double pole at
infinity.

2Let us note in passing that the case of A semisimple but not regular is very rich; see for example [8, 23, 24].
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where the Lie algebra gl§;™ in the last summand is isomorphic to gl,; as a vector space but
endowed with the trivial Lie bracket. Henceforth we denote the copy of Egp in the i direct
summand of glgw) by E(Zl) and the copy in the last abelian summand gl§;" by E( ) 1In terms
of these data, the formal Lax matrix of the Gaudin model associated with gl;;, Wlth a double

pole at infinity and simple poles at each z;, i =1,..., N, is given by

Z Epq ® ( o +Z j”z ) dz. (1.2)

a,b=1

Here Ey, == p(Eup) where p: gly; — Matpr«ar(C) is the defining representation.

Regarding £(z) as an M x M matrix with entries in the symmetric algebra S ( (v )) the
coefficients of its characteristic polynomial

det ()\1M><M - L(z))

span a large Poisson commutative subalgebra .QF(‘Z ) (glg\]/}])) of S (glg\y)). Given a classical model
described by a Poisson algebra P and Hamiltonian H € P, the latter becomes of particular

interest if we have a homomorphism of Poisson algebras 7: S (g[%[\/)) — P such that H lies in the

image of Qféll) (glg\y)). Indeed, W(Q”(CZIZ) (gls\y))) C P then consists of Poisson commuting integrals

of motion of the model.
The Lax matrix (1.2) can also be used to describe quantum models by regarding it instead

as an M x M matrix with entries in the universal enveloping algebra U (glg\y)). In this case,

a large commutative subalgebra 2., (g[g\y)) cU (glg\y)), called the Gaudin algebra, is spanned
by the coefficients in the partial fraction decomposition of the rational functions obtained as the
coefficients of the differential operator

cdet (alexM - tﬁ(z)),

where cdet is the column ordered determinant. Given a unital associative algebra U and a homo-
morphism 7 : U(g[(N)) — U, the image of Z(,,) (9[5\]/}[)) provides a large commutative subalgebra
of U.

Let U be the Weyl algebra generated by the commuting variables z{ for ¢« = 1,..., N and
a = 1,..., M together with their partial derivatives 0 = 0/0z?. We introduce another set
{AM| C C of M distinct complex numbers. It is well known that

#(En) = Mabap, 7 (EG) = 0} (1.3)

defines a homomorphism 7: U (glg\y)) — U. Therefore, in particular, 7%(5’,?(21) (glg\]/}[))) is a com-
mutative subalgebra of U. On the other hand, given the new set of complex numbers A,,
a=1,..., M, we may now equally consider the Gaudin model associated with gl, with a dou-
ble pole at infinity and simple poles at each A\, for a = 1,..., M. Its formal Lax matrix is
defined as in (1.2), explicitly we let

Z Eﬂ@( % £ )

3,j=1

We can define another homomorphism 7: U (g[(NM)) — U as
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(Note here the order between 0 and z{ as compared, for instance, to [20, Section 5.1] where ng“)

is realised as z{0].) The (glar, gl )-duality between the above two Gaudin models associated
with gl,; and gl can be formulated, in the present conventions, as the equality of differential
polynomials

N (M -
7t (H(z — z;) cdet (8:1nrxm — tL(z))) = (H(@Z — ) cdet (21nxn — L(@z))) ,

=1 a=1

whose coefficients are U-valued polynomials in z. (See Section 4.2 for the precise definition of the
expression appearing on the right hand side.) In the classical setting discussed above the same
identity holds with 0, replaced everywhere by the spectral parameter A, the Weyl algebra U is
replaced by the Poisson algebra P defined as the polynomial algebra in the canonically conjugate
variables (p{,z¢) and column ordered determinants replaced by ordinary determinants.

We generalise this statement in a number of directions. Firstly, in both the classical and
quantum cases, we consider Gaudin models with irregular singularities. Specifically, fix a positive

n

integer n € Z>q and let {7;}" ; C Z>1 be such that ) 7, = N. We consider a gl;,-Gaudin model
with a double pole at infinity and an irregular singlul;rity of order 7; at each z; fort=1,...,n.
The direct sum of Lie algebras (1.1) is replaced in this case by a direct sum of Takiff Lie algebras®

n

ol = @B (atulel/e 7 alule]) @ ali™, (1.4)

i=1
where D is a divisor encoding the collection of points z; for i = 1,...,n weighted by the integers 7;
for i =1,...,n. The formal Lax matrix £(z) of this Gaudin model is an M x M matrix with

entries in the Lie algebra g[%/[, and the Gaudin algebra Qf(zi)(g[ﬁ) is spanned by the coefficients
in the partial fraction decomposition of the rational functions obtained as the coefficients of the
differential operator

cdet (0:1arxnr — £(2)). (1.5)

Let U be the same unital associative algebra as above. In order to define a suitable homomor-
phism 7: U (g[%) — U we combine representations of the Takiff Lie algebras gly,[]/e™ gl/[e] —
U for each ¢ = 1,...,n, naturally generalising the representation gl;; — U, E;p — 33?8%’ in the
above regular singularity case, together with a constant homomorphism gl{7" — C1 C U. As be-
fore, the choice of the latter is what determines the position of the poles of the dual gly-Gaudin
model. In fact, if instead of choosing a diagonal matrix as in (1.3) we let

A1
1 N 0

1 Am

3These were introduced in the mathematics literature in [29] but have also been widely used in the mathematical
physics literature though not by this name, see for instance [22].
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be a direct sum of m Jordan blocks of size 7, € Z>; with A\, € C along the diagonal for

m

a=1,...,m, such that > 7, = M, then the dual Gaudin model associated with gl will have
a=1

a double pole at infinity and an irregular singularity at each A, of order 7, for a = 1,...,m.

Let D be the divisor corresponding to these data and g[% the associated direct sum of Takiff

algebras, cf. (1.4). After defining a corresponding homomorphism 7: U(g[%) — U for this
Gaudin model, we prove a (gl,;, gly)-duality similar to the one stated above for the regular
singularity case, see Theorem 4.8. As before, a similar result also holds in the classical setting
where 7 and 7 in this case are homomorphisms from the symmetric algebras S (g[AD/I) and S (g[%),
respectively, to the Poisson algebra P, see Theorem 3.2.

In the classical setup of Section 3 we also consider fermionic generalisations of (gl,/, gly)-
duality. Specifically, for the Poisson algebra P we take instead the even part of the Zs-graded
Poisson algebra generated by canonically conjugate Grassmann variable pairs (7', 4¢¢). The

corresponding homomorphisms of Poisson algebras m¢: S (g[ﬂ) — P and 75: S (g[%) — P are
defined in Lemma 3.3. In this case we establish a different type of (gl gl )-duality between
the same Gaudin models with irregular singularities and associated with gl;; and gl as above.
Denoting by £(z) and L£(\) their respective Lax matrices, it takes the form

n

me(det (MLarar — £(2)))@e(det (21ysn —L£(N)) = [[(z = 2)7 [ (A = Aa)™.
i=1 a=1

See Theorem 3.4, the proof of which is completely analogous to that of Theorem 3.2 in the
bosonic setting, using basic properties of the Berezinian of an (M|N) x (M|N) supermatrix. We
leave the possible generalisation of such a fermionic (gl,,, gl )-duality to the quantum setting
for future work.

Finally, in Section 5 we consider extensions of these results to cyclotomic Gaudin models
also in the classical setting. Specifically, we consider a Zs-cyclotomic gl;;-Gaudin model with
a double pole at infinity as usual and with irregular singularities at the origin of order 7y
and at points z; € C*, with disjoint orbits under z — —z, of order 7; for each i = 1,...,n.

n
Let N = 79+ > 7. Using the bosonic Poisson algebra P generated by canonically conjugate
i=1

1=
variables (pf,z¢) we prove that this model is dual to a Gaudin model associated with the Lie

algebra spyn, with a double pole at infinity and regular singularities at M points A,, a =
1,..., M, see Theorem 5.2. We show that the well know self-duality in the Neumann model
is a particular example of the latter with N = 1. Generalisations of such (gl,,, gl )-dualities
involving cyclotomic Gaudin models to the quantum case are less obvious since it is known [34]
that in this case the cyclotomic Gaudin algebra is not generated by a cdet-type formula as
in (1.5), see Remark 5.3.

2 Gaudin models with irregular singularities

2.1 Lie algebras g[ﬁ and glg

Let M,N € Z>1. Denote by Ey, for a,b = 1,..., M the standard basis of gl,, and by Eij for
i,7 =1,..., N the standard basis of gly.

Let z; € Cfori=1,...,nand A\, € C for a = 1,...,m be such that z; # z; for i # j and
Aa # X for a # b. Pick and fix integers 7; € Z>; for each ¢ = 1,...,n and 7, € Z>1 for each
a=1,...,m. We call these the Takiff degrees at z; and A\, respectively. Consider the effective
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divisors

n m
D= m-z+200, D= 7 A+2 o

=1 a=1

(Recall that an effective divisor is a finite formal linear combination of points in some Riemann
surface, here the Riemann sphere C U {oo}, with coefficients in Zx.)
We require that degD = N + 2 and degD = M + 2 or in other words,

n m
Zn:N and Z%G:M.
i=1 a=1

Note that if , =1 =7, foralli=1,...,nand a = 1,...,m then in fact we have n = N and
m = M. More generally, it will be convenient to break up the list of integers from 1 to IV into n
blocks of sizes 73, © = 1,...,n, and similarly for the list of integers from 1 to M. To that end,

let us define

i—1 a—1
vii=Y 7, and  Ppi= Y F (2.1)
j=1 b=1

fori=1,...,Nanda=1,..., M, so that

(L,...,N)=(,...;m50v0+ 1,.. ;v + 705 sy + 1, oo vy + T0),
(1, MY = (1, Fisin 1,0 ot Tos et Ly, i+ o).

Note that v; =1 = 0.

Let glys[e] == gl ® Cle] denote the Lie algebra of polynomials in a formal variable e with
coefficients in gl,;. For any k € Z>1 we have the ideal e*gly[¢] := gl); ® e¥C[e]. The corre-
sponding quotient gly,[e]/e* = glys[e]/e¥al[e] is called a Takiff Lie algebra over gl,;. When
k € Zso, for every n € Z>y with n < k we have a non-trivial ideal in gl,[e]/e" given by
gl lel/eF = emgly le] /¥ gLy ], which by abuse of terminology we shall also refer to as a Ta-
kiff Lie algebra. We define direct sums of Takiff Lie algebras over gl;; and glp, respectively,
as

n
gl = cootlys[enc] /62 @ @ alalezl/el
i=1

gly = EcoBln[En0)/E2 @ @glN[éAa]/gf\Z'
a=1

Note that esoglys[€00]/e% and Eoogly[Esc]/E2, are respectively isomorphic to the abelian Lie
algebras gl57™ and gIy™ in the notation used in the introduction, see, e.g., (1.1).
We use the abbreviated notation Xe¥ for an element X ® ¥ € gl),[¢] where X € gl,; and

k € Z>0, and likewise for elements of gly[e]. Fix a basis of gl defined by
) . (00) ._
ablr] T EabEZ«i, Eab[l] = Eapoo
fori=1,...,N,a,b=1,...,M and r =0,...,7;, — 1. Let us note, in particular, that Egzbi[zq} =0
whenever r > 7;. Likewise, as a basis of g[]% we take

FXa) . B ozs Floo) _ E ~
Eij[s] = Eijé‘)\a, Eij[l] = Ez‘jgoo

fora=1,...,M,i,j=1,...,Nand s =0,...,7, — 1. Here also Egj[‘;])ZOforsz%a.
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The set of non-trivial Lie brackets of these basis elements read

[E(Zz) E(ZJ)] — 5ij[Eab7 Ecd][(;:_)s} = 5zjfsbc ( i) 5z]5adE( 2i)

ab[r] ’ cd[s] ad[r+5] Cb[T+S] ’ (22)

forany i, =1,...,nand a,b,c,d=1,..., M, and
(M) EQw)7 _ £ g 1) _ £(Xa) £(Xa)
[E'Lj[r} Ekl[bs]] - 6ab[Eij’ Ekl][r+s} - 5ab5jkEil[r+s} — OabOil Ekj[rJrs]’

for any ¢,j,k,l = 1,...,N and a,b = 1,...,m. Note, in particular, that E(b[l)} and EE;E)] are

Casimirs of the Lie algebras g[% and 9[2, respectively.

2.2 Lax matrices

Let p: glyy — Matpy«m(C) and p: gly — Matyxn(C) denote the defining representations
of gl,, and gly, respectively. We write Eyp, := p(Eg) and E’ij = ﬁ(E”)

The sets {Eab}fb:1 and {Eba}fl\f[b:l form dual bases of gl;; with respect to the trace in the
representation p since tr(EypFeq) = 0440 for all a,b,c,d = 1,..., M. Likewise, dual bases of gl

with respect to the trace in the representation p are given by {E”}fvr and {Eﬂ}” 1

The Lax matrix of the Gaudin model associated with g[]\D/[ is given by

n T;—1 (Zz)
ab[r
E Epa® | E° b[l] + § E o) dz. (2.3a)
a,b=1 i=1 r=0

It is an M x M matrix whose coefficients are rational functions of z valued in gl3;. Likewise,

the Lax matrix of the Gaudin model associated with g[]% reads

N m Fo—1 ~()\a)
Pdx =Y Eye B +3 > o ”[S] S | (2.3b)
i,J=1 a=1 s=0

and is an N x N matrix with entries rational functions of A valued in glx.

3 Classical (gl gln)-duality

3.1 Classical Gaudin model

The algebra of observables of the classical Gaudin model associated with g[% is the symmetric
tensor algebra S (g[ﬁ). It is a Poisson algebra: the Poisson bracket is defined to be equal to the
Lie bracket (2.2) on the subspace g[ﬁ — S(g[AD/[) and then extended by the Leibniz rule to the
whole of S (g[ﬁ). Consider the quantity

n

[1(z = 2)7 det (\1arncns — £7(2)). (3.1)

i=1
This is a polynomial of degree M in A whose coefficients are rational functions in z with coeffi-
cients in S(g[ﬁ). The classical Gaudin algebra 2! (g[ﬁ) of the glj\%—Gaudin model is by defi-
nition the linear subspace of S (g[]\@/[) spanned by these coeflicients. It is a Poisson-commutative
subalgebra of S (g[%).

The classical Gaudin algebra 2! (g[%) of the g[%—Gaudin model is defined analogously in

terms of the following polynomial of degree N in z with coefficients rational in A,

m

[T = 2a)™ det (z1ysn — £7(N)). (3.2)

a=1
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3.2 Bosonic realisation

N M

.. with Poisson brackets
i,j=1 a,b=1

Introduce the Poisson algebra Py, := C [xf, p?]

{.’L’l, Ljy = 0, {pga-x?} = 5ij5ab7 {p;z’p;)} =0, (33>

fora,b =1,...,M and i,j = 1,...,N. In the following we shall regard P, as a Lie algebra
under the Poisson bracket.

For any x € C and k € Z>; we denote by Ji(x) the Jordan block of size k x k with z along
the diagonal and —1’s below the diagonal, namely

x 0o ... 0
-1 = ... 0
Je(z) = | . o
0 ... -1 x

We note for later that if « £ 0 then this is invertible and its inverse is given by

10 0
. x 2 g1 0
Je(@)™ = . (3.4)
xk x 2 71

vi+1;—r m
G TR D (L
ba

u=v;+1

foreveryr=0,...,5—1,i=1,...,nanda,b=1,..., M, and

Va+Ta—S$
U u+s ~
za[s] Z pjTi Tb 13[1] (@ I, (—2k) ) :
u=rvq+1 ji
for every s = 0,...,7, — 1, 4,5 = 1,...,N and a = 1,...,m, are homomorphisms of Lie

algebras. They extend uniquely to homomorphisms of Poisson algebras my: S(g[J\@J) — Py and
ﬁ'bt S(g[%) — be.

Proof. We will prove the corresponding result in the quantum case in detail below. See
Lemma 4.7. That proof applies line-by-line here, with 0 replaced by p. |

Let C(z)[A] denote the algebra of polynomials in A with coefficients rational in z. Given any
Poisson algebra P we introduce the Poisson algebra P(z)[\] := P ® C(z)[A] with Poisson bracket
defined using multiplication in the second tensor factor. Extend the homomorphisms 7, and 7,
from Lemma 3.1 to homomorphisms of Poisson algebras

o S(0) (N — PN, Fo: S(0) (N[ — P[],

by letting them act trivially on the tensor factors C(z)[A] and C())[z], respectively. In particular,
we may apply these homomorphisms respectively to the expressions (3.1) and (3.2). It follows
from Theorem 3.2 below that the resulting expressions in fact live in the common subalgebra
Polz, A] == P, @ Clz, A] of both Py(z)[A] and Py,(A)[z], where C[z, A\] denotes the algebra of
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polynomials in the variables z and A. The coefficients of these polynomials in Py[z, \] span the
images of the classical Gaudin algebras in Py, namely

Wb(gd(g[%)) C Py and ﬁb(fd(g[%)) C be,

respectively. The following theorem establishes that these Poisson-commutative subalgebras
of Py, coincide.

Theorem 3.2. We have the following relation

b <H(z — z;)7 det (\Larsar — LD(z))> = Tp (H()\ — Aa) " det (21nxn — Lﬁ()\))> ,
i=1 a=1
as an equality in Pp[z, A].

Proof. Introduce the M x M and N x N block diagonal matrices

A::@ Wz (N — Aa), Z::@Jn(z—zi).
a=1 =1
Also introduce the M x N matrices
P = (P?)yzl ﬁip X = (‘T?)cjyzl ﬁil-

Consider the block matrix

Mo (tfl\D )Zf> (3.5)

with entries in the commutative algebra Pp[A, z]. We may evaluate its determinant in two ways.
On the one hand, we have

A1
det M = det (M (é Al X))

A 0 1
:det<tP Z_tPA1X>:detAdet(Z—tPA X).

On the other hand,

Z P Z P\ (1 —z7'tp
woorr=an (2 T)maa((Z TY() 4

- Z 0 - _ —1t
—det(X A—XZ“P)_detZdet(A XZ P).

Hence we obtain the relation
det Zdet (A — XZ7''P) = det Adet (Z — 'PAT'X). (3.6)
It remains to note that the square matrices Z and A can be written as

N M
Z="3" Byl -m(E), A= Ew(Maw—m(Ep))
ij=1

a,b=1
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with m, and 7, as defined in Lemma 3.1, and that their inverses are given by

m

1= é T(z—z)" A= T2
1=1

a=1

Thus we have

M
A—XZ'tp = Z Ew(A—XZ7''P),,
a,b=1

n o vi+T;

M
=l — Z Eu ”b(EELZ(El)]) + Z Z 2§ (Jr (2 — zi)_l)jkpz ,
a,b=1 i=1 j,k=v;+1
which is nothing but A1 — Wb(tLD(z)) using Lemma 4.7, the expression (2.3a) for the Lax
matrix £P(2) and (3.4) for the inverse of a Jordan block. Likewise

N
Z-'"PATX = Y Ey(Z - 'PATX),

i,j=1
N 5 Ug+Ta
:Zl_inj 7Tb ]zl] —|—Z Z pZ J;—a)\ )\) ) s
i,j=1 a=1b,c=04+1

which coincides with z1 — 7, (ZZ(/\)), as required. Since det ‘A = det A for any square matrix A
n m B

and noting that det Z = [[(z — 2z;)™ and det A = [] (A — Ag)", the result follows. [
i=1 a=1

3.3 Fermionic realisation

Let V = spanc {wz, T 1 j=1 i/lb , and define the exterior algebra Pr = AV = @QMN/\ v,
whose skew-symmetric product we denote simply by juxtaposition. We refer to an element
u € A¥V as being homogeneous of degree k and write [u| = k. In particular, || = |7 =1 for
any a =1,...,M and i = 1,..., N. We endow Pf with a Zy-graded Poisson structure defined
by

{ﬂng?}+ = {wgﬂhth = 5ij5ab7

for any a,b=1,...,M and i,j = 1,..., N, and extended to the whole of Ps by the Zy-graded
skew-symmetry property and the Zs-graded Leibniz rule, i.e.,

fu,vhy = —(=D)MP o, u),

{uvwy = {u,v}ew + (Do fu, w)

for any homogeneous elements u, v, w € Ps.
Let P? = @,]ngjg 2ky denote the even subspace of Pf. The restriction of the Zj-graded
Poisson bracket {-,}4 to P¥ defines a Lie algebra structure on PY.

Lemma 3.3. The linear maps ms: g[?/[ — i]’? and Tf: g[]% — ’P? defined by

Vi+T;—T

Z 7T$+7~¢Z7 f Eab 1] <@ JTC C > s
ab

u=v;+1
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foreveryi=1,....,n anda,b=1,..., M, and

Va+Ta—S$
+ ~
ZJ[S] Z 1/)“ i 8’ i zj[l] (@ J’T‘k —Zk ) )
u=rq+1 ij
for everyi,j=1,...,N and a=1,...,m, are homomorphisms of Lie algebras.

Proof. Foreachi,j=1,...,nand a,b=1,..., M we have

vi+Ti—rVi+T;—s
{Ff(E((zZI’)Z[Z"])’Wf(EEZJ[;})}-&-: Z Z {ﬂ-qurwua v+swv}+
u=v;+1 v=v,+1
V,L'+Ti—7"l/i+7'i—8
= Z Z u+r{ww v+s}+wd 5+s{773+ra¢g}+7/)3)5ij
u=v;+1 v=vr;+1

Vit+Ti—r—s

d b
= Z (6Cb7T'Z+T+swu - 5ad7r1ct+7"+3¢“)5ij

u=v;+1
= (5bc7rf(Eid[3~+s]) - 5ad”f(E£b[2«+s ))dij ({EE; )’ cd[s]})
Likewise, for each 7,7 =1,...,N and a,b=1,...,m one shows that

{me (B 7 (Bt ) = me({ECE) Bty D).

and all Poisson brackets involving the generators at infinity are also easily seen to be preserved
by the linear maps 7 and 7 since z; € C and )\, € C are central in (P?. |
Theorem 3.4. We have the following relation

n

mr(det (ALarxar — £2(2))) 7 (det (21w — £2(N)) = [[(= — =) H

=1

Proof. Consider the same M x M and N x N block diagonal matrices Z and A as in the proof
of Theorem 3.2. Introduce the M x N and N x M matrices

II:= (Wf)yzl é\ih = (¢f )z 1a 1

and consider the following even supermatrix

v~ (4f5)

Since A and Z are both invertible, we can define the Berezinian, or superdeterminant, of M
which is given by Ber M = det A( det (Z — \I/Afll_[))fl. Alternatively, the Berezinian of M can
equally be expressed as Ber M = det (A—HZ _1\11) (det Z)~1, see for instance [2]. Equating these
two expressions of Ber M we obtain the relation

det (A —TI1Z71W) det (Z — WAT'I) = det Z det A.
Recalling the expressions for the square matrices Z and A and their inverses given in the
proof of Theorem 3.2, we can write

M
A-TIZ7'0 = Y Eu(A-TZ7'T),,
a,b=1
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vi+Ti
-1 b
T DR B RS Sl S TS e
a,b=1 i=1 j,k=v;+1

which is nothing but A1 — ¢ (£%(z)). Likewise

N
Z WA= ) Ey(Z - WA,
i,j=1

m Va+Ta

_Zlszz] 7Tf l][l] +Z Z 1/}2 Ta)\ )‘) ) C y

i,j=1 a=1b,c=v,+1

which is 21 — ﬁf(tLD()\)). The result now follows as in the proof of Theorem 3.2. |

4 Quantum (gl,;, gly)-duality

There is a natural quantum version of Theorem 3.2. In order to state it, we first need a short
digression on Manin matrices. In this section we do not consider the fermionic counterpart of
Theorem 3.2, namely Theorem 3.4, but leave this for future work.

4.1 Manin matrices

Let A be an associative (but possibly noncommutative) algebra over C. Suppose M = (M;;) is
a matrix with entries in A.

Definition 4.1. The matrix M is a Manin matriz if

(i) [Mi;, My;] =0 for all ¢, j, k, and
(ii) [Mij, Myg] = [My;, My] for all i, j, k, L.

That is, elements of the same column must commute amongst themselves, and commutators of
cross terms of 2 X 2 submatrices must be equal (for example [My1, Mas] = [Ma1, Mis]). Actually
the second of these conditions implies the first (set 7 =) but it is convenient to think of them
separately.

In the literature Manin matrices have been also called right quantum matrices [15, 16, 17, 18]
or row-pseudo-commutative matrices [3]. For a review of their properties, and further references,
see [5].

Definition 4.2. The column(-ordered) determinant of an N x N matrix M is
cdet M = Z ‘ ‘M (1)1M0.(2)2 cee MO'(N)N'
gESN

Lemma 4.3. The column determinant cdet M changes only by a sign under the exchange of
any two rows of M. If M is Manin, then cdet M also changes only by a sign under the exchange
of any two columns of M.

Proof. The first part is manifest. See [5, Section 3.4] for the second. [

Proposition 4.4. Let M be an N x N Manin matriz with coefficients in A. Let X be a kx (N —k)
matriz with coefficients in A, for some 0 < k < N. Then

1 X
cdet M = cdet (M (0 1))
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Proof. See [5, Section 5.1]. [

This has the following corollary which will be important for us.

A B

Proposition 4.5. Let M = <C D

> be the block form of an N x N Manin matriz with
coefficients in A.

(i) Suppose A is a subalgebra of a (possibly larger) algebra A’ over which A has a right inverse,
i.e., AA~Y =1 for some matriz A~ with coefficients in A’. Then

cdet M = cdet A cdet (D — C’A_IB)

as an equality in A.

(i1) Suppose A is a subalgebra of a (possibly larger) algebra A" over which D has a right inverse,
i.e., DD™Y =1 for some matriz D~ with coefficients in A”. Then

cdet M = cdet D cdet (A — BDflC)

as an equality in A.

Proof. We work initially over A’. Suppose A has a right inverse. By Proposition 4.4 we have

caer (A B —eaec (4 2Y (4 4"

— A 0 _ -1
= cdet (C D—CA_IB) = cdet Acdet (D — CA™'B)

as an equality in A’. But cdet M belongs to A, so in fact this is an equality in .A. This establishes
part (7).

For part (i7) note that, by Lemma 4.3, cdet M is invariant under the exchange of any pair of
rows followed by the exchange of the corresponding pair of columns. So we can rearrange the
blocks to find

D C
cdet M = cdet (B A)

and then argue as for part (). [

Remark 4.6. The proposition above is the first half of [5, Proposition 10|, specifically li-
nes (5.17) and (5.18). The subsequent lines (5.19) and (5.20) appear to contain misprints. For
@ Z) is a 2 x 2 Manin matrix with d invertible then cdet M = ad — cb =
(a—cbd™)d = (a — cd~'b)d whereas [5, line (5.20)] gives cdet M = (a — bd~'¢)d, which is not

in general the same.

example, if M =

4.2 Quantum Gaudin model

The algebra of observables of the quantum Gaudin model associated with g[ﬁ is the enveloping
algebra U (g[ﬁ), equipped with its usual associative product. Let 0, := % and consider the
same Lax matrix given by (2.3a), as in the classical model we considered above but now regarded

as taking values in g[ﬂ — U(g[]\%). Its transpose is

n T;—1 z;)

22 (2)dz = Z Eae [EG)+3) z_“zb[’"]m dz.

a,b=1 i=1 r=0
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Recall the definition of the column-ordered determinant, Definition 4.2, and consider the
quantity

n

M
H(z — 2;)7 cdet (9. 1arwn — tﬁg(z)) =: Z Si(2)0F. (4.1)
k=0

i=1

This is a differential operator in z of order M. For each 0 < k < M, the coefficient Sy (z) of 9%
is a rational function in z valued in U (g[ﬂ).

The quantum Gaudin algebra % (9[3\34) of the g[]’f/[—Gaudin model is by definition the unital
subalgebra of U (g[A@/[) generated by the coefficients in the partial fraction decomposition of these
rational functions Sk(z). It is a commutative subalgebra of U(g[D ), [19, 30].4

The quantum Gaudin algebra Z (g(D) of the g[jJ Gaudin model is defined in exactly the
same way in terms of the N* order differential operator in A,

m

[T = Aa)™ edet (Or1nxn — L2 (),

a=1

where, cf. (2.3b),

m Tq—1 (/\)
trD ZJ[S]
L7\ dA—ZEw B+ 22 2 e |
3,j=1 a=1 s=0

There is an automorphism of gl defined by £LP(A) = — £ ()). The Gaudin algebra is stabilized
by this automorphism. (This statement follows from applying a tensor product of evaluation
homomorphisms of Takiff algebras to the statement of [19, Proposition 8.4]). Therefore we may
equivalently consider the N*® order differential operator

m

. N
[T = Aa)™ edet (Oainun + L7 (V) =2 > Se(X)05 (4.2)

a=1

and define the quantum Gaudin algebra 2 (g[%) to be the unital subalgebra of U (g[%) generated
by the coefficients in the partial fraction decomposition of the rational functions Sk(A) in A. Tt

is a commutative subalgebra of U(g[%).
To state our result on quantum (gl,,, gly)-duality, it will be convenient to write (4.2) in the
equivalent form

m N

[1(0: — 2a)™ cdet (— 21nwn +£2(0.)) = Y k(@) (—2)".

a=1 k=0

Let us explain the meaning of the expression

cdet ( —z1yxnN + ,Cﬁ(@z)).

The quantity

cdet (8)\1N><N + Lﬁ()\)),

41t is shown in [19] that cdet (alexM — FEawp ® > (Ewp ® t")z_"_l) generates a commutative subalgebra
n=0

of U(gly,[t]). The algebra f)’f(g[f{) is a homomorphic image of this algebra in U(g[ﬁ).
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which appears in (4.2), belongs to the algebra U (g[%) (A)[0a] of differential operators in A whose

coefficients are rational functions of A with coefficients in U (g[%). Here A and 0, can be re-
garded as formal generators obeying the commutation relation [0y,A] = 1. We can relabel
these generators as we wish, provided we preserve this relation. In particular, we may send
(Or,A) = (—2,0.), since [—2,0:] = 1. Thus cdet ( — 21nxn + £P(8.)) is an element of the

algebra U (gIy) (9:)[2].
More precisely, we shall be concerned in what follows with the quantity

m N

[1(0: — Aa)™ edet (z1nxn — £2(02)) = S (~1)V+5,(.) 2. (4.3)

a=1 k=0

4.3 Bosonic realisation

We consider realisations of U (g[D ) and U (g[i) acting by differential operators on the polynomial
algebra C[z a|v i—1 a 1- Namely, let 0f := aaa and let us denote by U, the unital associative algebra

generated by {z¢}N M | and {92} 2 | subject to the commutation relations

[0, 25 =0, [0f,2%] = 6i0as, [0f,07] =

7 ] 177

fora,b=1,..., M and 4,5 =1,...,N.
Uy is in particular a Lie algebra, with the Lie bracket given by the commutator.

Lemma 4.7. The linear maps 7y, : g[?/[ — Up and Tp: g[% — Uy, defined by
(20) Vi+T;—T
Zi _ b A
o (E) = 2. Tuwdi (B ab[l (69 T ) ’
u=v;+1 ba

foreveryr=0,...,m—1,i=1,...,nanda,b=1,..., M, and

Ug+Ta—S
2 E(Aa)y + 2
T(b(Eij[S]) B Z 8;{7;;“‘ S’ 7rb z] 1] (@ JTk —Zk > )
u="rq+1 ji
for every s = 0,...,7,— 1, 4,7 = 1,....N and a = 1,...,m, are homomorphisms of Lie

algebras. They extend uniquely to homomorphisms of associative algebras Ty : U(g[]\D/[) — Up
and 72 U (gly) — Up.

Proof. Foreachi,j=1,...,nand a,b=1,..., M we have

vi+Ti—r VitTi—s
[ﬁb (Eg?[z«]) » b (E((;:zj[i] )] = Z_H Z+1 u+r u7 v+s 83]
u=v; v=V;

vi+Ti—rv,+1—8

- Z Z “+7” 'LL’ U+S]ad+$v+s[ u+r’8]83)6ij

u=v;+1 v=v;+1

Vi+T;—r—3s

o a d c b\ ..
- E : (5bcxu+r+sau - 5adxu+r+sau)5w
u=v;+1

= (Gneitn (E)) — Saa(EG) 1)) 035 = A ([EGD) . EG)).

In the second equality we have used the fact that if ¢ # j then all commutators vanish due to
the restriction in the range of values in the sums over v and v.
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Likewise, for all 4,5 =1,...,N and a,b=1,...,m we find

Va+Ta—1 Up+Tp—S

A E0) A ()] = > >0 [oyait opayt]
u=vqe+1 v=rp+1

Ua+Ta—T Uqg+Ta—S
= > Y (Or[artr o eyt + op [0, 2yt at )
u=rga+1 v=r4+1
Ua+Ta—T—S8
= Z (—5,-18;*33}:”“ + 5jk8fxy+r+s)5ab
u=vg+1
_ (5. 2 (EQa) 2 (E(Xa) _ A2 (TFQa) E()
= (5Jkﬂ-b(Eil[r+s]) - 5zl7Tb(Ekj[r+s]))5ab = Trb([Eij[r} ; Ekl[s]])’
as required. Moreover, all the commutators involving the generators at infinity are also easily
seen to be preserved by the linear maps 7, and 7, since z; € C and A, € C are central in U,. W

Given any unital associative algebra U we denote by U[z,d.] the tensor product of unital
associative algebras U ® Clz,d,]. As in the classical setting of Section 3.2, consider also the
unital associative algebras U(z)[0,] = U ® C(z)[0,] and U(0;)[z] = U ® C(0,)[z], both con-
taining Uz, d,] as a subalgebra. We extend the homomorphisms 7, and 7y, from Lemma 4.7 to
homomorphisms of tensor product algebras,

#p: U(glD)(2)[0:] = Up(2)[0:],  Fo: U(ald)(@)[2] = Up(82)[2],

respectively. Applying these homomorphisms respectively to the expressions given by (4.1)
and (4.3), Theorem 4.8 below shows that the resulting expressions in fact live in the common
subalgebra Uy [z, d;]. The coefficients of the resulting differential operators in z span the respec-
tive images of the quantum Gaudin algebras in Uy, namely

(Z (o) CUy  and 7 (Z(gIR)) C Up.
The following theorem establishes that these commutative subalgebras of Uy coincide.
Theorem 4.8. We have

b <ﬁ(z — 2z;)" cdet (8:1prxm — tLD(z))>

i=1
= 7%'[) (H((‘)Z — /\a)%’l cdet (21N><N — ﬁb(az))> R
a=1
as an equality of polynomial differential operators in z.

Proof. Introduce the M x M and N x N block diagonal matrices

A::®tJ~F (02 — Aa)s Z::@Jn(z_zi)'
a=1 i=1
Also introduce the M x N matrices
D= (37)24:1 fV:b X = (x?)é\il ?Lr

Consider the block matrix

A X
M‘:<tD Z)’
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with entries in the noncommutative algebra A = Uyp[z,0,]. The key observation is that this is
a Manin matrix. Indeed, the only non-trivial check is for the 2 x 2 submatrices of the form

0. — Ao ¢
o7 z— 2

and for these we have [0, — \q, z — 2] = 1 = [0¢, 2?] as required. This fact means that we can
follow the proof of Theorem 3.2, with suitable modifications, as follows.

The square matrices Z and A with entries in C[z, 0,] C Up|z, 0;] have (two-sided) inverses in
the enlarged algebras A” := Uy (2)[0;] and A’ := Uy (9,)[z], respectively, both of which contain A
as a subalgebra. These inverses are given explicitly by

n m
Z' =PIz A= V50— A)h
=1 a=1
We are therefore in the setup of Proposition 4.5. We may apply it to evaluate cdet M in two
different ways. We obtain

cdet Acdet (Z — 'DAT'X) = cdet Z cdet (A — XZ7''D), (4.4)

as an equality in A = Uyp[z, J,], namely this is an equality of polynomial differential operators
in z with coefficients in Uy,.
It remains to evaluate both sides of (4.4) more explicitly. We have

n m
cdet Z = H(z —z)", cdet A = H(@Z — )™,
i=1 a=1
where the order of the products on the right of these equalities does not matter. Now Z and A
can be written explicitly as follows

N M
Z=3" Ey(z0i; — frb(Egj;f])), A=Y Ew(0:0m — ﬁb(Egg]))

ij=1 a,b=1

with 7, and 7 as defined in Lemma 4.7. In terms of these expressions we can write

M
A—XZ 1D = Z Ew(A—XZ7''D)

a,b=1
M n vi+T;
=89.1- Y Ea frb(Efgg;]) +30> i (nz—2) )0
a,b=1 i=1 jk=v;+1

The latter expression is exactly 0,1 — 7y (4P (2)) by virtue of Lemma 4.7, the expression (2.3a)
for the Lax matrix £P(z) and the expression (3.4) for the inverse of a Jordan block. Likewise

N
Z-"DAT'X =) E;(Z- 'DAT'X)
ij=1

ij

m  Ug+Ta

N
=21 By %b(E§j[‘;)]) +3°0Y (0. - )Y 28 |

ij=1 a=1b,c=g+1
which coincides with z1 — (Lﬁ(az)). The result now follows. [

In the special case of no Jordan blocks and no non-trivial Takiff algebras, Theorem 4.8 can
be found in [21]. See also [4, Proposition 8|, where it is noted that the relation cdet M =
det Z cdet (A —-Xz! tD) leads to a relation between the classical spectral curve and the “quan-
tum spectral curve”.
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5 Zs-cyclotomic Gaudin models with irregular singularities

Another possible class of generalisations of Gaudin models are those whose Lax matrix is equiv-
ariant under an action of the cyclic group, determined by a choice of automorphism of the Lie
algebra (here gl;;). Such models were considered in [25, 26, 27] and in [7] for automorphisms of
order 2, and for automorphisms of arbitrary finite order in [34, 35].

It is natural to ask whether (gly,, gly)-dualities also exist, in the sense of Section 3, be-
tween cyclotomic Gaudin models. Theorem 5.2, which can be deduced from the results of [1],
establishes a duality between a cyclotomic gl;;-Gaudin model associated with the diagram au-
tomorphism of gl,; and a non-cyclotomic sp -Gaudin model.

5.1 Zs-cyclotomic Lax matrix for the diagram automorphism

Let z; € C for i = 1,...,n be such that 0 # z; # £z; for i # j. Pick and fix integers 7; € Z>1
for ¢ = 0 and for each ¢ = 1,...,n. Consider the effective divisor

n n
C‘,’:27’0-0—1—271-‘21-—1—273-(—zi)—i—2-oo.
i=1 =1

Note, in particular, that the Takiff degree at the origin is always even. Let N € Z>;. We require
that deg € = 2N + 2 or in other words,

n
7’0—|—Z7’i = N.
i=1

Let M € Z>1. As before, cf. Section 2.1, denote by Eg, for a,b =1,..., M the standard basis
of gly;. There is an automorphism o of gl;; defined by

0(Eap) := —Epq-

We call this the diagram automorphism of gl;;. The Lie algebra gl;; decomposes into the direct
sum of the +1 eigenspaces of o,

gly = s0n @ pus.

Here the subalgebra of invariants, i.e., the (+1)-eigenspace, is a copy of the Lie algebra so;;.
The (—1)-eigenspace pys is a copy of the symmetric second rank tensor representation of so,;.
We shall write

Ep = Eab * Epa,
so that E;rb € sopy and E, € ppy, for all a,b = 1,..., M. We introduce the pair of maps
Ioy: glar — sonr, Ewp — Ey and Ilyy: glpy — par, Eap — E:b. More generally, for r € Z>q we
define H(r) = H(rmod2)5 glys — glyy, so that H(T)Eab =Eu — (—1)"Epq.
There is an extension of the automorphism o to an automorphism of the polynomial algebra
gly[e] defined by
XeP i o(X)(—e)".

Let gly;[e]” denote the subalgebra of invariants. As vector spaces, we have

glyr[e]” = sopr [e2] @ epar[€7].
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Define g[%[ to be the direct sum of Takiff Lie algebras

s = (cootlur[ecc])” /o2 © €D alulez]/eT @ glusle0]” /5™
i=1

g

Note that as a vector space the Takiff algebra attached to the point at infinity is simply
(Eoo8lrlEcc])? /€50 = PMEo-

As before we let p: gly; — Matyr« a7 (C) denote the defining representation of gl,; and write
Eup = p(Egp). The formal Lax matrix of the Zo-cyclotomic Gaudin model associated with g[%
is the M x M matrix with entries consisting of glg/[—valued rational functions of z, given by

M 27— 1 E. E )
( )dz = Z Epa @ Eab[l] Z Zr+1
a,b=1
n T;—1 b[) n 7'2—1 r+1E§)Zz[)]
+Z;TZ; o T+1+Z}; G | % (5.1)

It obeys the following Lax algebra

[£5(2), LS (w)] = [ria(z,w), £5(2)] = [raa(w, 2), £5(w)] (5.2)

where 7,(z,w) denotes the (non-skew-symmetric) classical r-matrix

M
By, ® E, By, @ B
o= 35 (Bt Fas )
a,b=1

Consider the quantity

(ZQTO ﬁ(z_z) (Z+Z'L) )det (>\1M><M L ( ))

=1

This is a polyomial in A of order M. For each 0 < k < M, the coefficient of M\* is a rational
function in z valued in S(g[%). The classical cyclotomic Gaudin algebra ff(g[%) associated with
the divisor € and the diagram automorphism o is by definition the Poisson subalgebra of S (g[%)
generated by the coefficients of these rational functions. It follows from (5.2) that 2 (g[%) is
a Poisson-commutative subalgebra of § (g[?w).

5.2 Lax matrix of sp,n-Gaudin model with regular singularities

Denote by E;s the standard basis of glonr, where, for convenience, we shall let I, J run over
the index set J:= {—N,...,—1,1,..., N}. There is a subalgebra of gl,;, isomorphic to the Lie
algebra sp, -, spanned by

Ers=Erg—oroE_;_1,

forall I,J € 7. Here we denote by_ o1 the sign of I, equal to 1if I > 0 and to —1 if I < 0. We
have the relation E_;_; = —o70;E;; for every I,J € J. Let

Jo:={(I,J) €IxI|I,J >00ror0; =—1with [I| < |J|}.
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Then {E I J} (1,J)€d is a basis of the subalgebra sp, . A dual basis with respect to half the trace

where

in the fundamental representation is given by {I_EI J } (1,7)ed

gL/ El—1

=Ejr —orojE_1_y, =E_r1,

for any I,.J € J with J # —I. Indeed, if we let Ej; :== p(I_EU) and B!/ := p(I_E”) forall I,J €7
then we have ] tr (E[JEKL) = 011,07k for all (1,J), (K, L) € Js.

Let D denote the special case of the effective divisor D of Section 2.1 obtained by setting

7, =1 for each a =1,...,m, and hence m = M. That is,
B M
D=> A +2-00. (5.3)
a=1

Introduce the direct sum of Lie algebras

PRy = EoosPan [Eac] /82, @ @51321\/-
a=1

The Lax matrix of the classical Gaudin model associated with the divisor D is the 2N x 2N
matrix of sp?N—valued rational functions of A\ given by

ey
S B ®< +ZA A)d)\ (5.4)

(I,J)€T2

where by abuse of notation we drop the subscript on the Takiff generators, namely we define

Egi\la) = Efu[é] foralla =1,..., M and E(OO) = EgoJo[)l] It obeys the Lax algebra

[E20), £2(w)] = [Faa(h 1), £2 (V) + £2 ()] (5.5)

where 7., (A, ) is the standard skew-symmetric classical r-matrix with spectral parameter for
the Lie algebra spsr, namely

Z E‘IJ@EIJ‘

iz (A =
le( 7#) ,ui)\

(I,J)Ejg

Just as in Section 3.1 we may consider the subalgebra 2 (5p2®N) of the Poisson algebra S (513ng)
generated by the coefficients rational functions in A obtained as the coefficients of the polynomial
in z defined by

M _
[T = Aa) det (21nsw — £2(N),

a=1

which is Poisson-commutative by virtue of the relation (5.5).

5.3 Bosonic realisation

Consider the Poisson algebra Py, := C[z?, p;’»} z]'szl Q,Jb:p as in Section 3.2, with Poisson brackets
given by (3.3).
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We now want to break up the list of integers from 1 to N into n + 1 blocks of size 7; for each
i =0,1,...,n. Define the integers v; by — in contrast to (2.1) —

i—1
Vi ‘= ZT]',
§=0
for each i = 0,..., N (note in particular that now vy = 0), so that
(L....,.N)=(1,...,75v1+ 1,...,v1 + 715 sun+ 1, ... vn + ).

Lemma 5.1. Let ;n € C be arbitrary and define a pair of linear maps m,: glg/[ — Py and
Tp : 5]32@1\7 — be by

Vi+Ti—1T
Ej;r] Z xU—&-pr (E:b([(i]O)) = Aadab,
u=v;+1
T0—S T0O
ﬂ—b((H( )Eab)fg])) Z ($Z+5PZ - (_1)5 IZH—spu) © Z (_l)vxgxg
u=1 u,v=1

u+tv=s+1
for everyr=0,...,7,—1,s=0,...,2r9—1,i=1,...,nand a,b=1,...,M, and

w(EQY) = plad  m(EV)) = —atad, frb(EQa;)zp;p?,

1
ﬁ-b(E(I?]O)) == <@ ( - ‘]Ti(_zi)) ® ( - Jr ( S JTO @ /LEl 1) ,
=n JI

foreveryi,j =1,... N, I.J € J and a = 1,...,m. These maps are homomorphisms of Lie
algebras. They extend uniquely to homomorphisms of Poisson algebras my: S(g[g/[) — Py and

T : 5(5132@]\[) — Pp.

Proof. We first show that mp, is a homomorphism. It follows, exactly as in the proof of
Lemma 3.1 (see Lemma 4.7) that

{mo (Egan) s mo (Eqiia) } = mo ([EG ESR)): (5.6)
for any r,s =0,...,5—1,4,j=1,...,nand a,b,c,d=1,..., M. We also clearly have

{mo (1 Ean)) . o (Egi) } = 0

forany r = 0,..., —14=1,...,n and a,b,¢c,d = 1,..., M since the canonical variables
entering each argument of the Poisson brackets mutually commute.
TO—T
To simplify the notation, introduce y® = > (24,,pb — (—=1)"25,,.p%). We can then write
u=1
b (s Eab)fs]) =y —p Z )z,
u,v=1
utv=s+1

By a similar computation to the one leading to (5.6), we find that

{yr 7ysd} = 5bcyr+s + ( 1)85acy7€l<bks + (_1)T5bdy$is + (_1)T+85ady$is'
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Likewise, we have

70

= Y (—){y, agal

v,w=1
vtw=s+1
=~ Z Z Y (Speriay, + (—1)" Spar s, + (=1)°Sacwiay, + (—1)"*Saanlas, ).
u=r+1w=1
utw=r+s+1

and also by symmetry we obtain

70 70
- Z (_1)w{m w7ysd} = Z (_1)w{y§d
v,w=1 v,w=1
vtw=r+1 v+w=r+1
S ST (U (At + (1) et + (—1) Gl + (~17HBaatas).
u=1w=s+1
utw=r+s+1

It now follows by combining all the above that

{mb () Ean) ). o (Mg Eca) )}
= 5bc77b((H (r) Ead)é?_)i_s]) + (_1)85ac7rb((n(r) Edb)fgj_s})
+ (—1)" dpqmp (1T )Eca)f,?is]) + (—1)T+85adﬂb((H(T)Ebc)&rs])
= 7o ([(Tr) Eat) ) (M) Eca) (9],

+(o0)

as required. And finally, since E_, 1] is a Casimir and is sent to a constant under 7y, all Poisson
brackets involving it are preserved by .

We now turn to showing that 7y is also a homomorphism. Define ¢f for each I € J and
a=1,...,M by letting ¢ := z¢ and ¢, = p§ for every i = 1,...,N. In this notation the
Poisson brackets (3.3) can be rewritten more uniformly as

{qf.d5} = 0501, s0u,

for all I, J € Jand a,b=1,..., M. Moreover, we also have 7, (EV}") = 0.q%¢® , for all I,.J € J
and a=1,..., M. We then have

{7 (Efy) 7o (ERY))
=0y00(0k0r,-Kkq* 14 + 0-101,04% 4" ; + 0xO1.K479% L + 0-L07 147 q% ) Oab
=0J0K (ﬁb(E(I)ia))%,K + ﬁb(E(_J) x)01L + ﬁb(E(I:\f)K)&J,L + ﬁb(E(j\;’)L)(SK,—I)(Sab
= m([Ef) ERL)),
where in the second cquality we have made use of the fact that oyo_; — —1 for any I € 7.

Finally, the Poisson brackets involving the generators Egc}o) attached to infinity are all trivially
preserved by 7. |

We are now in a position to prove the analogue of Theorem 3.2 in the present context.
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Theorem 5.2. For any € C as in Lemma 5.1, we have the relation

b (zQTO H(z —2)" (2 + 2z)" det (A\1arxnr — Zle(z))>

=1

M ~
= Ty (H(A — o) det (21nxy — LD(A))> :

a=1

Proof. We follow the argument given in the proof of Theorem 3.2 very closely. Consider the
M x M and 2N x 2N block matrices

A= (A= Aa)(sab)szl,

1
Z =P (— Jr(—2—2)) @ (~Jn(—2)) @ J, (2 @@J )+ nEr 1.

i=n

We use here the convention, cf. Section 5.2, that indices on components of the 2N x 2N matrix
Z run through the index set J = {—N,...,—1,1,...,N}. As an example of the form of the
matrix 7, if n =2, 1o =2, 71 = 1 and 7» = 2 then we have

Z+ 29 0
1 Z+ z9 0
Z+z1
z 0 0 O
1 2 0 O
Z= 0 p z 0
00 -1 z
z— 2z
0 Z— 29 0

—1 Z— 29

We define a pair of M x 2N matrices P and X, whose columns are also indexed by the set J,

as
1 M
: 1 1 1 1
Py P n TN
1 M
t xl ... xl .
P:: X:: . :
1 M ) . . : : . :
pl pl M M M M
1 M

Consider now the block (M +2N) x (M 42N) square matrix (3.5) with A, Z, X and P defined as

above. Now the derivation leading to the equation (3.6) from the proof of Theorem 3.2 still holds

and so it just remains to compute the determinants appearing on both sides of this identity.
On the one hand, we have

M
A-XZ7'"P =) Eu4(A-XxZz7'"P),
a,b=1
no vt

M 0
=\l — Z Eqp ”b(E:b([iT)) + Z Z x?(z_l)jkpz + Z g:?(Z_l)jkpi

a7b:]_ =1 j,k:l/i+]_ j,k!z].
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0 T0 n o VAT
—1 b —1 b -1 b
= 2@ ek 2 (2T k=2 X (2T e
Gok=1 Gk=1 i=1 jk=v;+1
For each ¢ = 1, ..., n we note using the expression (3.4) for the inverse of a Jordan block together

with Lemma 5.1 that

v+ Ti—1 Wb(E(?) )
- 7]
> =Y
Jk=vi+1 r=0
- Vi pi(Z7Y)_. xi:n_l (_1)T+1”b(Ef(>zi{3«1)
it o = (A

Next, for the two terms in the middle line above, corresponding to the origin, we find

0 T0—1 1 T0—S
Z (x?(Z_l)jkpz _p?(Z_l)_j,_ﬂZ) = Z S| Z (xZJrsPZ - (—l)stJrsPZ)'
jk=1 s=0 u=1

Finally, for the remaining term we have

70 219—1 M
- Z x?(Zil)j,—kCEz =~ Z o) Z (1) agad.
s=1

J,k=1 u,v=1
utv=s+1

Putting all the above together we deduce that A — XZ 1P = \1 — wb(tie(z)).
On the other hand, we have

Z-'"PA'X =Y En(Z-'PATX),
1,J€d

olJ (o) - ﬁb(Eg’}“)) D
(I,J)€d2

To see the second equality we note that setting z = 0 in Z— 'PA~1 X yields a 2N x 2N symplectic
matrix, i.e., of the block form

M:@ _Bg>

with B=Band C = C , where for an N x N matrix A we denote by A the transpose of A along
the minor diagonal. And for any such matrix M we have

N
M=) EyMy =) ((Ej—E-j-i)A+E;;Ci; — E_i;By)
1,Je7 1,j=1
N .. N .. N . .

= Z E”Aji + Z E_Z’]Cji — Z EZ’_]BJ'Z' = Z EIJM[J.

5,5=1 5,j=1 4,j=1 (1,J)€92

1<j 1<j
M n
Lastly, we clearly have det A = J] (A — A,) and det Z = 227 [] (2 — 2;)"(z + ;)™ from which

a=1 =1
the result now follows, using again the fact that det ‘A = det A for any square matrix A, as in
the proof of Theorem 3.2. |
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Remark 5.3. Consider replacing p by 0 in the (M + 2N) x (M + 2N) square matrix

T S T
0 A=Ay pN pd 2 2N
—xh —TN

-zt —915\4{”

p% V4 Z

pi PN

used in the proof of Theorem 5.2. The resulting square matrix with non-commutative entries
is not Manin since, for example, the entries of the first column are not mutually commuting.
Consequently, we do not immediately obtain a quantum analogue of the classical relation in
Theorem 5.2.

A related remark is that in the quantum case, higher Gaudin Hamiltonians for cyclotomic
Gaudin models do exist but they are not in general given by a simple cdet-type formula. See
[34, 36] (and especially Remark 2.5 in [34]).

Remark 5.4. Note that we did not allow irregular singularities on the spyy side (appart from
the double pole at infinity).

From the point of view of (gl,,, gl))-duality, the absence of irregular singularities in the
5Py n-Gaudin model is controlled by the fact that the matrix

00 M
(7 (Ezb([l] )))a,bzl’ (5.7)

representing the Casimir generators attached to infinity in the cyclotomic gl;,-Gaudin model,
is purely diagonal and in particular has no Jordan blocks, as in Lemma 5.1. Yet this is forced
on us since the matrix (5.7) is symmetric.

Alternatively, note that if one naively attempts to run the arguments above for the divi-
sor D in place of D, one does not obtain a homomorphism EPQDN — Pp. For example, Poisson
brackets of the form {— Do m;f‘x;f“, Yo p};pz’ﬂ} produce two sorts of terms: “good” terms like
Yo x?p?”éjk, which respect the gradation of the Takiff algebra, but also “bad” terms like
Yo x;-‘+1pf+15ik, which do not.

5.4 Example: Neumann model

We end this section by considering the special case of Theorem 5.2 when N =1 and py = —1.

Specifically, for the Zs-cyclotomic Gaudin model of Section 5.1 we take n = 0 and 79 = 1.
The formal Lax matrix (5.1) of the corresponding cyclotomic gl;,-Gaudin model with effective
divisor € =20+ 2 - 0o then reduces to

S o) . Eanl
r 00 a ab[1
L8(z)dz = EblEba @ [ EL + N (5.8)

~ When N =1 in Section 5.2 we have the canonical isomorphism spy =~ sly given by Ei1 — —H,
Ei,—1 — 2F and E_1; ~ 2E. The dual basis elements are sent under this isomorphism to
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EM =Ey— —H,Ebt=1E 1 —» Eand E7M! = LE; _; — F. The formal Lax matrix (5.4) of
the sl-Gaudin model with effective divisor (5.3) then becomes,

L2 (N)dA = <H ®H) 4 2E @ F(™) 4 2F @ E()

M
H@HY) 1 2F ® FRa) 4 2F @ EQe)
d\
* ; Py ’

(5.9)
where we have used the notation

0 1 0 0 1 0
The Poisson algebra P}, in the present context is simply C[z,, pa]%zl where we have dropped

the subscript 1 from the canonical variables by defining z, := z{ and p, = p{. In terms of this
notation, the representation 7, : g[%l — Py, from Theorem 5.2 reads

Wb(E:b(ﬁT)) = Aa0ab, Wb(E;b([?ﬁ) = ZaPb — TpPa, Wb(E:b([(H) = —TqTp,
recalling that y = —1. Correspondingly, the map 7 : 5p§ — Py takes the form

Tp(EC)) = 1, 7o (F)) = 0, Tp(H)) =0,

ﬁb(E()‘a)) = 1p2 ﬁb(F()‘a)) = —122, ﬁb(H()‘“)) = TyPa.

Applying the first representation 7y, to the formal Lax matrix (5.8) we find
L(2)dz = m (Ee(z))dz

M M M
=D AaBaa— 2" > (wapb — pa) Bap — 272 Y wamBap | dz.
a=1 a,b=1 a,b=1
If we introduce variables w,, a = 1,..., M such that w? = )\, then the above coincides with the
M x M Lax matrix of the Neumann model, with Hamiltonian
1 & 1 &
2 2.2
H - Z Z (xapb - wbpa) + 5 Zwaw(p
a,b=1 a=1
a#b

M
describing the motion of a particle constrained to the sphere Y x2 = 1 in RM and subject to

a=1
harmonic forces with frequency w, along the a'® axis. On the other hand, applying 7, to the
formal Lax matrix (5.9) yields

o Mo,
5 PO v > 3o

LA = mp(EP(N)dr =2 | o= e dA,
1+ (12—:1 325 > B

which coincides with the expression for the 2 x 2 Lax matrix of the same model. The statement

of Theorem 5.2 corresponds to the well known relation between the above two Lax formulations
of the Neumann model (see, e.g., [28, Section 12])

M
22 det (Aapn — L(2)) = [J(A = Aa) det (2122 — L(N)).

a=1
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