
Symmetry, Integrability and Geometry: Methods and Applications SIGMA 14 (2018), 042, 26 pages

Higher Derivatives of Airy Functions

and of their Products

Eugeny G. ABRAMOCHKIN and Evgeniya V. RAZUEVA

Coherent Optics Lab, Lebedev Physical Institute, Samara, 443011, Russia

E-mail: ega@fian.smr.ru, dev@fian.smr.ru

Received October 13, 2017, in final form April 26, 2018; Published online May 05, 2018

https://doi.org/10.3842/SIGMA.2018.042

Abstract. The problem of evaluation of higher derivatives of Airy functions in a closed
form is investigated. General expressions for the polynomials which have arisen in explicit
formulae for these derivatives are given in terms of particular values of Gegenbauer poly-
nomials. Similar problem for products of Airy functions is solved in terms of terminating
hypergeometric series.
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1 Introduction

Explicit formulae for higher derivatives is a usual part of investigation of special functions in
mathematical physics [10, 11, 12, 22, 24, 25]. A collection of these results can be found in [6, 18].

For any solution y(x) of a homogeneous differential equation of second order

y′′ + p(x)y′ + q(x)y = 0

one can obtain that

y′′ = −qy − py′,
y′′′ = (pq − q′)y +

(
p2 − p′ − q

)
y′,

yIV =
(
−p2q + pq′ + 2p′q + q2 − q′′

)
y +

(
−p3 + 3pp′ + 2pq − p′′ − 2q′

)
y′,

etc. However, it would be quite difficult to get the explicit formula in general:

y(n) = Pn(x; p, q)y +Qn(x; p, q)y′,

because successful finding of coefficients Pn(x; p, q) and Qn(x; p, q) in a closed form depends on
many circumstances.

The main purpose of this paper is to obtain general formulae for n-th derivatives of Airy
functions, Ai(x) and Bi(x). Both functions satisfy the same equation

y′′ = xy. (1.1)

Therefore,

Ai(n)(x) = Pn(x)Ai(x) +Qn(x)Ai′(x),

Bi(n)(x) = Pn(x)Bi(x) +Qn(x)Bi′(x), (1.2)
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Table 1. First 16 polynomials Pn(x) and Qn(x).

n Pn(x) Qn(x)

0 1 0

1 0 1
2 x 0
3 1 x
4 x2 2
5 4x x2

6 x3 + 4 6x
7 9x2 x3 + 10
8 x4 + 28x 12x2

9 16x3 + 28 x4 + 52x
10 x5 + 100x2 20x3 + 80

11 25x4 + 280x x5 + 160x2

12 x6 + 260x3 + 280 30x4 + 600x
13 36x5 + 1380x2 x6 + 380x3 + 880
14 x7 + 560x4 + 3640x 42x5 + 2520x2

15 49x6 + 4760x3 + 3640 x7 + 770x4 + 8680x

where Pn(x) and Qn(x) are some polynomials and the index n corresponds to the derivative
order but not the polynomials degree. By differentiating the first equation of (1.2),

Ai(n+1)(x) =
[
P ′n(x) + xQn(x)

]
Ai(x) +

[
Pn(x) +Q′n(x)

]
Ai′(x)

= Pn+1(x)Ai(x) +Qn+1(x)Ai′(x),

we have two differential difference relations

Pn+1(x) = P ′n(x) + xQn(x), Qn+1(x) = Pn(x) +Q′n(x) (1.3)

with initial conditions P0(x) = 1 and Q0(x) = 0 which help to determine Pn(x) and Qn(x) for
any natural n (see the Table 1).

It is quite possible that the problem of evaluation of polynomials Pn(x) and Qn(x) was
formulated in XIX century when G.B. Airy introduced the function which is now denoted Ai(x)
(see [1, 2]). However, as far as we know, the first solution of the problem has been published
by Maurone and Phares in 1979 in terms of double finite sums containing factorials and gamma
function ratio [17]. We rewrite it using binomial coefficients and Pochhammer symbols

P3m+δ(x) =
∑

06k6bm−k1
2
c

3m+m1+kx3k+`1

(3k + `1)!

∑
06`63k+`1

(−1)`
(

3k + `1
`

)(
1− `

3

)
m+m1+k

,

Q3m+δ(x) =
∑

06k6bm−k2
2
c

3m+m2+kx3k+`2

(3k + `2)!

∑
06`63k+`2

(−1)`
(

3k + `2
`

)(
2− `

3

)
m+m2+k

,

where bxc is the integral part of x, δ = 0, 1, 2, and

k1 = 0, `1 = 0, m1 = 0, k2 = 1, `2 = 1, m2 = 0, if δ = 0,

k1 = 1, `1 = 2, m1 = 1, k2 = 0, `2 = 0, m2 = 0, if δ = 1,

k1 = 0, `1 = 1, m1 = 1, k2 = 1, `2 = 2, m2 = 1, if δ = 2.
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Recently, the problem of evaluation of Pn(x) and Qn(x) has been investigated by Laurenzi
in [15] where the solution has been written in terms of Bell polynomials. More general problem
of evaluation of higher derivatives of Bessel and Macdonald functions of arbitrary order has been
solved by Brychkov in [7]. Corresponding polynomials have been written as finite sums contain-
ing products of terminated hypergeometric series 3F2 and 2F3 but they look quite cumbersome
for the case of Ai(x), namely,

Pn(x) =
n!

2xn−3

∑
bn+2

3
c6k6n

(−1)k+1

k!

(
3k

n

)(
−1

3

)
k

× 3F2

(
n
3 − k,

n+1
3 − k,

n+2
3 − k

1
3 − k,

2
3 − k

∣∣∣ 1) · 2F3

(
1− k

2 ,
3−k
2

2− k, 43 − k,
5
3

∣∣∣ 4x3

9

)
,

Qn(x) =
n!

xn−1

∑
bn+2

3
c6k6n

(−1)k

k!

(
3k

n

)(
−1

3

)
k

× 3F2

(
n
3 − k,

n+1
3 − k,

n+2
3 − k

1
3 − k,

2
3 − k

∣∣∣ 1) · 2F3

(
1− k

2 ,
1−k
2

1− k, 43 − k,
2
3

∣∣∣ 4x3

9

)
,

where n > 4. However, much more cumbersome expression is produced by the on-line service
Wolfram Alpha in response to a query “n-th derivative of Airy function” (see [26]).

This paper is organized as follows. In Section 2 we find simple expressions for Pn(x) andQn(x)
containing a special value of Gegenbauer polynomials. In Section 3 some corollaries of this result
are considered. In Section 4 we study higher derivatives of Ai2(x), Ai(x)Bi(x), and Bi2(x). In
the last section we discuss some open problems connecting with the above results.

It is interesting that the evaluation problem for higher derivatives of Ai(x) and Ai2(x) arise
in physics for describing bound state solutions of the Schrödinger equation with a linear poten-
tial [16] and for quantum corrections of the Thomas–Fermi statistical model of atom [9].

2 Higher derivatives of Ai(x) and Bi(x)

For evaluation of polynomials Pn(x) and Qn(x) it is convenient to use Airy atoms f(x) and g(x)
which are connected with Airy functions by the relations [18]

Ai(x) = c1f(x)− c2g(x),
Bi(x)√

3
= c1f(x) + c2g(x),

where c1 = 3−2/3/Γ
(
2
3

)
and c2 = 3−1/3/Γ

(
1
3

)
.

The reasons are the following. First of all, f(x) and g(x) are solutions of (1.1). As result,

f (n)(x) = Pn(x)f(x) +Qn(x)f ′(x),

g(n)(x) = Pn(x)g(x) +Qn(x)g′(x). (2.1)

Second, both Airy atoms have a simple hypergeometric representation:

f(x) =
∞∑
k=0

(
1

3

)
k

3kx3k

(3k)!
= 0F1

(
2

3

∣∣∣ x3
9

)
,

g(x) =
∞∑
k=0

(
2

3

)
k

3kx3k+1

(3k + 1)!
= x · 0F1

(
4

3

∣∣∣ x3
9

)
.
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Then

f (n)(x) =
∑
3k>n

(
1

3

)
k

3kx3k−n

(3k − n)!
, g(n)(x) =

∑
3k+1>n

(
2

3

)
k

3kx3k+1−n

(3k + 1− n)!
.

And third, the Wronskian of f(x) and g(x) is equal to 1,

W [f, g] = f(x)g′(x)− g(x)f ′(x) ≡ 1,

that helps to simplify polynomials Pn(x) and Qn(x) as solutions of the system (2.1)

Pn(x) = g′(x)f (n)(x)− f ′(x)g(n)(x),

Qn(x) = f(x)g(n)(x)− g(x)f (n)(x). (2.2)

Substitution of the series expansions of Airy atoms and their derivatives into (2.2) yields

Pn(x) =
∑
3m>n

3mx3m−n

(3m− n)!

∑
k

{(
3m− n
3k − n

)
−
(

3m− n
3k − 1

)}(
1

3

)
k

(
2

3

)
m−k

, (2.3)

Qn(x) =
∑

3m>n−1

3mx3m+1−n

(3m+ 1− n)!

∑
k

{(
3m+ 1− n

3k

)
−
(

3m+ 1− n
3k − n

)}(
1

3

)
k

(
2

3

)
m−k

,

where both series on k are naturally terminating, i.e., the index of summation runs over all
values that produce non-zero summands.

Let us define γm by the formula

γm(m0, k0) =
∑
k

(
3m−m0

3k − k0

)(
1

3

)
k

(
2

3

)
m−k

.

Then (2.3) can be rewritten as follows

Pn(x) =
∑
3m>n

3mx3m−n

(3m− n)!

[
γm(n, n)− γm(n, 1)

]
,

Qn(x) =
∑

3m>n−1

3mx3m+1−n

(3m+ 1− n)!

[
γm(n− 1, 0)− γm(n− 1, n)

]
. (2.4)

Reducing the product of Pochhammer symbols to Euler’s beta function(
1

3

)
k

(
2

3

)
m−k

=
Γ
(
k + 1

3

)
Γ
(
m− k + 2

3

)
Γ
(
1
3

)
Γ
(
2
3

) =
m!
√

3

2π
B

(
k +

1

3
,m− k +

2

3

)
,

and applying one of the function integral definitions

B(x, y) =

∫ ∞
0

τx−1

(1 + τ)x+y
dτ, Rex > 0, Re y > 0,

we have

γm(m0, k0) =
m!
√

3

2π

∫ ∞
0

∑
k

(
3m−m0

3k − k0

)
τk · τ−2/3

(1 + τ)m+1
dτ

=
m!
√

3

2π

∫ ∞
0

∑
k

(
3m−m0

3k − k0

)
t3k · 3

(1 + t3)m+1
dt
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=
m!
√

3

2π

∫ ∞
0

∑
k

(
3m−m0

k

)[
1 + ωk+k0 + ω̄k+k0

] tk+k0

(1 + t3)m+1
dt

=
m!
√

3

2π

∑
06j62

ωjk0
∫ ∞
0

tk0(1 + ωjt)3m−m0

(1 + t3)m+1
dt. (2.5)

Here, ω = e2πi/3 and ω̄ = e−2πi/3 are the cubic roots of unity, and an overline means complex
conjugation.

Changing the variable in the last integral, t→ 1/t, we get another expression for γm:

γm(m0, k0) =
m!
√

3

2π

∑
06j62

ωj(k0−m0)

∫ ∞
0

tm0−k0+1(1 + ω̄jt)3m−m0

(1 + t3)m+1
dt. (2.6)

Then the differences in square brackets in (2.4) can be written as

γm(n, n)
∣∣∣
(2.6)
− γm(n, 1)

∣∣∣
(2.5)

=
m!
√

3

2π
· 2 Re

{
(1− ω)

∫ ∞
0

t
(1 + ωt)3m−n

(1 + t3)m+1
dt

}
,

γm(n− 1, 0)
∣∣∣
(2.5)
− γm(n− 1, n)

∣∣∣
(2.6)

=
m!
√

3

2π
· 2 Re

{
(1− ω̄)

∫ ∞
0

(1 + ωt)3m+1−n

(1 + t3)m+1
dt

}
.

Expansions (2.4) show that exponents of the factor (1 + ωt) in both integrals are nonnegative.
The integral for γm(n−1, 0)−γm(n−1, n) looks a little simpler than for γm(n, n)−γm(n, 1),

so we begin with it. Integrating the analytic function (1+z)3m+1−n/(1+z3)m+1 over the contour
[0, R] ∪ {Reiφ, φ ∈ [0, 2π/3]} ∪ [Rω, 0] and taking R→∞, we get∫ ∞

0

(1 + t)3m+1−n

(1 + t3)m+1
dt+

∫ 0

∞

(1 + ωt)3m+1−n

(1 + t3)m+1
ω dt = 2πi res

z=eπi/3

(1 + z)3m+1−n

(1 + z3)m+1
.

Then the integral of our interest can be written as∫ ∞
0

(1 + ωt)3m+1−n

(1 + t3)m+1
dt = ω̄

∫ ∞
0

(1 + t)3m+1−n

(1 + t3)m+1
dt− 2πiω̄

m!

dm

dtm

(
(1 + t)2m−n

(t− e−πi/3)m+1

) ∣∣∣∣
t=eπi/3

.

It is worth noting that the first term on the right side makes a zero contribution to the difference
γm(n− 1, 0)− γm(n− 1, n) because Re{(1− ω̄)ω̄} = Re(−i

√
3) = 0. Thus,

γm(n− 1, 0)− γm(n− 1, n) = −6 Re
dm

dtm

(
(1 + t)2m−n

(t− e−πi/3)m+1

) ∣∣∣∣
t=eπi/3

= − 2

(
√

3)n−1
Re

dm

dtm

(
(t+ eπi/6)2m−n

(t+ i)m+1

)∣∣∣∣
t=0

. (2.7)

Using the generating function, we prove that the right part of (2.7) vanishes for n = 0, 1, . . . , 2m.
Let s ∈ R. Then

F (s) =

2m∑
n=0

(
2m

n

)
dm

dtm

(
(t+ eπi/6)2m−n

(t+ i)m+1

)∣∣∣∣
t=0

· sn

=
dm

dtm

(
(t+ eπi/6 + s)2m

(t+ i)m+1

)∣∣∣∣
t=0

=
m!

2πi

∮
|z|=ε

(z + eπi/6 + s)2m

(z + i)m+1zm+1
dz.

Changing the variable ζ = (z + a)/(1 + bz), where parameters a and b will be chosen later, one
gets

F (s) =
m!

2πi
(1− ab)

∮
|ζ−a|=ε

(ζ[1− beπi/6 − bs] + eπi/6 + s− a)2m

(ζ[1− ib] + i− a)m+1(ζ − a)m+1
dζ.
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With the aim to simplify the integrand, we set b = −i and a = eπi/6 + s. Then

1− beπi/6 − bs = 1− ab = iā, i− a = −ā,

and

F (s) =
m!

2πi

(iā)2m+1

(−ā)m+1

∮
|ζ−a|=ε

ζ2m

(ζ − a)m+1
dζ = −iām

dm

dtm
t2m
∣∣∣∣
t=a

= −i
(2m)!

m!
|a|2m.

Therefore, ReF (s) = 0, and the expansion of Qn(x) in (2.4) can be simplified by throwing out
the terms with n < 2m+ 1. As result, the function

Qn(x) =
∑

n−1
3

6m6n−1
2

x3m+1−n

(3m+ 1− n)!

× −2

(
√

3)n−2m−1
Re

dm

dtm

(
1

(t+ i)m+1(t+ eπi/6)n−2m

)∣∣∣∣
t=0

(2.8)

is actually a polynomial.
The double inequality n−1

3 6 m 6 n−1
2 is quite restrictive for the summation index. In

particular, it leads immediately to zero polynomials when n is equal to 0 or 2.
Now we need to evaluate the derivative in (2.8). As before, we use the generating function

approach. Let

gm,n =
1

m!

dm

dtm

(
1

(t+ i)m+1(t+ eπi/6)n+1

) ∣∣∣∣
t=0

, m, n > 0

and s ∈ R. Then

G(s) =

∞∑
m=0

gm,ns
m =

1

2πi

∮
|z|=ε

∞∑
m=0

sm

zm+1(z + i)m+1
· dz

(z + eπi/6)n+1

=
1

2πi

∮
|z|=ε

dz

(z2 + iz − s)(z + eπi/6)n+1
,

assuming that ε is a small positive number and |s| < min|z|=ε |z(z+i)| = ε(1−ε) for the geometric

series convergence. Roots of the equation z2 + iz − s = 0 are z± = −i(1±
√

1− 4s )/2, and z−
is the only pole of the integrand within the contour |z| = ε. Therefore,

G(s) = res
z=z−

1

(z2 + iz − s)(z + eπi/6)n+1
=

2n+1

i
√

1− 4s(
√

3 + i
√

1− 4s)n+1
,

gm,n = [[sm]]G(s) =

(
2√
3

)n+1

[[sm]]

{
1

i
√

1− 4s

∞∑
k=0

(
n+ k

n

)(
− i
√

1− 4s√
3

)k}
.

Here, we use the notation proposed in [14]. Namely, if A(z) is any power series
∑

k akz
k, then

[[zk]]A(z) denotes the coefficient of zk in A(z). In our view, this notation is more convenient to
manipulate power series than usual analytic description, [[zk]]A(z) = A(k)(0)/k!.

Returning to (2.8) and renaming the coefficients for brevity, we have

g̃m,n =
−2

(
√

3)n
Re gm,n =

2n+2

3n+1
[[sm]]

∞∑
k=0

(
n+ 2k + 1

n

)(
−1− 4s

3

)k
=

2n+2

3n+1

∞∑
k=m

(
n+ 2k + 1

n

)(
−1

3

)k
·
(
k

m

)
(−4)m (2.9)
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=
2n+2m+2

3n+m+1

(
n+ 2m+ 1

n

)
· 2F1

(
n+ 2m+ 3

2
,
n+ 2m+ 2

2
;
2m+ 3

2

∣∣∣−1

3

)
.

Using Euler’s transformation 2F1(a, b; c | z) = (1− z)c−a−b · 2F1(c− a, c− b; c | z) and one of
hypergeometric representations of Gegenbauer’s polynomials [21, equation (7.3.1.202)],

2F1

(
−n

2
,−n− 1

2
;λ+

1

2

∣∣∣ 1− z2) =
n! zn

(2λ)n
Cλn

(
1

z

)
,

we can simplify the coefficients to

g̃m,n =
1

2n

(
n+ 2m+ 1

n

)
· 2F1

(
−n

2
,−n− 1

2
;m+

3

2

∣∣∣−1

3

)
(2.10)

=
1

(
√

3)n
Cm+1
n

(√
3

2

)
= [[tn]]

1(
1− t+ 1

3 t
2
)m+1 (2.11)

and obtain required formulae for both polynomial families, first for Qn(x), then for Pn(x) =
Qn+1(x)−Q′n(x). We write them in the same style, shifting the index in Qn(x)

Qn+1(x) =
∑

n
3
6m6n

2

g̃m,n−2m
m!x3m−n

(3m− n)!
, (2.12)

Pn(x) =
∑

n
3
6m6n

2

{g̃m,n−2m − g̃m,n−2m−1}
m!x3m−n

(3m− n)!
. (2.13)

The last expression in (2.11) follows from the familiar generating function for Gegenbauer poly-
nomials [18]

∞∑
n=0

Cλn(x)tn =
1

(1− 2xt+ t2)λ
, |t| < 1, |x| < 1.

Of course, all the coefficients g̃m,n−2m and g̃m,n−2m − g̃m,n−2m−1 are positive but this is easier
to deduce from (1.3) than from (2.11). It is worth noting, that the term g̃m,n−2m−1 in (2.13)
vanishes for the case n = 2m since (2.10) holds.

Left and right inequalities on the summation index in (2.12) and (2.13) reveal the different
structures of analytic expressions of the polynomials for small and large values of x. Namely,
for x ∼ 0 the expressions depend on n (mod 3):

P3n(x) = 3n
(

1

3

)
n

+ 3n
{

(n+ 1)

(
1

3

)
n

−
(

2

3

)
n

}
x3 + · · · ,

P3n+1(x) =
3n

2

{(
4

3

)
n

−
(

2

3

)
n

}
x2 +

3n

40

{
(n+ 8)

(
4

3

)
n

− (10n+ 8)

(
2

3

)
n

}
x5 + · · · ,

P3n+2(x) = 3n
(

4

3

)
n

x+
3n

8

{
(n+ 4)

(
4

3

)
n

− 4

(
5

3

)
n

}
x4 + · · · ,

Q3n(x) = 3n
{(

2

3

)
n

−
(

1

3

)
n

}
x+

3n

8

{
(n+ 2)

(
2

3

)
n

− (4n+ 2)

(
1

3

)
n

}
x4 + · · · ,

Q3n+1(x) = 3n
(

2

3

)
n

+
3n

2

{
(n+ 1)

(
2

3

)
n

−
(

4

3

)
n

}
x3 + · · · , (2.14)

Q3n+2(x) = 3n
{(

5

3

)
n

−
(

4

3

)
n

}
x2 +

3n

40

{
(2n+ 10)

(
5

3

)
n

− (5n+ 10)

(
4

3

)
n

}
x5 + · · · ,
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while for x→∞ they depend on n (mod 2):

P2n(x) = xn +

(
n

3

)
(3n− 5)xn−3 + 10

(
n

6

)
(3n2 − 15n+ 10)xn−6 + · · · ,

P2n+1(x) = n2xn−1 + 4

(
n

4

)
(n2 − 2n− 1)xn−4 + 14

(
n

7

)
(3n3 − 17n2 + 8n+ 8)xn−7 + · · · ,

Q2n(x) = 2

(
n

2

)
xn−2 + 20

(
n

5

)
(n− 1)xn−5 + 112

(
n

8

)
(3n− 2)(n− 3)xn−8 + · · · ,

Q2n+1(x) = xn +

(
n

3

)
(3n+ 1)xn−3 + 10

(
n

6

)
(3n2 − 3n− 2)xn−6 + · · · . (2.15)

In addition, it may be worth noting that the methods of finding these expansions are essentially
different: (2.15) follows directly from (2.12) and (2.13), while for proving (2.14) the easiest way
is to apply (2.3).

3 Hypergeometric series and difference equations

The initial statement of the problem (1.2) and our final expressions for polynomials Pn(x)
and Qn(x) lead to some corollaries whose relation to the Airy functions does not look evident
a priori. Below we consider two of them. The first helps to find the Gauss hypergeometric
function special values. The second is connected with difference equations of third and fourth
orders.

3.1 Some special values of the hypergeometric function of Gauss

Power series expansions of polynomials Pn(x) and Qn(x) help to find values of the Gauss hyper-
geometric function in some special cases. The simplest of them is obtained equating the terms
Q3n+1(0) in (2.12) and (2.14):

Q3n+1(0) = 3n
(

2

3

)
n

= n!g̃n,n =
n!

2n

(
3n+ 1

n

)
· 2F1

(
−n

2
,−n− 1

2
;n+

3

2

∣∣∣−1

3

)
.

Then

2F1

(
−n

2
,−n− 1

2
; n+

3

2

∣∣∣−1

3

)
= 6n

(
2

3

)
n

· (2n+ 1)!

(3n+ 1)!
=

(
8

9

)n
·
(
3
2

)
n(

4
3

)
n

.

This formula is not new (see Exercise 15 in [25, Chapter 14]) and can be extended to real or
complex a’s by replacing n by −2a [21, equation (7.3.9.15)]:

2F1

(
a, a+

1

2
;
3

2
− 2a

∣∣∣−1

3

)
=

Γ
(
2
3 − 2a

)
Γ(2− 4a)

62aΓ
(
2
3

)
Γ(2− 6a)

=

(
9

8

)2a

·
2Γ
(
3
2 − 2a

)
Γ
(
4
3

)
√
πΓ
(
4
3 − 2a

) . (3.1)

As is typical in the theory of hypergeometric functions, the extension from n to a is valid due
to Carlson’s theorem [23, Section 5.8.1]: If f(z) is regular and of the form O(ec|z|), where c < π,
for Re z > 0, and f(z) = 0 for z = 0, 1, 2, . . ., then f(z) = 0 identically. (See [4, 5, 8] for many
examples of application of Carlson’s theorem to hypergeometric series.)

Next two hypergeometric function special values are related to coefficients of Q3n+3(x) and
Q3n+2(x):

[[x]]Q3n+3(x) = 3n+1

{(
2

3

)
n+1

−
(

1

3

)
n+1

}
= (n+ 1)!g̃n+1,n
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=
(n+ 1)!

2n

(
3n+ 3

n

)
· 2F1

(
−n

2
,−n− 1

2
;n+

5

2

∣∣∣−1

3

)
,

[[x2]]Q3n+2(x) = 3n
{(

5

3

)
n

−
(

4

3

)
n

}
=

(n+ 1)!

2
g̃n+1,n−1

=
(n+ 1)!

2n

(
3n+ 2

n− 1

)
· 2F1

(
−n− 1

2
,−n− 2

2
;n+

5

2

∣∣∣−1

3

)
.

By replacing n by −2a in the first relation and by 1− 2a in the second, we get

2F1

(
a, a+

1

2
;
5

2
− 2a

∣∣∣−1

3

)
=

6−2a

1− 2a

{
2

Γ
(
5
3 − 2a

)
Γ
(
5
3

) −
Γ
(
4
3 − 2a

)
Γ
(
4
3

) }
Γ(4− 4a)

Γ(4− 6a)
,

2F1

(
a, a+

1

2
;
7

2
− 2a

∣∣∣−1

3

)
=

61−2a

(1− 2a)(2− 2a)

{
Γ
(
8
3 − 2a

)
Γ
(
5
3

) −
Γ
(
7
3 − 2a

)
Γ
(
4
3

) }
Γ(6− 4a)

Γ(6− 6a)
.

In order to use the coefficients of Pn(x), we need to do some preliminary work. Substitution
of (2.9) in both terms of the difference g̃m,n − g̃m,n−1 and the binomial identity(

N

n− 1

)
+

(
N

n

)
=

(
N + 1

n

)
lead to the relation

g̃m,n − g̃m,n−1 =
3

2n+1

(
n+ 2m

n

)
· 2F1

(
−n

2
,−n+ 1

2
;m+

1

2

∣∣∣−1

3

)
− 1

2n+1

(
n+ 2m+ 1

n

)
· 2F1

(
−n− 1

2
,−n

2
;m+

3

2

∣∣∣−1

3

)
.

Then, by considering the first nonzero coefficients of P3n(x) and P3n+2(x),

P3n(0) = 3n
(

1

3

)
n

= n!{g̃n,n − g̃n,n−1},

[[x]]P3n+2(x) = 3n
(

4

3

)
n

= (n+ 1)!{g̃n+1,n − g̃n+1,n−1},

we get the following special values of the Gauss hypergeometric function:

2F1

(
a, a+

1

2
;−1

2
− 2a

∣∣∣−1

3

)
=

6−2a

3

{
Γ
(
1
3 − 2a

)
Γ
(
1
3

) +
1 + 3a

1 + 6a
·

Γ
(
2
3 − 2a

)
Γ
(
2
3

) }
Γ(−1− 4a)

Γ(−1− 6a)
,

2F1

(
a, a+

1

2
;
1

2
− 2a

∣∣∣−1

3

)
=

6−2a

2

{
Γ
(
1
3 − 2a

)
Γ
(
1
3

) +
Γ
(
2
3 − 2a

)
Γ
(
2
3

) }
Γ(1− 4a)

Γ(1− 6a)
.

It is quite clear that this approach provides a way for evaluation of

2F1

(
a, a+

1

2
;n+

1

2
− 2a

∣∣∣−1

3

)
in a closed form for any n ∈ Z, while, of course, the expressions will become more and more
cumbersome as |n| increases.
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3.2 Difference equations of third and fourth orders

Relations (2.2) help to find generating functions for polynomials Pn(x) and Qn(x):

P(x, t) =
∞∑
n=0

Pn(x)
tn

n!
= g′(x)f(x+ t)− f ′(x)g(x+ t),

Q(x, t) =

∞∑
n=0

Qn(x)
tn

n!
= f(x)g(x+ t)− g(x)f(x+ t).

Since f(x) and g(x) satisfy the equation (1.1), then P(x, t) and Q(x, t) being the functions on t
are solutions of the differential equation{

d2

dt2
− (x+ t)

}
Y(x, t) = 0.

If a solution of this equation is expanded in a power series

Y(x, t) =
∞∑
n=0

Yn(x)
tn

n!
,

then the series substitution into the equation leads to a recurrence relation for its coefficients,
functions Yn(x):

Yn+3(x) = xYn+1(x) + (n+ 1)Yn(x). (3.2)

As result, polynomials Pn(x) and Qn(x) are two of three solutions of (3.2), corresponding to
different initial conditions:

Pn(x) : P0(x) = 1, P1(x) = 0, P2(x) = x,

Qn(x) : Q0(x) = 0, Q1(x) = 1, Q2(x) = 0.

It is not evident how to find the third independent solution of (3.2), say

Zn(x) : Z0(x) = 0, Z1(x) = 0, Z2(x) = 1,

and how this relates with Airy functions’ derivatives.

Investigation of the polynomials Zn(x) shows that

Zn+2(x) =
∑

n
3
6m6n

2

λm,n
m!x3m−n

(3m− n)!
, (3.3)

where coefficients λm,n satisfy the relation

mλm,n = (3m− n)λm−1,n−2 + nλm−1,n−3, m > 1.

In particular, for large values of x we have

Z2n+2(x) = xn + (n− 1)(n− 2)
3n2 + 7n+ 6

6
xn−3 + · · · ,

Z2n+3(x) = n(n+ 2)xn−1 +

(
n− 1

3

)
(n+ 2)(n2 + 2n+ 3)xn−4 + · · · ,
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while for x ∼ 0 the first nonzero coefficients are

[[x2]]Z3n(x) =
3n

2

{
n!− 2

(
2

3

)
n

+

(
1

3

)
n

}
,

[[x]]Z3n+1(x) = 3n
{
n!−

(
2

3

)
n

}
, Z3n+2(0) = 3nn!.

Nevertheless, we could not reveal an analytic source of polynomials Zn(x) in order to find their
expansions by applying the calculus methods as above.

We mention also two difference equations for the coefficients of polynomials Pn(x) and Qn(x).
These equations can be found considering the Laplace transform of the shifted Airy function,

L (p, x) =

∫ ∞
0

exp(−pt)Ai(t+ x) dt.

We will use a formal power series approach for simplicity, while there is, of course, a more
rigorous but tedious way based on an asymptotic behaviour of Ai(t) for large t’s. Assuming that
p → +∞, the asymptotic expansion of L (p, x) can be written in two ways. The first follows
from (1.2)

L (p, x) =
∞∑
n=0

Ai(n)(x)

n!

∫ ∞
0

exp(−pt)tn dt =
∞∑
n=0

Pn(x)Ai(x) +Qn(x)Ai′(x)

pn+1
. (3.4)

On the other hand, the function L (p, x) satisfies a differential equation of first order{
d

dp
+
(
p2 − x

)}
L (p, x) = Ai(x)p+ Ai′(x). (3.5)

With initial condition

L (0, x) =

∫ ∞
x

Ai(t) dt = Ai1(x),

where the last notation is due to Aspnes [3], the solution is

L (p, x) = exp

(
xp− p3

3

){
Ai1(x) +

∫ p

0

(
Ai(x)t+ Ai′(x)

)
exp

(
−xt+

t3

3

)
dt

}
.

Integration by parts yields

L (p, x) = Ai(x)

{
p

p2 − x
+

1

(p2 − x)2
+

2x

(p2 − x)3
+

4p

(p2 − x)4
+ · · ·

}
+ Ai′(x)

{
1

p2 − x
+

2p

(p2 − x)3
+

10

(p2 − x)4
+ . . .

}
+O

(
1

p∞

)
.

Then, in general, L (p, x) has the form

L (p, x) = Ai(x)

∞∑
k=0

µkp+ νk
(p2 − x)k+1

+ Ai′(x)

∞∑
k=0

µ̃kp+ ν̃k
(p2 − x)k+1

(3.6)

with coefficients µk, νk, µ̃k, ν̃k depending on x.
Substituting (3.6) in (3.5), we obtain the same recurrence relations for the pairs (µk, νk) and

(µ̃k, ν̃k)

µk+2 = (2k + 2)νk, νk+2 = (2k + 3)µk+1 + (2k + 2)xµk,
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µ̃k+2 = (2k + 2)ν̃k, ν̃k+2 = (2k + 3)µ̃k+1 + (2k + 2)xµ̃k, (3.7)

but different initial conditions

(µ0, ν0) = (1, 0), (µ1, ν1) = (0, 1),

(µ̃0, ν̃0) = (0, 1), (µ̃1, ν̃1) = (0, 0).

Now we need to reduce (3.6) to the form of (3.4). Transforming the first series of (3.6), we
have

∞∑
k=0

µkp+ νk
(p2 − x)k+1

=
∞∑
k=0

µkp+ νk
p2k+2

· 1

(1− x/p2)k+1

=

∞∑
k=0

µkp+ νk
p2k+2

∞∑
m=0

(
m+ k

k

)
xm

p2m
=

∞∑
n=0

1

p2n+2

n∑
k=0

(
n

k

)
(µkp+ νk)x

n−k.

For the second series of (3.6), transformation is the same. As result, we obtain expansions
of Pn(x) and Qn(x) depending on parity of n

P2n(x) =
n∑
k=0

(
n

k

)
µk(x)xn−k, P2n+1(x) =

n∑
k=0

(
n

k

)
νk(x)xn−k,

Q2n(x) =

n∑
k=0

(
n

k

)
µ̃k(x)xn−k, Q2n+1(x) =

n∑
k=0

(
n

k

)
ν̃k(x)xn−k,

where we add an explicit dependence of the coefficients on x. All the coefficients satisfy difference
equations of fourth order based on (3.7):

µk, µ̃k : yk+4 = (2k + 3)(2k + 6)yk+1 + (2k + 2)(2k + 6)xyk, (3.8)

νk, ν̃k : yk+4 = (2k + 4)(2k + 7)yk+1 + (2k + 2)(2k + 6)xyk. (3.9)

In particular,

µk = {1, 0, 0, 4, 12x, 0, 280, . . .}, µ̃k = {0, 0, 2, 0, 0, 80, 120x, . . .},
νk = {0, 1, 2x, 0, 28, 140x, 120x2, . . .}, ν̃k = {1, 0, 0, 10, 12x, 0, 880, . . .}.

Unfortunately, two other pairs of independent solutions of (3.8) and (3.9) are yet remain
unknown, while a relation of one of the pairs (say, ˜̃µk and ˜̃νk) to polynomials (3.3) seems quite
predictable.

4 Higher derivatives of Ai2(x), Ai(x)Bi(x) and Bi2(x)

In a similar fashion to the evaluation of higher derivatives of Airy functions considered in Sec-
tion 2, let us investigate the same problem for the products of these functions. It is quite evident
that the problem is reduced to a determination of polynomials Rn(x), Sn(x) and Tn(x) satisfying
the following three equations [Ai2(x)](n)

[Ai(x)Bi(x)](n)

[Bi2(x)](n)

 =

 Ai2(x) 2Ai(x)Ai′(x) Ai′2(x)
Ai(x)Bi(x) Ai(x)Bi′(x) + Ai′(x)Bi(x) Ai′(x)Bi′(x)

Bi2(x) 2Bi(x)Bi′(x) Bi′2(x)

Rn(x)
Sn(x)
Tn(x)

, (4.1)

where R0(x) = 1, S0(x) = 0 and T0(x) = 0.
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Table 2. First 13 polynomials Rn(x), Sn(x) and Tn(x).

n Rn(x) Sn(x) Tn(x)

0 1 0 0

1 0 1 0
2 2x 0 2
3 2 4x 0
4 8x2 6 8x
5 28x 16x2 20

6 32x3 + 28 80x 32x2

7 256x2 64x3 + 108 224x
8 128x4 + 728x 672x2 128x3 + 440
9 1856x3 + 728 256x4 + 2512x 1728x2

10 512x5 + 10 592x2 4608x3 + 3240 512x4 + 8480x

11 11 776x4 + 27 664x 1024x5 + 32 896x2 11 264x3 + 14 960
12 2048x6 + 112 896x3 + 27 664 28 160x4 + 108 416x 2048x5 + 99 584x2

By taking the derivative of any equation above, we get the system of differential difference
relations

Rn+1(x) = R′n(x) + 2xSn(x),

Sn+1(x) = Rn(x) + S′n(x) + xTn(x),

Tn+1(x) = 2Sn(x) + T ′n(x), (4.2)

which help to determine Rn(x), Sn(x) and Tn(x) for any n (see the Table 2).
As before, it is better to use Airy atoms for finding the polynomials than Airy functions. By

rewriting the system (4.1) as follows
[
f2(x)

](n)
[f(x)g(x)](n)[
g2(x)

](n)
 =

 f2(x) 2f(x)f ′(x) f ′2(x)
f(x)g(x) f(x)g′(x) + f ′(x)g(x) f ′(x)g′(x)
g2(x) 2g(x)g′(x) g′2(x)

Rn(x)
Sn(x)
Tn(x)


and applying the Wronskian W [f, g] to the matrix inversion, it is easy to obtain the solutionRn(x)

Sn(x)
Tn(x)

 =

 g′2(x) −2f ′(x)g′(x) f ′2(x)
−g(x)g′(x) f(x)g′(x) + f ′(x)g(x) −f(x)f ′(x)
g2(x) −2f(x)g(x) f2(x)



[
f2(x)

](n)
[f(x)g(x)](n)[
g2(x)

](n)
 . (4.3)

Since the hypergeometric description of f2(x), f(x)g(x) and g2(x) is known and simple [6,
equation (8.3.2.38)]

f2(x) = 1F2

(
1

6
;
1

3
,
2

3

∣∣∣ 4x3

9

)
=

∞∑
k=0

(
1

6

)
k

12kx3k

(3k)!
,

f(x)g(x) = x · 1F2

(
1

2
;
2

3
,
4

3

∣∣∣ 4x3

9

)
=
∞∑
k=0

(
1

2

)
k

12kx3k+1

(3k + 1)!
,

g2(x) = x2 · 1F2

(
5

6
;
4

3
,
5

3

∣∣∣ 4x3

9

)
= 2

∞∑
k=0

(
5

6

)
k

12kx3k+2

(3k + 2)!
, (4.4)
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the initial problem is reduced to manipulations of power series. Combining all three formulae
of (4.4) together,

{
f2(x) ‖ f(x)g(x) ‖ g2(x)

}
= δ!

∑
3k+δ>0

(
1 + 2δ

6

)
k

12kx3k+δ

(3k + δ)!
, where δ = {0 ‖ 1 ‖ 2},

(here and below, we use the symbol ‘‖’ for separation of subparts) we write n-th derivatives of
f2(x), f(x)g(x) and g2(x) in the same manner:

{
f2(x) ‖ f(x)g(x) ‖ g2(x)

}(n)
= δ!

∑
3k+δ>n

(
1 + 2δ

6

)
k

12kx3k+δ−n

(3k + δ − n)!
, δ = {0 ‖ 1 ‖ 2},

and substitute all the series into (4.3).
We begin with the case of Tn(x) and employ the same approach as in Section 2:

Tn(x) = g2(x)
[
f2(x)

](n) − 2f(x)g(x)[f(x)g(x)](n) + f2(x)
[
g2(x)

](n)
(4.5)

= 2
∑

3m+2>n

12mx3m+2−n

(3m+ 2− n)!

∑
06δ62

(−1)δ
∑
k

(
3m+ 2− n

3k + δ

)(
1 + 2δ

6

)
k

(
5− 2δ

6

)
m−k

.

To simplify the expression of Tn(x), we shift n by 2:

Tn+2(x) = 2
∑
3m>n

12mx3m−n

(3m− n)!

∑
06δ62

(−1)δγm(n, δ),

where

γm(n, δ) =
∑
k

(
3m− n
3k + δ

)(
1 + 2δ

6

)
k

(
5− 2δ

6

)
m−k

.

Applying Euler’s beta integral we transform the inner series into an integral representation

γm(n, δ) =
2

π
m! sin

(π
6

(1 + 2δ)
) ∑

06j62

ω̄δj
∫ ∞
0

(
1 + ωjt2

)3m−n(
1 + t6

)m+1 dt,

∑
06δ62

(−1)δγm(n, δ) = − 6

π
m! Re

{
ω̄

∫ ∞
0

(
1 + ωt2

)3m−n(
1 + t6

)m+1 dt

}
.

As result,

Tn+2(x) = − 1

π

∑
3m>n

12m+1m!x3m−n

(3m− n)!
Re

{
ω̄

∫ ∞
0

(
1 + ωt2

)3m−n(
1 + t6

)m+1 dt

}
. (4.6)

Integrating the analytic function
(
1+z2

)3m−n
/
(
1+z6

)m+1
over the contour [0, R]∪{Reiφ, φ ∈

[0, π/3]} ∪ [Reπi/3, 0] and taking R→∞, one gets∫ ∞
0

(
1 + t2

)3m−n(
1 + t6

)m+1 dt− ω̄
∫ 0

∞

(
1 + ωt2

)3m−n(
1 + t6

)m+1 dt = 2πi res
z=eπi/6

(
1 + z2

)3m−n(
1 + z6

)m+1 .

Then the integral under consideration can be written as

ω̄

∫ ∞
0

(
1 + ωt2

)3m−n(
1 + t6

)m+1 dt = 2πi res
z=eπi/6

(
1 + z2

)3m−n(
1 + z6

)m+1 −
∫ ∞
0

(
1 + t2

)3m−n(
1 + t6

)m+1 dt
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= πi

{
res

z=eπi/6
− res
z=−e−πi/6

− res
z=i

} (
1 + z2

)3m−n(
1 + z6

)m+1 ,

where we used well-known trick in the last step:∫ ∞
0

(
1 + t2

)3m−n(
1 + t6

)m+1 dt =
1

2

∫
R

(
1 + t2

)3m−n(
1 + t6

)m+1 dt

= πi

{
res

z=eπi/6
+ res
z=i

+ res
z=−e−πi/6

} (
1 + z2

)3m−n(
1 + z6

)m+1 .

With standard technique on residues, it is easy to see that{
res

z=eπi/6
− res
z=−e−πi/6

} (
1 + z2

)3m−n(
1 + z6

)m+1

is a real number. Thus,

Re

(
πi

{
res

z=eπi/6
− res
z=−e−πi/6

} (
1 + z2

)3m−n(
1 + z6

)m+1

)
= 0

and we need to find the residue at the pole z = i only. The order of the pole is (m+1)−(3m−n) =

n−2m+1, that means
(
1+z2

)3m−n
/
(
1+z6

)m+1
is holomorphic at z = i if n 6 2m−1. Therefore,

nonzero summands in (4.6) are possible only if n > 2m. Then the residue can be written as

res
z=i

(
1 + z2

)3m−n(
1 + z6

)m+1 = −i · hm,n−2m,

where

hm,n =
(−1)n

n!

dn

dtn

(
1

(t+ 1)n+1
(
t4 + t2 + 1

)m+1

)∣∣∣∣
t=1

,

and (4.6) is reduced to the following expression:

Tn+2(x) =
∑

n
3
6m6n

2

hm,n−2m
12m+1m!x3m−n

(3m− n)!
. (4.7)

In particular, T0(x) = T1(x) = T3(x) ≡ 0 because the set of possible m’s values is empty.
As before, we find hm,n using the generating function

H(s) =

∞∑
n=0

hm,ns
n =

1

2πi

∮
|z−1|=ε

∞∑
n=0

(−s)n(
z2 − 1

)n+1 ·
dz(

z4 + z2 + 1
)m+1

=
1

2πi

∮
|z−1|=ε

dz(
z2 − 1 + s

)(
z4 + z2 + 1

)m+1

= res
z=
√
1−s

1(
z2 − 1 + s

)(
z4 + z2 + 1

)m+1

=
1

2
√

1− s
(
3− 3s+ s2

)m+1 .
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Then

hm,n = [[sn]]H(s) =
1

2 · 3m+1
[[sn]]

{
(1− s)−m−3/2

(
1 +

s2

3(1− s)

)−m−1}

=
1

2 · 3m+1
[[sn]]

{ ∞∑
k=0

(
m+ k

m

)(
−s

2

3

)k
·
∞∑
`=0

(
m+ k +

3

2

)
`

s`

`!

}

=
1

2 · 3m+1

bn/2c∑
k=0

(
m+ k

m

)
Γ
(
m+ n− k + 3

2

)
(n− 2k)!Γ

(
k +m+ 3

2

) (−1

3

)k
=

1

22n+13m+1
· (2m+ 2n+ 1)!m!

(2m+ 1)!(m+ n)!n!
· 3F2

(
−n

2 ,−
n−1
2 ,m+ 1

−m− n− 1
2 ,m+ 3

2

∣∣∣∣ 4

3

)
. (4.8)

In spite of a terminating form of the hypergeometric series, the expression (4.8) does not look
a perfect because the argument of the series is located in the exterior of the unit disk. Having
in mind the results discussed in Section 3, we come back to the finite sum over k and reverse
the order of summation that gives

hm,2n+δ =
(−1)n

2 · 3m+n+1

(
m+ n

m

)(
m+ n+

3

2

)
δ

× 3F2

(
−n,−m− n− 1

2 ,m+ n+ δ + 3
2

−m− n, δ + 1
2

∣∣∣∣ 3

4

)
.

Here we replaced the second index in hm,n by 2n + δ, where δ = 0, 1, with the aim to avoid
the appearance of many bn/2c’s. We recall also that if a hypergeometric function contains
nonpositive integers among upper and lower parameters, then it’s value is defined as

pFq

(
−n, . . .

−m− n, . . .

∣∣∣ z) = lim
ε→0

pFq

(
−n, . . .

ε−m− n, . . .

∣∣∣ z)
(see [10, equation (2.1.4) and discussion here] and [14, Section 5.5] for details).

Returning to (4.7), we obtain the required formulae for Tn(x) and then for Sn(x) and Rn(x)
on the base of relations (4.2). As in Section 2, we rename the coefficients in order to rewrite the
final expressions in a shorter form:

T2n+δ+2(x) =
∑

2n+δ
3

6m6n

h̃m,n,δ

(
3

2
, 0

)
n!
(
−1

3

)n−m
22m+1x3m−2n−δ

(n−m)!(3m− 2n− δ)!
, (4.9)

S2n+δ+1(x) =
∑

2n+δ
3

6m6n

h̃m,n,δ

(
1

2
, 0

)
n!
(
−1

3

)n−m
22mx3m−2n−δ

(n−m)!(3m− 2n− δ)!
, (4.10)

R2n+δ(x) =
∑

2n+δ
3

6m6n

{
h̃m,n,δ

(
−1

2
, 0

)
− [n > 0]

3m− 2n− δ
2n

h̃m,n,δ

(
1

2
, 1

)}

×
n!
(
−1

3

)n−m
22mx3m−2n−δ

(n−m)!(3m− 2n− δ)!
, (4.11)

where

h̃m,n,δ(a, b) = (n+ a)δ · 3F2

(
m− n, 1− a− n, n+ δ + a

b− n, δ + 1
2

∣∣∣∣ 3

4

)
(4.12)
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and [n > 0] is Iverson’s symbol. In general, Iverson’s symbol [A] is defined for a logical state-
ment A by (see [14, Section 2.1])

[A] =

{
1, if A is true,

0, if A is false.

Its presence in (4.11) means that the second term in braces should be removed if n = 0.
Now we briefly discuss two corollaries of the above formulae – a difference equation of third

order and special values of the function 3F2.
A difference equation for polynomials Rn(x), Sn(x) and Tn(x) follows by applying the way

used in Section 3. It is known that products of Airy atoms f2(x), f(x)g(x) and g2(x) satisfy
the equation y′′′ − 4xy′ − 2y = 0. Since (4.3), the generating functions of all three polynomial
families,

R(x, t) =
∞∑
n=0

Rn(x)
tn

n!
, S(x, t) =

∞∑
n=0

Sn(x)
tn

n!
, T(x, t) =

∞∑
n=0

Tn(x)
tn

n!
,

are solutions of the differential equation{
d3

dt3
− 4(x+ t)

d

dt
− 2

}
Y(x, t) = 0.

Expanding a solution in a power series,

Y(x, t) =

∞∑
n=0

Yn(x)
tn

n!
,

one can find a recurrence relation for its coefficients, functions Yn(x):

Yn+3(x) = 4xYn+1(x) + (4n+ 2)Yn(x). (4.13)

Thus, in contrast with (3.2), three independent solutions of (4.13) are known:

Rn(x) : R0(x) = 1, R1(x) = 0, R2(x) = 2x,

Sn(x) : S0(x) = 0, S1(x) = 1, S2(x) = 0,

Tn(x) : T0(x) = 0, T1(x) = 0, T2(x) = 2,

and the general solution of (4.13) with arbitrary initial conditions is

Yn(x) = Y0(x)Rn(x) + Y1(x)Sn(x) +

(
Y2(x)

2
− xY0(x)

)
Tn(x).

Relations containing special values of the function 3F2 are based on expansions of polynomials
Rn(x), Sn(x) and Tn(x) for small x’s. For the case of Tn(x), we can use (4.5) and obtain

T3n(x) = 12n
{(

5

6

)
n

− 2

(
1

2

)
n

+

(
1

6

)
n

}
x2 + · · · ,

T3n+1(x) = 2 · 12n
{(

5

6

)
n

−
(

1

2

)
n

}
x

+
12n

2

{
(2n+ 3)

(
5

6

)
n

− (8n+ 5)

(
1

2

)
n

+ 2

(
7

6

)
n

}
x4 + · · · ,

T3n+2(x) = 2 · 12n
(

5

6

)
n

+ 2 · 12n
{

(2n+ 2)

(
5

6

)
n

− 3

(
3

2

)
n

+

(
7

6

)
n

}
x3 + · · · .
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For two other polynomial families, similar expansions can be found either by reducing to Tn(x)
with (4.2) or by applying (4.3) directly. The results are as follows:

S3n(x) = 12n
{(

1

2

)
n

−
(

1

6

)
n

}
x+ · · · ,

S3n+1(x) = 12n
(

1

2

)
n

+ 12n
{

(2n+ 2)

(
1

2

)
n

−
(

5

6

)
n

−
(

7

6

)
n

}
x3 + · · · ,

S3n+2(x) = 12n
{

3

(
3

2

)
n

−
(

5

6

)
n

− 2

(
7

6

)
n

}
x2 + · · · ,

R3n(x) = 12n
(

1

6

)
n

+ 12n
{

(2n+ 1)

(
1

6

)
n

−
(

1

2

)
n

}
x3 + · · · ,

R3n+1(x) = 12n
{(

7

6

)
n

−
(

1

2

)
n

}
x2 + · · · ,

R3n+2(x) = 12n+1

(
1

6

)
n+1

x+
12n

2

{
(2n+ 5)

(
7

6

)
n

+

(
5

6

)
n

− 6

(
3

2

)
n

}
x4 + · · · .

Then, using (4.12), we can write special values of the function 3F2 in terms of the Pochhammer
symbol. As in Section 3, Carlson’s theorem and asymptotical behaviour of gamma function help
to replace an integer n by a real a (see Appendix A for details). Below we present the formu-
lae corresponding to the shortest cases of the polynomials’ coefficients only, namely, T3n+2(0),
S3n+1(0), R3n(0) and R′3n+2(0). The first formula is for δ = 0, the second – for δ = 1.

The case T3n+2(0) = 2 · 12n
(
5
6

)
n

gives

3F2

(
a, 3a− 1

2 ,
3
2 − 3a

3a, 12

∣∣∣ 3

4

)
=

2Γ
(
1
6

)
Γ(3a) sin

(
π
6 + πa

)
33aΓ

(
2a+ 1

6

)
Γ(a)

, (4.14)

3F2

(
a, 3a− 3

2 ,
7
2 − 3a

3a− 1, 32

∣∣∣ 3

4

)
=

5− 12a

(1− 3a)(5− 6a)
·

2Γ
(
1
6

)
Γ(3a) sin

(
π
6 + πa

)
33aΓ

(
2a+ 1

6

)
Γ(a)

. (4.15)

The case S3n+1(0) = 12n
(
1
2

)
n

gives

3F2

(
a, 12 − 3a, 12 + 3a

3a, 12

∣∣∣ 3

4

)
=

4
√
πΓ(3a) cosπa

33aΓ
(
2a+ 1

2

)
Γ(a)

, (4.16)

3F2

(
a, 3a− 1

2 ,
5
2 − 3a

3a− 1, 32

∣∣∣ 3

4

)
=

1− 4a

(1− 2a)(1− 3a)
· 4
√
πΓ(3a) cosπa

33aΓ
(
2a+ 1

2

)
Γ(a)

. (4.17)

The case R3n(0) = 12n
(
1
6

)
n

gives

3F2

(
a, 3a+ 3

2 ,−
1
2 − 3a

3a, 12

∣∣∣ 3

4

)
=

2Γ
(
5
6

)
Γ(3a) sin

(
π
6 − πa

)
33aΓ

(
2a+ 5

6

)
Γ(a)

,

3F2

(
a, 3a+ 1

2 ,
3
2 − 3a

3a− 1, 32

∣∣∣ 3

4

)
=

1− 12a

(1− 3a)(1− 6a)
·

2Γ
(
5
6

)
Γ(3a) sin

(
π
6 − πa

)
33aΓ

(
2a+ 5

6

)
Γ(a)

.

The case R′3n+2(0) = 12n+1
(
1
6

)
n+1

gives

3F2

(
a, 3a+ 1

2 ,
1
2 − 3a

3a− 1, 12

∣∣∣ 3

4

)
=

Γ(3a)

(1− 3a)33aΓ(a)

{
Γ
(
1
6

)
sin
(
π
6 + πa

)
Γ
(
2a+ 1

6

) + (1− 12a)
Γ
(
5
6

)
sin
(
π
6 − πa

)
Γ
(
2a+ 5

6

) }
,
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3F2

(
a, 3a− 1

2 ,
5
2 − 3a

3a− 2, 32

∣∣∣ 3

4

)
=

Γ(3a)

(1− 2a)(1− 3a)(2− 3a)33a+1Γ(a)

×

{
(5− 12a)

Γ
(
1
6

)
sin
(
π
6 + πa

)
Γ
(
2a+ 1

6

) + (1− 12a)(7− 12a)
Γ
(
5
6

)
sin
(
π
6 − πa

)
Γ
(
2a+ 5

6

) }
. (4.18)

Finally, it is worth noting that Rn(x), Sn(x) and Tn(x) can be expressed in terms of Pn(x)
and Qn(x). Since

[
Ai2(x)

](n)
=

n∑
k=0

(
n

k

)
Ai(k)(x)Ai(n−k)(x),

we have that{
Rn(x)

∥∥ 2Sn(x)
∥∥Tn(x)

}
=

n∑
k=0

(
n

k

){
Pk(x)Pn−k(x)

∥∥Pk(x)Qn−k(x) +Qk(x)Pn−k(x)
∥∥Qk(x)Qn−k(x)

}
.

However, it seems difficult to obtain the expansions (4.9)–(4.11) by using formulae (2.12)
and (2.13) directly.

5 Concluding remarks

In this paper, we have found higher derivatives of Airy functions and their products in a closed
form. Explicit formulae for the polynomials which are contained in these derivatives help to
obtain special values of hypergeometric functions 2F1 and 3F2. We did not try to give a complete
solution of this problem and considered only a few simple cases. In our view, a construction of
the general solution will not require significant efforts. Moreover, combining this approach with
the ideas presented in [13], one can find more general values of 3F2-function depending on two
parameters. For example (cf. with (4.16) and (4.17)),

3F2

(
b, 12 − 3a, 12 + 3a

3b, 12

∣∣∣ 3

4

)
=

4Γ
(
1
2 + a− b

)
Γ(3b)

33bΓ
(
1
2 + a+ b

)
Γ(b)

cosπa cos[π(b− a)],

3F2

(
b, 1− 3a, 1 + 3a

3b− 1, 32

∣∣∣ 3

4

)
=

4Γ(1 + a− b)Γ(3b− 1)

33baΓ(a+ b)Γ(b)
sinπa sin[π(b− a)].

Nevertheless, there are some problems which are yet remain open and look quite difficult.
For example, how to find the solution Zn(x) of the equation (3.2) and to reveal its relation to
Airy functions.

The next problem is connected with zeros of all above polynomials. Let us define reduced
polynomials removing a zero at the origin and an excessive cubicity:

P3n+δ(x) = x{0 ‖ 2 ‖ 1}P̃3n+δ

(
x3
)
, R3n+δ(x) = x{0 ‖ 2 ‖ 1}R̃3n+δ

(
x3
)
,

Q3n+δ(x) = x{1 ‖ 0 ‖ 2}Q̃3n+δ

(
x3
)
, S3n+δ(x) = x{1 ‖ 0 ‖ 2}S̃3n+δ

(
x3
)
,

Z3n+δ(x) = x{2 ‖ 1 ‖ 0}Z̃3n+δ

(
x3
)
, T3n+δ(x) = x{2 ‖ 1 ‖ 0}T̃3n+δ

(
x3
)
,

where δ = {0 ‖ 1 ‖ 2}. For example,

Q̃15(x) = x2 + 770x+ 8680, R̃12(x) = 2048x2 + 112 896x+ 27 664.
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Numerical investigations show that zeros of all reduced polynomials are real (therefore, negative)
and simple but we could not prove this and find an asymptotical behaviour of zeros and extreme
points of the polynomials.

In conclusion, it is interesting to note that negative counterparts of the coefficients (2.11)
appear in some integral transforms of Airy functions. For example,∫ ∞

0
x3n+1/2Ai2(ax){Bi(bx)− i Ai(bx)} dx =

21/3

22n+23πn!a3n+3/2

×
2n∑
m=0

(
1

2

)
m

(3n−m)![[t2n−m]]

(
1− t+

t2

3

)n{
Λm,3n−m

(
b

22/3a

)
− ωΛm,3n−m

(
ωb

22/3a

)}
,

where a > 0, b < 22/3a, Re(
√

22/3a− ωb) > 0, and

Λn,N (t) =
1

tN+1

{
1

(1− t)n+1/2
−

N∑
k=0

(
n+

1

2

)
k

tk

k!

}
=

1

tN+1

∞∑
k=N+1

(
n+

1

2

)
k

tk

k!
.

A Appendix: Evaluation of the 3F2-function special value

Here, we prove the relation (4.14).
Since T3n+2(0) = 2 · 12n

(
5
6

)
n
, it follows that T6n+3δ+2(0) = 2 · 122n+δ

(
5
6

)
2n+δ

. We can also
obtain T6n+3δ+2(0) = T2[3n+δ]+δ+2(0) from the expansion (4.9). Equating both expressions leads
to

2 · 122n+δ
(

5

6

)
2n+δ

= h̃2n+δ,3n+δ,δ

(
3

2
, 0

)
24n+2δ+1(3n+ δ)!

(−3)nn!
.

Then (
3n+ δ +

3

2

)
δ

· 3F2

(
−n,−1

2 − δ − 3n, 3n+ 2δ + 3
2

−δ − 3n, δ + 1
2

∣∣∣ 3

4

)
=

n!

(3n+ δ)!

n∑
k=0

Γ
(
3n+ 2δ + 3

2 + k
)
(3n+ δ − k)!(−3)k

Γ
(
3n+ δ + 3

2 − k
)
(n− k)!(2k + δ)!

=
(−1)n33n+δ

(
5
6

)
2n+δ

n!

(3n+ δ)!
.

Below we restrict ourselves to the case δ = 0 only:

3F2

(
−n,−1

2 − 3n, 32 + 3n
−3n, 12

∣∣∣ 3

4

)
=

(−1)n33n
(
5
6

)
2n
n!

(3n)!
.

As mentioned above, the case when a hypergeometric function contains nonpositive integers
among its upper and lower parameters is special and cannot be generalized to deal with real
values. Nevertheless, let us replace n by −a and consider a hypothetical identity

F(a) = 3F2

(
a, 3a− 1

2 ,
3
2 − 3a

3a, 12

∣∣∣ 3

4

)
= τ(a) ·

Γ
(
5
6 − 2a

)
Γ(1− a)

33aΓ
(
5
6

)
Γ(1− 3a)

,

where F(a) is a short-hand notation for our hypergeometric function, and τ(a) is an unknown
function.

The numerical plotting procedure shows that the function

τ(a) = F(a) ·
33aΓ

(
5
6

)
Γ(1− 3a)

Γ
(
5
6 − 2a

)
Γ(1− a)
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(a)

(b)

(c)

Figure 1. The function τ(a) for a ∈ [−1.5, 2.5] (a), a ∈ [0, 2] (b), and a ∈ [0.7, 1] (c).

is a periodic function with period 2 (see Fig. 1). A closer scrutiny of the curve reveals that

τ

(
n+

1

3

)
= τ

(
n+

2

3

)
=∞, τ

(
n+

5

12

)
= τ

(
n+

5

6

)
= τ

(
n+

11

12

)
= 0

for all n ∈ Z.
Combining all the above zeros and poles together, let us introduce the function

τ̃(a) =
sin
(
π
[
a− 5

12

])
sin
(
π
[
a− 5

6

])
sin
(
π
[
a− 11

12

])
sin
(
π
[
a− 1

3

])
sin
(
π
[
a− 2

3

]) = −
sin
(
π
[
a− 5

6

])
sin
(
π
[
2a− 5

6

])
2 sin

(
π
[
a− 1

3

])
sin
(
π
[
a− 2

3

])
with a hope that τ̃(a) = τ(a). However, the numerical plotting procedure reveals that

F(a)

τ̃(a) ·
Γ
(
5
6 − 2a

)
Γ(1− a)

33aΓ
(
5
6

)
Γ(1− 3a)

= −2 (A.1)

for all a. As result, one can obtain the formula

F(a) =
sin
(
π
[
a− 5

6

])
sin
(
π
[
2a− 5

6

])
sin
(
π
[
a− 1

3

])
sin
(
π
[
a− 2

3

]) · Γ
(
5
6 − 2a

)
Γ(1− a)

33aΓ
(
5
6

)
Γ(1− 3a)

=
Γ
(
1
6

)
Γ
(
a+ 1

3

)
Γ
(
a+ 2

3

)
π
√

3 Γ
(
2a+ 1

6

) · sin
(
πa+

π

6

)
,

which coincides with equation (54) (see Fig. 2, where F(a) is shown for a ∈ [−1.5, 2.5]).
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Figure 2. The hypergeometric function F(a) for a ∈ [−1.5, 2.5].

Now, “when you have satisfied yourself that the theorem is true, you start proving it” [20,
Chapter 5]. At this stage, it is convenient to replace the parameter a by a complex z:

F(z) = 3F2

(
z, 3z − 1

2 ,
3
2 − 3z

3z, 12

∣∣∣ 3

4

)
?
= F0(z) =

Γ
(
1
6

)
Γ
(
z + 1

3

)
Γ
(
z + 2

3

)
π
√

3Γ
(
2z + 1

6

) sin
(
πz +

π

6

)
.

We will prove that F(z) = F0(z) for all z in the region of joint analyticity by fitting F(z)−F0(z)
to conditions of Carlson’s theorem.

First of all, we cannot use the left half-plane, Re z 6 0, since F(z) is meromorphic there.
Let us consider the right half-plane, Re z > 0, where, as we will see later, F(z) is holomorphic.

We need to define a sequence of positive numbers {zn} with zn → ∞ such that F(zn) can be
found easily in order to examine the validity of the relation F(zn) = F0(zn). The simplest way is
to choose zn’s for which the hypergeometric series terminates: z = 1

6 and 3
2 −3z = 0,−1,−2, . . ..

Thus, one can obtain the following sequences:

zn = n+
1

6
, z̃n = n+

1

2
, ˜̃zn = n+

5

6
, n > 0.

Since F0(˜̃zn) = 0, we consider the sequence {˜̃zn} first. Then

F(˜̃zn) = 3F2

(
n+ 5

6 , 3n+ 2,−1− 3n
3n+ 5

2 ,
1
2

∣∣∣ 3

4

)
=

3n+1∑
k=0

(
3n+ 1 + k

2k

) (
n+ 5

6

)
k(

3n+ 5
2

)
k

(−3)k.

We use Zeilberger’s algorithm (see [14, Chapter 5] and [19] for detailed description) which for
a given finite sum of hypergeometric terms, Fn =

∑
k f(n, k), tries to construct a linear difference

operator annihilating Fn, L(n)Fn = 0, and a rational function R(n, k) such that

L(n)f(n, k) = G(n, k + 1)−G(n, k), where G(n, k) = R(n, k)f(n, k).

There are various implementations of the algorithm in modern computer algebra systems, for
example, the Maple package EKHAD. Applying it to F(˜̃zn), we have found the following pair:

L(n) = L(n | ˜̃zn) = (12n+ 11)(12n+ 17)N + (6n+ 7)(6n+ 9),

R(n, k) = R(n, k | ˜̃zn) = 12k(2k − 1)
(
12n2 + 32n+ 21

)
×

2k3 − 18k2(n+ 1)− 2k
(
81n2 + 153n+ 73

)
− 3(n+ 1)

(
90n2 + 162n+ 71

)
(6n+ 7 + 2k)(6n+ 5 + 2k)(3n+ 2− k)(3n+ 3− k)(3n+ 4− k)

,

where N denotes the forward shift operator, i.e., NFn = Fn+1. Since L(n)F0(˜̃zn) = 0 and
F(˜̃z0) = 0, we immediately obtain that F(˜̃zn) = F0(˜̃zn) for all n.
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Using this approach, one can find (L, R)-pairs for two other sequences:

F(z̃n) = 3F2

(
n+ 1

2 , 3n+ 1,−3n
3n+ 3

2 ,
1
2

∣∣∣ 3

4

)
and F(zn) = 3F2

(
n+ 1

6 , 3n, 1− 3n
3n+ 1

2 ,
1
2

∣∣∣ 3

4

)
.

Since z̃n = ˜̃zn − 1
3 and zn = ˜̃zn − 2

3 , it is not surprising that

L(n | z̃n) = L
(
n− 1

3

∣∣∣ ˜̃zn

)
, R(n, k | z̃n) = R

(
n− 1

3
, k
∣∣∣ ˜̃zn

)
,

L(n | zn) = L
(
n− 2

3

∣∣∣ ˜̃zn

)
, R(n, k | zn) = R

(
n− 2

3
, k
∣∣∣ ˜̃zn

)
.

The final part of the proof of the conjectured relations, F(z̃n) = F0(z̃n) and F(zn) = F0(zn),
is completely routine, by checking that

F0(z̃n) = (−1)n
(
5
6

)
n

(
7
6

)
n(

7
6

)
2n

and F0(zn) = (−1)n
(
1
2

)
n

(
5
6

)
n(

1
2

)
2n

vanish under the action of the corresponding L-operator, and by checking the trivial initial
condition for n = 0.

Now, we turn to Carlson’s theorem. The theorem is a special case of another theorem of
Carlson (see [23, Section 5.8]): Let f(z) be regular and of the form O

(
ec|z|

)
for Re z > 0; and

let f(z) = O
(
e−α|z|

)
, where α > 0, on the imaginary axis. Then f(z) = 0 identically. We will

refer to it as Theorem 5.8. In [23], Carlson’s theorem has been proved in three steps by checking
that F (z) = f(z)/ sinπz satisfies the conditions of Theorem 5.8. First, the function 1/ sinπz
is bounded on the circles |z| = n + 1

2 . Hence F (z) = O
(
ec|z|

)
on these circles, and also on the

imaginary axis. Second, since F (z) is regular, it follows that for z ∈
{

Re z > 0, n − 1
2 6 |z| 6

n+ 1
2

}
F (z) = O

(
ec(n+1/2)

)
= O

(
ec|z|

)
and so F (z) is of the form throughtout the right half-plane. Third,

∣∣F (iy)
∣∣ =

∣∣f(iy)
∣∣

sinhπ|y|
= O

(
e−(π−c)|y|

)
,

and, therefore, the identity F (z) = 0 follows from Theorem 5.8.
The next three statements are simple corollaries of Theorem 5.8 and can be proved in the

same way as Carlson’s theorem itself.

Corollary A.1. If f(z) is regular and of the form O
(
ec|z|

)
, where c < 2π, for Re z > 0, and

f(z) = 0 for z = 0, 12 , 1,
3
2 , 2,

5
2 , . . ., then f(z) = 0 identically.

Of course, it follows directly from Carlson’s theorem by substituting z with 2z. However,
much more revealing is to consider the function

F (z) =
f(z)

sinπz sin
(
π
[
z − 1

2

])
and to pass through the steps above for semicircles

{
Re z > 0, |z| = n+ 1

4

}
and

{
Re z > 0, |z| =

n+ 3
4

}
.

Corollary A.2. If f(z) is regular and of the form O
(
ec|z|

)
, where c < 2π, for Re z > 0, and

f(z) = 0 for z = {n, n+ a; n > 0}, where 0 < a < 1, then f(z) = 0 identically.
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Here we use

F (z) =
f(z)

sinπz sin(π[z − a])

and semicircles, placed in the right half-plane, with |z| = n+ 1
2a and |z| = n+ 1

2(a+ 1).

Corollary A.3. If f(z) is regular and of the form O(ec|z|), where c < 3π, for Re z > 0, and
f(z) = 0 for z = {n, n+ a, n+ b; n > 0}, where 0 < a < b < 1, then f(z) = 0 identically.

Here we use

F (z) =
f(z)

sinπz sin(π[z − a]) sin(π[z − b])

and semicircles with |z| = n+ 1
2a, |z| = n+ 1

2(a+ b), and |z| = n+ 1
2(b+ 1).

The inequality c < 3π in Corollary A.3 is sufficient for our purposes. Since F(z) − F0(z)
vanishes at the points z =

{
n + 1

6 , n + 1
2 , n + 5

6 ; n > 0
}

, we consider the function in the half-
plane Re z > 1

6 . The series

F(z) =
∞∑
k=0

(z)k
(
3z − 1

2

)
k

(
3
2 − 3z

)
k

(3z)k
(
1
2

)
k
k!

(
3

4

)k
=

Γ(3z) sin
(
π
[
3z − 1

2

])
√
πΓ(z)

∞∑
k=0

Γ(k + z)Γ
(
k + 3z − 1

2

)
Γ
(
k + 3

2 − 3z
)

Γ(k + 3z)Γ
(
k + 1

2

)
Γ(k + 1)

(
3

4

)k
is absolutely convergent for any fixed z in this half-plane since

Γ(k + z)Γ
(
k + 3z − 1

2

)
Γ
(
k + 3

2 − 3z
)

Γ(k + 3z)Γ
(
k + 1

2

)
Γ(k + 1)

∼ 1

k2z+1/2
, k →∞

due to Stirling’s formula [18, equation (5.11.7)]

Γ(aλ+ b) ∼
√

2πe−aλ(aλ)aλ+b−1/2, | arg λ| < π, λ→∞,

where a > 0 and b ∈ C are both fixed. Thus, F(z) is holomorphic and then F(z) − F0(z) is
holomorphic also.

The final step of our proof is to obtain an upper bound for |F(z)−F0(z)| as |z| → ∞. Since
the estimate for F0(z) is trivial, we consider the problem for F(z) only. A major benefit of
Corollary A.3 use is that a very crude estimate is sufficient. Applying the integral relation [21,
equation (7.2.3.9)] which reduces p+1Fq+1 to pFq, we have

F(z) = 3F2

(
z, 3z − 1

2 ,
3
2 − 3z

3z, 12

∣∣∣ 3

4

)
=

Γ(3z)

Γ(z)Γ(2z)

∫ 1

0
tz−1(1− t)2z−1 · 2F1

(
3z − 1

2 ,
3
2 − 3z

1
2

∣∣∣ 3t

4

)
dt.

Using a closed-form expression for the 2F1-function [21, equation (7.3.1.90)]

2F1

(
a, 1− a

1
2

∣∣∣ z) =
cos([2a− 1] arcsin

√
z)√

1− z
,

one can obtain

|F(z)| 6
∣∣∣∣ Γ(3z)

Γ(z)Γ(2z)

∣∣∣∣ ∫ 1

0
tRe z−1(1− t)2Re z−1 ·

∣∣cos
(
[6z − 2] arcsin

(
1
2

√
3 t
))∣∣√

1− 3
4 t

dt.
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Estimating the gamma function ratio outside the integral and the cosine term in the integrand,
one finds

Γ(3z)

Γ(z)Γ(2z)
∼
√
z√

3π
· 33z

22z
⇒

∣∣∣∣ Γ(3z)

Γ(z)Γ(2z)

∣∣∣∣ = O
{√
|z| exp

(
Re z ln

27

4

)}
, ln

27

4
< 2,

| cos(x+ iy)| 6 cosh y 6 e|y| ⇒
∣∣cos

(
[6z − 2] arcsin

(
1
2

√
3t
))∣∣ 6 e2π| Im z|

for all t ∈ [0, 1]. As result,

|F(z)| 6 2e2π| Im z| ·
∣∣∣∣ Γ(3z)

Γ(z)Γ(2z)

∣∣∣∣ ∫ 1

0
tRe z−1(1− t)2Re z−1 dt

= 2e2π| Im z| ·
∣∣∣∣ Γ(3z)

Γ(z)Γ(2z)

∣∣∣∣ · Γ(Re z)Γ(2 Re z)

Γ(3 Re z)

and, therefore, |F(z)| = O
(
ec|z|

)
with c < 3π.

In conclusion, it is interesting to note that for proving identities (4.15)–(4.18) the numerical
part of the method above leads to the same constant, −2, as in (A.1), while other components
of final expressions are rather different.
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[12] Erdélyi A., Magnus W., Oberhettinger F., Tricomi F.G., Higher transcendental functions, Vol. III, McGraw-
Hill Book Company, New York, 1955.

[13] Gessel I., Stanton D., Strange evaluations of hypergeometric series, SIAM J. Math. Anal. 13 (1982), 295–308.

https://doi.org/10.1103/PhysRev.147.554
https://doi.org/10.1016/j.jmaa.2011.06.001
https://doi.org/10.1080/10652469.2012.726826
https://doi.org/10.1090/memo/1177
https://arxiv.org/abs/1308.5588
https://doi.org/10.1103/PhysRevA.29.2339
https://doi.org/10.1137/0513021


26 E.G. Abramochkin and E.V. Razueva

[14] Graham R.L., Knuth D.E., Patashnik O., Concrete mathematics, 2nd ed., Addison-Wesley Publishing Com-
pany, Reading, MA, 1994.

[15] Laurenzi B.J., Polynomials associated with the higher derivatives of the Airy functions Ai(z) and Ai′(z),
arXiv:1110.2025.

[16] Leal Ferreira P., Castilho Alcarás J.A., S-wave radial excitations for a linear potential, Lett. Nuovo Cimento
14 (1975), 500–504.

[17] Maurone P.A., Phares A.J., On the asymptotic behavior of the derivatives of Airy functions, J. Math. Phys.
20 (1979), 2191.

[18] Olver F.W.J., Lozier D.W., Boisvert R.F., Clark C.W. (Editors), NIST handbook of mathematical func-
tions, U.S. Department of Commerce, National Institute of Standards and Technology, Washington, DC;
Cambridge University Press, Cambridge, 2010, available at http://dlmf.nist.gov.
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