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Abstract. Zhegalkin zebra motives are tilings of the plane by black and white polygons
representing certain F2-valued functions on R2. They exhibit a rich geometric structure and
provide easy to draw insightful visualizations of many topics in the physics and mathematics
literature. The present paper gives some pieces of a general theory and a few explicit
examples. Many more examples will be shown in the forthcoming article “Zhegalkin zebra
motives: algebra and geometry in black and white”.
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1 Introduction

1.1 Zhegalkin zebra functions

The constructions of motives in algebraic geometry heavily depend on the intersection theory
of algebraic cycles and, hence, on the fairly delicate choice of an adequate equivalence relation
on algebraic cycles. Chow motives, for instance, are based on rational equivalence, which is the
finest equivalence relation on algebraic cycles yielding a good intersection theory [15].

On the contrary, the “motives” in the present paper are built with the usual set theoretical
operations from simple subsets of the plane, which we call zebras. In 1927 Zhegalkin pointed
out that functions with values in the field F2 = Z/2Z with the usual addition and multiplication
can replace the standard Boolean formalism. The zebra with frequency v ∈ R2, v 6= 0, is the
function on R2 given by

Zv(x) = b2x�vc mod 2 for x ∈ R2. (1.1)

Here � is the dot product on R2 and for a real number r the integer brc is such that 0 ≤ r−brc < 1.
It is sometimes convenient to identify the Euclidean plane R2 and the complex plane C. In this
paper we only use zebras for which the frequencies are positive integer multiples of the complex
numbers

v1 =
√

3ε5, v2 = ε4, v3 =
√

3i, v4 = ε2, v5 =
√

3ε, v6 = 1, (1.2)

with i =
√
−1 and ε = eπi/6; see Fig. 1.
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Figure 1. Left: (1.2). Right: Zebra Zv. All bands are ⊥ v and have width 1
2|v| .

〈fig:zebra-frequencies〉

A Zhegalkin zebra function is convex (czzf) if all polygons in the tiling are bounded and convex.
These tilings are the Zhegalkin zebra motives in the title.

Goal. Understand the deformation theory of these tilings.

Every Zhegalkin zebra function can be written as a Zhegalkin zebra polynomial, i.e., a poly-
nomial in the variables Zjk in which all monomials have coefficients 1 and the variables in each
monomial have exponent 1. Section 5.1 describes an efficient way for evaluating a Zhegalkin ze-
bra polynomial and drawing the black-white picture. Convexity can easily be checked by visual
inspection. See Figs. 2, 3, 6 and 12 for examples.

A Zhegalkin zebra function F has an automorphism group consisting of translations leaving
the tiling invariant:

Aut(F) =
{
τ ∈ R2 | F(x + τ) = F(x), ∀x ∈ R2

}
.

This is a lattice in R2 if F is convex. For every sublattice Λ ⊂ Aut(F) the function F descends
to a function on the torus R2/Λ and gives a tiling of this torus by black and white polygons.

This brings us to the setting of dimer models (a.k.a. brane tilings), quivers with superpotential
and discrete differential geometry. There is an extensive literature on these topics written from
very different view-points, with very different terminologies, for very different applications. Our
view-point will be that the pictures are realizations of an underlying combinatorial structure.
Our goal is: Understand the deformations of these realizations.

1.2 The superpotential and weight functions

〈subsec:intro superpotential〉The combinatorial structure consists of the set E of edges in the picture, two permutations σ0, σ1

of E and an injective homomorphism p : Z2 → Perm(E) into the permutation group of E . The
cycles (=orbits) of σ0 and σ1 correspond to the oriented boundaries of the white and black
polygons, while the cycles of the permutation σ2 = σ−1

1 σ0 correspond to the vertices in the
tiling. The orientation of the edges is such that the boundaries of the black (resp. white)
polygons are oriented clockwise (resp. counter-clockwise). The homomorphism p comprises the
action of Aut(F) and an isomorphism Aut(F) ' Z2. The permutations σ0 and σ1 commute with
this action. Associated with a sublattice Λ of Z2 is then the finite set EΛ = E/Λ equipped with
the permutations σ0, σ1, σ2 and an action of the finite group Z2/Λ. Since the torus R2/Λ has
genus 1 the numbers of cycles of the permutations satisfy |σ0|+ |σ1|+ |σ2| = |EΛ|.

〈def:superpotential〉Definition 1.2. We call [F ]Λ = (EΛ, σ0, σ1) the superpotential of the Zhegalkin zebra function F
and the lattice Λ.

〈rem:physics potential〉
Remark 1.3. In the physics literature, e.g., [12], one writes the superpotential as a sum of
|σ0|+ |σ1| monomials in non-commuting variables

{
X̃e

}
e∈EΛ such that a cycle (e1, . . . , er) of σc,

c = 0, 1, contributes the monomial (−1)cX̃e1 · · · X̃er . In this formulation the cyclic structure is
implicit.

Figure 1. Left: (1.2). Right: Zebra Zv. All bands are ⊥ v and have width 1
2|v| .

Definition 1.1. We denote the zebra with frequency kvj by Zjk. The elements of the ring
of F2-valued functions on R2 generated by the zebras Zjk are called Zhegalkin zebra functions.
Such a function F gives a tiling of the plane by white (F = 0) and black (F = 1) polygons.
A Zhegalkin zebra function is convex (czzf) if all polygons in the tiling are bounded and convex.
These tilings are the Zhegalkin zebra motives in the title.

Goal. Understand the deformation theory of these tilings.

Every Zhegalkin zebra function can be written as a Zhegalkin zebra polynomial, i.e., a poly-
nomial in the variables Zjk in which all monomials have coefficients 1 and the variables in each
monomial have exponent 1. Section 5.1 describes an efficient way for evaluating a Zhegalkin ze-
bra polynomial and drawing the black-white picture. Convexity can easily be checked by visual
inspection. See Figs. 2, 3, 6 and 12 for examples.

A Zhegalkin zebra function F has an automorphism group consisting of translations leaving
the tiling invariant:

Aut(F) =
{
τ ∈ R2 | F(x + τ) = F(x), ∀x ∈ R2

}
.
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F2 = Z21 + Z41

Aut(F2) = Zv6 ⊕ 1
3Zv3

σ0 = (1, 2, 3, 4)
σ1 = (1, 4, 3, 2)

F4 = Z21 + Z31 + Z41 + Z61

Aut(F4) = Zv6 ⊕ 1
3Zv3

σ0 = (1, 2, 3)(4, 5, 6)(7, 8, 9)(10, 11, 12)
σ1 = (1, 11, 9)(4, 8, 12)(7, 2, 6)(10, 5, 3)

Figure 2. Some classical patterns realized as czzf, with their automorphism groups and corresponding

superpotentials.

This is a lattice in R2 if F is convex. For every sublattice Λ ⊂ Aut(F) the function F descends
to a function on the torus R2/Λ and gives a tiling of this torus by black and white polygons.

This brings us to the setting of dimer models (a.k.a. brane tilings), quivers with superpotential
and discrete differential geometry. There is an extensive literature on these topics written from
very different view-points, with very different terminologies, for very different applications. Our
view-point will be that the pictures are realizations of an underlying combinatorial structure.
Our goal is: Understand the deformations of these realizations.

1.2 The superpotential and weight functions

The combinatorial structure consists of the set E of edges in the picture, two permutations σ0, σ1

of E and an injective homomorphism p : Z2 → Perm(E) into the permutation group of E . The
cycles (= orbits) of σ0 and σ1 correspond to the oriented boundaries of the white and black
polygons, while the cycles of the permutation σ2 = σ−1

1 σ0 correspond to the vertices in the
tiling. The orientation of the edges is such that the boundaries of the black (resp. white)
polygons are oriented clockwise (resp. counter-clockwise). The homomorphism p comprises the
action of Aut(F) and an isomorphism Aut(F) ' Z2. The permutations σ0 and σ1 commute with
this action. Associated with a sublattice Λ of Z2 is then the finite set EΛ = E/Λ equipped with
the permutations σ0, σ1, σ2 and an action of the finite group Z2/Λ. Since the torus R2/Λ has
genus 1 the numbers of cycles of the permutations satisfy |σ0|+ |σ1|+ |σ2| = |EΛ|.
Definition 1.2. We call [F ]Λ = (EΛ, σ0, σ1) the superpotential of the Zhegalkin zebra function F
and the lattice Λ.

Remark 1.3. In the physics literature, e.g., [12], one writes the superpotential as a sum of |σ0|+
|σ1|monomials in non-commuting variables

{
X̃e

}
e∈EΛ such that a cycle (e1, . . . , er) of σc, c = 0, 1,

contributes the monomial (−1)cX̃e1 · · · X̃er . In this formulation the cyclic structure is implicit.

The superpotential [F ]Λ = (EΛ, σ0, σ1) provides three abstract graphs

ΓΛ =
(
s, t : EΛ ⇒ P?Λ

)
, Γ∨Λ =

(
b, w : EΛ ⇒ P•Λ ∪ P◦Λ

)
,

DF ,Λ = vertices : P?Λ ∪ P•Λ ∪ P◦Λ,

edges : {(w,v) ∈ P◦Λ × P?Λ | ∃ e ∈ EΛ : w = w(e), v = t(e) or s(e)}
∪ {(b,v) ∈ P•Λ × P?Λ | ∃ e ∈ EΛ : b = b(e), v = t(e) or s(e)}.
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F3 = Z21 + Z41 + Z61

Aut(F3) = Zv6 ⊕ 1
3Zv5

σ0 = (1, 2, 3)
σ1 = (1, 3, 2)

F6 = Z11 + Z21 + Z31 + Z41 + Z51 + Z61

Aut(F6) = 1
3Zv1 ⊕ 1

3Zv3

σ0 = (1, 2, 3)(4, 5, 6)(7, 8, 9)(10, 11, 12)(13, 14, 15)(16, 17, 18)
σ1 = (1, 8, 18)(4, 11, 3)(7, 14, 6)(10, 17, 9)(13, 2, 12)(16, 5, 15)

Figure 3. Some classical patterns realized as czzf, with their automorphism groups and corresponding

superpotentials.

Here P?Λ, P•Λ, P◦Λ denote the respective sets of vertices, black and white polygons in the tiling of
the torus R2/Λ and s, t, b, w are the respective maps which assign to an edge its source, target,
adjacent black and white polygons.

In addition to the superpotential the actual pictures also contain a map ω : E → R2 \ {0}
which specifies for every edge the corresponding vector in R2. For a sublattice Λ ⊂ Z2 we want
this specification to be Λ-invariant; i.e., it should be a map ω : EΛ → R2 \ {0}. We call such
a map ω a realization of [F ]Λ. It also gives a realization Λω of the lattice Λ by translations in
the plane which leave the tiling specified by ω invariant. We denote the corresponding torus by

Tω = R2/Λω.

The Zhegalkin zebra function F provides a tiling of R2 with automorphism group Aut(F) and
hence a realization ωF of [F ]Λ for every sublattice Λ of Z2. It identifies Λ with a sublattice ΛωF
of Aut(F).

A realization ω of the superpotential gives a tiling of R2 which modulo Λω gives an embedding
of the quiver (= graph with oriented edges) ΓΛ into the torus Tω as the 0-cells and 1-cells in
the tiling. One can subsequently embed the graphs Γ∨Λ and DF ,Λ into this torus by means of
a function θ : EΛ → R>0 for which the sum over each cycle of σ0 and each cycle of σ1 is equal
to 1. This function is used to mark in each black/white polygon a point by taking a convex
combination of the midpoints of its edges. This will be discussed in detail in Section 5.3.3.
In [10] such a function θ is called a (positive) fractional matching. The existence of a fractional
matching for [F ]Λ implies |P◦Λ| = |P•Λ|.

Definition 1.4. An integer weight function for the superpotential [F ]Λ is a map ν : EΛ → Z≥0

for which the sum over each cycle of σ0 and each cycle of σ1 is equal to an integer deg ν (the
degree of ν). The integer weight functions with the operation + form a graded semi-group WΛ.
An integer weight function of degree 1 is called a perfect matching, dimer covering or dimer
configuration. The set of perfect matchings is denoted by MΛ.

An integer weight function ν is said to be positive if ν(e) > 0 for all e ∈ EΛ.

Perfect matchings play a crucial role all over the literature on dimer models. From the
permutations σ0 and σ1 one can easily check whether perfect matchings exist and determine
them all. Subsequently one can check whether the sum of all perfect matchings is a positive
weight function, which then divided by its degree |MΛ| yields a positive fractional matching.
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Definition 1.5. We say that the superpotential [F ]Λ is dimer complete if the sum of all perfect
matchings is a positive weight function.

If [F ]Λ is dimer complete, the semi-group WΛ is generated by the perfect matchings (see
Proposition 2.2):

WΛ = Z≥0MΛ. (1.3)

Rescaling the axes in the picture of the realization ωF by means of the diagonal matrix

diag
(

1
2 ,
√

3
2

)
yields a realization of the superpotential [F ]Λ with edge vectors ωF (e)diag

(
1
2 ,
√

3
2

)
.

It follows from (1.1) (see also Section 5.2.1) that the vertices in the rescaled tiling have coordi-
nates in Q. By further rescaling with a positive integer factor one can clear the denominators
and obtain a realization ω of [F ]Λ with edge vectors in Z2, say ω(e) = (ω1(e), ω2(e)) with
ω1, ω2 : EΛ → Z.

Now assume that the superpotential [F ]Λ is dimer complete and let ν be a positive integer
weight function. Then, for a sufficiently large integerN the maps ν1 = ω1+Nν, ν2 = ω2+Nν and
ν3 = Nν are positive weight functions with deg ν1 = deg ν2 = deg ν3. Then ω = (ν1−ν3, ν2−ν3)
and θ = 1

deg ν3
ν3 yield for every edge ẽ in the tiling of R2 four points s(ẽ), t(ẽ), b(ẽ), w(ẽ), namely

the endpoints of that edge and the marked (by θ) points in the polygons adjacent to that edge;
see Figs. 4, 5, 6 and 8.

These quadrangles (for e ∈ EΛ) constitute a tiling of R2. Taken modulo Λω the vertices and
edges of the induced quadrangle-tiling give an embedding of the graph DF ,Λ into the torus Tω.
So DF ,Λ is an S-quad-graph in the sense of [4, Definitions 3.1 and 4.3].

Definition 1.6. Assume that the superpotential [F ]Λ is dimer complete. A weight realization
of [F ]Λ is a triple of positive weight functions (ν1, ν2, ν3) such that ω = (ν1 − ν3, ν2 − ν3) is
a realization of [F ]Λ in which all black and white polygons and all quadrangles determined by(
ω, 1

deg ν3
ν3

)
are strictly convex.

Since it is easy to draw pictures (see Section 5.3) the conditions in Definition 1.6 can easily
be checked by visual inspection. In many examples one can find weight realizations by staring at
the picture of the tiling for the Zhegalkin zebra function F drawn with the method of Section 5.1.

One can collect the maps s, t : EΛ → P?Λ and ν1, ν2, ν3 : EΛ → Z>0 into a matrix A??
(
uν1

1 u
ν2
2 u

ν3
3

)

as follows. The rows and columns of A??
(
uν1

1 u
ν2
2 u

ν3
3

)
correspond with the elements of P?Λ and its

entries lie in the polynomial ring Z[u1, u2, u3]; the entry in row s and column t is

A??
(
uν1

1 u
ν2
2 u

ν3
3

)
s,t

=
∑

e∈EΛ:s(e)=s,t(e)=t

u
ν1(e)
1 u

ν2(e)
2 u

ν3(e)
3 . (1.4)

The matrix A??
(
uν1

1 u
ν2
2 u

ν3
3

)
can be written uniquely as a sum

A??
(
uν1

1 u
ν2
2 u

ν3
3

)
=
∑

e∈EΛ
Φν1,ν2,ν3(e)

of matrices each of which has only one non-zero entry and this entry is a monomial; see Sec-
tion 3.2. The algebra generated by the matrices Φν1,ν2,ν3(e) is (isomorphic to) the Jacobi algebra
Jac([F ]Λ); see Theorem 3.7.

Example 1.7. For F2 and F3 as in Figs. 2 and 3 one has the weight realizations
(

0 u3
1u2u

2
3 + u1u

3
2u

2
3

u1u2u
2
3 + u3

1u
3
2u

2
3 0

)
resp. u3

1u2u
3
3 + u4

1u
4
2u

3
3 + u2

1u
4
2u

3
3

The 2-cells in these realizations are squares, resp. triangles with angles π
4 , π

4 , π
2 . The marked

points in the 2-cells are their barycenters. The quadrangles for these weight realizations are
shown in Fig. 4.
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Figure 4. Quadrangles for the matrices A??
(
uν11 u

ν2
2 u

ν3
3

)
in Example 1.7.

1.3 Dessins d’enfants

The quadrangles in a weight realization constitute a tiling of the plane R2. When taken modu-
lo Λω the s(ẽ)t(ẽ)-diagonals and the w(ẽ)b(ẽ)-diagonals show the graphs ΓΛ and Γ∨Λ embedded
in the torus Tω and the duality between them.

Example 1.8. The two ways of putting diagonals in the left-hand picture in Fig. 4 yield the
two pictures in Fig. 2. Both ways of putting diagonals in the right-hand picture in Fig. 4 lead
to triangulations equivalent with the left-hand picture in Fig. 3.

Example 1.9. The Zhegalkin zebra function shown on the left in Fig. 6 has no fractional
matchings because |P◦Λ| 6= |P•Λ|. Nonetheless if one takes the barycentres of the polygons, one
finds the tiling by quadrangles as shown on the right in Fig. 6. The two ways of putting diagonals
lead to respectively the left-hand picture in Fig. 6 and the right-hand picture in Fig. 3.
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Figure 5. Quadrangle for edge ẽ.
〈fig:quadrangle〉

F = Z21 + Z41 + Z61 + Z62, σ0 = (1, 4, 5, 3, 2, 6), σ1 = (1, 2, 5)(3, 4, 6).

Figure 6. A Zhegalkin zebra function without fractional matchings.
〈fig:kagome〉

?〈exa:dual pictures〉?Example 1.8. The two ways of putting diagonals in the left-hand picture in Fig. 4 yield the
two pictures in Fig. 2. Both ways of putting diagonals in the right-hand picture in Fig. 4 lead
to triangulations equivalent with the left-hand picture in Fig. 3.

?〈eq:exa:kagome〉?Example 1.9. The Zhegalkin zebra function shown on the left in Fig. 6 has no fractional
matchings because |P◦Λ| 6= |P•Λ|. Nonetheless if one takes the barycentres of the polygons, one
finds the tiling by quadrangles as shown on the right in Fig. 6. The two ways of putting diagonals
lead to respectively the left-hand picture in Fig. 6 and the right-hand picture in Fig. 3.

Each of its two diagonals divides a quadrangle into two triangles which we color black/white
as indicated in Fig. 5. When the quadrangles are put together to make a tiling of the plane the
colored triangles for the s(ẽ)t(ẽ)-diagonals fuse so as to form the black and white polygons in
a tiling which we want to think of as the deformation, determined by (ν1, ν2, ν3), of the tiling
given by the Zhegalkin zebra function F .

The weight realization (ν1, ν2, ν3) itself can be deformed by

(ν1, ν2, ν3) 
(
Nν1 + ν ′1 − ν ′′1 , Nν2 + ν ′2 − ν ′′2 , Nν3 + ν ′3 − ν ′′3

)
, (1.5) eq:deform weights

where ν ′1, ν
′
2, ν
′
3, ν
′′
1 , ν
′′
2 , ν
′′
3 ∈ WΛ are such that deg ν ′j = deg ν ′′j for j = 1, 2, 3 and N ∈ Z≥0 is so

large that the positivity and strict convexity conditions are satisfied for the deformed triple.
The colored triangles for the w(ẽ)b(ẽ)-diagonals, on the other hand, make up a tiling of the

plane R2 by black and white triangles such that each triangle has one ?-vertex, one •-vertex and

Figure 5. Quadrangle for edge ẽ.

Each of its two diagonals divides a quadrangle into two triangles which we color black/white
as indicated in Fig. 5. When the quadrangles are put together to make a tiling of the plane the
colored triangles for the s(ẽ)t(ẽ)-diagonals fuse so as to form the black and white polygons in
a tiling which we want to think of as the deformation, determined by (ν1, ν2, ν3), of the tiling
given by the Zhegalkin zebra function F .

The weight realization (ν1, ν2, ν3) itself can be deformed by

(ν1, ν2, ν3) 
(
Nν1 + ν ′1 − ν ′′1 , Nν2 + ν ′2 − ν ′′2 , Nν3 + ν ′3 − ν ′′3

)
, (1.5)

where ν ′1, ν
′
2, ν
′
3, ν
′′
1 , ν
′′
2 , ν
′′
3 ∈ WΛ are such that deg ν ′j = deg ν ′′j for j = 1, 2, 3 and N ∈ Z≥0 is so

large that the positivity and strict convexity conditions are satisfied for the deformed triple.
The colored triangles for the w(ẽ)b(ẽ)-diagonals, on the other hand, make up a tiling of the

plane R2 by black and white triangles such that each triangle has one ?-vertex, one •-vertex and
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F = Z21 + Z41 + Z61 + Z62, σ0 = (1, 4, 5, 3, 2, 6), σ1 = (1, 2, 5)(3, 4, 6).

Figure 6. A Zhegalkin zebra function without fractional matchings.

one ◦-vertex. It is a well-known [14] that from such a triangulation one can construct a branched
covering B : Tω → CP1 with precisely three branch points 0, 1, ∞:

B : Tω −→ CP1, B(P◦Λ) = 0, B(P•Λ) = 1, B(P?Λ) =∞.

This is where Zhegalkin zebra motives meet dessins d’enfants. In the works on dessins d’enfants
on Riemann surfaces of genus 1 one wants to find on the torus a structure of elliptic curve over
a number field such that the branched covering map is a morphism of varieties, called a Belyi
map. We will not elaborate on dessins d’enfants, but refer instead to [14, 16, 17].

The map B induces unramified coverings of C \ {0, 1} = CP1 \ {0, 1,∞}:

Tω \
(
P◦Λ,P

•
Λ,P

?
Λ

) B−→ C \ {0, 1} B̃←− R2 \
(
P◦,P•,P?

)
.

One can normalize the formulas describing B̃ such that the s(ẽ)t(ẽ)-diagonals of the quadrangles
are mapped to the line <z = 1

2 in C while the midpoints of these diagonals are mapped to the
point 1

2 . Every path in C \ {0, 1} starting at the point 1
2 can be lifted uniquely to a collection of

paths in R2 \
(
P◦,P•,P?

)
starting at the midpoints of the s(ẽ)t(ẽ)-diagonals.

The fiber B−1
(

1
2

)
can be identified with the set EΛ. The monodromy action of the fundamental

group π1

(
C\{0, 1}, 1

2

)
on EΛ is then exactly the permutation action described by the superpotential

[F ]Λ = (EΛ, σ0, σ1). This is illustrated in Fig. 7.

Lifting the figure-∞-loop which starts at 1
2 in direction NW yields a collection of paths

known as zigzags. It is evident from Fig. 7 that these correspond to the orbits of the permuta-
tion σ1σ0.
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one ◦-vertex. It is a well-known [14] that from such a triangulation one can construct a branched
covering B : Tω → CP1 with precisely three branch points 0, 1, ∞:

B : Tω −→ CP1, B(P◦Λ) = 0, B(P•Λ) = 1, B(P?Λ) =∞.

This is where Zhegalkin zebra motives meet dessins d’enfants. In the works on dessins d’enfants
on Riemann surfaces of genus 1 one wants to find on the torus a structure of elliptic curve over
a number field such that the branched covering map is a morphism of varieties, called a Belyi
map. We will not elaborate on dessins d’enfants, but refer instead to [14, 16, 18].

The map B induces unramified coverings of C \ {0, 1} = CP1 \ {0, 1,∞}:

Tω \
(
P◦Λ,P

•
Λ,P

?
Λ

) B−→ C \ {0, 1} B̃←− R2 \
(
P◦,P•,P?

)
.

One can normalize the formulas describing B̃ such that the s(ẽ)t(ẽ)-diagonals of the quadrangles
are mapped to the line <z = 1

2 in C while the midpoints of these diagonals are mapped to the
point 1

2 . Every path in C \ {0, 1} starting at the point 1
2 can be lifted uniquely to a collection of

paths in R2 \
(
P◦,P•,P?

)
starting at the midpoints of the s(ẽ)t(ẽ)-diagonals.

The fiber B−1(1
2) can be identified with the set EΛ. The monodromy action of the fundamental

group π1

(
C\{0, 1}, 1

2

)
on EΛ is then exactly the permutation action described by the superpotential

[F ]Λ = (EΛ, σ0, σ1). This is illustrated in Fig. 7.
Lifting the figure-∞-loop which starts at 1

2 in direction NW yields a collection of paths known
as zigzags. It is evident from Fig. 7 that these correspond to the orbits of the permutation σ1σ0.

1
2

0 1
σ0 σ1 σ2 = σ−1

1 σ0
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Figure 7. P1 \ {0, 1,∞} = C \ {0, 1}.

〈fig:C01〉
Zigzag paths are visible in the quadrangle tiling as paths which enter and leave the quadran-

gles at opposite sides; see Figs. 4 and 6. Through every quadrangle pass two zigzag paths which
one can let over/under cross as indicated in the left-hand picture in Fig. 8. The zigzag paths
form an alternating strand diagram in the sense of [5, Definition 1.10].

Zigzag paths play an important role in the literature on dimer models and are used to
formulate consistency conditions [5, 6, 7, 11, 12]. Because not all dimer models which come
from Zhegalkin zebra functions do satisfy these consistency conditions we will not say more
about zigzag paths.

Instead we focus on the lifts of the arrows 0 ← 1
2 and 1

2 → 1 and 1
2 ↑ ∞ shown in the

right-hand picture in Fig. 8 as the vectors qw(e), qb(e) and qt(e), respectively. Obviously,
qt(e) = 1

2ω(e). Proposition 5.3 and formula (2.55) explicitly give the vectors qw(e) and qb(e).
Plan of the paper. In Sections 2 and 3 we give more details on, respectively, the toric

geometry and the non-commutative algebraic geometry behind Section 1.2. In Section 4 we
attempt to put the results of Sections 2 and 3 into a mirror symmetry perspective. Section 5
describes how one can solve some practical matters (by computer). Formula (5.1) in Section 5.1
is basically computer code for evaluating the Zhegalkin zebra function F and drawing the picture

Figure 7. P1 \ {0, 1,∞} = C \ {0, 1}.
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b(ẽ)

w(ẽ)
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Figure 8. Quadrangle for edge e.
〈fig:quadrangle3〉

which subsequently can be deformed with formula (1.5). In Section 5.3 I describe how one can
construct and draw the quadrangle tiling of R2 for a given weight realization.

2 The algebraic geometry of weights

〈sec:geoweights〉 In this section F is a convex Zhegalkin zebra function and Λ is a sublattice of Aut(F), such that
the superpotential [F ]Λ is dimer complete and such that a weight realization of the superpotential
exists; see Definitions 1.1, 1.2, 1.5 and 1.6. So there is a tiling of R2 by strictly convex quadrangles
and the diagonals provide embeddings of the graphs ΓΛ and Γ∨Λ into the torus T = R2/Λ.

2.1 The (co)homology of ΓΛ and Γ∨
Λ

?〈subsec:coho〉?2.1.1. Elements v ∈ P?Λ, b ∈ P•Λ, w ∈ P◦Λ define maps αv, βb, βw : EΛ −→ Z such that
?〈sec:superpotential3〉?

αv(e) = 1 if t(e) = v, αv(e) = −1 if s(e) = v, αv(e) = 0 else, (2.1) eq:vertex cycle

βb(e) = 1 if b(e) = b, βb(e) = 0 else, (2.2) eq:black cycle

βw(e) = 1 if w(e) = w, βw(e) = 0 else. (2.3) eq:white cycle

There is only one linear relation between the maps αv (v ∈ P?Λ) and there is only one linear
relation between the maps βb, βw (b ∈ P•Λ, w ∈ P◦Λ), namely

∑

v∈P?
Λ

αv = 0,
∑

b∈P•Λ

βb =
∑

w∈P◦Λ

βw. (2.4) eq:ab relations

2.1.2. The first cohomology group H1(ΓΛ,Z) of the graph ΓΛ is the subgroup of the group
ZEΛ = Maps(EΛ,Z) consisting of the maps η : EΛ −→ Z which satisfy

∑

e∈EΛ
η(e)αv(e) = 0 for all v ∈ P?Λ. (2.5) eq:G homology cycle

The rank of this group is

rankH1(ΓΛ,Z) = |EΛ| − |P?Λ|+ 1 = |P•Λ|+ |P◦Λ|+ 1. (2.6) ?eq:rank HG1?

The maps βb and βw for b ∈ P•Λ, w ∈ P◦Λ are elements of H1(ΓΛ,Z). They generate a subgroup
of rank |P•Λ|+ |P◦Λ| − 1; see (2.2), (2.3), (2.4).

The embedding ΓΛ ↪→ T induces a homomorphism of homology groups

H1(ΓΛ,Z) −→ H1(T,Z). (2.7) ?eq:graph in torus?

Figure 8. Quadrangle for edge e.

Zigzag paths are visible in the quadrangle tiling as paths which enter and leave the quadran-
gles at opposite sides; see Figs. 4 and 6. Through every quadrangle pass two zigzag paths which
one can let over/under cross as indicated in the left-hand picture in Fig. 8. The zigzag paths
form an alternating strand diagram in the sense of [5, Definition 1.10].

Zigzag paths play an important role in the literature on dimer models and are used to
formulate consistency conditions [5, 6, 7, 11, 12]. Because not all dimer models which come
from Zhegalkin zebra functions do satisfy these consistency conditions we will not say more
about zigzag paths.

Instead we focus on the lifts of the arrows 0 ← 1
2 and 1

2 → 1 and 1
2 ↑ ∞ shown in the

right-hand picture in Fig. 8 as the vectors qw(e), qb(e) and qt(e), respectively. Obviously,
qt(e) = 1

2ω(e). Proposition 5.3 and formula (2.41) explicitly give the vectors qw(e) and qb(e).

Plan of the paper. In Sections 2 and 3 we give more details on, respectively, the toric
geometry and the non-commutative algebraic geometry behind Section 1.2. In Section 4 we
attempt to put the results of Sections 2 and 3 into a mirror symmetry perspective. Section 5
describes how one can solve some practical matters (by computer). Formula (5.1) in Section 5.1
is basically computer code for evaluating the Zhegalkin zebra function F and drawing the picture
of the tiling. In Section 5.2 I describe how one can compute the superpotential [F ]Λ and the
realization ωF . From the superpotential one can easily determine all perfect matchings. It is
described in the text between Definitions 1.5 and 1.6 how to obtain from this a weight realization,
which subsequently can be deformed with formula (1.5). In Section 5.3 I describe how one can
construct and draw the quadrangle tiling of R2 for a given weight realization.

2 The algebraic geometry of weights

In this section F is a convex Zhegalkin zebra function and Λ is a sublattice of Aut(F), such that
the superpotential [F ]Λ is dimer complete and such that a weight realization of the superpotential
exists; see Definitions 1.1, 1.2, 1.5 and 1.6. So there is a tiling of R2 by strictly convex quadrangles
and the diagonals provide embeddings of the graphs ΓΛ and Γ∨Λ into the torus T = R2/Λ.

2.1 The (co)homology of ΓΛ and Γ∨
Λ

2.1.1. Elements v ∈ P?Λ, b ∈ P•Λ, w ∈ P◦Λ define maps αv, βb, βw : EΛ −→ Z such that

αv(e) = 1 if t(e) = v, αv(e) = −1 if s(e) = v, αv(e) = 0 else, (2.1)

βb(e) = 1 if b(e) = b, βb(e) = 0 else, (2.2)

βw(e) = 1 if w(e) = w, βw(e) = 0 else. (2.3)
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There is only one linear relation between the maps αv (v ∈ P?Λ) and there is only one linear
relation between the maps βb, βw (b ∈ P•Λ, w ∈ P◦Λ), namely

∑

v∈P?
Λ

αv = 0,
∑

b∈P•Λ

βb =
∑

w∈P◦Λ

βw. (2.4)

2.1.2. The first cohomology group H1(ΓΛ,Z) of the graph ΓΛ is the subgroup of the group
ZEΛ = Maps(EΛ,Z) consisting of the maps η : EΛ −→ Z which satisfy

∑

e∈EΛ
η(e)αv(e) = 0 for all v ∈ P?Λ. (2.5)

The rank of this group is

rankH1(ΓΛ,Z) = |EΛ| − |P?Λ|+ 1 = |P•Λ|+ |P◦Λ|+ 1.

The maps βb and βw for b ∈ P•Λ, w ∈ P◦Λ are elements of H1(ΓΛ,Z). They generate a subgroup
of rank |P•Λ|+ |P◦Λ| − 1; see (2.2), (2.3) and (2.4).

The embedding ΓΛ ↪→ T induces a homomorphism of homology groups

H1(ΓΛ,Z) −→ H1(T,Z).

This homomorphism is surjective and its kernel is generated by the elements

β̌b =
∑

e∈EΛ
βb(e)e and β̌w =

∑

e∈EΛ
βw(e)e (2.6)

for b ∈ P•Λ and w ∈ P◦Λ.

2.1.3. A path of length k on ΓΛ is a sequence p = (e1, . . . , ek) in EΛ such that t(ei) = s(ei+1) for
i = 1, . . . , k − 1. We define s(p) = s(e1), t(p) = t(ek). A path p on ΓΛ is closed if s(p) = t(p).
In case k = 0 these are the constant paths supported on the vertices of ΓΛ.

The homology class of a closed path p = (e1, . . . , ek) is

[p] = e1 + · · ·+ ek. (2.7)

H1(ΓΛ,Z) is generated by the homology classes of closed paths on ΓΛ. Special closed paths on ΓΛ

are given by the boundaries of the black and white polygons in the tiling. Their homology
classes are β̌b and β̌w as in (2.6). They generate a subgroup in H1(ΓΛ,Z) of rank |P•Λ|+ |P◦Λ| − 1.

2.1.4. The first cohomology group H1
(
Γ∨Λ ,Z

)
of the graph Γ∨Λ is the subgroup of ZEΛ consisting

of the maps θ : EΛ −→ Z which satisfy

∀w ∈ P◦Λ, ∀b ∈ P•Λ :
∑

e∈EΛ,w(e)=w

θ(e) =
∑

e∈EΛ,b(e)=b

θ(e) = 0. (2.8)

Since there is only one linear relation between the equations in the system (2.8) the rank of the
cohomology group is

rankH1
(
Γ∨Λ ,Z

)
= |EΛ| − |P•Λ| − |P◦Λ|+ 1 = |P?Λ|+ 1.

The maps αv for v ∈ P?Λ are elements of H1
(
Γ∨Λ ,Z

)
. They generate a subgroup of rank |P?Λ| − 1;

see (2.1) and (2.4). The embedding Γ∨Λ ↪→ T induces a homomorphism of homology groups

H1

(
Γ∨Λ ,Z

)
−→ H1(T,Z). (2.9)

This homomorphism is surjective and its kernel is generated by the elements

α̌v =
∑

e∈EΛ
αv(e)e for v ∈ P?Λ. (2.10)
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2.2 The geometry of Proj(Z[WΛ])

In this section we investigate the geometry of the projective scheme Proj(Z[WΛ]), which by
general constructions in algebraic geometry is associated with the graded semi-group WΛ of
integer weight functions for [F ]Λ; see [13, Chapter II].

2.2.1. By Definition 1.4 an integer weight function for the superpotential [F ]Λ is a map ν : EΛ →
Z≥0 which satisfies

∀w ∈ P◦Λ, ∀b ∈ P•Λ :
∑

w(e)=w

ν(e) =
∑

b(e)=b

ν(e) = deg ν. (2.11)

From (2.8) and (2.11) one sees that the difference ν − ν ′ of two weight functions with the same
degree is an element of H1

(
Γ∨Λ ,Z

)
.

Conversely, if ν is a positive weight function (i.e., ν(e) > 0 for all e ∈ EΛ) and θ is an element
of H1

(
Γ∨Λ ,Z

)
, then for all sufficiently large integers N the function Nν − θ is a positive weight

function. Thus we find that

rankWΛ = rankH1
(
Γ∨Λ ,Z

)
+ 1 = |P?Λ|+ 2. (2.12)

2.2.2. On the semi-group WΛ we define an equivalence relation ∼ by

ν ∼ ν ′ ⇔ ∃ r : P?Λ → Z s.t. ν − ν ′ =
∑

v∈P?
Λ

rvαv (2.13)

with αv as in (2.1). We denote the set of equivalence classes by WΛ:

WΛ =WΛ/∼. (2.14)

This is a graded semi-group of rank 3. The natural surjective homomorphism of semi-groups
WΛ → WΛ is the analogue of the surjective homomorphism of groups H1

(
Γ∨Λ ,Z

)
→ H1(T,Z)

induced by the embedding Γ∨Λ ↪→ T; cf. (2.9).

2.2.3. Recall from Definition 1.4 that the integer weight functions of degree 1 are called perfect
matchings and thatMΛ is the set of perfect matchings. We denote the set of equivalence classes
for the relation ∼ on MΛ by AΛ:

AΛ =MΛ/∼.

Definition 2.1 (cf. [10, Sections 3.4 and 3.5]). The convex hull conv(MΛ) of MΛ in REΛ is
called the matching polytope of [F ]Λ. The elements of conv(MΛ) are called fractional matchings.
The convex hull conv(AΛ) of AΛ is called the Newton polygon of [F ]Λ.

Proposition 2.2 (cf. [10, Lemma 3.10]).

(i) The matching polytope satisfies

conv(MΛ) =

{
maps θ : EΛ −→ R≥0 s.t. for all w ∈ P◦Λ and
all b ∈ P•Λ :

∑
e∈w

θ(e) =
∑
e∈b

θ(e) = 1

}
. (2.15)

The set of its vertices is precisely the set of perfect matchings MΛ.

(ii) The semi-group WΛ is generated by the perfect matchings and the semi-group WΛ is ge-
nerated by the set AΛ:

WΛ = Z≥0MΛ, WΛ = Z≥0AΛ. (2.16)
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(iii) The matching polytope conv(MΛ) has dimension |P?Λ|+1 and the Newton polygon conv(AΛ)
has dimension 2.

Proof. (i) This is Lemma 3.10 in [10].

(ii) Let ν ∈ WΛ, ν 6= 0, be given. By (i) there are non-negative real numbers rν,m, m ∈MΛ,
such that

ν =
∑

m∈MΛ

rν,mm,
∑

m

rν,m = deg ν.

Then ν(e) ≥ rν,mm(e) for all m and e. Now take m such that rν,m > 0. Then ν(e) − m(e) ≥ 0
for all e ∈ EΛ. This means that ν −m ∈ WΛ. Note that deg(ν −m) = deg ν − 1. If ν −m 6= 0
we repeat the preceding step with ν − m instead of ν. After finitely many steps we arrive at
the situation that ν minus some linear combination of perfect matchings with positive integer
coefficients is 0. This result passes well to ∼-equivalence classes.

(iii) This follows from (2.12), (2.15) and (2.16). �

2.2.4. General constructions in algebraic geometry associate with the graded semi-groups WΛ

and WΛ the projective schemes Proj(Z[WΛ]) and Proj(Z[WΛ]); see [13, Chapter II]. The natural
surjective homomorphism of semi-groups WΛ →WΛ becomes an inclusion as closed subscheme

Proj
(
Z[WΛ]

)
⊂ Proj(Z[WΛ]).

2.2.5. As a consequence of (2.16) we have a surjective homomorphism of rings

Z[Xm |m ∈MΛ] −→ Z[WΛ], Xm 7→ Xm (2.17)

from the polynomial ring in the variables Xm, m ∈MΛ, to the semi-group ring of WΛ; here Xm

denotes the element of Z[WΛ] which corresponds to m ∈ WΛ. The kernel of the homomor-
phism (2.17) is the ideal generated by the polynomials

∏

m : µ(m)>0

X
µ(m)
m −

∏

m : µ(m)<0

X
−µ(m)
m for µ ∈M, (2.18)

where M denotes the lattice of Z-linear relations between the perfect matchings:

M =

{
µ ∈ ZMΛ |

∑

m∈MΛ

µ(m)m = 0

}
. (2.19)

It follows that Proj(Z[WΛ]) can be identified with the closed subscheme of the projective space
P|MΛ|−1 = Proj(Z[Xm |m ∈MΛ]) given by the homogeneous equations

∏

m : µ(m)>0

X
µ(m)
m =

∏

m : µ(m)<0

X
−µ(m)
m for µ ∈M. (2.20)

2.2.6. A perfect matching m0 defines an open subscheme of Proj(Z[WΛ]), namely the affine
scheme Spec

(
Z
[
W0

Λ[−m0]
])

given by the semi-group

W0
Λ[−m0] =

{
ν − (deg ν)m0 ∈ ZEΛ | ν ∈ WΛ

}

(cf. [13, Chapter II, Proposition 2.5]). This is a sub-semi-group of H1

(
Γ∨Λ ,Z

)
. The schemes

Spec
(
Z
[
W0

Λ[−m0]
])

for m0 ∈ MΛ form a covering of Proj(Z[WΛ]) by affine open subschemes.
Their intersection is Spec

(
Z
[
H1

(
Γ∨Λ ,Z

)])
.
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Proposition 2.3. The following diagram is commutative

H1(T,C∗) ↪→ Proj
(
Z[WΛ]

)

↓ ↓
H1
(
Γ∨Λ ,C∗

)
↪→ Proj(Z[WΛ]).

The (|P?Λ| + 1)-dimensional complex torus H1
(
Γ∨Λ ,C∗

)
is an open subset in the set of complex

points of the (|P?Λ|+ 1)-dimensional scheme Proj(Z[WΛ]).
The 2-dimensional complex torus H1(T,C∗) is an open subset in the set of complex points of

2-dimensional scheme Proj(Z[WΛ]).

Remark 2.4. The semi-groupW0
Λ[−m0] is generated by the elements m1−m0 with m1 a perfect

matching 6= m0. By Proposition 2.2 these are precisely the vectors along the edges of the
matching polytope conv(MΛ) incident to the vertex m0. Therefore the duals of the semi-groups
W0

Λ[−m0] for m0 ∈MΛ give precisely the maximal cones in the fan associated with the matching
polytope conv(MΛ) by the construction in [9, p. 26]. Thus Proj(Z[WΛ]) can also be obtained
with standard toric geometry constructions from the fan of outward pointing vectors to the
matching polytope conv(MΛ).

2.2.7. We recall from [10] the construction of the skew symmetric bilinear form ε on H1

(
Γ∨Λ ,Z

)

which gives the Poisson structure on the group ring Z
[
H1

(
Γ∨Λ ,Z

)]
. In order to facilitate the

exposition we reproduce Fig. 38 and formula (65) of [10] in our Fig. 9. The definition, in [10,
Lemma 8.1 and Fig. 38], of the local pairing at a white node w of the graph Γ∨Λ can be phrased

as follows. Let e, e′ and e′′ in EΛ be such that w(e) = w(e′) = w(e′′) = w. Let ~E, ~E′, ~E′′ be
the edges of the graph Γ∨Λ dual to e, e′, e′′, respectively, and pointing away from the vertex w.
Write the cycle of σ0 which corresponds to w as (e1, . . . , eq) with e1 = e and let e′ = ej and
e′′ = eh. Then formula (65) in [10] can be stated as

δw
((
~E′ − ~E

)
∧
(
~E′′ − ~E

))
= 1

2sign(h− j). (2.21)

A similar formula holds for the local pairing at a black node b of Γ∨Λ , but since in our convention
the boundaries of the black polygons are oriented clockwise, there is an extra −-sign:

δb
((
~E′ − ~E

)
∧
(
~E′′ − ~E

))
= −1

2sign(h− j). (2.22)

Definition 8.2 in [10] builds the skew symmetric bilinear form ε on H1

(
Γ∨Λ ,Z

)
from these local

pairings. For reasons that will become clear in (2.29) we denote this form as ε+. The defining
formula in [10] can then be stated as

ε+ =
∑

w∈P◦Λ

δw −
∑

b∈P•Λ

δb. (2.23)

By [10, Section 1.1] the Poisson bracket on Z
[
H1

(
Γ∨Λ ,Z

)]
is then given by

{
XL1 , XL2

}
= ε+(L1, L2)XL1+L2 , (2.24)

where XL denotes the element of Z
[
H1

(
Γ∨Λ ,Z

)]
which corresponds to the (homology class of)

the loop L on Γ∨Λ .

2.2.8. We are now going to give a simple description of the form ε+ (2.23) in terms of the
permutations σ0 and σ1. Fix a perfect matching m. Write σ0 and σ1 as permutation matrices;
i.e., matrices with rows and columns indexed by the elements of EΛ and in column e only
one non-zero entry, namely 1 in row σ0(e) (resp. σ1(e)). By multiplying for each e ∈ EΛ the
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Figure 9. Fig. 38 + formula (65) in [10]: One has δv(γr, γl) = 1
2 .

〈fig:GK figure〉

2.2.7. We recall from [10] the construction of the skew symmetric bilinear form ε on H1(Γ∨Λ ,Z)
〈pph:GK〉which gives the Poisson structure on the group ring Z[H1(Γ∨Λ ,Z)]. In order to facilitate the

exposition we reproduce Fig. 38 and formula (65) of [10] in our Fig. 9. The definition, in [10,
Lemma 8.1 and Fig. 38], of the local pairing at a white node w of the graph Γ∨Λ can be phrased

as follows. Let e, e′ and e′′ in EΛ be such that w(e) = w(e′) = w(e′′) = w. Let ~E, ~E′, ~E′′ be
the edges of the graph Γ∨Λ dual to e, e′, e′′, respectively, and pointing away from the vertex w.
Write the cycle of σ0 which corresponds to w as (e1, . . . , eq) with e1 = e and let e′ = ej and
e′′ = eh. Then formula (65) in [10] can be stated as

δw
(
( ~E′ − ~E) ∧ ( ~E′′ − ~E)

)
= 1

2sign(h− j). (2.21) eq:GK65w

A similar formula holds for the local pairing at a black node b of Γ∨Λ , but since in our convention
the boundaries of the black polygons are oriented clockwise, there is an extra −-sign:

δb
(
( ~E′ − ~E) ∧ ( ~E′′ − ~E)

)
= −1

2sign(h− j). (2.22) ?eq:GK65b?

Definition 8.2 in [10] builds the skew symmetric bilinear form ε on H1(Γ∨Λ ,Z) from these local
pairings. For reasons that will become clear in (2.30) we denote this form as ε+. The defining
formula in [10] can then be stated as

ε+ =
∑

w∈P◦Λ

δw −
∑

b∈P•Λ

δb. (2.23) eq:GK8.2

By [10, Section 1.1] the Poisson bracket on Z[H1(Γ∨Λ ,Z)] is then given by

{
XL1 , XL2

}
= ε+(L1, L2)XL1+L2 , (2.24) eq:poisson bracket1

where XL denotes the element of Z[H1(Γ∨Λ ,Z)] which corresponds to the (homology class of) the
loop L on Γ∨Λ .

2.2.8. We are now going to give a simple description of the form ε+ (2.23) in terms of the
?〈pph:Poisson3〉?permutations σ0 and σ1. Fix a perfect matching m. Write σ0 and σ1 as permutation matrices;

i.e., matrices with rows and columns indexed by the elements of EΛ and in column e only
one non-zero entry, namely 1 in row σ0(e) (resp. σ1(e)). By multiplying for each e ∈ EΛ the
corresponding column by 1−m(e) we obtain two new matrices ςm,0 and ςm,1, respectively. These
are nilpotent matrices. We set

ρm,0 = (I− ςm,0)−1, ρm,1 = (I− ςm,1)−1. (2.25) eq:broken

The meaning of these matrices is as follows. Write σ0 as a product of disjoint cycles such that
the elements of m are in the first position in their cycle. Then for e 6= e′ ∈ EΛ the entry in

Figure 9. Fig. 38 + formula (65) in [10]: One has δv(γr, γl) = 1
2 .

corresponding column by 1−m(e) we obtain two new matrices ςm,0 and ςm,1, respectively. These
are nilpotent matrices. We set

ρm,0 = (I− ςm,0)−1, ρm,1 = (I− ςm,1)−1. (2.25)

The meaning of these matrices is as follows. Write σ0 as a product of disjoint cycles such that
the elements of m are in the first position in their cycle. Then for e 6= e′ ∈ EΛ the entry in
column e and row e′ in the matrix ρm,0 is 1 if and only if e and e′ are in the same cycle of σ0

with e to the left of e′. And similarly for σ1 and ρm,1.

Let m′, m′′ be two perfect matchings. Then
∑
e∈EΛ

(m′(e)−m(e))e and
∑
e∈EΛ

(m′′(e)−m(e))e are

elements of H1

(
Γ∨Λ ,Z

)
. It follows from (2.21)–(2.23) that

ε+(m′ −m,m′′ −m) = 1
2m
′t(ρm,0 − ρtm,0 + ρm,1 − ρtm,1

)
m′′,

where, for simplicity of notation, we have written on the left-hand side m′ − m and m′′ − m
for

∑
e∈EΛ

(m′(e) − m(e))e and
∑
e∈EΛ

(m′′(e) − m(e))e, respectively, while on the right-hand side we

view m′ and m′′ as column vectors.

By bilinearity this extends to all perfect matchings m1, m2, m3, m4:

ε+(m1 −m2,m3 −m4) = 1
2(m1 −m2)t

(
ρm,0 − ρtm,0 + ρm,1 − ρtm,1

)
(m3 −m4). (2.26)

In the matrix ρm,0 + ρtm,0 − I the (e, e′)-entry is 1 if e and e′ sit in the same cycle of σ0 and is 0

otherwise. Consequently,
(
ρm,0 + ρtρ,0 − I

)
(m3 −m4) = 0 and

1
2

(
ρm,0 − ρtm,0

)
(m3 −m4) =

(
−1

2I + ρm,0
)
(m3 −m4). (2.27)

Similarly

1
2

(
ρm,1 − ρtm,1

)
(m3 −m4) =

(
−1

2I + ρm,1
)
(m3 −m4). (2.28)

Since H1

(
Γ∨Λ ,Z

)
is the subgroup of ZEΛ which is generated by the differences of pairs of perfect

matchings we conclude from (2.26)–(2.28):

Proposition 2.5. The bilinear form ε+ on H1

(
Γ∨Λ ,Z

)
is the restriction of the bilinear form

on ZEΛ associated with the matrix ρm,0 + ρm,1 − I:

∀h1,h2 ∈ H1

(
Γ∨Λ ,Z

)
: ε+(h1,h2) = ht1

(
ρm,0 + ρm,1 − I

)
h2. (2.29)

This holds for every perfect matching m.
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2.2.9. The difference of the matrices −1
2I+ρm,0 and −1

2I+ρm,1 induces another anti-symmetric
bilinear form ε− on H1

(
Γ∨Λ ,Z

)
:

∀h1,h2 ∈ H1

(
Γ∨Λ ,Z

)
: ε−(h1,h2) = ht1

(
ρm,0 − ρm,1

)
h2. (2.30)

The form ε− can also be defined with the method of Section 2.2.7, i.e. (cf. (2.23))

ε− =
∑

w∈P◦Λ

δw +
∑

b∈P•Λ

δb.

As a consequence the right-hand side of (2.30) is independent of the choice of the perfect
matching m.

2.2.10. The bilinear forms ε+ and ε− in (2.29)–(2.30) define two Poisson structures on
Z
[
H1

(
Γ∨Λ ,Z

)]
; see (2.24). So, they also define Poisson structures on Z[W0

Λ[−m0]] for every
m0 ∈MΛ. Altogether this gives:

Theorem 2.6. The bilinear forms ε+, ε− in (2.29)–(2.30), i.e., for h1,h2 ∈ H1

(
Γ∨Λ ,Z

)

ε+(h1,h2) = ht1
(
ρm,0 + ρm,1 − I

)
h2, ε−(h1,h2) = ht1

(
ρm,0 − ρm,1

)
h2,

define two Poisson structures on Proj(Z[WΛ]) which extend the Poisson structures on the torus
H1
(
Γ∨Λ ,C∗

)
described in [10, Section 1.1].

2.2.11. Note the equivalences of data

• the pair of matrices ρm,0 + ρm,1 − I and ρm,0 − ρm,1,

• the pair of matrices −I + 2ρm,0 and −I + 2ρm,1,

• the pair of permutations σ0 and σ1 plus the perfect matching m.

The four matrices define anti-symmetric bilinear forms on H1

(
Γ∨Λ ,Z

)
:

ε+(h1,h2) = ht1 · (ρm,0 + ρm,1 − I) · h2, (2.31)

ε−(h1,h2) = ht1 · (ρm,0 − ρm,1) · h2, (2.32)

ε•(h1,h2) = ht1 · (−I + 2ρm,1) · h2, (2.33)

ε◦(h1,h2) = ht1 · (−I + 2ρm,0) · h2, (2.34)

for h1,h2 ∈ H1

(
Γ∨Λ ,Z

)
; cf. (2.29)–(2.30). One has the obvious relations

ε+ = 1
2(ε• + ε◦), ε− = 1

2(ε◦ − ε•).

Each of the forms ε+, ε−, ε•, ε◦ defines a Poisson structure on Proj(Z[WΛ]), independent of the
choice of the perfect matching m.

The matrices −I + 2ρm,0 and −I + 2ρm,1 are of the form I + nilpotent and are therefore
invertible. Note that

−I + 2ρm,0 = (I + ςm,0)(I− ςm,0)−1, −I + 2ρm,1 = (I + ςm,1)(I− ςm,1)−1. (2.35)

The matrix ρm,0 − ρm,1 is not invertible, because for every v ∈ P?Λ:

(
ρm,0 − ρm,1

)
αv = 0 (2.36)

with αv as in (2.1), here viewed as a column vector. The kernel of the homomorphism H1

(
Γ∨Λ ,Z

)

→ H1(T,Z) = Λ induced by the embedding Γ∨Λ ↪→ T, is generated by the elements α̌v, v ∈ P?Λ.
So (2.36) means that the bilinear form ε− in (2.30) is the pull-back of the intersection form on
H1(T,Z); see also [10, Section 1.1].
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Definition 2.7. A zigzag for the superpotential [F ]Λ = (EΛ, σ0, σ1) is a cycle of the permuta-
tion σ1σ0. The set of zigzags is denoted by Pz

Λ. Every zigzag z defines a map αz : EΛ −→ Z,

αz(e) = 1 if e ∈ z, αz(e) = −1 if σ0(e) ∈ z, αz(e) = 0 else.

The matrix ρm,0 + ρm,1 − I is not invertible either, because, as one easily checks,

(
ρm,0 + ρm,1 − I

)
αz = 0 (2.37)

for every zigzag z. Compare formula (2.37) with [10, Lemma 1.1].

2.2.12. The matrices −I + 2ρm,0 and −I + 2ρm,1 have entries in Z≥0 and are of the form
I + nilpotent. So, they give injective (but not surjective) homomorphisms of semi-groups

Tm,0,Tm,1 : WΛ −→W∨Λ , (2.38)

which depend on the choice of the perfect matching m. Here W∨Λ is the semi-group dual to WΛ.

2.3 The geometry of Spec(Z[WΛ])

2.3.1. By definition complex points of the scheme Spec(Z[WΛ]) are ring homomorphisms
Z[WΛ] → C, or equivalently, homomorphism of semi-groups ξ : WΛ → C×, where C× denotes
the set C with multiplication as binary operation. Such a homomorphism ξ is completely deter-
mined by the complex numbers ξm = ξ(m), m ∈ MΛ, which must satisfy the equations (2.20).
So

CSpec(Z[WΛ]) =

{
(ξm) ∈ CMΛ

∣∣ ∀µ ∈M :
∏

µ(m)>0

ξ
µ(m)
m =

∏

µ(m)<0

ξ
−µ(m)
m

}
,

where M denotes the lattice of Z-linear relations between the perfect matchings:

M =

{
µ ∈ ZMΛ

∣∣ ∑

m∈MΛ

µ(m)m = 0

}
.

A map ψ : EΛ → C gives a point in CSpec(Z[WΛ]) through the homomorphism

Eψ : WΛ −→ C∗ ⊂ C×, Eψ(ν) = exp

( ∑

e∈EΛ
ν(e)ψ(e)

)
. (2.39)

The following commutative diagram helps to locate these points

Spec(Z[WΛ]) → Spec(Z[WΛ]) → A|MΛ| ⊃ C|MΛ|

↑ ↑ ↑ ↑

Spec(Z[WΛ]) \ 0 → Spec(Z[WΛ]) \ 0 → A|MΛ| \ 0 ⊃ (C∗)|MΛ|

↓ ↓ ↓ ↓

Proj(Z[WΛ]) → Proj(Z[WΛ]) → P|MΛ|−1 ⊃ (C∗)|MΛ|/C∗

↑ ↑ ↑ ↗'

H1(T,C∗) → H1(Γ∨Λ ,C∗) → (C∗)|MΛ|−1

(2.40)

where on the second line \0 is shorthand for ∩
(
A|MΛ| \ 0

)
.



16 J. Stienstra
16 J. Stienstra

-�
�
�
�
�
�
�
�
���

HHHHHj

@
@
@

@
@
@

@
@
@
@

����������

e

u
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b(ẽ)
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Figure 10. Quadrangle for edge e.
〈fig:quadrangle2〉

2.4 The geometry of a weight realization

?〈sec:geo weight real〉?2.4.1. Let (ν1, ν2, ν3) be a weight realization. Set ω = (ν1 − ν3, ν2 − ν3) and θ = 1
deg ν3

ν3. For

e ∈ EΛ consider the associated quadrangle. Proposition 5.3 gives values in R2 for the vectors
from s(ẽ) to b(ẽ), to w(ẽ) and to t(ẽ). We identify R2 with C and obtain three complex numbers
qsb(e), qsw(e), ω(e). We set

qb(e) = qsb(e)− 1
2ω(e), qw(e) = qsw(e)− 1

2ω(e). (2.43) eq:sfq

The complex numbers qb(e) and qw(e) are the vectors from the midpoint of the s(ẽ)t(ẽ)-diagonal
to b(ẽ) and w(ẽ), respectively; see Fig. 10.

?〈prop:qbw〉?Proposition 2.8. We have for every perfect matching m′
∑

e∈EΛ
m′(e)qb(e) = (θt −m′t) · (−1

2I + ρm,1) · ω (2.44) eq:mqb

∑

e∈EΛ
m′(e)qw(e) = (θt −m′t) · (−1

2I + ρm,0) · ω (2.45) eq:mqw

Here we view m′ as a column vector of 0’s and 1’s and ω as a column vector of complex numbers.
Note: The perfect matching m appearing on the right-hand side has been fixed for the compu-
tations in §5.3.3. Since the left-hand side does not involve m the results do in fact not depend
on the choice of m.

Proof. Equations (5.14) and (5.15) yield

m′t ·Bm,θ =
∑

b∈P•Λ

θt · diag(βb) · (−1
2I + ρm,1) = θt · (−1

2I + ρm,1) (2.46) eq:mB

m′t ·Wm,θ =
∑

w∈P•Λ

θt · diag(βw) · (−1
2I + ρm,0) = θt · (−1

2I + ρm,0) (2.47) eq:mW

The results (2.44) and (2.45) follow from (2.43), (2.46), (2.47) and Proposition 5.3. �
2.4.2. Subtracting (2.44) from (2.45) we get

∑

e∈EΛ
m′(e)

(
qw(e)− qb(e)

)
= (θt −m′t) · (ρm,0 − ρm,1) · ω (2.48) ?eq:newton image1?

From (2.13) and (2.36) we see that if m′′ ∼ m′, then

(θt −m′′t) · (ρm,0 − ρm,1) · ω = (θt −m′t) · (ρm,0 − ρm,1) · ω. (2.49) ?eq:newton image2?

Figure 10. Quadrangle for edge e.

The point given by (2.39) appears, for instance, in C|MΛ| as
(
exp(Eψ(m))

)
m∈MΛ

. Since its

coordinates are 6= 0 it projects down into H1
(
Γ∨Λ ,C∗

)
⊂ (C∗)|MΛ|−1.

Replacing ψ by ψ +
∑

b∈P•Λ
cbβb +

∑
w∈P◦Λ

cwβw with βb, βw as in (2.2), (2.3) and cb, cw ∈ C

multiplies all coordinates of the point (2.39) with exp
( ∑

b∈P•Λ
cb +

∑
w∈P◦Λ cw

)
. Such a replace-

ment therefore shows no effect when we arrive downstairs in projective space. Note that this
observation agrees with (2.8) and H1

(
Γ∨Λ ,C∗

)
= H1

(
Γ∨Λ ,Z

)
⊗Z C∗.

2.3.2. The description (2.18) of the kernel of the homomorphism (2.17) implies that Spec(Z[WΛ])
can be identified with the closed subscheme of the affine space A|MΛ| = Spec(Z[Xm |m ∈ MΛ])
given by the equations (2.20). The function

∑
m∈MΛ

Xm on A|MΛ| restricts to a function on

Spec(Z[WΛ]). At the point (2.39) this function has the value

∑

m∈MΛ

exp

( ∑

e∈EΛ
m(e)ψ(e)

)
.

2.4 The geometry of a weight realization

2.4.1. Let (ν1, ν2, ν3) be a weight realization. Set ω = (ν1 − ν3, ν2 − ν3) and θ = 1
deg ν3

ν3. For

e ∈ EΛ consider the associated quadrangle. Proposition 5.3 gives values in R2 for the vectors
from s(ẽ) to b(ẽ), to w(ẽ) and to t(ẽ). We identify R2 with C and obtain three complex numbers
qsb(e), qsw(e), ω(e). We set

qb(e) = qsb(e)− 1
2ω(e), qw(e) = qsw(e)− 1

2ω(e). (2.41)

The complex numbers qb(e) and qw(e) are the vectors from the midpoint of the s(ẽ)t(ẽ)-diagonal
to b(ẽ) and w(ẽ), respectively; see Fig. 10.

Proposition 2.8. We have for every perfect matching m′

∑

e∈EΛ
m′(e)qb(e) = (θt −m′t) ·

(
−1

2I + ρm,1
)
· ω, (2.42)

∑

e∈EΛ
m′(e)qw(e) = (θt −m′t) ·

(
−1

2I + ρm,0
)
· ω. (2.43)

Here we view m′ as a column vector of 0’s and 1’s and ω as a column vector of complex numbers.1

1The perfect matching m appearing on the right-hand side has been fixed for the computations in Section 5.3.3.
Since the left-hand side does not involve m the results do in fact not depend on the choice of m.
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Figure 11. Newton polygons for the superpotentials on the Zhegalkin zebra functions F2, F3, F4, F6

and F in Figs. 2, 3, 12 and Example 5.1.
〈fig:Newton polygons〉

This means that the map

MΛ −→ R2, m′ 7→
∑

e∈EΛ
m′(e)

(
qw(e)− qb(e)

)
=
(
θt −m′t

)
· (ρm,0 − ρm,1) · ω

induces an embedding of AΛ =MΛ/ ∼ and the Newton polygon conv(AΛ) into R2.

?〈exa:newton polygons〉?Example 2.9. The above method yields for the superpotentials on the Zhegalkin zebra functions
F2, F3, F4, F6 and F in Figs. 2, 3, 12 and Example 5.1 the Newton polygons in Fig. 11, where
we have also indicated the sizes of the fibres of MΛ → AΛ if > 1.

2.4.3. For a map ψ : EΛ → C and z ∈ C we can construct the maps

ψ + zqb, ψ + zqw : EΛ → C. (2.47) ?eq:psizz?

With the constructions in §2.3.1 we thus obtain two (parametrized) curves in CSpec(Z[WΛ])
through the point given by ψ:

S•ψ,S◦ψ : C −→ CSpec(Z[WΛ]), (2.48) ?eq:Spsi?

S•ψ(z) =


 exp


∑

e∈EΛ
m′(e)

(
ψ(e) + zqb(e)

)





m′∈MΛ

(2.49) eq:Spsib

S◦ψ(z) =


 exp


∑

e∈EΛ
m′(e)

(
ψ(e) + zqw(e)

)





m′∈MΛ

(2.50) eq:Spsiw

It follows from (2.33), (2.34), (2.43) and (2.44) that for every m′ ∈MΛ

∂

∂z
exp


∑

e∈EΛ
m′(e)

(
ψ(e) + zqb(e)

)

= 1

2ε•(θ
t−m′t, ω) exp


∑

e∈EΛ
m′(e)

(
ψ(e) + zqb(e)

)

 (2.51) eq:dzb

∂

∂z
exp


∑

e∈EΛ
m′(e)

(
ψ(e) + zqw(e)

)

= 1

2ε◦(θ
t−m′t, ω) exp


∑

e∈EΛ
m′(e)

(
ψ(e) + zqw(e)

)

 . (2.52) eq:dzw

Figure 11. Newton polygons for the superpotentials on the Zhegalkin zebra functions F2, F3, F4, F6

and F in Figs. 2, 3, 12 and Example 5.1.

Proof. Equations (5.8) and (5.9) yield

m′t ·Bm,θ =
∑

b∈P•Λ

θt · diag(βb) ·
(
−1

2I + ρm,1
)

= θt ·
(
−1

2I + ρm,1
)
, (2.44)

m′t ·Wm,θ =
∑

w∈P•Λ

θt · diag(βw) ·
(
−1

2I + ρm,0
)

= θt ·
(
−1

2I + ρm,0
)
. (2.45)

The results (2.42) and (2.43) follow from (2.41), (2.44), (2.45) and Proposition 5.3. �

2.4.2. Subtracting (2.42) from (2.43) we get

∑

e∈EΛ
m′(e)

(
qw(e)− qb(e)

)
=
(
θt −m′t

)
· (ρm,0 − ρm,1) · ω.

From (2.13) and (2.36) we see that if m′′ ∼ m′, then

(θt −m′′t) · (ρm,0 − ρm,1) · ω =
(
θt −m′t

)
· (ρm,0 − ρm,1) · ω.

This means that the map

MΛ −→ R2, m′ 7→
∑

e∈EΛ
m′(e)

(
qw(e)− qb(e)

)
=
(
θt −m′t

)
· (ρm,0 − ρm,1) · ω

induces an embedding of AΛ =MΛ/ ∼ and the Newton polygon conv(AΛ) into R2.

Example 2.9. The above method yields for the superpotentials on the Zhegalkin zebra functions
F2, F3, F4, F6 and F in Figs. 2, 3, 12 and Example 5.1 the Newton polygons in Fig. 11, where
we have also indicated the sizes of the fibres of MΛ → AΛ if > 1.

2.4.3. For a map ψ : EΛ → C and z ∈ C we can construct the maps

ψ + zqb, ψ + zqw : EΛ → C.

With the constructions in Section 2.3.1 we thus obtain two (parametrized) curves in
CSpec(Z[WΛ]) through the point given by ψ:

S•ψ,S◦ψ : C −→ CSpec(Z[WΛ]), (2.46)
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S•ψ(z) =

(
exp

( ∑

e∈EΛ
m′(e)

(
ψ(e) + zqb(e)

)))

m′∈MΛ

, (2.47)

S◦ψ(z) =

(
exp

( ∑

e∈EΛ
m′(e)

(
ψ(e) + zqw(e)

)))

m′∈MΛ

. (2.48)

It follows from (2.33), (2.34), (2.42) and (2.43) that for every m′ ∈MΛ

∂

∂z
exp

( ∑

e∈EΛ
m′(e)

(
ψ(e) + zqb(e)

))

= 1
2ε•
(
θt −m′t, ω

)
exp

( ∑

e∈EΛ
m′(e)

(
ψ(e) + zqb(e)

))
, (2.49)

∂

∂z
exp

( ∑

e∈EΛ
m′(e)

(
ψ(e) + zqw(e)

))

= 1
2ε◦
(
θt −m′t, ω

)
exp

( ∑

e∈EΛ
m′(e)

(
ψ(e) + zqw(e)

))
. (2.50)

2.4.4. Since the coordinates in (2.47) and (2.48) are non-zero, these formulas also define two
curves

S•ψ,S◦ψ : C −→ H1
(
Γ∨Λ ,C∗

)
⊂ CProj(Z[WΛ]).

The symplectic forms ε• and ε◦ on H1
(
Γ∨Λ ,C∗

)
and the realization ω yield two vector fields

ε•(-, ω) and ε◦(-, ω). The formulas (2.49), resp. (2.50), show that the curves S•ψ, resp. S◦ψ, are
integral curves for these vector fields.

3 The Jacobi algebra

Let F be a convex Zhegalkin zebra function and Λ a sublattice of Aut(F), such that the super-
potential [F ]Λ is dimer complete and such that a weight realization of the superpotential exists;
see Definitions 1.1, 1.2, 1.5 and 1.6. So there is a tiling of the torus R2/Λ by convex black
and white polygons. The vertices and edges of these polygons constitute a quiver (= directed
graph) ΓΛ. In this section we study an algebra which is naturally associated with the embedding
of the quiver ΓΛ into the torus R2/Λ.

3.1 General theory of the Jacobi algebra and master space

3.1.1.

Definition 3.1 (cf. [1, 5, 6, 8]).

(i) The path algebra Z[Path(ΓΛ)] of the quiver ΓΛ is the free abelian group on the set of all
paths on ΓΛ. The product pp′ is the concatenation of p and p′ if t(p) = s(p′) and is 0
otherwise. The constant paths supported on the vertices of the quiver are idempotent
elements in Z[Path(ΓΛ)].

(ii) The Jacobi algebra of the superpotential [F ]Λ is the algebra

Jac([F ]Λ) = Z[Path(ΓΛ)]/〈D◦(e) | e ∈ EΛ〉, (3.1)

where 〈D◦(e) | e ∈ EΛ〉 is the two sided ideal generated by the elements

D◦(e) =
	∏

e′ 6=e : w(e′)=w(e)

e′ −
�∏

e′ 6=e : b(e′)=b(e)

e′. (3.2)
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(iii) The master space2 of [F ]Λ is the scheme Spec(R[([F ]Λ)) with

R[([F ]Λ) = Z[Xe | e ∈ EΛ]/〈D[(e)|e ∈ EΛ〉; (3.3)

here 〈D[(e) | e ∈ EΛ〉 is the ideal generated by the elements

D[(e) =
∏

e′ 6=e : w(e′)=w(e)

Xe′ −
∏

e′ 6=e : b(e′)=b(e)

Xe′ . (3.4)

Remark 3.2. Note that D[(e) = dF
dXe

with

F =
∑

w∈P◦Λ

∏

e∈EΛ : w(e)=w

Xe −
∑

b∈P•Λ

∏

e∈EΛ : b(e)=b

Xe.

So, 〈D[(e) | e ∈ EΛ〉 is the Jacobi ideal of the polynomial F.
The monomials in F correspond 1-1 with the cycles of the permutations σ0 and σ1 with

neglect of the cyclic structure. Compare this with Remark 1.3 and the analogies (3.1)/(3.3) and
(3.2)/(3.4).

3.1.2. The semi-group dual to WΛ is W∨Λ = Hom(WΛ,Z≥0). Evaluation of maps EΛ → Z≥0

induces a map

EΛ −→W∨Λ , e 7→
(
ν 7→ ν(e)

)
. (3.5)

Let MatP?
Λ

denote the ring of matrices with rows and columns indexed by the elements of P?Λ
and let Z

[
W∨Λ

]
denote the semi-group ring of W∨Λ . The map (3.5) can then be upgraded to an

algebra homomorphism

Φ̃: Z[Path(ΓΛ)] −→ MatP?
Λ

(
Z
[
W∨Λ

])
,

such that Φ̃(p) is the matrix with all entries 0 except for the (s(p), t(p))-entry, which is p viewed
as an element of W∨Λ through (3.5); i.e.,

p = (e1, . . . , ek) 7→
(
ν 7→ ν(p) =

k∑

j=1

ν(ej)

)
.

It is clear from (2.11) and (3.2) that Φ̃ induces an algebra homomorphism

Φ: Jac([F ]Λ) −→ MatP?
Λ

(
Z
[
W∨Λ

])
. (3.6)

Definition 3.3. We call the above homomorphism Φ the tautological representation of the
Jacobi algebra.

3.1.3. It follows from (2.11) and (3.4) that the ring homomorphism

Z[Xe | e ∈ EΛ] −→ Z
[
W∨Λ

]
, Xe 7→ (ν 7→ ν(e))

induces a ring homomorphism

R[([F ]Λ) −→ Z
[
W∨Λ

]
(3.7)

and, hence, a morphism of schemes

Spec
(
Z
[
W∨Λ

])
−→ Spec

(
R[([F ]Λ)

)
. (3.8)

2In [1, 8] the master space is denoted as F[.
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Proposition 3.4. The image of the morphism (3.8) is an irreducible closed subscheme of the
Master Space Spec

(
R[([F ]Λ)

)
.3

Proof. Since WΛ = Z≥0MΛ by (2.16) an element α of W∨Λ is completely determined by its
values α(m) for m ∈MΛ. So there is an injective ring homomorphism

Z
[
W∨Λ

]
−→ Z[Um |m ∈MΛ], α 7→

∏

m∈MΛ

U
α(m)
m . (3.9)

It follows that the ring Z
[
W∨Λ

]
has no zero-divisors and that the kernel of the ring homomor-

phism (3.7) is a prime ideal. �

3.1.4. With M as in equation (2.19) we have

W∨Λ =

{
α ∈ ZMΛ | ∀µ ∈M :

∑

m∈MΛ

α(m)µ(m) = 0

}
.

From this we see that (3.9) identifies C
[
W∨Λ

]
with the sub-ring of C[Um |m ∈MΛ] consisting of

those polynomials which are invariant under the (obvious) action of the torus M⊗ C∗:

C
[
W∨Λ

]
= C[Um |m ∈MΛ]M⊗C

∗
. (3.10)

The situation described by (3.10) is in an obvious sense dual to the situation described in
(2.17)–(2.20).

Remark 3.5. The story in (3.3), (3.4), (2.19), (3.10) is well-known. It differs from the discussion
of the master space and its irreducible component in [1, 8] only in terminology and style and in
that we have highlighted the role of the weight functions.

3.1.5. By definition the center of the Jacobi algebra is

Z(Jac([F ]Λ)) = {π ∈ Jac([F ]Λ) | ∀ e ∈ EΛ : πe = eπ}.

Applying Φ (3.6) to an element π in Z(Jac([F ]Λ)) yields the matrix equations

∀ e ∈ EΛ : Φ(π)Φ(e) = Φ(e)Φ(π).

For ν ∈ WΛ “evaluation at ν” defines a homomorphism of semi-groups W∨Λ → Z≥0 and, hence,
a homomorphism of rings Z

[
W∨Λ

]
→ Z[u]. By combining this homomorphism with Φ we obtain

an algebra homomorphism

Φν : Jac([F ]Λ) −→ MatP?
Λ

(Z[u]),

such that for every e ∈ EΛ the only non-zero entry of the matrix Φν(e) is uν(e) in position
(s(e), t(e)). The matrix equations

∀ e ∈ EΛ : Φν(π)Φν(e) = Φν(e)Φν(π)

then imply that there is an element cπ ∈ Z
[
W∨Λ

]
such that

Φ(π) = cπI, i.e., ∀ ν ∈ WΛ : Φν(π) = cπ(ν)I.

3In [1, 8] the master space is denoted by F[ and the irreducible component by IrrF[.
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Now let ν, ν ′ ∈ WΛ be such that ν ∼ ν ′ (see (2.13)), say

ν − ν ′ =
∑

v∈P?
Λ

rvαv with rv ∈ Z, ∀v ∈ P?Λ. (3.11)

Then we have for all e ∈ EΛ:

Φν′(e) = diag
((
urv
)
v∈P?

Λ

)
· Φν(e) · diag

((
u−rv

)
v∈P?

Λ

)
. (3.12)

Consequently we have for π in Z(Jac([F ]Λ)):

Φν′(π) = diag
((
urv
)
v∈P?

Λ

)
· Φν(π) · diag

((
u−rv

)
v∈P?

Λ

)
(3.13)

and, hence, cπ(ν ′) = cπ(ν). This means that cπ is actually an element of the semi-group ring

Z
[
W∨Λ

]
of the semi-group W∨Λ dual to WΛ.

This proves:

Proposition 3.6. There is an algebra homomorphism

Z(Jac([F ]Λ)) −→ Z
[
W∨Λ

]
(3.14)

induced by the tautological representation Φ (3.6).

3.2 Weight realizations and Jacobi algebra

3.2.1. For a weight realization (ν1, ν2, ν3) “evaluation” at (ν1, ν2, ν3) defines a homomorphism
of rings Z

[
W∨Λ

]
→ Z[u1, u2, u3]. By combining this homomorphism with Φ we obtain an algebra

homomorphism

Φν1,ν2,ν3 : Jac([F ]Λ) −→ MatP?
Λ

(Z[u1, u2, u3]), (3.15)

such that for every e ∈ EΛ the only non-zero entry of the matrix Φν1,ν2,ν3(e) is u
ν1(e)
1 u

ν2(e)
2 u

ν3(e)
3

in position (s(e), t(e)). So, in particular

Φν1,ν2,ν3

( ∑

e∈EΛ
e

)
= A??

(
uν1

1 u
ν2
2 u

ν3
3

)

with matrix A??
(
uν1

1 u
ν2
2 u

ν3
3

)
as in (1.4).

3.2.2. Let (ν1, ν2, ν3) and (ν ′1, ν
′
2, ν
′
3) be weight realizations such that ν1 ∼ ν ′1, ν2 ∼ ν ′2, ν3 ∼ ν ′3;

see (2.13). Then one can show as in (3.11)–(3.13) that there is a diagonal matrix D such that

A??
(
u
ν′1
1 u

ν′2
2 u

ν′3
3

)
= D · A??

(
uν1

1 u
ν2
2 u

ν3
3

)
·D−1.

This means that the representations Φν1,ν2,ν3 and Φν′1,ν
′
2,ν
′
3

are isomorphic.

3.2.3. The matrix A??
(
uν1

1 u
ν2
2 u

ν3
3

)
contains the complete information on the edge vectors

with which one can draw the quiver Γ embedded in R2. More precisely, consider a path
p = (e1, . . . , ek) and its subpaths pj = (e1, . . . , ej) for j = 1, . . . , k. The path pj corresponds to
the monomial

j∏

r=1

u
ν1(er)
1 u

ν2(er)
2 u

ν3(er)
3

in the (s(e1), t(ej))-entry of the matrix
(
A??
(
uν1

1 u
ν2
2 u

ν3
3

))j
. In this way one sees the actual

path p as it runs through the end points of the subpaths pj , j = 1, . . . , k. Thus one obtains
from A??

(
uν1

1 u
ν2
2 u

ν3
3

)
the paths on ΓΛ, the boundary cycles of the polygons and the period lattice.

Since this is all one needs for (3.1)–(3.2) we conclude:
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Theorem 3.7. The algebra homomorphisms

Φν1,ν2,ν3 : Jac([F ]Λ) −→ MatP?
Λ

(Z[u1, u2, u3]),

Φ: Jac([F ]Λ) −→ MatP?
Λ

(
Z
[
W∨Λ

])
,

Z(Jac([F ]Λ)) −→ Z
[
W∨Λ

]

in (3.15), (3.6), (3.14) are injective.

Remark 3.8. Theorem 3.7 is closely related to Theorem 3.17 and Definition 3.10 in [5]. So it
seems that the quivers with potential coming from Zhegalkin zebra functions are cancellative in
the sense of [5, Definition 3.10].

Theorem 3.20 in [5] states that Jac([F ]Λ) is a non-commutative crepant resolution of the 3-
dimensional Gorenstein singularity Spec

(
Z(Jac([F ]Λ))

)
if the quiver ΓΛ with superpotential [F ]Λ

is cancellative.

On the other hand, we do have examples of Zhegalkin zebra functions for which the quiver
with potential is not consistent in the sense of [5, Theorems 1.37 and 3.11].

Remark 3.9. The above method of generating paths corresponds to the series expansion

(
I− A??

(
uν1

1 u
ν2
2 u

ν3
3

))−1
=
∞∑

j=0

(
A??
(
uν1

1 u
ν2
2 u

ν3
3

))j
.

Since every entry of the matrix A??
(
uν1

1 u
ν2
2 u

ν3
3

)
is divisible by u1u2u3 the series on the right-hand

side converges in the topology provided by the powers of the principal ideal u1u2u3Z[u1, u2, u3].

4 Symptoms of mirror symmetry

In this section we put the results of Sections 2 and 3 into the perspective of mirror symmetry.
There are evidently two sides to the story with the graphs Γ∨Λ and ΓΛ on different sides and
the S-quad-graph DF ,Λ providing a “mirror correspondence”. The appearance of the semi-
group ring Z[WΛ] of WΛ on one side and the semi-group ring Z

[
W∨Λ

]
of the dual semi-group

W∨Λ = Hom(WΛ,Z≥0) on the other side is reminiscent of mirror symmetry as in the work of
Batyrev and Borisov [2, 3].

The Γ∨
Λ -side: The semi-group WΛ is to be put on the Γ∨Λ -side, because (see Section 2.2.1)

H1
(
Γ∨Λ ,Z

)
=
{
ν ′ − ν ′′ ∈ ZEΛ | ν ′, ν ′′ ∈ WΛ, deg ν ′ = deg ν ′′

}
.

ΓΛ induces an equivalence relation ∼ on WΛ (cf. Section 2.2.2):

ν ∼ ν ′ ⇐⇒ ∃ r : P?Λ → Z s.t. ∀ e ∈ EΛ : ν(e)− ν ′(e) = r(t(e))− r(s(e)).

This corresponds to the equivalence relation on H1
(
Γ∨Λ ,Z

)
given by the subgroup generated by

the maps αv : EΛ → Z defined in (2.1). Through equations (2.9)–(2.10) it can be traced back to
the inclusion Γ∨Λ ↪→ R2/Λ.

The set of ∼-equivalence classes in WΛ is denoted by WΛ; see (2.14). The diagram in
equation (2.40) shows the various schemes and their interrelations associated with the (graded)
semi-groups WΛ and WΛ and the group H1

(
Γ∨Λ ,Z

)
.

Remark 4.1. Notice the analogy between formula (1.5) for the deformations of weight realiza-
tions and the action of C∗ on Spec(Z[WΛ]) and that of H1

(
Γ∨Λ ,C∗

)
on Proj(Z[WΛ]).
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The ΓΛ-side: The counterpart of WΛ on the ΓΛ-side is the Jacobi algebra Jac([F ]Λ) of the
superpotential [F ]Λ. This is the quotient of the path algebra Z[Path(ΓΛ)] of the quiver ΓΛ by
a two-sided ideal provided by the permutations σ0 and σ1; see (3.1) for a precise definition based
on [5, 6]. The Jacobi algebra comes with an injective algebra homomorphism, the tautological
representation,

Φ: Jac([F ]Λ) −→ MatP?
Λ

(
Z
[
W∨Λ

])

into the algebra of |P?Λ| × |P?Λ|-matrices over the semi-group ring Z
[
W∨Λ

]
of the semi-group W∨Λ

dual to WΛ. It restricts to an injective algebra homomorphism

Z(Jac([F ]Λ)) −→ Z
[
W∨Λ

]

from the center of the Jacobi algebra into the semi-group ring Z
[
W∨Λ

]
; see Theorem 3.7.

The DF ,Λ-correspondence: A weight realization (ν1, ν2, ν3) gives rise to a tiling of R2 by
quadrangles and, hence, for every e ∈ EΛ vectors qb(e) and qw(e) as in Figs. 8 and 10. The
vector qb(e)− qw(e) is the diagonal from w(e) to b(e) in the quadrangle.

In this way the map qb − qw : EΛ → R2 realizes the duality between the
graphs ΓΛ and Γ∨Λ .

For a perfect matching m we set, with the notations as in (2.35),

τm,0 = (I + ςm,0)(I− ςm,0)−1, τm,1 = (I + ςm,1)(I− ςm,1)−1.

Then τm,0 and τm,1 are unipotent matrices of size |EΛ| × |EΛ| with entries in Z≥0. They define
injective homomorphisms Tm,0 and Tm,1 of semi-groups (see (2.38))

Tm,j : WΛ −→W∨Λ ,
(
Tm,j(ν)

)
(ν ′) = ν ′t · τm,j · ν.

Here ν, ν ′ ∈ WΛ are viewed as column vectors.
Using the vectors qb(e) and qw(e) we define maps Qb,Qw : WΛ −→ R2,

Qb(ν) =
∑

e∈EΛ
ν(e)qb(e), Qw(ν) =

∑

e∈EΛ
ν(e)qw(e).

Formulas (1.3) and (2.42)–(2.43) with ω = (ν1− ν3, ν2− ν3) and θ = 1
deg ν3

ν3 then show that the
maps Qb, Qw can be expressed as linear combinations of

Tm,0(ν1), Tm,0(ν2), Tm,0(ν3), Tm,1(ν1), Tm,1(ν2), Tm,1(ν3).

Every perfect matching m yields two matrices τm,0 and τm,1 with entries in Z≥0 and determi-
nant 1. Products and transposes of such matrices also have entries in Z≥0 and determinant 1.

In this way one obtains lots of maps from WΛ to W∨Λ . It would be nice if
these can be used to built a correspondence between the toric geometry of
Proj(Z[WΛ]) on the Γ∨Λ -side and the non-commutative algebraic geometry
of Jac([F ]Λ) on the ΓΛ-side.

We leave further analysis of this structure for future research.

5 Practical matters

In this section I describe some methods for using a computer to draw the tiling associated with
a Zhegalkin zebra polynomial F , compute the superpotential [F ]Λ and check some conditions.
Although the ideas work quite generally the exposition here is strongly influenced by my habit
of using matlab.
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V = (v2, v3, v4, v6, 2v4)

M =




1 0 0 0 0
0 1 0 0 1
0 0 1 0 0
0 0 0 1 1
0 0 0 0 1




Figure 12. Matrices V , M and picture for F = Z21 + Z31 + Z41 + Z61 + Z31Z42Z61.

5.1 How to draw the picture of the tiling of F

The defining formula for a czzf F can be rewritten as formula (5.1) (below) with which one can
easily draw the picture of the tiling. For the description of formula (5.1) we define the function
¬ : R → {0, 1} by ¬(r) = 1 if r = 0 and ¬(r) = 0 if r 6= 0, we identify 0, 1 ∈ F2 with 0, 1 ∈ R
and we interpret in the matrix operations the matrix entries as elements of R.

Extract from the defining formula for F the 2×n-matrix V of which the columns are the used
frequency vectors. Put the coordinates of the points at which the function should be evaluated
as rows in a k × 2-matrix X. Compute the matrix 2X · V and apply the function b c mod 2 to
its entries. In short hand notation this can be summarized as b2X · V c mod 2.

Extract from the defining formula for F the n ×m-matrix M with entries 0, 1 of which the
columns correspond to the monomials in the formula. Note that a monomial evaluates to 1 if and
only if all variables it involves have value 1. This leads to the formula ¬

(
(¬(b2X ·V c mod 2))·M

)

for evaluating the monomials. In this formula the function ¬ is applied to the entries of the
matrices.

The next and final step is to take the sum of the columns (or, equivalently, multiply on the
right by the column vector 1 consisting of m 1’s) and reduce the result modulo 2. The result
is a vector of 0’s and 1’s which gives the value of F at the points listed in X. Thus the whole
evaluation process reads:

F(X) =
((
¬
((
¬(b2X · V c mod 2)

)
·M
))
· 1
)

mod 2. (5.1)

5.2 How to compute the superpotential [F ]Λ and the realization ωF

We now explain how one can compute the superpotential [F ]Λ = (EΛ, σ0, σ1) from the defining
formula of the czzf F and the lattice Λ ⊂ Aut(F).

5.2.1. The first step is to multiply the vectors v1, . . . , v6 by the diagonal matrix diag(2, 2/
√

3).
This results in the new basic frequency vectors

ṽ1 =

(
−3

1

)
, ṽ2 =

(
−1

1

)
, ṽ3 =

(
0
2

)
, ṽ4 =

(
1
1

)
, ṽ5 =

(
3
1

)
, ṽ6 =

(
2
0

)
,

with which we reinterpret the frequency vectors in the defining formula for F . This clearly does
not change the combinatorial structure of the picture, but it allows to do most computations
with integer arithmetic.
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As in Section 5.1 we let the matrix V be such that its columns are the frequency vectors of F .
The edges in the picture lie on lines with equation 2x · v = m with m ∈ Z and v a column of V .
The vertices are intersection points of two such lines 2x · v = m and 2x · v′ = m′ with linearly
independent v and v′. The coordinates of the intersection point are then rational numbers
with denominators dividing the number 2|det(v, v′)|/|gcd(entries of v, v′)|. Let K denote the
least common multiple of these numbers for (v, v′) running over all pairs of linearly independent
frequency vectors of F .

Fix a sufficiently large4 positive integer N . Let X be the N2 × 2 -matrix with set of rows
{(n,m) ∈ Z2 | 0 ≤ n,m < N} such that row (n,m) is above row (n′,m′) if n+m

√
2 < n′+m′

√
2.

We want to find among the rows of 1
KX those which are intersection points of two lines

2x ·v = m and 2x ·v′ = m′ with linearly independent v and v′. First we determine which entries
of the matrix 2X ·V are divisible by K; with the notation of Section 5.1 this means the entries 1
in the matrix ¬((2X · V ) mod K). The intersection points correspond to the rows with a 1 for
at least two linearly independent frequency vectors. Let X∗ denote the submatrix of X given
by this selection of rows. Correspondingly we have the two matrices

2X∗ · V and ¬((2X∗ · V ) mod K).

Looking at these two matrices column by column one easily determines what are the relevant
lines and how the points in X∗ divide these lines into closed intervals with non-overlapping
interiors. For this the initial ordering of the elements of X is very useful. Since it can happen
that the same interval is produced from two different columns we remove the duplicates retaining
for each interval exactly one copy. We list the intervals thus found by giving for each the two
endpoints.

The above calculations were done with integer arithmetic. In the next steps we have to work
in R2 and must therefore divide for all intervals in our list the coordinates of the endpoints
by K. For each interval in the list, say I, take on both sides of the interval a point close to
the midpoint and evaluate F at these two points using formula (5.1). Remove I from the list
if F has at these two points the same value. What is left is a list of intervals separating black
and white regions. For each of these intervals we call one endpoint the source and the other the
target, so that going along the interval from source to target the black region is on the right.

We make a new list with for each interval I besides the endpoints s(I) and t(I) also the
midpoint m(I) = 1

2(s(I) + t(I)) and the vector ~I = t(I)− s(I):

{
m(I), s(I), t(I), ~I

}
I
. (5.2)

5.2.2. We use the list (5.2) to compute the group Aut(F) of translations which leave the
function F invariant. Let I1 be the first item in this list. Determine all I with ~I = ~I1 and
compute for each of these the vector T (I) = m(I) − m(I1). In order to check which of these
vectors T (I) leave F invariant we take at random a point x in the unit square and compute
F(x + T (I)) and F(x). We remove I if F(x + T (I)) 6= F(x). The remaining vectors T (I) are
then tested against a new randomly chosen x. The vectors which are left after repeating this
procedure a good number of times generate Aut(F). From these generators we choose a basis
for Aut(F).

5.2.3. Having a basis for Aut(F) we can specify the desired periodicity lattice Λ by an integer
(2 × 2)-matrix with non-zero determinant. In order to make the reduction modulo Λ we fix
a basis for Λ and write m(I), s(I), t(I) and ~I in coordinates with respect to this basis. Reduction

4N should at least be so large that the periodicity lattice which we want to implement later has two basis
vectors in R2 with non-negative coordinates ≤ 1

3
N .
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Figure 13. Situation at the target of edge e.
?〈fig:vertex star〉?

Let e be an edge in the list. Take all edges e′ in the list satisfying s(e′) = t(e). Using the
vectors vec(e) and vec(e′) we define for every such e′ the number

C(e′) =

(
1− vec(e) · vec(e′)
|vec(e)||vec(e′)|

)
sign

(
det(vec(e), vec(e′))

)
.

Finally we define the edges σ1(e) and σ0(e) by s(σ1(e)) = s(σ0(e)) = t(e) and

C(σ1(e)) ≤ C(e′) ≤ C(σ0(e)) for all e′ with s(e′) = t(e).

This yields the permutations σ0 and σ1 of the set of edges in our list.
Edges e for which there is only one edge e′ with s(e′) = t(e) can be recognized as those for

which σ1(e) = σ0(e). Now repeat the following procedure as long as there are edges with this
undesirable property. Take the first edge e for which σ1(e) = σ0(e). Add a new edge e∗ to the
list, setting label(e∗) = label(e), s(e∗) = s(e), t(e∗) = t(σ0(e)), σ1(e∗) = σ2

1(e), σ0(e∗) = σ2
0(e),

vec(e∗) = vec(e) + vec(σ0(e)) and remove e and σ0(e) from the list.
5.2.4. After all this we have obtained the list of elements of EΛ and for every e ∈ EΛ the edge

〈pph:real F〉 vector vec(e) as well as σ0(e) and σ1(e). The superpotential is then [F ]Λ = (EΛ, σ0, σ1) and
ωF (e) = vec(e) gives the realization ωF of [F ]Λ.

〈exa:model12b2〉Example 5.1. For F as in Fig. 12 we find Aut(F) = 1
3v3Z ⊕ v6Z. For Λ = Aut(F) the

superpotential [F ]Λ = (EΛ, σ0, σ1) is given by

σ0 = (1, 3, 13)(4, 6, 2)(7, 10, 11)(9, 5, 8, 12), σ1 = (1, 5, 2)(4, 3, 11, 12)(7, 6, 8)(9, 10, 13).

One can recover the labeling of the edges by matching σ0 and σ1 with the picture in Fig. 12.

5.3 How to compute the lattice and the quadrangles of a weight realization

〈subsec:comlatquad〉5.3.1. From Sections 5.2.2 and 5.2.4 we have obtained a list of edge vectors
{
ωF (e)

}
e∈EΛ〈pph:latweight〉 for the realization ωF and a basis λ1, λ2 for the lattice ΛωF . This implies that there are maps

n1, n2 : EΛ → Z such that for j = 1, 2:

λj =
∑

e∈EΛ
nj(e)ωF (e), (5.4) ?eq:lat F1?

∑

e∈EΛ
nj(e)e is the homology class of a closed path on ΓΛ; (5.5) eq:lat F2

see (2.7). A basis λω,1, λω,2 of the lattice Λω for any other realization ω of the superpotential
[F ]Λ is then given by

λω,j =
∑

e∈EΛ
nj(e)ω(e) for j = 1, 2. (5.6) ?eq:lat V?

The following method avoids the explicit computation of n1, n2 (which are not uniquely deter-
mined anyway). Fix v0 ∈ P?Λ and define the matrices ΩF and Ωω with |EΛ| rows and |P?Λ| + 1

Figure 13. Situation at the target of edge e.

modulo Λ is achieved by taking the fractional parts of the coordinates of m(I), s(I), t(I) leaving ~I
unchanged. This results in the list

{
m(I)− bm(I)c, s(I)− bs(I)c, t(I)− bt(I)c, ~I

}
I
. (5.3)

The vectors in (5.3) are given by their coordinates with respect to the chosen basis of Λ.
Converting this back to the original coordinates on R2 and multiplying by 2K turns (5.3)
into a list of quadruples of elements of Z2. The first three elements in these quadruples
have non-negative coordinates < 2K and can be made into integers using the injective map
{0, . . . , 2K − 1} × {0, . . . , 2K − 1} → N, (a, b) 7→ a+ 2bK. These integers can be used as labels
to identify the midpoint, source and target of the edge.

The list which thus results from (5.3) contains many duplicates, which we remove. What
remains is a list of labeled edges e with labeled source s(e) and target t(e) and the edge vec-
tor vec(e). It can still happen that this list contains edges e for which there is only one edge e′

with s(e′) = t(e), which case e and e′ must be fused. This will be taken care of in the final part
of the next step.

Let e be an edge in the list. Take all edges e′ in the list satisfying s(e′) = t(e). Using the
vectors vec(e) and vec(e′) we define for every such e′ the number

C(e′) =

(
1− vec(e) · vec(e′)
|vec(e)||vec(e′)|

)
sign

(
det(vec(e), vec(e′))

)
.

Finally we define the edges σ1(e) and σ0(e) by s(σ1(e)) = s(σ0(e)) = t(e) and

C(σ1(e)) ≤ C(e′) ≤ C(σ0(e)) for all e′ with s(e′) = t(e).

This yields the permutations σ0 and σ1 of the set of edges in our list.

Edges e for which there is only one edge e′ with s(e′) = t(e) can be recognized as those for
which σ1(e) = σ0(e). Now repeat the following procedure as long as there are edges with this
undesirable property. Take the first edge e for which σ1(e) = σ0(e). Add a new edge e∗ to the
list, setting label(e∗) = label(e), s(e∗) = s(e), t(e∗) = t(σ0(e)), σ1(e∗) = σ2

1(e), σ0(e∗) = σ2
0(e),

vec(e∗) = vec(e) + vec(σ0(e)) and remove e and σ0(e) from the list.

5.2.4. After all this we have obtained the list of elements of EΛ and for every e ∈ EΛ the edge
vector vec(e) as well as σ0(e) and σ1(e). The superpotential is then [F ]Λ = (EΛ, σ0, σ1) and
ωF (e) = vec(e) gives the realization ωF of [F ]Λ.

Example 5.1. For F as in Fig. 12 we find Aut(F) = 1
3v3Z ⊕ v6Z. For Λ = Aut(F) the

superpotential [F ]Λ = (EΛ, σ0, σ1) is given by

σ0 = (1, 3, 13)(4, 6, 2)(7, 10, 11)(9, 5, 8, 12), σ1 = (1, 5, 2)(4, 3, 11, 12)(7, 6, 8)(9, 10, 13).

One can recover the labeling of the edges by matching σ0 and σ1 with the picture in Fig. 12.
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5.3 How to compute the lattice and the quadrangles of a weight realization

5.3.1. From Sections 5.2.2 and 5.2.4 we have obtained a list of edge vectors {ωF (e)}e∈EΛ for
the realization ωF and a basis λ1, λ2 for the lattice ΛωF . This implies that there are maps
n1, n2 : EΛ → Z such that for j = 1, 2:

∗λj =
∑

e∈EΛ
nj(e)ωF (e),

∑

e∈EΛ
nj(e)e is the homology class of a closed path on ΓΛ; (5.4)

see (2.7). A basis λω,1, λω,2 of the lattice Λω for any other realization ω of the superpotential [F ]Λ
is then given by

λω,j =
∑

e∈EΛ
nj(e)ω(e) for j = 1, 2.

The following method avoids the explicit computation of n1, n2 (which are not uniquely deter-
mined anyway). Fix v0 ∈ P?Λ and define the matrices ΩF and Ωω with |EΛ| rows and |P?Λ| + 1
columns by: the first two columns of ΩF are ωF and the first two columns of Ωω are ω; the
last |P?Λ| − 1 columns of both ΩF and Ωω are αv with v ∈ P?Λ, v 6= v0; here αv is as in (2.1).
Schematically:

ΩF = [ωF |A], Ωω = [ω|A].

Viewing n1 and n2 as row vectors we have for j = 1, 2

nj · ΩF = [λj |0], nj · Ωω = [λω,j |0].

Here we used that (2.5) and (5.4) imply nj · A = 0. The (column) rank of both matrices ΩF
and Ωω is |P?Λ|+ 1. So there is an invertible matrix G with entries in Q such that Ωω = ΩF ·G.
Putting things together we have for j = 1, 2:

[λω,j |0] = [λj |0] ·G.

5.3.2. Next we determine the vertices in the tiling of R2 corresponding to a realization ω of [F ]Λ.
Fix v0 ∈ P?Λ and set zv0 = 0 ∈ R2. For v ∈ P?Λ with v 6= v0 take a path pv in ΓΛ starting at v0

and ending at v, say pv = (e1, . . . , ek), and set zv = ω(e1) + · · · + ω(ek). Then we obviously
have:

Lemma 5.2. The set of vertices in the tiling of R2 which lie over the vertex v of ΓΛ ⊂ R2/Λω
is precisely zv + Λω.

5.3.3. For a realization ω and a positive fractional matching θ we now compute for every polygon
in the tiling the point which is the convex combination specified by θ of the midpoints of the edges
of that polygon. In order to do this in an efficient way we fix a perfect matching m. Consider
a black polygon b ∈ P•Λ. Let (e1, . . . , eq) be the corresponding cycle of the permutation σ1

written such that e1 ∈ m. Then the vertices of the polygon b are located at

zv +

h∑

j=1

ω(ej) for 1 ≤ h ≤ q,

where v = s(e1) and zv is as in Section 5.3.2. The midpoints of its sides are

zv + 1
2ω(eh) +

h−1∑

j=1

ω(ej) for 1 ≤ h ≤ q.
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The convex combination of these midpoints specified by θ is therefore

Bb,m,θ,ω = zv +

q∑

h=1

θ(eh)


1

2ω(eh) +
h−1∑

j=1

ω(ej)


 . (5.5)

For a white polygon w one can construct in the same way a point Ww,m,θ,ω.
Using translations from the lattice Λω one subsequently obtains a marked point in every

polygon in the tiling of R2 and vectors connecting this point to the vertices of the polygon.

5.3.4. Using the map βb : EΛ → Z from (2.2) and the matrix ρm,1 from (2.25) we can rewrite (5.5)
as

Bb,m,θ,ω = zv + θt · diag(βb) ·
(
−1

2I + ρm,1
)
· ω, (5.6)

where on the right-hand side we view θt as a row vector and ω as a |EΛ| × 2-matrix with real
entries. The source point of edge ek of b is located at

zv +

k−1∑

j=1

ω(ej) = zv +
(
ek-th row of matrix (−I + ρm,1) · ω

)
. (5.7)

The vector from the source point of edge ek of b to the marked point Bb,m,θ,ω in b is obtained
by subtracting (5.7) from (5.6). The term zv cancels out. Noticing that b = b(ek) we are led to
introduce the |EΛ| × |EΛ|-matrix Bm,θ by

e-th row of Bm,θ = θt · diag(βb(e)) ·
(
−1

2I + ρm,1
)
. (5.8)

The vector from the source point of edge e to the marked point in the polygon b(e) is then the
e-th row of the matrix (Bm,θ + I− ρm,1) · ω.

Proceeding in the same way for the white polygons we define the |EΛ| × |EΛ|-matrix Wm,θ by

e-th row of Wm,θ = θt · diag(βw(e)) ·
(
−1

2I + ρm,0
)
. (5.9)

The following proposition summarizes our findings about the quadrangles.

Proposition 5.3. In the quadrangle corresponding to e ∈ EΛ
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where on the right-hand side we view θt as a row vector and ω as a |EΛ| × 2-matrix with real
entries. The source point of edge ek of b is located at

zv +

k−1∑

j=1

ω(ej) = zv +
(
ek-th row of matrix (−I + ρm,1) · ω

)
. (5.7) eq:source k

The vector from the source point of edge ek of b to the marked point Bb,m,θ,ω in b is obtained
by subtracting (5.7) from (5.6). The term zv cancels out. Noticing that b = b(ek) we are led to
introduce the |EΛ| × |EΛ|-matrix Bm,θ by

e-th row of Bm,θ = θt · diag(βb(e)) ·
(
−1

2I + ρm,1
)
. (5.8) eq:bigB

The vector from the source point of edge e to the marked point in the polygon b(e) is then the
e-th row of the matrix (Bm,θ + I− ρm,1) · ω.

Proceeding in the same way for the white polygons we define the |EΛ| × |EΛ|-matrix Wm,θ by

e-th row of Wm,θ = θt · diag(βw(e)) ·
(
−1

2I + ρm,0
)
. (5.9) eq:bigW

The following proposition summarizes our findings about the quadrangles.

〈prop:quadrangle〉
Proposition 5.3. In the quadrangle corresponding to e ∈ EΛ
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t(ẽ)s(ẽ)

b(ẽ)

w(ẽ)

(i) the vector from s(ẽ) to b(ẽ) is the e-th row of the |EΛ| × 2-matrix

(
Bm,θ + I− ρm,1

)
· ω,

(ii) the vector from s(ẽ) to w(ẽ) is the e-th row of the |EΛ| × 2-matrix

(
Wm,θ + I− ρm,0

)
· ω,

(iii) the vector from s(ẽ) to t(ẽ) is the e-th row of the |EΛ| × 2-matrix ω,

In the application of this result to the weight realization of [F ]Λ given by the triple of positive
weight functions (ν1, ν2, ν3) (see Definition 1.6) one takes ω = (ν1−ν3, ν2−ν3) and θ = 1

deg ν3
ν3.

5.3.5. By combining Sections 5.3.1, 5.3.2, 5.3.3, 5.3.4 we can draw the quadrangle tiling as
follows. For e ∈ EΛ take zs(e) as in as in Section 5.3.2 and draw for every z ∈ zs(e) + Λω the
quadrangle as in Proposition 5.3 with vertex s(ẽ) located at z and with the vectors from s(ẽ)
to b(ẽ), w(ẽ) and t(ẽ) as specified in Proposition 5.3.

(i) the vector from s(ẽ) to b(ẽ) is the e-th row of the |EΛ| × 2-matrix

(
Bm,θ + I− ρm,1

)
· ω,

(ii) the vector from s(ẽ) to w(ẽ) is the e-th row of the |EΛ| × 2-matrix

(
Wm,θ + I− ρm,0

)
· ω,

(iii) the vector from s(ẽ) to t(ẽ) is the e-th row of the |EΛ| × 2-matrix ω,
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In the application of this result to the weight realization of [F ]Λ given by the triple of positive
weight functions (ν1, ν2, ν3) (see Definition 1.6) one takes ω = (ν1−ν3, ν2−ν3) and θ = 1

deg ν3
ν3.

5.3.5. By combining Sections 5.3.1, 5.3.2, 5.3.3 and 5.3.4 we can draw the quadrangle tiling
as follows. For e ∈ EΛ take zs(e) as in as in Section 5.3.2 and draw for every z ∈ zs(e) + Λω the
quadrangle as in Proposition 5.3 with vertex s(ẽ) located at z and with the vectors from s(ẽ)
to b(ẽ), w(ẽ) and t(ẽ) as specified in Proposition 5.3.
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