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Abstract. The paper gives a review of recent progress in the classification of monodromy-
free Schrödinger operators with rational potentials. We concentrate on a class of potentials
constituted by generalized Hermite polynomials. These polynomials defined as Wronskians
of classic Hermite polynomials appear in a number of mathematical physics problems as well
as in the theory of random matrices and 1D SUSY quantum mechanics. Being quadratic
at infinity, those potentials demonstrate localized oscillatory behavior near the origin. We
derive an explicit condition of non-singularity of the corresponding potentials and estimate
a localization range with respect to indices of polynomials and distribution of their zeros in
the complex plane. It turns out that 1D SUSY quantum non-singular potentials come as
a dressing of the harmonic oscillator by polynomial Heisenberg algebra ladder operators. To
this end, all generalized Hermite polynomials are produced by appropriate periodic closure
of this algebra which leads to rational solutions of the Painlevé IV equation. We discuss the
structure of the discrete spectrum of Schrödinger operators and its link to the monodromy-
free condition.
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1 Introduction

The integrability property of Painlevé equations reveals a number of applications of their solu-
tions. Besides traditional self-similar modes in nonlinear PDE’s of mathematical physics they
provide new construction material for integrable quantum mechanics and spectral theory. In this
paper, we give a brief review of recent achievements in these applications of rational solutions of
the fourth Painlevé equation (PIV). We trace how they come from monodromy-free potentials
of the Schrödinger equation and from supersymmetric dressing of the harmonic potential in
one-dimensional quantum mechanics.

Another ingredients of these interconnections are the generalized Hermite polynomials which
build all rational solutions of PIV. Their appearance in multiple applications is explained by the
determinant representation of these polynomials. Actually, it can be set as a definition in terms
of classical Hermite polynomials. Namely, generalized Hermite polynomials (GHP) Hm,n(z) are
defined as follows [8, 19]

Hm,n(z) = det (Pn−i+j(z))
m
i,j=1 ,
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where

Ps(z) =
∑

i+2j=s

1

6ji!j!
zi,

or, equivalently, as Wronskians of classical Hermite polynomials

Hm,n(z) = cm,nW (Hm(z), Hm+1(z), . . . ,Hm+n−1(z)) , (1.1)

where Hn(z) = (−1)nez
2 dn

dzn e−z
2

and cm,n are normalization constants.
Like classical orthogonal polynomials Hm,n have a number of useful properties. For example,

they constitute recurrence coefficients for orthogonal polynomials pn(x) with weight w(x, z,m) =
(x− z)m exp

(
−x2

)
[7, 10]

xpn(x) = pn+1(x) + an(z,m)pn(x) + bn(z,m)pn−1(x),

where

an(z,m) = −1

2

d

dz
ln
Hn+1,m

Hn,m
, bn(z,m) =

nHn+1,mHn−1,m
2H2

n,m

.

Another property is a formula for rational solutions to the Painlevé IV equation

v(z) = −2z+
d

dz
ln
Hm,n+1(z)

Hm+1,n(z)
. (1.2)

In this case PIV equation

v′′ =
(v′)2

2v
+

3

2
v3 + 4zv2 + 2

(
z2 − a

)
v +

b

v
, (1.3)

has integer coefficients

a = n−m, b = −2(m+ n+ 1)2,

where m and n are the indices of the corresponding polynomials [16].
The solutions (1.2) have a specific structure of poles in the complex plane. It can be thought

of as an equilibrium state of Coulomb charged particles in an external field. Indeed, any pole
of a rational solution to PIV has residue equal to cj = +1 or cj = −1 (see Theorem 3.1).
The poles zj can be interpreted as positive and negative charges interacting by the logarithmic
potential and influenced by the external quadratic potential

U(z1, z2, . . . , zn) =
n∑
j=1

cjz
2
j +

n∑
j 6=k

cjck log(zj − zk)2.

The equilibrium condition provides the generalized Stiltjes relation [25]∑
j 6=k

cj
zk − zj

+ zk = 0, k = 1, 2, . . . .

Here each pole coincides with zero of the related polynomial. The distribution of poles for large
orders of polynomials has been studied since classical works by T. Stiltjes [24] and M. Plancherel
and W. Rotach [22]. This question was discussed recently in applications to dynamics of Coulomb
log-gases [14] and approximations by rational functions in logarithmic potential theory [23].
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Figure 1. Monodromy-free potential (1.4) u(x), generated by polynomials Hm,n(z) and Hm,n+1(z) for

m = 17, n = 4 (left) and zeros of Hm,n (blue) and Hm,n+1 (red) in the complex plane (right).

Since the PIV equation (1.3) is integrable in the sense of soliton theory [13, 15], all its
rational solutions have been found and labeled by recursions of Bäcklund transformations [13,
Chapter 6]. These recursions can be rewritten as dressing chains of the Lax operator with some
periodic closures. As a by-product this gives a set of Schrödinger operators L formed by GHP

L = − d2

dx2
+ u(x), u(x) = f ′(x) + f2(x), f(x) = −x+

d

dz
ln

Hm,n(z)

Hm,n+1(z)
. (1.4)

These operators are monodromy-free (see Section 2) and the discrete spectrum of each is an
arithmetic sequence with a finite gap (Theorem 3.7). Moreover, all potentials (1.4) are non-
singular on the real line for odd n. This is due to Theorem 3.5 below which proves Resu(z) = 0.
In turn, this follows from the distribution of zeros of GHP.

One can mention also a recent application of GHP in matrix models of statistical physics.
Consider a degenerate Gaussian unitary ensemble where eigenvalues λk are fixed k = 1, 2, . . . , n,
and λn+1 = z has m-fold multiplicity. Then the partition function of the ensemble has the
form [7]

Dn(z) =
1

n!

∫ ∞
∞
· · ·
∫ ∞
∞

∏
1≤i<j≤n

(λi − λj)2
n∏
k=1

(λk − z)me−λ
2
kdλk, (1.5)

where

Dn(z) = Am,nHm,n(cz), c = i

√
2

3
, Am,n = const.

Note that formula (1.5) is proved with the help of dressing chains and ladder operators discussed
below in Section 4.

2 Monodromy-free potentials and dressing chain

A Schrödinger operator

L = − d2

dz2
+ u(z) (2.1)

with meromorphic potential is called monodromy-free if all solutions of the equation

Lψ = −ψ′′ + uψ = λψ
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are meromorphic in the whole complex plane z ∈ C for all λ. In other words, monodromy of the
equation (2.1) in the complex plane is trivial for all λ.

The problem of classification of monodromy-free Schrödinger operators is traditional in spec-
tral theory (see [11, 18]). It became even more important in soliton theory where monodromy-
free potentials form a class of soliton solutions to nonlinear equations for which a Schrödinger
operator enters the Lax pair. In a case of potentials decreasing at infinity on the real line the
spectral theory is well understood (see [28]). In the framework of soliton theory there were found
new classes of monodromy-free potentials such as finite-gap ones and rational potentials with
quadratic growth at infinity. Here the latter class will be studied in detail in the special case of
rational solutions of the PIV equation.

According to [26], the Schrödinger operator (2.1) Lj with potential uj(z) is factorized in the
form

Lj = −
(

d

dz
+ fj(z)

)(
d

dz
− fj(z)

)
, (2.2)

where the function fj(z) satisfies the Riccati equation (′ = d/dz)

f ′j + f2j = uj . (2.3)

The Darboux transformation

Lj 7→ Lj+1 = −
(

d

dz
− fj(z)

)(
d

dz
+ fj(z)

)
+ αj ,

produces the new potential

uj+1 = f ′j+1 + f2j+1 = −f ′j + f2j + αj = uj − 2f ′j + αj .

This gives rise to the dressing chain equations [26]

f ′j+1 + f ′j = f2j − f2j+1 + αj , j = 1, 2, . . . , n, . . . , (2.4)

where αi are arbitrary constants.
In other words, equations (2.4) are equivalent to the relations between Schrödinger operators

−
(

d

dz
− fj(z)

)(
d

dz
+ fj(z)

)
+ αj = −

(
d

dz
+ fj+1(z)

)(
d

dz
− fj+1(z)

)
.

This property plays a key role in the calculation of spectrum of the monodromy-free poten-
tial (2.3) u(x) = f ′1(x) + f21 (x).

Following [2, 6, 26], consider the following periodic closure of the dressing chain (2.4)

fj = fj+N , αj = αj+N .

For N = 3 the infinite chain (2.4) reduces to the second-order ODE written in symmetric form
(sPIV) found in [2, 6]

φ′1 + φ1(φ2 − φ3)− α1 = 0, φ′2 + φ2(φ3 − φ1)− α2 = 0,

φ′3 + φ3(φ1 − φ2)− α3 = 0, (2.5)

where

φ1 = f1 + f2, φ2 = f2 + f3, φ3 = f3 + f1,
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and

φ1 + φ2 + φ3 = −2z, α1 + α2 + α3 = −2.

The system (2.5), in turn, is equivalent to the PIV equation [2]

v′′ =
(v′)2

2v
+

3

2
v3 + 4zv2 + 2

(
z2 − a

)
v +

b

v
,

with

v = φ1, a =
1

2
(α2 − α3), b = −1

2
α2
1.

The class of rational solutions to the system sPIV has simple “seed solutions”

φ1 = −1

z
, φ2 =

1

z
, φ3 = −2z, (2.6)

with parameters α1 = α2 = −2 and α3 = 0. They correspond to the “−1/z hierarchy” and the
“−2z hierarchy” of PIV rational solutions first found by N. Lukashevich [16]. He proved that
there are no other PIV rational solutions with leading terms −1/z or −2z at infinity. Note that
there is also a “−2

3z” hierarchy of PIV generated by Okamoto polynomials [19] which we will
not consider here.

The “−1/z” and “−2z” hierarchies correspond to rational solutions of the sPIV equation (2.5)
formed by generalized Hermite polynomials Hm,n [8]

φ1(z) =
d

dz
ln
Hm+1,n(z)

Hm,n(z)
, φ2(z) =

d

dz
ln

Hm,n(z)

Hm,n+1(z)
,

φ3(z) = −2z +
d

dz
ln
Hm,n+1(z)

Hm+1,n(z)
, (2.7)

where α1 = −2n, α2 = 2m+ 2n, α3 = −2m− 2.
Due to the symmetry of the sPIV system (2.5) and the periodic relations fj = fj+3 the first

dressing chain component takes the form

f
(1)
1 (z) = −z − d

dz
ln

Hm,n(z)

Hm,n+1(z)
, f

(2)
1 (z) = z +

d

dz
ln
Hm+1,n(z)

Hm,n+1(z)
,

f
(3)
1 (z) = −z+ d

dz
ln

Hm,n(z)

Hm+1,n(z)
. (2.8)

Note that formulas (2.8) can be derived also from results of A. Oblomkov [21]. He proved
that any monodromy-free potential of a Schrödinger operator (2.2) with

fj =
N∑
k=1

ck
z − zk

− z

is quadratic at infinity and has the form

u(z) = z2 − 2
d2

dz2
lnW(Hm(z), Hm+1(z), . . . ,Hm+n−1(z)), (2.9)

whereW is the Wronskian and Hk are classical Hermite polynomials. This form of the potential
can easily be derived from the definition u = f ′1 + f21 by using relations (2.8)

u(z) = z2 − 2
d2

dz2
lnHm+1,n(z) + 2n− 1, (2.10a)
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u(z) = z2 − 2
d2

dz2
lnHm,n+1(z) + 2n− 2m+ 1, (2.10b)

u(z) = z2 − 2
d2

dz2
lnHm,n(z)− 2m− 1. (2.10c)

Taking into account the definition (1.1) we come to the representation (2.9) up to a constant
term.

3 Non-singular potentials on the real line

Spectral theory of Schrödinger operators (2.2) usually supposes a potential u(x) being non-
singular, i.e., belonging to some functional space like L2(R). This is true especially for applica-
tions like quantum mechanics as we will discuss in Section 4.

We begin with the structure of poles of rational PIV solutions (2.8). In general, all solutions
of (1.3) are meromorphic functions. They are described by the following

Theorem 3.1 ([25]). Any rational solution to equation (1.3) has the form

v(z) = εz +
∑
j

cj
z − zj

, ε = 0,−2

3
,−2, cj = ±1, j = 1, 2, . . . , (3.1)

and the generalized Stieltjes relation is true∑
j 6=k

cj
zk − zj

+ (ε+ 1)zk = 0, k = 1, 2, . . . . (3.2)

Proof. Take a Laurent series near a pole z = zj

v(z) =

∞∑
k=−l

ck(z − zj)k, z → zj . (3.3)

Balancing the leading terms of the series in equation (1.3) yield l = 1, c2−1 = 1. A similar
comparison at infinity proves that rational solution u(z) has at most linear growth u(z) =
εz + O(1) as z → ∞ with ε = 0,−2/3,−2. Expand a rational solution u(z) into simple frac-
tions (3.1) and put it into equation (1.3) looking for terms of order O(z − zk)−2 as z → zk.
Balancing these terms gives the relations (3.2) for any pole zk. �

Corollary 3.2. For any solution v of the PIV equation (1.3) the residues of the function (z +
v(z))2 are zero at any pole z = zk

Res(z + v(z))2 = 0.

Proof. From the Laurent series (3.3) one easily derives c0 = −zj . This yields the similar
asymptotics for z + v(z)

z + v(z) =
c−1
z − zj

+ (c0 + zj) + (c1 + 1)(z − zj) + · · ·

=
c−1
z − zj

+ (c1 + 1)(z − zj) + · · · . �

Each pole of the functions (2.8) comes from a zero of a GHP Hm,n, Hm,n+1 or Hm+1,n. The
polynomials satisfy the recurrence relations [8]

2mHm+1,nHm−1,n = Hm,nH
′′
m,n − (H ′m,n)2 + 2mH2

m,n,
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2nHm,n+1Hm,n−1 = −Hm,nH
′′
m,n + (H ′m,n)2 + 2nH2

m,n, (3.4)

with initial conditions

H0,0 = H0,1 = H1,0 = 1, H1,1 = 2z.

One can easily prove by induction that solutions of the system (3.4) are polynomials and
each Hm,n has mn simple zeros. Due to the obvious symmetries

Hm,n(−z) = (−1)mnHm,n(z), Hm,n(iz) = imnHn,m(z),

all zeros form a symmetric pattern with respect to real and imaginary axes.
Note that Hm,1 = Hm, where Hm is the classical Hermite polynomial of m-th order, Hm(z) =

(−1)mez
2 dm

dzm e−z
2
. This means that all zeros of Hm,1 are on the real line. However, all polyno-

mials Hm,n with even n do not have any real-valued zeroes. This follows from the theorem of
V.E. Adler

Theorem 3.3 ([1]). For x ∈ R all Wronskians W(Hm1(x), Hm2(x), . . . ,Hmn(x)) 6= 0 if m1 <
m2 < · · · < mn and n is even.

The typical pattern of zeros is a slightly deformed rectangular region shown in Fig. 1 (right).
Its horizontal and vertical ranges are proportional to

√
2m+ n and

√
2n+m respectively. Re-

cently, the generalized Hermite polynomials have been studied in the limitm,n→∞ in a number
of papers [5, 12, 17, 20]. In the paper [17], the distribution of zeros of Hm,n(z) was obtained in
the asymptotic limit m→∞, n = O(1). On the other hand, the paper [5] contains an analysis
of Hm,n(z) in the limit m,n → ∞, m = rn, r = O(1) and deduces in particular bounds for
the deformed rectangular region containing the zeros. The asymptotic distribution of zeros in
the latter asymptotic regime, i.e., the generalization of Plancherel–Rotach formulas to Hm,n(z)
for z within the deformed rectangular region for m and n of similar large order, remains an
open problem. We note that both papers [5, 17] apply methods of asymptotic “undressing” of
Riemann–Hilbert problems.

Remark 3.4. Note that in [5] a mistake was corrected in the asymptotics found in [20]. Namely,
there was an incorrect leading term of the Riemann surface equation which led to genus-0
functions instead of genus-1 functions responsible for the asymptotic distribution of zeros. In
turn, the poles near each vertex of the asymptotic “rectangle” (see Fig. 1 right) were found
incorrectly.

We now prove that the potentials u(z) provided by (2.8) are non-singular on the real line.

Theorem 3.5. The potential u(x) = f ′1(x) + f21 (x) is non-singular at x ∈ R if

f1 = f
(1)
1 , n = 2k, (3.5a)

f1 = f
(2)
1 , n = 2k + 1, (3.5b)

f1 = f
(3)
1 , n = 2k, (3.5c)

and m is arbitrary.

Proof. Note that the functions (2.8) f1 can be written as

f1(z) = −z − v(z),

with v = φj+1 as f1 = f
(j)
1 , j = 1, 2, 3, φ4 = φ1.
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Then, by Corollary 3.2,

f21 = (z + v(z))2 =
c2−1

(z − zj)2
+O(1), z → zj

for every pole z = zj of v. This yields

u = f ′1 + f21 =
−c−1 + c2−1

(z − zj)2
+O(1), z → zj .

By Theorem 3.1, c−1 = ±1, and the pole of u vanishes only for c−1 = 1. Since all GHP have
simple zeros, Hi,j(z) = a(z − z1) · · · (z − zij), we have

c−1 = Res
z=zj

d

dz
ln
Hm+1,n(z)

Hm,n+1(z)
=

{
1, Hm+1,n(zj) = 0,

−1, Hm,n+1(zj) = 0,

Thus one should eliminate real-valued zeros zj ∈ R that provide c−1 = −1, i.e., the real-valued
zeros of denominators in (2.7).

As for the cases (3.5a) and (3.5c), the denominators in (2.7) areHm,n andHm+1,n respectively.
If n = 2k those polynomials do not have real-valued zeros due to Theorem 3.3. The real-valued
zeros of Hm,n+1 in this case provide residues c−1 = 1, so that u = f ′1 + f21 is non-singular.

In the case (3.5b) we have n = 2k+ 1 which yields the denominator Hm,n+1 to have no zeros
on the real line. Here the zeros of the numerator provide residues c−1 = 1, and u = f ′1 + f21
again is non-singular. �

Remark 3.6. The statement of Theorem 3.5 is in line with the representation (2.9) of the
potential u(x) by A. Oblomkov [21]. Due to Theorem 3.3 the logarithmic derivatives in (2.10)
are non-singular if n is even in cases a) and c) and n is odd in case b).

We now discuss the spectrum of Schrödinger operators (2.2) with non-singular potentials (2.3)

Lψ = λψ, L = −
(

d

dx
+ f

)(
d

dx
− f

)
= − d2

dx2
+ u(x).

All potentials u are quadratic at infinity. Note that the quadratic potential itself u(x) = x2−1 has

discrete spectrum which is the set of even numbers, Sp
(
− d2

dx2
+x2−1

)
= {λk = 2k, k = 0, 1, . . .}.

Actually, the GHP potentials demonstrate similar features.

Theorem 3.7. If the operator L has potentials (2.3) u = f ′ + f2 with f = f
(j)
1 , j = 1, 2, 3

in (2.8), then its spectrum is discrete and consists of even numbers with the exception or addition
of a finite number of terms

Sp(L) = {λ = 2k, k = 0, 1, . . . ,m,m+ n+ 1, . . .}, (3.6a)

Sp(L) = {λ = 2k, k = −m,−m+ 1, . . . , 0, n+ 1, n+ 2, . . .}, (3.6b)

Sp(L) = {λ = 2k, k = −m− n,−m− n+ 1, . . . ,−n− 1, 0, 1, . . .}. (3.6c)

Proof. Since all potentials (2.3) came from iterations of Darboux transformations by the dres-
sing chain (2.4), their spectra are computed explicitly by M. Crum’s method [9]. Namely, if
the potential u1 has discrete spectrum with eigenfunctions ψk corresponding to distinct λk,
k = 1, 2, . . ., then n-th Darboux iteration un has the form

un(z) = u1(z)− 2
d2

dz2
lnW(ψ1(z), . . . , ψn(z)),
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and its eigenfunctions are

ψn,k =
W(ψ1, . . . , ψn, ψk)

W(ψ1, . . . , ψn)
, k > n. (3.7)

Here n should be even, else the denominator in (3.7) has real-valued zeroes and ψn,k have non-
integrable singularities. Since ψ1, . . . , ψn are no longer eigenfunctions of new potential un, the
spectrum of un coincides with Sp

(
− d2

dx2
+ u1

)
\ {λ1, . . . , λn}.

In particular, put u1 = x2 − 1 and ψ1(x) = e−x
2/2Hm+1(x), . . . , ψn(x) = e−x

2/2Hm+n(x),
where Hk are classical Hermite polynomials. Then

un(z) = z2 − 2
d2

dz2
lnW(Hm+1(z), . . . ,Hm+n) + 2n− 1

= z2 − 2
d2

dz2
lnHm+1,n(z) + 2n− 1,

which follows from the representation (2.10a). Since Sp
(
− d2

dx2
+x2−1

)
= 2N and λk = 2(m+k),

we come to formula (3.6a).
The other two cases (3.6b) and (3.6c) are proved in a similar way. The spectral gap for the

potential (2.10b) is {2m, 2(m + n)} and the constant shift is −2m with respect to (2.10a). As
for (2.10c), the gap is {2m, 2(m+n− 1)} and the constant shift is −2m− 2n. Applying Crum’s
formulas this gives spectra (3.6b) and (3.6c). �

Note that the case f = f
(1)
1 and the corresponding spectrum (3.6a) was first found in the

paper [1] by V.E. Adler. In the next section we reproduce Theorem 3.7 by the Darboux dressing
procedure of the harmonic potential.

4 1D SUSY quantum mechanics and the PIV equation

The idea to factorize quantum Hamiltonians and get supersymmetric potentials dates back to
the pioneering paper by E. Witten [27]. Later came examples of one-dimensional realizations
of this idea with the simplest polynomial Heisenberg algebras. A connection between the har-
monic oscillator and supersymmetric (SUSY) partner potentials generated by this algebra has
been long known. Recently these potentials were identified with rational solutions of the PIV
equation. Here we follow the papers by D. Bermudes and D.J. Fernández C. [3, 4] describing
this application.

Starting with two Schrödinger operators (2.1), say Lj and Lj+1, one can factorize them as
shown in Section 2

Lj = A+
j A
−
j + εj , Lj+1 = A−j A

+
j + εj ,

where

A+
j =

d

dx
+ fj(x), A−j =

d

dx
− fj(x) (4.1)

and uj 7→ uj + εj , αj = 2(εj − εj+1) in (2.3), (2.4).
Then an intertwining relation holds, namely, Lj+1A

+
j = A+

j Lj which generates the k-th order
intertwining operators

LkB
+
k = B+

k L1, L1B
−
k = B−k Lk, B+

k = A+
k · · ·A

+
1 , B−k = A−1 · · ·A

−
k . (4.2)

This represents the standard SUSY algebra

[Qa,H] = 0, {Qa,Qb} = δabH, a, b = 1, 2,
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Q1 =
1√
2

(
0 B+

k

B−k 0

)
, Q2 =

1

i
√

2

(
0 B+

k

−B−k 0

)
, H =

1√
2

(
B+
k B
−
k 0

0 B−k B
+
k

)
.

where { , } is the anticommutator and H is the Hamiltonian with superpotential partner uk =
u1 + 2(f1 + · · ·+ fk)

′ of the initial potential u1 [3].
Similarly, the polynomial Heisenberg algebra for the Hamiltonian (2.1) is formed by the

dressing chain operators

[
L,B±k

]
= ±B±k ,

[
B−k , B

+
k

]
= Nk(L+ I)−Nk(L), Nk(L) =

k∏
j=1

(L− εj).

For k = 3 this algebra can produce new solutions of the PIV equation starting from the known
ones (see [4]). Taking a closure condition L4 = L1 − I we come to the dressing chain (2.5) with
some α1, α2 and α3. An example is given at the end of this section.

First we start with the trivial solution of the “−2x hierarchy” (2.6), which corresponds to
the harmonic potential u0(x) = x2−1. The eigenfunctions of the Schrödinger operator with the
harmonic potential

Lψ0 = 2εψ0

are written explicitly

ψ0(x) =
√
π
(
(1− c+ i(1 + c)eiπε

)
Dε−1

(√
2x
)
− 2(1 + c)eiπε/2 sin(πε)Γ(ε)D−ε

(
i
√

2x
)
, (4.3)

where Dν(x) is the Weber–Hermite function, Γ is the gamma function and c is an arbitrary
complex-valued constant.

Apply now the ladder operators (4.2) to the basic eigenfunction (4.3). The first SUSY partner
potential for k = 1 to u0(x) = x2−1 has the form

u1(x) = x2 − 2
d2

dx2
lnψ0(x)−1.

Similarly, the k-th potential becomes [3]

uk(x) = x2 − 2
d2

dx2
lnW(ψ01, ψ02, . . . , ψ0k)−1, (4.4)

where W is the Wronskian of eigenfunctions (4.3) ψ0j(x) with parameters ε = εj .
This gives a way to construct a set of rational potentials associated with GHP. Take parame-

ters εj to be integers, because in this case the Weber–Hermite functions in (4.3) become Hermite

polynomials multiplied by the exponential e−x
2/2. Namely, if we put

ε1 = m+ 1, εj = m+ j, cj = −1, j = 2, 3, . . . , n, m, n ∈ N,

the second term in formula (4.3) vanishes and the potential (4.4) takes the form

un(x) = x2 − 2
d2

dx2
lnW (Hm(x), Hm+1(x), . . . ,Hm+n(x)) + 2n− 1

= x2 − 2
d2

dx2
lnHm,n+1(x) + 2n− 1.

Unfortunately, this choice of ψ0 leads to singularities in the intermediate eigenfuntions (3.7) of
the potential (4.4)

ψk,j =
W(ψ01, ψ02, . . . , ψ0j−1)

W (ψ01, ψ02, . . . , ψ0j)
, j = 2, 3, . . . , k. (4.5)

To avoid this and make the formal dressing procedure correct, we use the following theorem
proved by D. Bermudez and D.J. Fernández C. in [4] providing non-singularity of eigenfunctions.
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Theorem 4.1. Schrödinger operators (2.1) with potentials (4.4) are monodromy-free. All po-
tentials (4.4) and eigenfunctions (4.5) are non-singular for x ∈ R if the dressing parameters
satisfy the conditions

εk < εk−1 < · · · < ε1 < 0, (4.6)

|c2j | < 1, |c2j+1| > 1, j = 0, 1, . . . , k, (4.7)

where εj = ε and cj = c in (4.3).

Proof. Since the Weber–Hermite functions Dν(z) in (4.3) are entire functions, so is the Wrons-
kian (4.4). Thus its logarithmic derivative is a meromorphic function. Moreover, any solu-
tion ψ(z, λ) of the Schrödinger equation with potential (4.4) can be found via a finite dressing
chain of k operators A±j (4.1), i.e., a finite number of Darboux transformations. This yields
trivial monodromy of ψ(z, λ).

It is easy to check that the function (4.3) has no real-valued zeros if ε < 0 and |c| < 1. The
remaining inequalities (4.6) and (4.7) are proved by induction (see [3] for details). �

Apply now Theorem 4.1 to get non-singular functions (4.5). Take parameters εj and cj in
the form

ε1 = −n, εj = −n− j, c2j = 0, c2j−1 =∞, j = 1, 2, . . . ,m− 1, m, n ∈ N.

In the case of odd j the eigenfunctions (4.3) are normalized as ψ0j = D−ε
(
i
√

2x
)
. This forces

the first term in (4.3) to be zero while the second term turns into the Hermite polynomial
ex

2/2Hn+j(ix). Thus the potential (4.4) becomes

un(x) = x2 − 2
d2

dx2
lnW(Hn(ix), Hn+1(ix), . . . ,Hn+m−1(ix))− 2m− 1

= x2 − 2
d2

dx2
lnHm,n(x)− 2m− 1, (4.8)

because Hk,j(ix) = ikjHj,k(x).
As shown in [4], the spectrum of the potential (4.8) is

Sp

(
− d2

dx2
+ un

)
= {2εm−1 − 2, . . . , 2ε1 − 2} ∪ {0, 2, 4, . . .},

which coincides with formula (2.10c) found in Theorem 3.7.
Finally we illustrate the dressing of the “−2x hierarchy” by the ladder operators (4.1), (4.2)

with singular eigenfunctions for the case k = 3

B±3 =

(
d

dx
± f1

)(
d

dx
± f2

)(
d

dx
± f3

)
. (4.9)

The closure condition L4 = L1 − I leads to the system

f ′1 + f ′2 = f21 − f22 − 2(ε1 − ε2),
f ′2 + f ′3 = f22 − f23 − 2(ε2 − ε3),
f ′3 + f ′1 = f23 − f21 − 2(ε3 − ε1−1),

which is equivalent to the sPIV system (2.5), where

α1 = 2(ε1 − ε2), α2 = 2(ε2 − ε3), α3 = 2(ε3 − ε1−1).
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Figure 2. Non-singular potential u(x) = f ′2(x) + f22 (x) generated by ladder operator (4.9) (left) and its

singular component (4.10) f2(x).

Choosing integer values of ε1, ε2 and ε3 it is easy to reproduce the generalized Hermite
polynomials which form rational solutions of PIV (2.7). For example, the choice

ε3 = −3, ε1 = 1, ε2 = 4,

yields m = 4 and n = 3. This provides a rational solution of PIV in the form (2.7)

φ2(x) =
d

dx
ln
H4,3(x)

H4,4(x)
=

64x3
(
7875− 900x4 + 720x8 + 64x12

)
23625 + 16x4

(
7875− 450x4 + 16x8

(
15 + x4

))
+

24x
(
−225 + 2x2

(
−75− 60x2 + 120x4 − 40x6 + 16x8

))
675 + 4x2

(
−675− 225x2 + 4x4

(
−30 + 45x2 − 12x4 + 4x6

)) .
Since n is odd, by Theorem 3.5 one should choose a non-singular potential from the function (2.8),
(3.5b)

f2(x) = f
(2)
1 = x+

d

dx
ln
H5,3(x)

H4,4(x)

= x+
1

x
−

64x3
(
7875− 900x4 + 720x8 + 64x12

)
23625 + 16x4

(
7875 + 2x4

(
−225 + 8x4

(
15 + x4

))) (4.10)

+
4x
(
−7875 + 4x2

(
−4725 + 2025x2 − 4200x4 + 2700x6 − 720x8 + 112x10

))
23625 + 2x2

(
−7875 + 2x2

(
−4725 + 2x2

(
675 + 2x2

(
−525 + 270x2 − 60x4 + 8x6

)))) .
The non-singular potential has the form

u(x) = f ′2(x) + f22 (x) = x2 − 1 +R(x),

where R is rational function, R(x) = O
(
x−2

)
, x → ∞. The functions u and f2 are plotted in

Fig. 2. The spectrum of the Schrödinger operator L with this potential is

Sp(L) = {−8,−6,−4,−2} ∪ {8, 10, 12, . . . }.
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approach, Mathematical Surveys and Monographs, Vol. 128, Amer. Math. Soc., Providence, RI, 2006.

[14] Forrester P.J., Log-gases and random matrices, London Mathematical Society Monographs Series, Vol. 34,
Princeton University Press, Princeton, NJ, 2010.

[15] Kapaev A.A., Hubert E., A note on the Lax pairs for Painlevé equations, J. Phys. A: Math. Gen. 32 (1999),
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