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Abstract. In this paper, we study the moduli spaces of parabolic connections with a quad-
ratic differential. We endow these moduli spaces with symplectic structures by using the fun-
damental 2-forms on the moduli spaces of parabolic connections (which are phase spaces of
isomonodromic deformation systems). Moreover, we see that the moduli spaces of parabolic
connections with a quadratic differential are equipped with structures of twisted cotangent
bundles.
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1 Introduction

Let C' be a smooth projective curve of genus g (where g > 2). Narasimhan—Seshadri [20]
showed that vector bundles on C' are stable if and only if they arise from irreducible unitary
representations of the fundamental group of C'. The moduli space of stable vector bundles
on C is equipped with a natural symplectic structure. Although the complex structure on
this moduli space depends on the complex structure of C', the symplectic structure of this
moduli space depends only on the underlying topological surface of C'. This picture has been
investigated by Atiyah-Bott [1] and Goldman [11]. There exist generalizations of this picture.
One can consider the moduli space of pairs (F,V) where (E,V) is a rank r vector bundle
on C with a holomorphic connection V. This moduli space is equipped with a (holomorphic)
symplectic structure. There exists an analytic isomorphism between the moduli space of pairs
(E, V) and the moduli space of representations of the fundamental group of C' into GL(r,C) by
taking a holomorphic connection to its monodromy representation. Considering the variation of
this isomorphism when deforming the curve, we can define the isomonodromic foliation on the
moduli space of triples (C, E, V). This foliation is transversal to the fibration (C, E,V) — C of
complementary dimension. There exists a closed 2-form on the moduli space of triples (C, E, V)
such that the kernel of the closed 2-form coincides with the tangent spaces of leaves of the
foliation and this 2-form induces a (holomorphic) symplectic structure on the moduli space of
pairs (E, V) over a fixed curve C. This generalization has been investigated by Goldman [11],
Hitchin [12], and Simpson [21, 22]. Moreover, this generalized picture was generalized to the
singular setting by Iwasaki [17], Hitchin [13], Boalch [9], and Krichever [19]. Remark that, in the
logarithmic case, Inaba-Iwasaki-Saito [16] and Inaba [15] have constructed the moduli scheme
of triples (C, E, V) (satisfying some stability condition) and showed that the closed 2-form on
this moduli scheme is algebraic.
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2 A. Komyo

We recall the definitions of Lagrangian triples and Hamiltonian data, which are discussed
in [3]. Let p: X — S be a smooth morphism of smooth varieties. A p-connection is an Ox-
linear morphism Vg: p*©g — ©Ox such that dp o Vg = idp«g4. Here ©g and ©x are the
tangent sheaves of S and X, respectively. A p-connection Vg is integrable if the corresponding
map Og — p.Ox commutes with brackets. Note that an integrable p-connection Vg defines an
action of Og on relative differential forms {2x,g by the Lie derivatives along horizontal vector
field Vg(Og). A form w € Qg(/s is Vg-horizontal if w is fixed by the ©g-action.

Definition 1.1. Let X be a smooth algebraic variety over C and 7% = T*(X) — X be the cotan-
gent bundle on X. A twisted cotangent bundle on X is a T*-torsor my: ¢ — X (i.e., my is a fibra-
tion equipped with a simple transitive action of T* along the fibers) together with a symplectic
form wg on ¢ such that 7 is a polarization for wy (i.e., dim ¢ = 2dim X and the Poisson bracket
{+,-} vanishes on 7;Ox) and for any 1-form v on an open set U C X one has ¢ (wg) = midv+wy
on 77;1(U). Here t,: W;l(U) — 71';1(U); ty(a) = a + vy(q) is the translation by v.

For example, the map from the moduli space of pairs (F, V) to the moduli space of vector
bundles defined by (E,V) — E is a twisted cotangent bundle on the moduli space of vector
bundles (see [10, Lemma IV.4] and [7, Section 4]). Note that this moduli space of vector bundles
is a smooth algebraic stack. We can define a twisted cotangent bundle on a smooth algebraic
stack in the same way.

Definition 1.2. Let S be a smooth variety. An S-Lagrangian triple consists of a morphism
m: X = Y of S-varieties px: X — S and py: Y — S, a relative 2-form w € Qg(/S(X) and
a px-connection Vg such that

(i) px, py and 7 are smooth surjective morphisms,
(ii) the form w is closed and non-degenerate,
(iii) for any s € S the morphism 75: Xg — Y5 is a twisted cotangent bundle over Y;, and

(iv) Vg is integrable and w is Vg-horizontal.
Definition 1.3. An S-Hamiltonian datum on an S-variety py: Y — S consists of

(i) a twisted cotangent bundle ()?,w)?), 7: X =Y over Y. Put X := X mod pi-QL: this is
a @;‘,/S—torsor over Y’; let X5 X 5 Y be the projections and

(ii) a section h: X — X of r (called Hamiltonian)

such that for each z € X the form (wx), € /\2 ©% , has rank dim X — dim S. Here we put
wx = h*wg, which is a closed 2-form on X.

Remark that the twisted cotangent bundle X over Y is isomorphic to the fiber product
X xgT*S as symplectic manifolds. This isomorphism is given by the morphism 7: X -
X xgT*S, #(z) = (r(%),z — h(r(z))). Here the symplectic form on X xg T*S is equal
to the sum of wx and a standard symplectic form on 7*S. Now, we describe a construc-
tion of S-Lagrangian triples from S-Hamiltonian data ()N(,w)?,ﬁ', h). Let m: X — Y be the
map as in Definition 1.3. For each s € S, the map ms: Xy — Ys is a T*(Ys)-torsor in-
duced by the 9;/S—t0rsor X — Y. Let w be the image of wx under the natural morphism
03 (X) — Q?)(/S(X)' For the natural map ¢x,: Xs — X, the pull-back /% w is a symplectic
form on X;. Let a € Q%,S(U) be a local section over an open set U C Y;. We take a collection
{(Ui, a;)}; where {U;}; is an open covering of U and a; € Q5 |y, (U;) such that ¢} (a;) = aly,,
where ty,: Y5 — Y is the natural map. We can show that t;(u% h'wg) = (h|Xs)*t2¢(L}Sw5{')
on m; 1(U;), where 15 : X, — X is the natural map. (Here note that X is isomorphic to

S
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X xgT*S.) In particular, the right-hand side is independent of the choice of a lift a; of aly,.
Then #;(tx w) — tx,w = (hlx,)"6, (05 wg) = (Alx,)" (g wg) = (hlx,)"(7lg ) d(@) = mida.
We have that 7ms: Xg — Y is a twisted cotangent bundle. Put px := py o m. The kernels
of (wx)s for each x € X form a subbundle of the tangent bundle T'X, which is transversal to
fibers of px. Since the form (wx)s € A ©%, has rank dim X — dim S and wy is closed, this
subbundle defines an integrable px-connection Vg. By the construction, w is Vg-horizontal.
Then (7: X — Y,w, V) is an S-Lagrangian triple. The purpose of this paper is to construct S-
Hamiltonian data (X, wg, 7, h) from S-Lagrangian triples (7: X — Y,wx, Vg) by using concrete
argument in the case of isomonodromic deformations. (There exists a more abstract construction
in [3] for a general case.) Now, following [3], we describe that the Hamiltonian h: X — X of an
S-Hamiltonian datum is locally given by local functions and the integrable px-connection Vg
associated to the S-Hamiltonian datum has a description by these functions. Let x be a point
of X. Let y = m(z) and s = px(x) be the projections of z. Let (t4)q=1,. dims be local coordi-
nates on a neighborhood of s € S and ¢;, ¢ = 1,...,dim Y5, be functions on a neighborhood of
y € Y such that (g;,t,)i,q are local coordinates at y on Y. Here we denote pull-backs of local
functions by the same notations as the local functions for simplicity. Choose functions h, and p;
on a neighborhood of h(x) € X such that

dim Yy dim S
wg= Y dpiAdgi+ Y dhg Adt.
i=1 a=1

Then (@ = (¢i)i, P = (pi)i» t = (da)a) are local coordinates at z on X. The Hamiltonian
h: X — X is given by the functions h,(q, p,t). Note that

dim Y dim S
wx = Y dpiNdgi+ Y dha(q,p,t) Adta.
i=1 a=1
Put
dim Y

Uha = ata + Z a i(ha(qapat))api - 8]’2‘ (ha((LPa t))aqr
1=1

We can check wx(0p,,vn,) = wx(0q,vn,) = 0 easily. Moreover we have wx(0,,vp,) = 0,
a,b=1,...,dim S, since for each x € X the form (wx), € /\2 ©% . has rank dim X — dim S.
Then we have a description of Vg by hq(q,p,t): Vs(0:,) = vp, - 7

In this paper, we consider an S-Lagrangian triples (7: X — Y,wx, V) associated to isomon-
odromic deformations of parabolic connections (which are logarithmic connection with quasi-
parabolic structures). The isomonodromic deformations of parabolic connections have been
investigated by Inaba-Iwasaki-Saito [16] and Inaba [15]. In our case, X is a moduli space of
pointed smooth projective curves and parabolic connections (see [15, Theorem 2.1] and [16]),
Y is a moduli space of pointed smooth projective curves and quasi-parabolic bundles admitting
a parabolic connection, and S is a moduli space of pointed smooth projective curves. We have
projections px: X — S, py: Y — S and 7: X — Y. The moduli space X has the relative sym-
plectic form w over S (see [15, Section 7]). The px-connection Vg is given by the isomonodromic
deformations of parabolic connections (see [15, Proposition 8.1]). The main result of this paper
is to construct the corresponding twisted cotangent bundle X over Y by using computation of
Cech cohomologies. We construct the twisted cotangent bundle with the remark in mind: The
twisted cotangent bundle X over Y is isomorphic to the fiber product X xgT*S.

Our argument is as follows. First, we consider the fiber product X xg TS (which called
extended phase space, see [14, Section 7]). The fiber product X xg T*S is the moduli space of
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(pointed smooth projective curves and) parabolic connections with a quadratic differential. We
describe the tangent sheaf of X xg T*S and the symplectic form on X xg T*S by the Cech
cohomology (Propositions 3.1 and 3.6). Second, we describe the cotangent sheaf Q%/ by the
Cech cohomology, and we define an Q%/—action on X xgT*S explicitly (Definition 4.3). We
show that by this Qi-action and the symplectic form, X xg T*S is a twisted cotangent bundle
over Y (Theorem 4.4). The section X — X xgT™*S given by the zero section of 7*S — S is the
Hamiltonian of the Hamiltonian datum.

A twisted cotangent bundle over Y is important for studying quantizations of isomonodromic
deformations. In fact, quantizations of isomonodromic deformations may be described by using
certain algebras of twisted differential operators, which are quantizations of twisted cotangent
bundles (see [3, 7]). It is expected that the results of this paper are useful to understand
quantizations of isomonodromic deformations in the context of a certain algebro-geometric way
such as [15, 16].

The organization of this paper is as follows. In Section 2, we recall basic definitions and basic
facts on parabolic connections (in Section 2.1), Atiyah algebras (in Section 2.2) and twisted
cotangent bundles (in Section 2.3). In Section 3, we treat moduli spaces of parabolic connections
with a quadratic differential. First, we describe the tangent sheaves of these moduli spaces in
terms of the hypercohomology of a certain complex. Second, we endow the moduli spaces with
symplectic structures. In Section 4, we see that the moduli spaces of parabolic connections with
a quadratic differential are equipped with structures of twisted cotangent bundles.

2 Preliminaries

2.1 Moduli space of stable parabolic connections

Following [15], we recall basic definitions and basic facts on parabolic connections. Let C' be
a smooth projective curve of genus g. We put

T, = {(tl,...,tn) el x--- xC\tHétj fOI‘Z‘%j}
for a positive integer n. For integers e, r with r > 0, we put

e—}—ZVJ@ :O}.

1,]

i Jo<j<r—1

N (e) := {(V(i))lgign e

Take members t = (t1,...,t,) € T, and v = (y(-i) € ngn)(e).

j )1§i§n,0§jgr—1

Definition 2.1. We say (E, Vv, {L(kl
over C' if

)}1<i<n) is a (t, v)-parabolic connection of rank r and degree e

(1) E is a rank r algebraic vector bundle on C,

(2) V:E— E®QH(t1 + -+ t,) is a connection, that is, V is a C-linear homomorphism of
sheaves satisfying V(fa) = a®df + fV(a) for f € O¢ and a € E, and

(3) for each t;, 19 is a filtration El, = l(()i) D lgi) 5+ 51 = 0 such that dim (lj(-i)/l](.i)rl) =1

and (res,, (V) — v\"idg, ) (1) € 1) for j=0,....r — 1.

Remark 2.2. We have

n n r—1

deg E = deg(det(E)) = — Y _tr(res;, (V) =~ >_ > v\ =e.

i=1 i=1 j=0
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Definition 2.3 ([15, Definition 2.3]). Take an element v € N,En)(e). We call v special if

(1) y](.i) - y,ii) € Z for some i and j # k, or
(2) there exists an integer s with 1 < s < r and a subset {ji,..., '} C {0,...,r — 1} for each

n S .
1 <i < nsuch that ) Zy(f) €Z.
i=1k=1 7k

We call v generic if it is not special.

Take rational numbers 0 < agi) < ozéi) << 047(«) < 1fori=1,...,n satisfying ag.i) % ag.f/)

for (i,7) # (¢,7"). We choose a sufficiently generic a = (ay)).

Definition 2.4. A parabolic connection (E,V, {ly)}KKn) is a-stable (resp. a-semistable) if
for any proper nonzero subbundle F' C E satisfying V(F) C F@QL(t1 +- - +t,), the inequality

deg F + z z a D dim ((F)s, N l§?1)/(F|ti N zy’)))

i=1j=
rankF
deg E + E Z a ) dim (l( )1/Z )
< i=1j=1
(resp. <) rank
holds.
Let Mg,n be a smooth algebraic scheme which is a certain covering of the moduli stack of
n-pointed smooth projective curves of genus g over C and take a universal family (C A, ,fn)
over ngn.

Definition 2.5. We denote the pull-back of C and by the morphism My, X N(")( ) = M, by
the same character C and t = {tl, .. tn} Then D( ) = t1+- - -+1, becomes an effective Cartier

divisor on C flat over Mg’n X NT( )( ). We also denote by & the pull-back of the universal family
on Nr(n) (e) by the morphism Mg,n X an)(e) — Nﬁn)( ). We define a functor M(CI/M (t, r, e)
from the category of locally noetherian schemes over Mg,n X Nﬁn)(e) to the category of sets by

Mg, (Bre)(8) = {(B.V.{1"})}/~

for a locally noetherian scheme S over M, x N,Sn)(e), where

(1) E is a rank r algebraic vector bundle on Cg,

(2) V:ESE®Q, /S( (E)S) is a relative connection,

(3) for each (%;)s, 1Y is a filtration by subbundles Elg;, = l(()i) D lgi) 551 =0 such

that (res, (V) — (7) jidp, ) (11) € 1§7), for j=0,...,r — 1, and

(4) for any geometric point s € S, dim ( /l3+1) k(s) = 1for any i, j and (E, V, {l§i)})®k(s)
is a-stable.
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Here (E, V, {lj(z)}) ~ (E’ ,V/, {l;(i)}) if there exist a line bundle £ on S and an isomorphism
o: E = E'® L such that ol (ly)) = l;(i) ® L for any i, j and the diagram

B—Y e, (D)
7 lm@id
EoL S B o, (DE) e
commutes.

Theorem 2.6 ([15, Theorem 2.1]). For the moduli functor M(‘?‘/M (t,r,e), there exists a fine
g,n

moduli scheme

g‘/MM (t,re) — My, % N (e)

of a-stable parabolic connections of rank r and degree e, which is smooth and quasi-projective.
The fiber Mg (ix, 1/) over (xz,v) € Mgvan,gn)(e) 1s the moduli space of a-stable (ix, 1/) -parabolic
connections whose dimension is 2r2(g — 1) +nr(r — 1) + 2 if it is non-empty.

2.2 Atiyah algebras

Following [4, Section 1], we recall the Atiyah algebra. Let C be a smooth projective curve, and ©¢
be the tangent sheaf. Let E be a vector bundle of rank r on C. Put Dg = Diff(E, E) = |, D;,
D; is the sheaf of differential operators of degree < i on E. We have D;/D;_1 = End(E)®5(0¢)
where S'(©¢) is the i-th symmetric product of ©¢. Let symb;: D; — End(E) ® O¢ be the
natural morphism D; — D1/O¢ = End(F) ® O¢.

Definition 2.7. We define the Atiyah algebra of F as
Ap ={0 € Dy |symb,(0) € idp ® ©O¢ C End(E) ® O¢}.
Here, for v € Dy, symb, (v) is the symbol of the differential operator v.

We have inclusions Dy = End(F) C Ag C Dy and the short exact sequence

0 — End(E) — Ap ™% 90— 0.

Fix a positive integer n. Let D =t; + --- + ¢, be an effective divisor of C where t1,...,t, are
distinct points of C. We put Ag(D) := symb; *(O¢(—D)). Then we have the following exact
sequence

0 —s End(E) — Ap(D) 2™ 00(—D) — 0.
For a connection V: E — E ® Q} (D), we define a splitting
u(V): ©¢(—D) — Ag(D) (2.1)

as follows. Let U be an affine open subset of C' where we have a trivialization El|y = (9(6]97".
We denote by Af~'df a connection matrix of V on U where f is a local defining equation of ¢;
and A € M,(Op). For an element g(% € ©¢(—D)(U), we define the element L(V)(g%) =
g(a% + Af~1) € Ag(D)(U), which gives a map ¢(V)(U): ©c(—D)(U) — Ag(D)(U). By this
map, we obtain the splitting (2.1).
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2.3 Twisted cotangent bundles

Following [2, Section 2|, we recall the definition of Q)z(l-torsors and recall the correspondence
between twisted cotangent bundles and Q)z(l-torsors. Let X be a smooth algebraic variety over C.

Definition 2.8. Let d: A — A™*! be a morphism of sheaves of abelian groups on X, considered
as length 2 complex A® supported in degree n and n+ 1. An A®-torsor is a pair (F, c), where F
is an A™-torsor and c: F — A""! is a map such that c(a + ¢) = d(a) + c(¢) for a € A", ¢ € F.

Let Q)z(l = (Q}( — Qggl) be the truncated de Rham complex, where Q%fl are closed 2-forms
on X. For example, let T* X — X be the cotangent bundle of X and 6x be the canonical 1-form
on T*X. The cotangent sheaf Q}( of X is an Qﬁ(-torsor, which is trivial. For the Qﬁ(-torsor Qﬁ(,
we define a map c: Q% — Q%! as follows. Let U be a Zariski open set over X. We assigne
v € Q% (U) (which is a section v: U — T*X of T*X — X on U) to v*dfx € Q¥ (U). For
7,7 € Qx (U), we have c(y+7') —c(v) = (v +7/)*dfx — (v)*dbx = d(y++') —dy = dy'. Then
the pair (%, ¢) is an Q3'-torsor.

We recall the correspondence between twisted cotangent bundles and Q)Z(l—torsors. For any
morphism f: X — Y between algebraic varieties, let I'(f) be the sheaf of set on Y where I'(f)(U)
is the set of sections of f over U for each open set U C Y. If f: X — Y is a T*Y-torsor, then
['(f) is an Q}-torsor. We consider a twisted cotangent bundle ms: ¢ — X. Then I'(m,) is an
QY -torsor. We define a map c: I'(my) — Q% by c(y) = 7*(wy). We have c(a +7) — c(v) =
v¥th (wg) — 7" (wg) = da. Then (I'(7y), c) is an Q)z(l—torsor. Conversely, for an Q)Zfl—torsor (F,c),
let m4: ¢ — X be the space of the torsor F. The symplectic form is defined as the unique form
such that for a section v € F of 74 the corresponding isomorphism 7*X — ¢; 0 — v, identi-
fies wy with w + m*¢(7y). Here w is the canonical symplectic form on the cotangent bundle 7% X.

3 Moduli scheme of parabolic connections
with a quadratic differential

In this section, we study the moduli space of parabolic connections with a quadratic differential,
which is generalization of the moduli space of parabolic connections studied by Inaba—Iwasaki—
Saito [16] and Inaba [15]. In Section 3.2, we describe the (algebraic) tangent sheaf of this
moduli space in terms of the hypercohomology of a certain complex by generalization of the
description of the tangent sheaf of the moduli space of parabolic connections in [15, 16, 18].
Moreover, we describe the analytic tangent sheaf in terms of the hypercohomology of a certain
analytic complex as in [15, Section 7]. This description is more simple than the algebraic one.
In Section 3.3, we recall the description of the vector fields associated to the isomonodromic
deformations in terms of the description of the (algebraic) tangent sheaf as in [14, Section 6]
and [18, Section 3.3]. In Section 3.4, we show that the moduli space of parabolic connections
with a quadratic differential is endowed with a symplectic structures. This is the main purpose of
this section. In Section 3.5, we consider moduli spaces of parabolic connections with a quadratic
differential as extended phase spaces of isomonodromic deformations. The classical trick of
turning a time dependent Hamiltonian flow into an autonomous one by adding variables is well-
known. In this trick, the space given by adding the variables to a phase space is called an
extended phase space. (Hamiltonians of isomonodromic deformations are time dependent.)
Hurtubise [14] also studied the moduli space of connections with a quadratic differential. In
[14, Section 7], the moduli space of connections with a quadratic differential is decomposed locally
into a product of the symplectic manifolds: the moduli space of connections on a fixed curve
and the cotangent bundle of the moduli space of curves. This local decomposition is given by
using the isomonodromic deformation of the “background connection”, which is discussed in [14,
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Section 6]. Then we can show that the moduli space of connections with a quadratic differential
is endowed with a symplectic structure locally. Moreover, in [14] the section of the map from the
moduli space of connections with a quadratic differential to the moduli space of connections is
defined by using the Hamiltonians defined in [14, Section 6]. On the other hand, in our argument
we use the ordinary isomonodromic deformation instead of the isomonodromic deformation of
the background connection. Then we have an algebraic symplectic structure on the moduli space
of (parabolic) connections with a quadratic differential globally. Our corresponding section of
the map from the moduli space of connections with a quadratic differential to the moduli space
of connections is defined by using the zero section of the map from the moduli space of curves
with a quadratic differential to the moduli space of curves.

3.1 Moduli space of stable parabolic connections with a quadratic differential
Let T Mg n be the total space of the cotangent bundle of Mg n- We denote by C/M (t, 7 e)

the fiber product of T* M, x N )( ) and Mg‘/M (t,r,e) over M, x N (e):

]\//.Tg/Mg (t’T’e)*)Mg/Mg (t,T,e)

d |

T* M, x N\ (e) —= My, x N\™ (e).

We call the fiber product (t, T, e) the moduli space of a-stable parabolic connections with

/

a quadratic differential. If we take a zero section of T*Mgm — Mg,n, then we have an inclusion

MS/M (t.r,e) —>MC0‘/M (t,re).

Let (C,t) € M,,,. The tangent space of M, at (C,t) is isomorphic to H'(C,0c(—D(t))).
By the Serre duality, the cotangent space at (C, ) is isomorphic to H® (C’, Q%Q(D(t))), which is
the space of (global) quadratic differentials on (C,t).

3.2 Infinitesimal deformations
For simplicity, we put M M(‘;‘/Mq (t,r, e) and Cy; :==C X Ny M. Let (E Vv, {l } ) be
a universal family on Cy;. Let Ag ( ( )) be the relative Atiyah algebra which is the extension

0 end(E) — Ax(D(F) 22 0

- 7C

«(v)

where L(V) O, /M( D(i)) — Ag (D (i)) is the Ox-linear section of symb; associated to the

i (=D(#) —=0,

i/

relative connection V. We put

FO .= {s € énd(E ) ‘s]t XM(ZEZ)) - l() for any 4, j} and

FO={se Az(D(t)) | (s — L( ) o symb; (s ))|t XM(ZJ(Z)) C l~§l) for any 4, j}.
Then we have an extension

o Symb;

0 FO FO—>0

«(v)

e i(-D(B) —=0.
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We put

Fli= {se End(E) ® Qéﬂ/M(D(f)) ’ resEing/T(z’rve)(s)([ji)) C Zj(?_l for any i, j} and
Fl=Flo Q?;/M\(D(i)).

We define a homomorphism dg : FO 5 Flas s Vos—soV and we define a homomorphism

dj: Gcﬁ/f/[(_D(i)) — Q?;/M\(D(i)) as follows. Take an affine open covering {Us} of Cy7

such that we can take trivializations of @Cﬁ/ﬂ(—D(i)) and QE@;/M(D (i)) on each U,. For an

element ad/df, € @CA/]W(—D(%))(UQ), we define a homomorphism on U, by
M

o (awa da

“Sf a0 2¢Ua8fa> dfa ® dfa € Q2 _(D(2))(Ua), (3.1)

Co/M

where 1;|Ua = Yu,dfa @ dfa. By the homomorphism on each Uy, we can define a homomor-
phism d@. We define a complex F* by the differential dre = (dg, d@)o (Id—L(V) osymby, symbl):

FO

(Id—L(@)osymbl,symbl)i dre

70 ) = e i
F @@cﬁ/ﬂ(_D(t)) F @QCM/M(D(t))'

Proposition 3.1. We put M = M?/Mg,n (i,r, e) and M = M(‘;‘/ngn (i, T, e). Let ]:]?/[, f&,

and ]?j/[ be the pull-backs of F©, ]-'O, and F* by the natural immersion Cpy — Cqp, respectively.
There exist canonical isomorphisms

< O — R,

S: @M/Nr(”)(e) = RY ()« (F — Far)s and
) o ~ -,

o 9‘M/(]\;[g,n><NT(n>(e)) — R (WM)* (]:M — ]:M)’

where Sy Cﬁ — M and war: Cayr = M are the natural morphisms.

Proof. We show the existence of the isomorphism ¢. For the existence of the isomorphisms ¢
and ¢, see the proof of [18, Proposition 3.2] and the proof of [15, Theorem 2.1]. We take an

affine open set U c M. Let (E, Vv, {l;(l)},z;) be the family on C X ilyom U. We take an affine open
covering Cp = |J, Ua such that ¢, : Ely, = O%: for any «, §{i|tilc, N Uy # @} <1 for any «
and #{a ||, NUq # @} < 1 for any i. Take a relative tangent vector field v € @M\/N(m(e) (ﬁ)
The field v corresponds to a member ((Ce,te, ), (Ee, Ve, {(ZE)EZ)})) € ]\/Z(Spec Ople]) such

that ((Ce, te, %), (Ee, Ve, {(1)71)) ® Oplel/(e) = ((Cptpd), (B, V, {I"})), where 05[] =
Opt]/ (¢?). Here,
e Y € HO(C’e,Q?f/ﬁ(log (D(i)oﬁ[e]))), and

e Vo B, - E. ® Qée/ﬁ(log (D (i) (9[7[6})) is a connection,
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where we define the sheaf Qlcé/ﬁ(log (D(i) 05[6})) as the coherent subsheaf of Ql i (D (i) o M)

locally generated by f~'df and de for a local defining equation f of D(t)OA[e] which is the
U

pull-back of D(t) by the morphism Ce — Cp — C. Set US := Uy x Spec Ople]. Let
tag(€): Uag % Spec Ople] — Uap x Spec O |e] (3.2)

be an isomorphism associated to the first-order deformation C¢ of Cj;. The isomorphism jiqz(¢)
satisfies

:u’aﬁ(e)*(e) =6 :U’Oéﬁ(e)*(f) = f + Edaﬁfa for f S OUQ;;,

for some dqp € Oc,, (—D)(Uap). \iVe describe dng as dog = “‘5@(6) 8?% € O¢, (—D)(Uqp). Here,
fo is a local defining equation of ti|Cﬁ NUq. Set ¢5,: Eelye = (9[6]56. There is an isomorphism

O E€|U5 Og? ¢a” E|Ua®(’) (€]

such that ¢, ®0Ope]/(€): E2Og[e]/(€)|u, — E|UQ®OA[ 1/(e) = E|y, is the given isomorphism
and that aly,e0, (L)) = z< [VaxSpecy g if filey NUa # 2. Put

(¢5) " Hue alue
. D op aB, D
eaﬁ(ﬁ) : OUg,B f} EE’Ufyﬁ ﬁ OUE[—}’

which is an element of 5nd((9$fﬂ)( o). We denote 6ap(€) by

- 0 ~ 0
Oop(€) = Oup + 68 055(6)7 where 6,3, Waple) € End(O(ejar,g)(Uag).
€ € o
Set
aea (6) n -1 T
Nag = ai (0as) ™ € End(OF",) (Uag).

We define elements u,p € FO(Uyg) and (va, wa) € FL(Uy) by

Uap = (¢o¢|Ua,@)71 © E(daﬂ + naﬁ) o ¢a|Ua57
Vo 1= (gpa X 1d) o Ve‘Ug o 90;1 — @|U§ mod dE,

Wo = Ye|lUe — 77;|Ug mod de,
respectively. We can see that
UBy — Uany + Uag = 0, and dre(uag) = (v8, ws) — (Va, Wa).

Then [{uap}, {(va, wa)}] determines an element o (v) of H! (]—"(1]) We can check that v — op(v)
determines an isomorphism

((7) l>H1(]-"5), vi— op(v).

We denote by éﬁ this isomorphism. The isomorphism 6(7 induces the desired isomorphism {. W
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We describe the analytic tangent sheaf in terms of the hypercohomology of a certain an-

alytic complex. Let v be an element of Ngn)(e). Put M, = Mca/M (i,r, e)u, which is

g,n

the fiber of v under M?/Mg,n (i,r, e) — Nﬁ")(e). Let j: C]/\Zu \ {fl,...,fn}ﬁu — CJ\A/IV be

the canonical inclusion. Let V' := Ker V| e\ {5 : } be the locally constant sheaf of
M 1s-5ln ]/W\u

the locally free (7‘(']/\/[\ o j)_l(’)ﬁ -module associated to the relative analytic connection V" on

C]\//\[U \ {51, o 7£n}]\7y7 where T3, CJ\?V — ]\71, is the natural map.

Assume that v is generic. We define a complex (.7? ')an by

~ovan » - - djopr ~
)" aEdV) @0y g, (D) T ag? o (D),

where pr, is the second projection. We have the following commutative diagram

) Y . d7opry -
End(V) 0 g (-DE) TR L (D)

i |

(Fo)an (dpe)?® (fl)an.

We can show that the homomorphism Ker d@an!cﬂ — Jx (End(f/)) is an isomorphism and the
homomorphism dg.ax : (fo)an — (]:: 1)% is surjective as in the proof of [15, Proposition 7.3].
Then we have the following proposition.

Proposition 3.2. If v is generic, then we have
R (mg7, )« (F)™) = Rl (g ) ((F)™),

Cr — ]\//T,, s the natural map.

where T L

M,
3.3 Isomonodromic deformations

Let v be an element of Nr(”)(e). Put M, = Mca/M
g,n
Ma

&Rty (t,re) — N,gn)(e). Let j: Ca, \ {t1,... ,fn}MV — Cyp, be the canonical inclusion.

Let Ker @an|CM,,\{51,...,fn}M,, be the locally constant sheaf of the locally free (mpz, o j) 1Oy, -

(i,r, e)u which is the fiber of v under

module associated to the relative analytic connection VA on Cum, \ {51,...,t~n} A, Where
g, Cy, — My is the natural map.

Definition 3.3. For 7, : M, — Mg,n, we say a complex foliation F is a foliation determined by
the isomonodromic deformations if

(1) F is transverse to each fiber (M,); = 7, '(t), t € M, ,, and

.. . 7an
(2) for each leaf [ on M, the restriction of the local system j, ( KerV ’CM,,\{fh...,fn})’CXMg,nl
is constant.
Let p: mp©y; = RY(7ar, )« (@CMV /M, (=D(t))) be the Kodaira-Spencer map, where myy,, :

Cyv, — M,y is the natural morphism. We define a splitting ® of the tangent map © M, —
(O N, n) as follows

D: 1 (O4,.) — Om, R (Mg )« (FRy, = Fir)s v — [{1(V)(dag)}, {0}],

where [{d,s}] is a description of u(v) by the Cech cohomology. Here, we take an affine open
covering {Uy,}.
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Proposition 3.4 ([14, Section 6], [15, Section 8], [18, Section 3.3]). The subsheaf D (m* (@Mg n))
determines the foliation determined by the isomonodromic deformations. 7

We can take a natural lift D : T, (@T*Mg n) — 91\’/7,, of ®: 7}, (@Mg n) — Oy, as follows. We
define a complex G® by 7 ’

O i, (-D(H) = ¢ L, gt g2 GG (3.3)

WhereAd¢ is defined by (3.1). Then we can show that O, = R! (m37,)+(G%). We define
a lift ®: 7,0, Nyn @J\Aiu of ® by the following homomorphism

D: H'(GY) — HY(F2),  [{dap}, {wa}] — [{t(V)(dap)}, {(0,wa)}]. (3.4)

3.4 Symplectic structure

First, we recall the canonical symplectic structure Wi, ,, ON T *Mg,n. Let U be an affine open

set of T*Mg,n and let (Cp, 1;) be a family of curves and quadratic differentials on U. Let 1, df&?
be the restriction of 1 on an affine open set Ua C Cuy. Let pqp be the isomorphism (3.2):
fa = 1ap(fs). We define a 1-form QMM on T*M, ,, by

b HGE) — 1O ). Hdas) (0all o [{dsea ear,}].

of
where Gy is the complex dQZ: Ocy /U (—D(t)) — Q?Q/U (D (i)) The 1-form 6; is the canonical
~ g,m
1-form on the cotangent bundle T*M, ,,. Let df; My be the exterior differential of qu - The

2-form df My gives the symplectic form on the cotangent bundle T*Mg,n.

Proposition 3.5. Let v = [({dag}, {wa})] and o' = [({d 5}, {w,})] be elements of H'(Gy).
The pairing

H'(G7) @ H' () — HY (2, /0),

v@wr— [{2-dgg 0 d’ﬁ7 og},{—dpa 0 w’B — W, O dlag}]

coincides with the symplectic form d@Mq ;

Proof. Let D,: Oy,, — Ouy,, be a derivation corresponding to v. We compute the 2-form
by, (v,7') as follows

DUGMM (V') = Dy Oy (v) + HMM([U, v'])

o Ope,
= Dy (/‘604) (% ;fﬁ> dfo — Dv(,uﬂa)Dv/ (¢a ;f;) df o
9Dy (Hap) 9Dy (pap)
Ofs dfs

Ot Ot
+ Durlpsa) 22 Dultadfa) = Dolpga) 572 Do (adfa)

a a (0% (0%
B dfs + dagtha—2D 5 f By — dlygwa ;fﬁdfg—i-dagwa ;fﬁdf

= Dv/(/%’a)wa dfa — Dv(/‘ﬁa)wa df e

/

5”% c‘9f
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We add the exterior differential of dggdaﬁwa to the formula above

/ adaﬁ Bd/ Opa d
Aoz -dfs + dapa—7 % dfs — s Wa 2 s + daﬁwa % dfs +d (d npdapta)
Ofs ofs ofs f
U ad, ! /
= dap | dopdiba + 2¢a f — dpgWadfa + dapwpdfa
= —dﬁaw//gdfﬁ — dgﬂwadfa.
By the isomorphism H! (Qé /U) =~ H? (Qc /U) we have this proposition. |

Proposition 3.6. Take a point v € NT(")( ). Let MC‘,"/M (t ,e)u be the fiber of v under

the composition M (t,r, e)u — N,Sn)(e). Then the ﬁber (t,r, 6)1/ has an algebraic

C/Mg,n
symplectic structure.

/

We can obtain the above proposition by the following two propositions.

Proposition 3.7. There is a non-degenerate relative 2-form w € H° (M Q?M/N(" (e )).

Proof. We set n(s) :=s — L(@) o symb;(s) € End(E), where s € F0. For

v =[({tta,s}, {(va,wa)})] € H'(C x7 U, F2)  and
= [({ul 5} {(vh, wi)})] € H' (C 2 U, FY),

wl(vﬂ w) = [({Tr(n(uaﬁ) © 77(“’5«,))}7 _{Tr(n(uaﬁ) © U,/B) - Tr(va S U(Ulag))})] and (35)
wa(v,w) = [{2 - symb; (uga) o symb (ujz,) 0 ¥}, —{symb, (uga) © wj + wq o symb, (ugs)}-

For each affine open subset UcM , we define a pairing

H' (Cxp U, F2) @ HY(C xp U, F) — H2(C x7 U, Q8

o, 0/0) = H (0g),

v w— wi (v, w) + wa (v, w),

where we consider in Cech cohomology with respect to an affine open covering {U,} of C x1 U,
{uap} € CH(F?), {(va,wa)} € C°(F') and so on. This pairing determines a pairing

w: RY(m)(F*) @ RN (mp)«(F*) — Oz

By the same argument as in the proof of [15, Proposition 7.2], w is skew symmetric and non-
degenerate. ]

Proposition 3.8. For the 2-form constructed in Proposition 3.7, we have dw = 0.

Proof. Let @iﬂtial be the subbundle of ©; consisted by the images of the tangent mor-

— O5; and let @%/ID be the subbundle of ©; consisted by the images of

v

phism @M TN

@(fr,ﬁ (@T* M, n)) — ©4; . We take an affine open set Uc ]\71,. We have a canonical decompo-
sition ’

H' (F[,j) — @%litial b @I{lfv[D’ v = [{tag}, {(Va; Wa)}] = Vinitial + VIMD,
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where

Vinitial = [{11(tap)}, {(va,0)}]  and  vap = [{2(V) o symb (uag)}, {(0,wa)}].

We may assume that v is generic. Let U be an affine open set of ]/\4\,, and let (E, @, {ZNJ(I) }, 1&) be
the family on Cx U. We take an affine open covering Cp = Uq Ua such that ¢, : Ely, = OE‘Z

for any «, #{i|tilc, N Ua # @} < 1 for any « and #{a|ti|c, N Uy # @} < 1 for any i.
If we replace U, sufficiently smaller, there exists a sheaf E, on U, such that Ea|UaﬂU3 &

2 ~ ~
(771%4\1 O |UamUﬁ)®r for any 8 # a and an isomorphism ¢q: ji (V)|v, — Ea. Here the local

system V is defined in Section 3.2. For each a, B, we put
% . da
eap: Eslu.nvs — 3« (V) lvanvs — Ealv.nus-

For each a, f3, let pag: Usyg — Uqp be an isomorphism such that the glueing scheme of the
collection (Uy, Uag; ftap) is isomorphic to Cp.

We consider a vector field v € H (ﬁ, @ﬁ). Then v corresponds to a derivation D, : Oy — Op
which naturally induces a morphism

Dy: Hom(Es|u.nvys Ealvanu,) — Hom(Eg|u.nvs, Ealv.nus)-
5 5 5 5

The isomorphism 61\7" ~ R! (771\7”)* ((ﬁ ')an) is given by

051, 2 v — [{(¢a" © Du(pap) © b3, Du(ttap)) } {Du(¥lu)}] € R (37 )« ((F)™),

and the 2-form w(u,v) = wi(u,v) + wa(u,v), u,v € O, is given by

w1 (u, v) = [{Tr (Dusyigian (Pas) Dvsnieia (987)Pra) }] - and
w2 (1, 0) = [{2Durygp (50) Donn (H50) V81045 1+

{=Dunan (150) Dogi (¥51as) = Duran (Palvs) Donp (Hap) -
Since the image of ©@MP under the tangent morphism of ]\//7,, — M,, determines the foliation
determined by the isomonodromic deformations, we can show that

dw (u, v, w) = dwi (Uinitial, Vinitial, Winitial ) -

We have dwi(Uinitial, Vinitial, Winitial) = 0 by [15, Proposition 7.3]. We can also show that
dws(u,v,w) = 0. Then we have the closeness of w = w1 + ws. [ |

3.5 Extended phase spaces of isomonodromic deformations

Proposition 3.9. The morphism 7, : M\ch/M (i,r, e)u — T*]\;[g,n 1s a Poisson map.
g,n
Proof. Let 7: GJ\A/IV — W*GT*Mg,n be the tangent morphism. We denote by &: @T*Mw —
Q%r* v and §: O3 — Ql}\/? the homomorphisms induced by the symplectic structures on
g,n v v
T*M,,, and M,,, respectively. The assertion follows from that the following diagram

™ (€)

W*@T*Mg,n — W*Q’}F*Mg,n
lﬁ l (3.6)
£ 1
@Mu QJT/[\,,

is commutative and 7, o D =id. Here, D is the homomorphism (3.4). [
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Let p1, ... pu3g—3+n be local vector fields on an affine open subset U C ]\ng,n. Let h; be a linear
function on 7% M, ,, corresponding to the local vector field y; on U. Assume that {h;, h;} Nyn = 0

fori,7=1,...,3g —3+n and dhy A --- A dh3g—31y is not identically 0, where {-, '}1\7[9 s the
Poisson bracket associated to the symplectic structure w My Put U = (fr,, oDy, n)fl(U ), where

Ty MC“‘/MM (i,r, e)u — T*Mgm and Pt T*Mg’n — Mg,n. Let Wre T, be the symplectic

structure on T*Mgm. We define a Hamiltonian E; on U as a*h; fori=1,...,3g — 3+ n. Let

a; (i=1,...,3g —3+n) be constants. We call the Hamiltonian vector field on U associated to
39—3+n 3g—3+n ~

> a;p; the vector field a;{-,E;} on U.

i=1 =1

Proposition 3.10. First, the Hamiltonians E; satisfy {E;, E;} =0 fori,j=1,...,3g—3+n.
In particular, the functions E; are conserved quantities associated to the Hamiltonian vector

3g9—3+n
fields. Second, the restriction of the Hamiltonian vector field associated to > aiu; to the
i=1
~ 3gf?f+n
common level surface E1 = 0,...,E34_34, = 0 in U, is coincide with @( > aiui), which
i=1

is a vector field associated to isomonodromic deformations. Here we consider the vector field
3g—3+n R
aip; as an element of W;(@Mg )(U).
i=1 "

Proof. Let {-,-} My be the Poisson bracket associated to the symplectic structure wq.

0,
on T*Myg,. Let vy, be the element ﬁ,ﬁ(@T*MM)(U) defined by the vector field {‘,hi}z\?[gn
on 7?((7) C Mg,n. In other words, WT*Mg_n(thv) = dhi(v) for any v € Opy. Put v, =
[{d%}, {whil] e H! (g;?), where G* is the complex (3.3). Put UEEAD = [{«(V) (d%)}, {(0,whi)}]
c H! (]-'[1]) By the diagram (3.6), we have w(v,llll\,m,v) = dE;(v) for any v € Op, that is,
UIIJEAD = {-, E;}, which is the Hamiltonian vector field associated to ;.

Note that {E;, E;} = w(v}g{D,v}ng) = Wpa, (Vn;> vn,) = {hi, hj}l\?lg,n‘ By the assumption
that the linear functions h; satisfy {h;, h;} ¥, = 0, we have {E;, E;} = 0. The common level

surface £y = -+ = E3g_34n = 01is M (f, T, e)y. On this common level surface, the vector

C/Myn } N
field associated to the Hamiltonian vector field of y; is [{¢(V) (d%)}, {0}] € H! (‘7:(9] — ]-"(l]),
which is a vector field associated to the isomonodromic deformations. [ |

4 Moduli stack of stable parabolic connections
with a quadratic differential and twisted cotangent bundle

Let C be a smooth projective curve of genus g, g > 2. The map from the moduli space of
pairs (E,V) to the moduli space of vector bundles defined by (E,V) — E is a twisted cotan-
gent bundle on the moduli space of vector bundles. Here, E is a rank r vector bundle on the
fixed curve C and V is a holomorphic connection on E. This twisted cotangent bundle has
been investigated by Faltings, Ben-Zvi-Biswas, and Ben-Zvi-Frenkel (see [10, Section 4], [8,
Section 5], [5, Section 5|, and [7, Section 4.1]). Moreover, Ben-Zvi-Biswas and Ben-Zvi-Frenkel
studied on a twisted cotangent bundle on the moduli space of pairs (C, E) (see [5, Section 6]
and [7, Section 4.3]). In [5, 6], Ben-Zvi and Biswas have introduced eztended connections, which
are generalization of holomorphic connections. We can define a natural map from the moduli
space of extended connections to the moduli space of pairs (C, E). This map is generalization
of the map (F,V) — E and has been investigated in [5, Section 6] and [7, Section 4.3]. In
this section, we consider parabolic connections instead of holomorphic connections and study
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the moduli space of parabolic connections with a quadratic differential instead of the moduli
space of extended connections. The purpose of this section is to show that the moduli space
of parabolic connections with a quadratic differential is equipped with structure of a twisted
cotangent bundles. In Section 4.1, we consider the moduli stack corresponding to the moduli
scheme considered in the previous section. We introduce the moduli stack of pointed smooth
projective curves and quasi-parabolic bundles. We consider the cotangent bundle of this mod-
uli stack. We describe the tangent sheaf of the total space of this cotangent bundle and the
canonical symplectic form on this cotangent bundle. In Section 4.2, we consider a map from the
moduli stack of parabolic connections with a quadratic differential to the moduli stack of pointed
smooth projective curves and quasi-parabolic bundles. We endow this map with structure of
a twisted cotangent bundle. In Section 4.3, we introduce extended parabolic connections, which
are generalization of parabolic connections and also extended connections. We consider a rela-
tion between parabolic connections with a quadratic differential (which are also generalization
of parabolic connections) and extended parabolic connections.

In this section, we assume that v is generic. If v is generic, then any (¢, v)-parabolic connec-
tion is irreducible. So all (¢,v)-parabolic connections are stable.

4.1 Moduli stack of stable parabolic connections with a quadratic differential

Let 9, , be the moduli stack of n-pointed smooth projective curves of genus g, where n-points
consist of distinct points. Let ﬁg,n(r, e, ) be the moduli stack of collections ((C, ¢,v), (E, V,1)),
where (C,t), t = (t1,...,t,), is an n-pointed smooth projective curve of genus g over C where
t1,...,t, are distinct points, ¢ is an element of H°(C, Q%z(D(t))), and (E,V,l) is a (t,v)-
parabolic connection of rank r and of degree e on C. Let 69315,, (rew) be the tangent complex

of ﬁgvn(r,e,u), that is, for each smooth map fy: U — 53\197”(7’, e,v) from a scheme U, the
pull-back ff;@sﬁtg (rew) is © — Oy considered as a length 2 complex supported in
degree —1 and 0. Here @U/Eﬁ?g,n(r,e,u) = A* (@(Uxﬁg,n@,e,u)U)/U)’ where U — U X, n(rew) U is
the diagonal. Let 99319 be the fiber of @@g over a point x = ((C,¢,v), (F,V,1)) of

) is isomorphic to H* (]-"; ) Here, we recall the complex Fy:

U/ﬁ?g,n(r,e,u)

,n(T’ezu)vw ,n(r’e»l’)

ﬁg,n(ra e,v). Then HO(Giﬁtg

n(rer),x
F2 = {s € Ap(D(t)) | (s — «(V) o symby ()]s, (I1") < 117 for any i, 5},

Fli= {se€énd(E)® QL(D(t)) | resy, (s) (l](i)) C lﬁl for any i, j},

Fl=Flae QE*(D(t)); and drs := (dy,dy) o (Id — L(@) osymby,symb, ): Fo — Fy,

where dy: FO — F!, s+ Vos—soV and dy: Oc(—D(t)) — QE*(D(t)) defined by (3.1).
The pairing H' (F2) @ H'(F2) — H?*(QY) defined by (3.5) gives a symplectic structure on
My n(r e v).

Definition 4.1. Let (C,t) be an n-pointed smooth projective curve of genus g over C where
t1,...,t, are distinct points. We say (E,l), 1 = {lg)}KKn,
and of degree e on (C,t) if E is a rank r algebraic vector bundle of degree e on C, and for
each t;, lgf) is a filtration El;, = l(()i) D l%i) D+ D lgi) = 0 such that dim (lj(i)/lj(.:)l) =1,
7=0,1,...,r—1.

is a quasi-parabolic bundle of rank r

Let By.n(r, €) be the moduli stack of pairs ((C,t), (E,1)), where (C,t) (t = (t1,...,t)) is an
n-pointed smooth projective curve of genus g over C where t1,...,t, are distinct points, and
(E,1) is a quasi-parabolic bundle of rank r and of degree e on (C,t). We have a projection
PBgn(r,e) = My, Let Pgn(r,e,v) be the substack defined by the condition where a quasi-
parabolic bundle admits a (¢, v)-parabolic connection. Let mq_  (re.) and T, ,, be the following
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morphisms:
TRy n(rev) - ﬁg,n(ra e,v) — ‘ﬁg,n(ﬁ e,v), (Ct, ), (E,V, 1) — ((C, 1), (E,1)),
TN : PBon(r e v) — Ny, (C)t), (E, 1)) — (C,1).

Let O, (r.e) be the tangent complex of Py (1, e,v). Let Op_ | (1c.)p be the fiber of O (1.0
over a point p = ((C,¢t), (E,1)) of Pgyn(r,e,v).
We consider infinitesimal deformations of p = ((C,t), (E,1)). We put

7—72 = {s € End(E) | sl (l;l)) C l]@ for any i, j} and

ﬁzlj = {s € End(E) @ Q&(D()) | resti(s)(l( )) C lj(z+)1 for any 4, j}.
Note that (7—72)* ® O ﬁ; Put

HO = {s € Ap(D(t)) C Ende(B) | sle, (11) < 1Y for any i, j}

and 7—[1 (7—[0) ® Qé Then we have exact sequences

0—H)—HO ™ O (—D(t) —=0  and
00— QZ2(D(t) —= ML —=HL —0.

We take an affine open covering {U;} of C' so that we can take a trivialization ¢;: E|y, = (’)ar
of E on each U; and the restriction of 7-[; to U; is Oy,-isomorphic to the direct sum (7:2110) v, @
QE*(D(t))y,. We fix trivializations of E. On U; N U;, the transformation (7—[}19)[]1_ — (H}?)Uj is

given by
(i(fo)dfs, ¢i(fi)dfi @ dfs) — (@5 (fi)dfs, ¢5(fi)dfi @ dfi)
_ ((%l@(fi)eij)dfi, 6 (F)dfy @ dfy + Tx < 05 (1) 5 ) af; ® dfz> , (4.1)

where 0;; := ¢; o ¢> L. (9 v, OU U, is a transition function of E. Then H° (qug n(re, ,,),p)

is isomorphic to H i (Hg) and HO (7—[ ) is the dual of H' (’HO) The vector space H (7—[ ) is the
space of 1-forms at p. R
Put p = ((C,t),(E,1)). Let ®, be an element of H°(#}), which is described by (®,, )

locally, where ®,df € ﬁ; and ¢pdf ® df € Q%Z(D(t)). We consider infinitesimal deformations

of (p, </13p). For EISP, we define a complex d° (@,) : Hg — ’Hll) as follows. For each affine open set
U C C, we define the image of ayd/dfy +nu € HY(U) as

d(ay®p)
af
Tr (gf i) de®de> —GUTde@)de f

We can show that this homomorphism on each U gives a homomorphism d° (Cfp): ’Hg — 7—[]17.

We consider the first hypercohomology H' (’H;) of d° (Cfp) : ’Hg — 7—[]13. By the Cech cohomology,
an element of H! (H;) is described by [{aija/afi + mj}, {(f)i, 1211)}], where

Ofi
of;

<(I>pdeo77U —nu o ®pdfy — ———dfv,

- bpdfy ® dfu>

ik 7 — Qik + Q35 = 0,
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0;i
<0 n]kejz + a]k9 ) — Nik + Mij = 0, and

Ji of;

A~ 89 7 A~ A~ =
<0 vjejz,w] + Tr (0 11)] 8; dfj>) — (D, ;) = d° (‘I)p)(nij)
J

for some affine open covering {U;}; of C. Infinitesimal deformations of (p, fﬁp) are parametrized
by H! (’H;,) Then the fiber of the tangent sheaf of the moduli stack of pairs (((C, 1), (E,1)), </15)
(where d e HO (’Hl)) at a point (p, &)p) is isomorphic to H! (7—[;). Moreover, we define a paring
H! (743) @ H (33) — H2(0,) by
[({ai0/0 i +mi}. { (83, 0) })] @ [({a};0/0 fi + iy} { (8, @7) })]
— [({ T (i (032 ®;)) + Tr ((a6®5) ) — 20505465},
—{=Tr (n30)) + (aztd) = Tr (Burgiy) + (iaiy) })]-
Proposition 4.2. This pairing gives a symplectic structure on the moduli stack of pairs (((C’, t),
(E,1)),2).
Proof. We define a 1-form Oy (c.) by
.oyl e 1(01
amg,n(rvevy)‘ H (Hp) — H (QC)’
PO Hij
[{aij0/0f; +nij b, { (0i, i) }] — | Te(ni;®idfs) + ajid ( 8f] df]>:|
for each (®;dfi, ¢idf; ® df;). This 1-form Oy (rew) is the canonical 1-form on the cotangent
bundle of By (r,e,v). Let diy,  (rew) be the exterior differential of Oy . (rc.). The 2-form
dfsg, , (r.e,r) ives the symplectic form on the cotangent bundle of PBg.n(r,e,v). We compute the
2-form dfsy, . (r.e.) as follows
Tr (Dv’(eij)Dv (le@zdfl) — DU(Gij)Dv/ (leq)zdfz)) + d(aij Tr(ngjq)i))
= Tr (=Dy (055)0;;" Dy (055)0;;' ®idfi + Dy (0:)0;; Doy (0:5)0;;" ®idf;
+ Dy (055)0; Dy (Pidfi) — Dy (0i5)0;;' Do (®idfy)) + d(aij Tr(ri; i)
= Tr (—nij ([®idfi, ni;] — d(ai;®:)) — mi0; + 0i50:) + aij Te(d(n};)®s)
= — Tr(ni05) + Tr(ni;0:) + ai; Te(d(ni;)Ps)

N . 00;;
= TI‘(T]J'Z‘UQ) + Tr(ngjvi) — A4y Tr (9 Ly ; a; ) + Qi Tr(d(n;])q)z)

and

15) iq ©j !
Dy (i) Dy (qﬁi a‘};) dfs = Du(15:) D <¢z 6‘};) dfi + d (ajuasi6;)

= Q45 <_a;‘jdwz 2¢z p) dfz) a wzdfz + Gz]w dfz

fi
— aidf oAb dF: T 9 1'8931 T (d(n D
= aijw;dfj — a;;widf; + ag; Tr Yj a7, — agg Tr(d(17;;) i)

Then we have this proposition. |

Put p = ((C,t), (E,1)). Let V be a connection: V: E — E®QL(D(t)). For a connection V,
we define a decomposition of H° (7—[;) as follows
(Q

HO(#}) — HO(H)) & HY(QS*(D(¢))),
& (5(3).8 — 4 (V.5(3))).
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Here w(V, m(:I\))) c HY (7—[;) is defined as follows. We take an affine open covering {U;} of C
such that on U; the connection V|y, is described by d + A, alfZ and the Higgs field /@(</15)|U1 is
described by ®;df;. On each U;, we define an element w(V m( )) lu, as

O (V,5(2))]y, = (‘I’idfinT (‘I%'Ai + ;‘E‘I’i) df; @ dfi) € H,(Uy),
which gives an element d)(V, /{(;I\D)) e HO (7—[11)).

4.2 Moduli stack as twisted cotangent bundle

Let F(mpg‘n(r’e,,,)) be the sheaf of set on P, ,,(r, e, v) where P(”‘Bg,n(r,e,u)) (U) is the set of sections
of Ty, . (re,) Over U for each smooth map U — PBg.n(r,e,v). Here U is a scheme. We take a sec-
tion o and put o(p) = (Vp, ¢p), where V,,: E — EQQ{(D(t)) is a connection such that (E,1, V)
is a (¢, v)-parabolic connection of rank r and of degree e on C, and ¢, € H°(C, Q%Q(D(t))) for
b= ((Ca t)v (Ev l))

Definition 4.3. For a 1-form ® on PBg.n(r,e,v), we define a translation by

F(T‘—‘Bg,n(r,e,u)) - F(ﬂ—q}gyn(r,e,u))? N —~ ~
a(p) = (Vp, tbp) — t5(0)(p) := (Vp + £ (Pp), thp + (P — (Vp, 6(Pp))))- (4.2)

By this translation (4.2), we have an Q}

mg’n(ne’y)—torsor structure on F(W‘Bg,n(r,e,u))-

Theorem 4.4. Assume that v is generic. Let w be the symplectic form on ﬁgm(r, e,v). We
define a map c: F(mﬁg,n(hew)) — Q‘I;:;n(Teu) byAc(y) = y*(w) for v € F(Tr;pgm(r7e7,,)). Then
for any ® € Q Ton(rew) WE have c(tg(y)) = d(®) + c¢(v). That is, (F(ﬂ%yn(ne,y)),c) is an

9‘4_39,11 (7‘737,/) -torsor.

—

By this theorem and the argument as in Section 2.3, the morphism Ty (r.e0): Mg n(r, €, V)
— Pyn(r,e,v) is equipped with structure of a twisted cotangent bundle.

Proof. Put p = ((C,t),(E,1)). Let v be an element of H'(H)). We take a section o and put
o(p) = (Vp, 1), where Vy,: E — E® Q4L(D(t)) is a connection and 1, € H%(C, Q?@(D(t))).

We take an affine open covering {U;} of C such that elements of H! (’Hg) are described by
the Cech cohomology: v = [{a;;0/0f; + ni;}], where a;;0/0f; +nij € HY(Ui N Uj). Let Vp(v,€),
</I\>p(v, €), and (v, €) be the infinitesimal deformations of V, &)p, and v, associated to v over
Spec C[e], respectively, where €2 = 0. We take local descriptions of the connection, the Higgs
field, and the quadratic differentials on U; as follows. The connection V), (v, €) and the Higgs field
/@(:I\)p)(v, €) are described as d + A;df; + ev; mod de and ®;df; + €0; mod de on U, respectively.
Moreover, on U; the quadratic differentials 1, (v, €) and (:I; —(Vp, H(A ))) (v, €) are described
by ¢idf; ® dfi + ew;df; @ df; and ¢;df; @ df; + ew;df; ® df; mod de on Uj, respectively.

We decompose @, = &1 + Py, where &1 = 1/J(Vp,<I> ) and <I>2 = <I> — w(Vp,q) ) Then we
can compute the exterior differentials of &)1 and EI\>2 as follows

d® (v,v") = [({ Tr(ni(@j®;)) + Tr((aji®;)n}y,) — Tr(2a5a], A5 + ajia};, @)}
— {— TI" njivj) + Tr ((ajiAj)@;- + (CLj#Dj)U} + (aﬂfbj)@;)
— Tr(dini;) + Tr ((ai;Ai)0; + (aj;@i)vs + (ai;9:)) })],

d@g(v,v') = [({—2ajia;»k¢j}, —{ajiﬁ); + u?ia;j})].
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On the other hand, the symplectic form is computed as follows. Put ¢(vy); := v*(w1) and
c(7)2 := v*(w2), where wy and wy are defined by (3.5) in the proof of Proposition 3.7. We have

c(tg ()1 (v, V') [({ Tr ( Nij — aijAi — a;j®;) o (77519 — a;kAj — a;kq)j))},
— {Tx ((mij — aijAi — aij®;) o (v 4 05))
— Tr ((vi + ) o (m; — aj;Ai — aj;9;)) })]
= [({=Tx ((nji — aji4; — a;i®;) o (%k apAj — ;) },
—{=Tr ((nsi — aji4; — aj;i®;) o (v + 17;))
= T ((vi + ) © (nf; — aj;Ai — aj;®:)) })]

and

c(M(v,v") = [({ Tr ((nij — aijAi) o (mjy, — ajAj)) by
—{Tr ((mij — aijAi) o vj) — Tr (vi o (mf; — aj;A)) })]
= [({=Tx ((mji — azid;) o (M — ajAy)) },
—{=Tr ((mji — aji4) o j) — Tr(v; (771] l]A ) )]

Then we obtain

~

c(tg (M (v,0) = c(V)1(v, o) = d®1(v,0).

Moreover, we also can show that

c(ty(7))2(v,0) — c(7)2(v,v') = dBs(v, V).

Then we obtain that (F (mpg’n(r’e,l,)),c) is an Q=1 )—torsor. |

To.n(rew

4.3 Extended parabolic connections

Let (C,t), t =t1 + -+ + ty, be an n-pointed smooth projective curve of genus g over C where
ti,...,t, are distinct points. Put D(t) = t; + --- + t,. We describe a description of (t,v)-
parabolic connection with a quadratic differential in terms of a “integral kernel” on C'x C' as in [5]
and [6]. Let p1: CxC — C and pa: C'xC — C be the first and second projections, respectively.
Put Oc(xD(t)) := lim Oc(mD(t)), and Q¢ (xD(t)) = Qp ® Oc(xD(t)). Let End’(E) C
End(E) be the subbundle of traceless endmorphisms of £. We define sheaves Kpg)(E) on
CxC as Kpw)(E) := pf(E®@Qu(xD(t))) @ p3 (E* © QL) (2A), where A € C x C'is the diagonal.
We have a natural injective morphism Q&2 (xD(¢)) ® End’(E) — Kp)(E)|3a. We define a sheaf
ExConnpy (E) on 3A by

ExConnpy) (E) = {5 € Kp) (E)|sa/(QF7(+D(#)) © End”(E)) | s|a = 1dp}.

Note that we can consider s|aa as a connection s|oa: E — E®Q(+D(t)). We consider elements
of ExConnp ) (F) as pairs of connections and quadratic differentials on C' locally. Let U; and Uj
be open sets of C. Let (A;, a;) be an elements of ExConnp ) (E£) on U;. Here A;df; is a connection
matrix on U; and a;df;@df; € H° (UZ-, Q%Q(D(t))). The transformation of the pair is the following

(Aidf;, a;df; @ df;)
do;

— (05 Aibidfi + 0 =2 df;, ( a; + T 014,25 | Ly (g 1405 df; @ df;
ij 1Yyt df 79 7 ij dez 2 ij dfz 7 7
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on U;NU;. We may define an H(lc7t7E7l)—action on ExConnp ) (E) for any parabolic structures
by (4.1).

Let V: E — E ® Q4L(D(t)) be a connection. We can define a global section Vg of
ExConnpy)(F) associated to V as follows. Take a trivialization of the locally free sheaf F
on an open set U; of C. Let A;df; be the connection matrix of V on U;. We define Vix|y, €
ExConnp (E)(U;) as

<Aidfi; % Tr (d(4;) ® dfi) + %Tr (Aidf; ® Aidfi)> ;

where d is the exterior derivative. Let ((E, Vv, {léz)}),w) be a (t,v)-parabolic connection with
a quadratic differential. For (V,), we can define a global section Vg +1 of ExConnpy)(E) by
the above construction. We call this description (E, VEx + 9, {lj(-l) }) a (t,v)-extended parabolic
connection.

By the identification a parabolic connection with a quadratic differential as an extended
parabolic connection, we obtain another Q% -torsor structure on F(Trqgg’n(m’,,)). We take

a section o of my (1) and put o(p) = (Vp?;l/)(py); vthere Vy: E— E®QL(D(t)) is a connection
and ¢, € HY(C, Q%Q(D(t))) for p = ((C,t), (E,1)). For aconnection V,,: E — EQQH(D(t)) and
®, € H° (’;qzl,), we define ¢'(V,, ®,) € H° (7—[}17) as follows. We take an affine open covering {U;}
of C such that on U; the connection V, |y, is described by d + A;df; and the Higgs field ®,,|y, is
described by @;df;. On each U;, we define an element ¢'(V,, ®,)|y, as

1 1
Y (Vp, ®p)|u, = (@dfu Tr (q)iAidfi ® df; + §(I)iq)idfi ® df; + id(‘i%') ® dfi)) € Fp, (Uy),

which gives an element ¢/(V,, ®,) € H%(#,). For a 1-form ® on PBg.n(r, e, v), we define a trans-
lation by

tlzf)l F(ﬂ-;ﬁg,n(he,l/)) — F(W‘Bg,n(T,E,V))v
7(p) = (Vp, 1) +— t5(0)(p) = (Vi + £(Dp) ¥y — (B — ¥/ (Vy, 5(D)))).

By the translation, we have another Q}B -torsor structure on F(”‘Bg,n(ne,u))'

g,n(r,e,u)
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