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Abstract. The increasing tritronquée solutions of the Painlevé-II equation with parameter
α exhibit square-root asymptotics in the maximally-large sector | arg(x)| < 2

3π and have
recently appeared in applications where it is necessary to understand the behavior of these
solutions for complex values of α. Here these solutions are investigated from the point of
view of a Riemann–Hilbert representation related to the Lax pair of Jimbo and Miwa, which
naturally arises in the analysis of rogue waves of infinite order. We show that for generic
complex α, all such solutions are asymptotically pole-free along the bisecting ray of the
complementary sector | arg(−x)| < 1

3π that contains the poles far from the origin. This
allows the definition of a total integral of the solution along the axis containing the bisecting
ray, in which certain algebraic terms are subtracted at infinity and the poles are dealt with
in the principal-value sense. We compute the value of this integral for all such solutions. We
also prove that if the Painlevé-II parameter α is of the form α = ± 1

2 + ip, p ∈ R \ {0}, one
of the increasing tritronquée solutions has no poles or zeros whatsoever along the bisecting
axis.
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1 Introduction

The Painlevé-II equation with parameter α ∈ C

d2u

dx2
= xu+ 2u3 − α, u = u(x;α) (1.1)

has been the object of intense study ever since it was identified by Painlevé more than a century
ago as one of only 6 formerly unknown second-order ordinary differential equations of the form
u′′ = F (x, u) with F rational in u and meromorphic in x having what is now called the Painlevé
property : the only singularities of a solution u whose location in the x-plane depends on initial
conditions are poles. In fact, it is now known that every solution of (1.1) is a meromorphic
function of x all of whose poles are simple and of residue ±1. Since its original discovery in
the context of the solution of an abstract classification problem for differential equations, the
equation (1.1) and its particular solutions have become very important in numerous applications.
For instance, similarity solutions of the modified Korteweg–de Vries equation satisfy (1.1) [16].
The oscillations appearing near the leading edge of the dispersive shock wave generated from a
wide class of initial data in the weakly-dispersive Korteweg–de Vries equation have a universal
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profile corresponding to the Hastings–McLeod solution of (1.1) with α = 0 [12]. The real graphs
of the rational solutions of (1.1) for integer values of α determine the locations of kinks in space-
time near a point where generic initial data for the semiclassical sine-Gordon equation crosses
the separatrix in the phase portrait of the simple pendulum in a transversal manner [9]. In
mathematical physics there are also many applications of solutions of (1.1). Perhaps the most
famous one concerns the distribution functions for the largest eigenvalue of random matrices
from certain ensembles, which in the scaling limit can in some cases can be written in terms of
again the Hastings–McLeod solution [28].

The Hastings–McLeod solution of (1.1) is especially important in applications because it is
a global solution for real values of x, i.e., it has no singularities for x ∈ R. It is an example of
a so-called tronquée solution, namely one having no poles near x = ∞ in one or more sectors
of opening angle 2

3π of the complex plane. In fact, the Hastings–McLeod solution has no poles
near infinity in two disjoint sectors: | arg(x)| < 1

3π and | arg(−x)| < 1
3π. The intervening sectors

symmetric about the imaginary axis are filled with poles for large |x|, and the poles form a locally
regular lattice. In general, there are two distinct types of tronquée solutions of the Painlevé-II

equation (1.1). The increasing tronquée solutions satisfy u(x;α) ∼ ±
(
−1

2x
)1/2

as |x| → ∞
with | arg(−x)| < 1

3π (arising from a dominant balance between the terms xu and 2u3 in (1.1)),
and the decreasing tronquée solutions satisfy u(x;α) ∼ αx−1 as |x| → ∞ with | arg(x)| < 1

3π
(arising from a dominant balance between the terms xu and −α in (1.1)). The Hastings–McLeod
solution is uniquely determined as being both an increasing and a decreasing tronquée solution.
Otherwise, the tronquée solutions are not generally determined by their leading asymptotics.

However, for each choice of sign there is a unique solution of (1.1) for which u(x;α) ∼ ±
(
−1

2x
)1/2

holds as |x| → ∞ with −1
3π < arg(−x) < π and another unique solution for which the same

asymptotic holds for −π < arg(−x) < 1
3π. These solutions are related by the rotation symmetry

of the Painlevé-II equation in which whenever u(x) is a solution, then so is e2πi/3u
(
e2πi/3x

)
. Thus

there is also for each choice of sign a unique solution for which u(x;α) ∼ ±i
(

1
2x
)1/2

as |x| → ∞
with | arg(x)| < 2

3π. These six solutions are called the increasing tritronquée solutions of (1.1)
in the nomenclature of [17, Chapter 11] that can be traced back to the terminology introduced
by Boutroux [7, 8].

The Painlevé-I equation also has tritronquée solutions, and these have been conjectured
and/or shown to describe critical phenomena in several different situations [2, 11, 15, 24]. The
tritronquée solutions of other Painlevé equations seem to not arise as frequently; however the
increasing tritronquée solutions of (1.1) have recently appeared in two quite different applica-
tions. The first application is the asymptotic description of rational solutions w = wn(z;m),
n ∈ Z, m ∈ C, of the Painlevé-III equation

d2w

dz2
=

1

w

(
dw

dz

)2

− 1

z

dw

dz
+

4(n+m)w2 + 4(n−m)

z
+ 4w3 − 4

w
(1.2)

in the limit of large integer parameter n. Given such n, the rational solution w = wn(z;m) is
uniquely determined by the rationality condition and the asymptotic property wn(z;m) → 1
as z → ∞. As n → +∞, the poles and zeros of wn(z;m) accumulate within a dilation nE
of a fixed eye-shaped domain E centered at the origin and with corners at the points ±1

2 i. In
the interior of the eye-shaped domain there are accurate asymptotic formulæ for wn(z;m) in
terms of modulated elliptic functions [5]. If one examines the function wn(z;m) near the corner
point z = ±1

2 in, it turns out to be natural to zoom in on the corner point by centering and

rescaling the independent variable as z = ±i
(

1
2n +

(
1
32n
)1/3

x
)

and also to introduce a new

dependent variable by wn = ±i
(
1−

(
1
4n
)−1/3

u±
)
. Substituting these scalings into the Painlevé-

III equation (1.2) and formally considering n large one finds that u = u±(x) is a solution of an
O
(
n−1/3

)
perturbation of the Painlevé-II equation (1.1) with parameter α = m. Noting that
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the interior angle of the eye-shaped domain E at its corners is exactly 2π/3 and comparing with
the known asymptotic behavior of wn(z;m) in the exterior of nE, in [6] the following conjecture
is formulated.

Conjecture 1.1 (Bothner, Miller, and Sheng). Let m ∈ C be fixed. Then

lim
n→+∞

(
1
4n
)1/3

(1± iwn
(
±i
(

1
2n+

(
1
32n
)1/3

x
)
;m
)

= u±TT(x;m)

where u = u±TT(x;m) is the unique increasing tritronquée solution of (1.1) with parameter

α = m and determined by the asymptotic behavior u±TT(x;m) ∼ ±i
(

1
2x
)1/2

as x → ∞ with
| arg(x)| < 2

3π.

Thus the complementary sector | arg(−x)| ≤ 1
3π in which the poles of the tritronquée solu-

tion reside for large |x| corresponds to the interior of the eye-shaped domain E in an overlap
region where the Painlevé-II asymptotics and the modulated elliptic function asymptotics are
simultaneously valid. Now the elliptic function asymptotics valid within E are associated with
an elliptic curve associated to each point of E, and in [5] it is shown that the elliptic curve
degenerates along the vertical segment of the imaginary axis connecting the two corner points.
This degeneration makes one of the periods of the elliptic function blow up and results in a local
dilution of the pole/zero distribution of wn(z;m) when z is near the vertical segment. In the
overlap domain this vertical segment corresponds to the negative real axis in the variable x of the
Painlevé-II increasing tritronquée solution. Of course the negative real axis is precisely the ray
that bisects the asymptotic pole sector | arg(−x)| < 1

3π for the tritronquée solution. This is one
of the critical rays1 for the Painlevé-II equation (1.1), and it is well known in the case α = 0 that
solutions behave differently for large x near such rays than elsewhere in the complex plane. See
[17, Chapters 9–10], where the large-x asymptotics are worked out in detail for a class of solutions
for α = 0 that includes the tritronquées u±TT(x; 0) as a particular case. However, since m ∈ C
is an arbitrary parameter in the sequence of rational Painlevé-III solutions {wn(z;m)}∞n=0, to
fully explain the matching between the corner asymptotics suggested by Conjecture 1.1 and the
large-n asymptotics of wn(z;m) along the central axis of the eye domain z ∈ nE, it is desirable
to generalize known asymptotic results for the tritronquée solutions of (1.1) with α = 0 to the
setting of arbitrary α = m ∈ C. This is the aim of Theorem 1.2 below.

The second application concerns a new solution Ψ(X,T ) of the focusing nonlinear Schrödinger
equation

i
∂Ψ

∂T
+

1

2

∂2Ψ

∂X2
+ |Ψ|2Ψ = 0, (1.3)

which was recently identified [3] as a scaling limit of a sequence of particular solutions of the
same equation modeling so-called rogue waves of increasingly higher amplitude. The special
solution Ψ(X,T ), the rogue wave of infinite order, has many remarkable additional properties.
In particular, the function Ψ(X, 0) is related to a special transcendental solution of the Painlevé-
III equation (1.2) with n = −m = 1

2 for which all Stokes multipliers of the direct monodromy
problem for (1.2) vanish. In the regime of large variables (X,T ) ∈ R2, it turns out that Ψ(X,T )
exhibits transitional asymptotic behavior when v := T |X|−3/2 is in the neighborhood of the
critical value vc := 54−1/2. In [3] it is proved that as |X| → ∞ with v − vc = O

(
|X|−1/3

)
,

the rogue wave of infinite order Ψ(X,T ) can be expressed explicitly in terms of a function V(y)
extracted from a certain model Riemann–Hilbert problem, namely Riemann–Hilbert Problem 2.1
in Section 2 below in the case of parameters p = ln(2)/(2π) and τ = 1. It is then of some practical

1This is terminology used in [25]. In other references the same rays are also called canonical rays [17, Chap-
ters 9–10] or Stokes rays [17, Remark 7.1].
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interest to obtain some alternative and possibly more effective characterization of V(y), and
to determine its essential properties. One of the goals of this paper is to relate V(y) to the
Painlevé-II equation (1.1), and to identify the particular solution needed to construct V(y) as
the increasing tritronquée2 u−TT(x;α) for α = 1

2 +i ln(2)/(2π). It is known [17, p. 297] that when
α = 0, u±TT(x; 0) is well-defined for all real x, however for V(y) to be a meaningful asymptotic
description of the rogue wave of infinite order Ψ(X,T ), it would be necessary that u−TT(x;α) be
a global solution of (1.1) also for the complex value α = 1

2 + i ln(2)/(2π). The global nature of
tritronquée solutions of (1.1) for certain complex α including this particular value is the subject
of Theorem 1.4 below.

One of the earliest and most important scientific contributions of Andrei Kapaev was a sys-
tematic description of the large-x asymptotics of general solutions of the Painlevé-II equa-
tion (1.1); see for example [21, 22]. These works were based on the isomonodromy method
in the setting of the Flaschka–Newell Lax pair representation [16] of (1.1). Kapaev’s results
were made fully rigorous for α = 0 with the development by Deift and Zhou [14] of a suitable
analogue of the steepest descent method adapted to matrix Riemann–Hilbert problems such as
that arising in the inverse monodromy theory for (1.1). The more general results of Kapaev
were later also put on rigorous footing by this method; in particular the asymptotic analysis
of the increasing tronquée solutions for general α is described fully for general x avoiding the
critical rays in [17, Chapter 11, Section 5]. Tritronquée solutions of higher-order equations in
the Painlevé-II hierarchy have also been studied by Joshi and Mazzocco [20].

Despite these developments, the results needed for the applications described above do not
appear to be in the literature. In this note, we try to fill this gap by proving the following
results, in which we assume that α ∈ C\

(
Z+ 1

2

)
, and let u = u±TT(x;α) denote the corresponding

increasing tritronquée solution of the Painlevé-II equation (1.1) characterized uniquely by the
asymptotics

u±TT(x;α) = ±i
(x

2

)1/2
+O

(
x−1

)
, x→∞, | arg(x)| < 2

3
π. (1.4)

The uniqueness of u±TT(x;α) given (1.4) combines with elementary Schwarz and odd-reflection
symmetries of (1.1) to imply the following identities:

u+
TT(x;α) = −u−TT(x;−α) = u−TT(x∗;α∗)∗, (α, x) ∈ C2. (1.5)

The remaining four increasing tritronquée solutions are obtained from u±TT(x;α) via the cyclic
symmetry group generated by u(x) 7→ e2πi/3u

(
e2πi/3x

)
.

The first result concerns the behavior of increasing tritronquée solutions as x → ∞ along
the critical bisecting ray of the complementary sector | arg(−x)| < 1

3π containing the poles near
infinity. Given α ∈ C \

(
Z + 1

2

)
, let q and τ be defined as follows. Firstly, set

q0(α) := −iα− 1

2π
log
(
1 + e−2πiα

)
, (1.6)

where to be precise the principal branch of the logarithm is meant, with imaginary part in
(−π, π]. Then denoting by [x] the nearest integer to x ∈ R with half-integers rounded down,
i.e.,

[
n+ 1

2

]
= n for n ∈ Z,

q = q(α) := q0(α)− i[Im(q0(α))], τ = τ(α) := i(−1)[Im(q0(α))]elog(1+e−2πiα)/2. (1.7)

Note that −1
2 < Re(iq(α)) ≤ 1

2 .

2We stress that the subscript in the notation u±
TT(x;α) is mnemonic for “tritronquée” and has nothing to do

with the independent variable T in (1.3).
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Figure 1. Curves of constant Re(iq(α)) in the α-plane. The red lines correspond to Re(iq(α)) = 1
2 , i.e.,

everywhere but on these lines u−TT(x;α) is pole-free for large real x and has simple asymptotics given by

Theorem 1.2. The green lines correspond to Re(iq(α)) = 0 and here u−TT(x;α) has oscillatory asymptotics

as x → −∞. The vertical strips Re(α) ∈
(
0, 12
)

(mod Z) correspond to Re(iq(α)) ∈
(
0, 12
)

while the

vertical strips Re(α) ∈
(
− 1

2 , 0
)

(mod Z) correspond to Re(iq(α)) ∈
(
− 1

2 , 0
)
. Note that Re(iq(α)) takes

on every value in the range
(
− 1

2 ,
1
2

]
in the neighborhood of each half-integer α = n+ 1

2 , n ∈ Z.

Theorem 1.2. Suppose that Re(iq(α)) 6= 1
2 . Then u−TT(x;α) is pole free for sufficiently large

negative x, and the following asymptotic formulæ hold:

u−TT(x;α) =
qΓ(iq)e−πq/2

2τ
√
π

e3πi/48−iqe2i(−x)3/2/3(−x)−1/4−3iq/2
(
1 +O

(
|x|M−(q)

))
,

x→ −∞, −1

2
< Re(iq) < 0, M−(q) := max

{
−3

4
− 3

2
Re(iq), 3Re(iq)

}
< 0,

u−TT(x;α) =
τ
√
πeπq/2

Γ(iq)
e−3πi/48iqe−2i(−x)3/2/3(−x)−1/4+3iq/2

(
1 +O

(
|x|M+(q)

))
,

x→ −∞, 0 < Re(iq) <
1

2
, M+(q) := max

{
−3

4
+

3

2
Re(iq),−3Re(iq)

}
< 0,

and

u−TT(x;α) =
τ
√

2q(e2πq − 1)

(−x)1/4
sin(θ(x)) +O

(
|x|−1

)
, x→ −∞,

q ∈ R, θ(x) := −2

3
(−x)3/2 +

3

2
q ln(−x)− 1

4
π + 3q ln(2)− arg(Γ(iq)). (1.8)

Corresponding formulæ for u+
TT(x;α) can be obtained from Theorem 1.2 using the symmet-

ries (1.5) provided that Re(iq(−α)) 6= 1
2 or Re(iq(α∗)) 6= 1

2 . In fact, the proof of Theorem 1.2 will
show that it is also possible to obtain an asymptotic description of u−TT(x;α) when Re(iq(α)) = 1

2 ,
but it may be necessary to exclude certain neighborhoods of infinitely many values of x where
poles may exist, and the resulting formula must include more terms.

The only values of α that are not covered by Theorem 1.2 are those for which Re(iq(α)) = 1
2 .

This means that Re(iq0(α)) ∈ Z+ 1
2 , i.e., log

(
1+e−2πiα

)
has the form−2πiα+r+2πi

(
n+ 1

2

)
where

r ∈ R and n ∈ Z are arbitrary parameters. No information is therefore lost by exponentiating,
which leads to e−2πiα = −1/(1 + er). It is then straightforward to determine that the excluded
values of α have the form α = 1

2 +n− ip for n ∈ Z and p > 0. Similarly, the values of α for which
Re(iq(α)) = 0 (so the x → −∞ asymptotics are oscillatory) correspond to Re(iq0(α)) ∈ Z,
i.e., log

(
1 + e−2πiα

)
has the form −2πiα + r + 2πin where r ∈ R and n ∈ Z. Therefore

e−2πiα = 1/(er − 1). The case r > 0 then corresponds to α ∈ Z + iR while r < 0 corresponds
instead to α = 1

2 + n+ ip for n ∈ Z and p > 0. See Fig. 1. Specific examples that are especially
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- 20 - 10 0 10 20

- 3

- 2

- 1

0

Figure 2. Comparison of the leading terms in the asymptotic formulæ (1.4) (light blue thick curve plotted

for x > 0) and (1.9) (light red thick curve plotted for x < 0) with Olver’s numerical approximation of

the purely imaginary solution u−TT(x; 0) (thin black curve).

relevant include:

q0(0) = − ln(2)

2π
=⇒ q(0) = − ln(2)

2π
and τ(0) = i

√
2

and, for applications to rogue waves of infinite order,

q0

(
1

2
+ i

ln(2)

2π

)
= −i +

ln(2)

2π
=⇒

q

(
1

2
+ i

ln(2)

2π

)
=

ln(2)

2π
and τ

(
1

2
+ i

ln(2)

2π

)
= 1.

In both cases, the relevant asymptotic formula for u−TT(x;α) in the limit x → −∞ is (1.8). In
particular, we have

u−TT(x; 0) = i

√
ln(2)

π

1

(−x)1/4
sin

(
−2

3
(−x)3/2 − 3 ln(2)

4π
ln(−x)− 1

4
π

− 3 ln(2)2

2π
+ arg

(
Γ

(
i
ln(2)

2π

)))
+O

(
|x|−1

)
, x→ −∞, (1.9)

a connection formula that is well-known in the literature, cf. [17, Theorem 9.1] and [25]. In
the Flaschka–Newell theory [16], the solution u−TT(x; 0) is associated with Stokes multipliers
s1 = s2 = s3 = i; see [25]. It is striking to compare the (purely imaginary) exact solu-
tion u−TT(x; 0) with its asymptotic approximations for large positive and negative x (see (1.4)
and (1.9), respectively). To do this, we used the Mathematica package RHPackage of Olver [27]
with the command PainleveII[{I,I,I},x] to obtain the numerical approximation of the so-
lution, which we compare with the two asymptotic formulæ in Fig. 2.

The fact that the solution u±TT(x;α) has simple asymptotics as x→ ±∞ suggests that, after
subtracting off certain explicit terms, u±TT(x;α) may be integrable over x ∈ R in a suitable
sense. To make the definition of such an integral precise, we may recall that the only possible
singularities of each solution of (1.1) are simple poles of residue ±1, which may in principle occur
along the real axis. Hence they may be taken into account by a suitable regularization of the
integral. We choose the Hadamard principal value, and then we can establish the following result.
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Theorem 1.3. Suppose that Re(iq(α)) 6= 1
2 , and let A < 0 < B be such that all real poles of

u−TT(x;α) lie in the interval (A,B). Then the total integral formula

exp

(∫ A

−∞

[
u−TT(x;α)− α

x

]
dx+ P.V.

∫ B

A
u−TT(x;α) dx

+

∫ +∞

B

[
u−TT(x;α) + i

√
x

2
+

α

2x

]
dx

)
= (−1)N+−N−τ(α)

eiπ(α−1)/2Γ(α+ 1
2)

√
2π

(
−A
√
B

2

)−α
e−iB3/2

√
2/3 (1.10)

holds, where N± denotes the number of real poles of u−TT(x;α) of residue ±1, and in which the
integral over (−∞, A) is a convergent improper integral while that over (B,+∞) is absolutely
convergent.

Again, a corresponding formula for u+
TT(x;α) can be obtained from (1.10) using the symme-

tries (1.5) provided that Re(iq(−α)) 6= 1
2 or Re(iq(α∗)) 6= 1

2 . Similar results have been obtained
for other well-known solutions of the Painlevé-II equation such as the Hastings–McLeod and
Ablowitz-Segur solutions for α = 0, see, e.g., [1], although usually such integration formulæ
have been considered only for global (i.e., pole-free on the integration axis) solutions.

Next, we recall that in the setting of the rogue wave solution Ψ(X,T ) of infinite order, we
need to consider the special complex value of α = 1

2 + i ln(2)/(2π) and know that the solution
u−TT(x;α) has no poles at all on the real line. In fact, we can show more.

Theorem 1.4. Suppose that p > 0. Then u−TT(x; 1
2 + ip), u−TT

(
x;−1

2 + ip
)
, u+

TT

(
x; 1

2 − ip
)
, and

u+
TT

(
x;−1

2 − ip
)

are global solutions for x ∈ R, i.e., they are analytic for x ∈ R. Moreover, they
have no real zeros.

The reader may observe that, in the cases covered by Theorem 1.4, the relevant solution
always has oscillatory asymptotics as x→ −∞ according to (1.8) in Theorem 1.2, and that the
leading term has infinitely many zeros in the limit. Indeed, for u−TT(x;α) the indicated values
of α in Theorem 1.4 lie on the green half-lines emerging vertically from α = ±1

2 in Fig. 1. But
whereas the solutions u±TT(x; 0) are purely imaginary and hence the zeros of the leading term are
perturbations of actual real zeros of the solution, the tritronquée solutions that are the subject of
Theorem 1.4 are essentially complex-valued. Thus, the fact that they have no real zeros simply
means that the error term in (1.8) is nonzero and has a phase with a component orthogonal to
that of τ

√
2q(e2πq − 1) in neighborhoods of x-values satisfying θ(x) = πn for n ∈ Z large.

The reason for excluding the half-integral values of α in the above results is that the Riemann–
Hilbert representation of the increasing tritronquée solution that we study below fails to yield
a determinate expression for the solution in such cases3. On the other hand, it was discovered
by Gambier [18] and is now well-known that for α − 1

2 ∈ Z, the Painlevé-II equation (1.1)
is solvable via Bäcklund transformations and the general solution aAi(x) + bBi(x) of the Airy
equation (see [17, Chapter 11, Section 4]); the tronquée solutions of these special cases were
recently studied in detail by Clarkson [13]. However, it is clear from Theorem 1.2 and Fig. 1
that the asymptotic behavior of u±TT(x;α) is very sensitive to the value of α near half-integers
Z + 1

2 . This raises the interesting question of double-scaling asymptotics, i.e., consideration of
the limits x→ −∞ and α→ n+ 1

2 simultaneously at appropriate related rates, a problem for the
future. A different double-scaling limit related to solutions of (1.1) has been recently addressed

3As will be seen early in Section 2, if α− 1
2
∈ Z\{0} then Riemann–Hilbert Problem 2.1 below has no solution

at all, while if α = 1
2

it has a trivial solution through which u±
TT(x; 1

2
) is represented as an indeterminate fraction:

0/0.



8 P.D. Miller

by Bothner [4], and the joint asymptotic behavior of u(x;α) when x and α are both large has
also been studied [10, 11, 23].

Finally, we formulate a corollary of the above results and their connection with Riemann–
Hilbert Problem 2.1 formulated in Section 2 below that is needed in the application to rogue
waves of infinite order [3].

Corollary 1.5. Let p := ln(2)/(2π) and τ = 1. Then Riemann–Hilbert Problem 2.1 has a unique
solution for every y ∈ R, and the function V(y) extracted from it via the formula (2.6) is zero-

free and critical point-free for real y and satisfies V ′(y)/V(y) = −
(

2
3

)1/3
u−TT

(
−
(

2
3

)1/3
y; 1

2 + ip
)
.

Moreover, V(y) has the following asymptotic behavior:

V(y) =
τpΓ(ip)

2
√
π

e−3πi/4e−πp/22−ipe−2i(−y/3)3/2

× (−3y)−ip/2−1/4
[
1 +O

(
|y|−5/4

)]
, y → −∞, (1.11)

and

V(y) = −
(y

6

)ip+1/2 (
1 +O

(
y−3/4

))
, y → +∞. (1.12)

The rest of this paper is organized as follows. In Section 2 we present a Riemann–Hilbert
problem connected with the Jimbo–Miwa theory of the Painlevé-II equation (1.1) and use the
Deift-Zhou steepest descent method to study its asymptotic behavior and therefore establish
precisely which solution of the latter equation it encodes, namely the increasing tritronquée
solution u = u−TT(x;α). Then in Sections 3, 4, and 5 we use the Riemann–Hilbert representation
to prove Theorems 1.2, 1.3, and 1.4, respectively. A certain parabolic cylinder parametrix needed
in Sections 2 and 3 is described in Appendix 5.

Notation

We use subscripts + and − to denote the boundary values taken by a sectionally analytic
function on an oriented jump contour from the left and right sides respectively. We also make
frequent use of the Pauli matrices

σ1 :=

[
0 1
1 0

]
, σ2 :=

[
0 −i
i 0

]
, and σ3 :=

[
1 0
0 −1

]
.

2 A Jimbo–Miwa representation of u−TT(x;α)

In [3], the analysis of the rogue wave of infinite order Ψ(X,T ) in the transitional regime where
T |X|−3/2 ≈ 54−1/2 leads to consideration of a certain local model Riemann–Hilbert problem
which coincides with the following in the special case of parameters p = ln(2)/(2π) and τ = 1.
Consider the jump contour and jump matrix shown in Fig. 3.

Riemann–Hilbert Problem 2.1 (Jimbo–Miwa Painlevé-II problem). Let y, p, τ ∈ C be related
by τ2 = e2πp− 1. Seek a 2× 2 matrix-valued function W(ζ; y) = W(ζ; y, p, τ) with the following
properties.

Analyticity: W(ζ; y) is analytic for ζ in the five sectors S0: | arg(ζ)| < 1
2π, S1: 1

2π <
arg(ζ) < 5

6π, S−1: −5
6π < arg(ζ) < −1

2π, S2: 5
6π < arg(ζ) < π, and S−2: −π < arg(ζ) <

−5
6π. It takes continuous boundary values on the excluded rays and at the origin from each

sector.
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Figure 3. The jump contour in the ζ-plane and jump matrix VPII.

Jump conditions: W+(ζ; y) = W−(ζ; y)VPII(ζ; y), where VPII(ζ; y) is the matrix de-
fined on the jump contour shown in Fig. 3.

Normalization: W(ζ; y)ζ ipσ3 → I as ζ →∞ uniformly in all directions.

Note that the condition τ2 = e2πp − 1 ensures that the cyclic product of the jump matrices
at the origin is the identity, which is a necessary condition for the continuity of the boundary
values from each sector at ζ = 0. Noting also that all jump matrices have unit determinant,
it is therefore a simple consequence of Liouville’s theorem that this problem has at most one
solution, and if it exists it must have unit determinant. If p ∈ iZ then all jump matrices become
the identity so given the continuity of the boundary values at the origin from each sector the
solution W(ζ; y) would need to be entire; but this yields a contradiction with the normalization
condition unless also p = 0. Hence there is no solution for p ∈ iZ \ {0}. If p = 0 it is easy to
check that W(ζ; y) ≡ I is the unique solution. For all other values of p ∈ C, the solution will
exist for generic values of y ∈ C that avoid certain poles.

2.1 Differential equations

Given parameters p and τ with τ2 = e2πp − 1, and assuming solvability of Riemann–Hilbert
Problem 2.1 in the neighborhood of some value of y ∈ C, we can derive from the solution certain
differential equations via the dressing construction. It is a consequence of the exponential
decay to the identity of the jump matrix VPII(ζ; y) as ζ →∞ that the normalization condition
on W(ζ; y) holds in the stronger sense that:

W(ζ; y) ∼

I +

∞∑
j=1

Wj(y)ζ−j

 ζ−ipσ3 , ζ →∞,

∂W

∂y
(ζ; y) ∼

 ∞∑
j=1

dW

dy

j

(y)ζ−j

 ζ−ipσ3 , ζ →∞, (2.1)

∂W

∂ζ
(ζ; y) ∼ −

ipσ3ζ
−1 +

∞∑
j=2

[
(j − 1)Wj−1(y) + ipWj−1(y)σ3

]
ζ−j

 ζ−ipσ3 , ζ →∞.



10 P.D. Miller

It is easy to see that the “undressed” matrix Z(ζ; y) := W(ζ; y)ei(ζ3+yζ)σ3/2 is analytic in the
same domain that W(ζ; y) is, and satisfies analogous jump conditions except that the factors
e±i(ζ3+yζ) in the jump matrix VPII(ζ; y) have been replaced in all cases by 1. It follows easily
that Zζ(ζ; y)Z(ζ; y)−1 and Zy(ζ; y)Z(ζ; y)−1 are both entire functions of ζ whose asymptotic
expansions as ζ →∞ are easily computed from (2.1). Applying Liouville’s theorem shows that
these entire functions are polynomials:

ZζZ
−1 =

3

2
iσ3ζ

2 +
3

2
i
[
W1(y), σ3

]
ζ

+
1

2
iyσ3 +

3

2
i
[
W2(y), σ3

]
− 3

2
i
[
W1(y), σ3

]
W1(y), (2.2)

ZyZ
−1 =

1

2
iσ3ζ +

1

2
i
[
W1(y), σ3

]
,

and from the necessarily vanishing coefficient of ζ−1 in the expansion of Zζ(ζ; y)Z(ζ; y)−1 one
finds that

3

2

[
W3(y), σ3

]
− 3

2

[
W2(y), σ3

]
W1(y) +

3

2

[
W1(y), σ3

](
W1(y)2 −W2(y)

)
+

1

2
y
[
W1(y), σ3

]
= pσ3, (2.3)

while setting to zero the coefficient of ζ−1 in the expansion of Zy(ζ; y)Z(ζ; y)−1 gives

dW1

dy
(y) +

1

2
i
[
W2(y), σ3

]
− 1

2
i
[
W1(y), σ3

]
W1(y) = 0. (2.4)

The latter allows (2.2) to be rewritten in terms of the matrix coefficient W1(y) alone:

ZζZ
−1 =

3

2
iσ3ζ

2 +
3

2
i
[
W1(y), σ3

]
ζ +

1

2
iyσ3 − 3

dW1

dy
(y). (2.5)

It is convenient to use the representation (2.2) for the diagonal terms and (2.5) for the off-
diagonal terms. Thus, if

U(y) := W 1
12(y) and V(y) := W 1

21(y), (2.6)

then Z(ζ; y) is a simultaneous fundamental solution matrix of the two Lax pair equations:

∂Z

∂ζ
= AZ, A :=

3

2
iσ3ζ

2 + 3i

[
0 −U
V 0

]
ζ +

1

2
i

[
y + 6UV 6iU ′

6iV ′ −y − 6UV

]
,

and

∂Z

∂y
= BZ, B :=

1

2
iσ3ζ + i

[
0 −U
V 0

]
.

These equations constitute the Lax pair for Painlevé-II found by Jimbo and Miwa [19]. The
existence of a simultaneous fundamental solution matrix of both differential equations implies
compatibility of the Lax pair, i.e., the coefficient matrices A and B necessarily satisfy the zero-
curvature condition Ay − Bζ + [A,B] = 0, which by direct computation is equivalent to the
following coupled system for the functions U = U(y) and V = V(y):

d2U
dy2
− 1

3
yU − 2U2V = 0 and

d2V
dy2
− 1

3
yV − 2UV2 = 0. (2.7)
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Combining the diagonal part of (2.3) with the off-diagonal part of (2.4) and using the identity
W 1

11(y) +W 1
22(y) = 0 following from det(Z(ζ; y)) = 1 yields

1

3
ip = U ′(y)V(y)− U(y)V ′(y). (2.8)

Since the left-hand side is independent of y, so must be the right-hand side, and indeed it is
straightforward to check that U ′(y)V(y)−U(y)V ′(y) is a constant of motion for the system (2.7).
It follows immediately that the logarithmic derivatives

P(y) :=
U ′(y)

U(y)
and Q(y) :=

V ′(y)

V(y)
(2.9)

satisfy uncoupled inhomogeneous Painlevé-II equations:

d2P
dy2

+
2

3
yP − 2P3 +

2

3
ip− 1

3
= 0 and

d2Q
dy2

+
2

3
yQ− 2Q3 − 2

3
ip− 1

3
= 0. (2.10)

These two equations are simply rescaled forms of the standard Painlevé-II equation (1.1). Indeed,

the function u(x) := −
(

3
2

)1/3P(−(3
2

)1/3
x
)

is a solution of (1.1) with parameter α = 1
2 − ip.

Likewise, the function u(x) := −
(

3
2

)1/3Q(−(3
2

)1/3
x
)

satisfies (1.1) with α = 1
2 + ip.

Remark 2.2. Let W(ζ; y, p, τ) denote the solution of Riemann–Hilbert Problem 2.1 with pa-
rameters (p, τ) related by τ2 = e2πp − 1. Observing that (p,−τ) also satisfies the same re-
lation, it is a direct matter to check that W(ζ; y, p,−τ) = (iσ3)W(ζ; y, p, τ)(iσ3)−1. At the
level of the functions U , V, P, and Q, this symmetry implies that U(y; p,−τ) = −U(y; p, τ),
V(y; p,−τ) = −V(y; p, τ), P(y; p,−τ) = P(y; p, τ), and Q(y; p,−τ) = Q(y; p, τ). The latter
two identities indicate that, for the purposes of studying the solutions of (2.10), or equivalently
of (1.1) for α = 1

2 ± ip, the sign of the second parameter τ in Riemann–Hilbert Problem 2.1 is
arbitrary and can be chosen for convenience.

2.2 Asymptotic behavior for large y and solution identification

When p ∈ C \ iZ, Riemann–Hilbert Problem 2.1 determines a specific solution of each of the
two Painlevé-II equations (2.10) as well as specific corresponding logarithmic “potentials” U
and V (which would involve additional integration constants to determine from P and Q).
The monograph [17] contains an exhaustive description of all solutions of the standard form
Painlevé-II equation (1.1) in which their properties are associated with the monodromy data
of a different Riemann–Hilbert problem, namely that corresponding to the alternate Lax pair
discovered by Flaschka and Newell [16]. Since to our knowledge the literature does not yet
contain a complete description of the relation between the monodromy data for the Lax pairs of
Flaschka–Newell and Jimbo–Miwa, in order to identify the specific solutions arising we need to
compute the large-y asymptotic behavior directly from Riemann–Hilbert Problem 2.1 and then
compare with known asymptotics of solutions catalogued in [17].

Let us write y ∈ C, y 6= 0, uniquely in the form y = Meiθ, M = |y|. Letting ζ = M1/2ξ and
setting

Y
(
ξ;M, eiθ

)
:= M ipσ3/2W

(
M1/2ξ;Meiθ

)
,

the conditions of Riemann–Hilbert Problem 2.1 imply an equivalent rescaled Riemann–Hilbert
problem for Y

(
ξ;M, eiθ

)
:

Riemann–Hilbert Problem 2.3 (rescaled Painlevé-II parametrix). Let p ∈ C \ iZ and τ =
±
√

e2πp − 1 be given parameters. Given also a number eiθ on the unit circle and M > 0, seek
a 2× 2 matrix-valued function Y

(
ξ;M, eiθ

)
with the following properties.
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Figure 4. Left: the sign chart for Im(ϕ(ξ;−1)). Right: the deformed jump contour ΣY for Y(ξ;M,−1).

Analyticity: Y
(
ξ;M, eiθ

)
is analytic for ξ in the five sectors shown in Fig. 3, now inter-

preted in the ξ-plane. It takes continuous boundary values on the excluded rays and at the
origin from each sector.

Jump conditions: Y+

(
ξ;M, eiθ

)
= Y−

(
ξ;M, eiθ

)
V
(
ξ;M, eiθ

)
, where V

(
ξ;M, eiθ

)
is the

same jump matrix as shown in Fig. 3 except that the exponent ζ3 + yζ is everywhere
replaced with M3/2ϕ

(
ξ; eiθ

)
, ϕ
(
ξ; eiθ

)
:= ξ3 + eiθξ.

Normalization: Y
(
ξ;M, eiθ

)
ξipσ3 → I as ξ →∞ uniformly in all directions.

2.2.1 The case eiθ = −1. Asymptotic behavior as y → −∞

Note that ϕ(ξ;−1) has critical points ξ = ξ± := ±1/
√

3. We observe that the sign table for
Im(ϕ(ξ;−1)) has the structure plotted in the left-hand panel of Fig. 4. We take the jump contour
for Y(ξ;M,−1) to be deformed as shown in the right-hand panel of Fig. 4, so that in particular
the self-intersection point now coincides with the left-most critical point ξ = ξ−. As an outer
parametrix for Y(ξ;M,−1) we take the matrix function

Ẏout(ξ) := (ξ − ξ−)−ipσ3 , (2.11)

which satisfies exactly the jump condition of Y(ξ;M,−1) on the ray ξ < ξ−, as well as the
normalization condition on Y(ξ;M,−1). Let D(ξ−) denote a disk centered at ξ = ξ− of radius
less than 2/

√
3 (so that it excludes the other critical point ξ+). For ξ ∈ D(ξ−), we introduce

a conformal mapping ξ 7→ Z(ξ) that satisfies the equation

ϕ(ξ−;−1)− ϕ(ξ;−1) = Z2, (2.12)

which has a unique analytic solution Z = Z(ξ) for which Z(ξ−) = 0 and Z ′(ξ−) > 0. Assuming
that when ξ ∈ D(ξ−) the jump contour for Y(ξ;M,−1) is taken to consist of five straight-
line segments joined at the origin in the Z-plane with arg(Z) = ±1

4π, arg(Z) = ±3
4π, and

arg(−Z) = 0, we observe that the matrix P
(
M3/4Z(ξ); p, τ

)
e−iM3/2ϕ(ξ−;−1)σ3/2, where P(λ; p, τ)

is the solution of the parabolic cylinder Riemann–Hilbert problem solved in the appendix, is an
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exact local solution of Riemann–Hilbert Problem 2.3 near ξ−. Writing the outer parametrix in
the form

Ẏout(ξ) = M3ipσ3/4H(ξ)(M3/4Z(ξ))−ipσ3 , H(ξ) :=

(
ξ − ξ−

Z(ξ)

)−ipσ3

,

where we note that H(ξ) is analytic within D(ξ−) and is independent of M , we define the inner
parametrix by the formula

Ẏin(ξ;M) := M3ipσ3/4eiM3/2ϕ(ξ−;−1)σ3/2H(ξ)P
(
M3/4Z(ξ); p, τ

)
× e−iM3/2ϕ(ξ−;−1)σ3/2, ξ ∈ D(ξ−).

We combine the outer and inner parametrices into a global parametrix Ẏ(ξ;M) defined by

Ẏ(ξ;M) :=

{
Ẏin(ξ;M), ξ ∈ D(ξ−),

Ẏout(ξ), ξ ∈ C \D(ξ−).

Consider the error matrix defined by

F(ξ;M) := M−3ipσ3/4e−iM3/2ϕ(ξ−;−1)σ3/2Y(ξ;M,−1)Ẏ(ξ;M)−1

× eiM3/2ϕ(ξ−;−1)σ3/2M3ipσ3/4. (2.13)

Because Y and its parametrix Ẏ satisfy exactly the same jump conditions both on the real axis
to the left of ξ− and also on all jump contour arcs within the disk D(ξ−), it can be shown that
F(ξ;M) admits analytic continuation to these contours and hence can be regarded as a function
analytic in the complex ξ-plane except on the four non-real jump contours shown in the right-
hand panel of Fig. 4 restricted to the exterior of the disk, and the disk boundary ∂D(ξ−) where
the inner and outer parametrices fail to match exactly. The jump matrix for F(ξ;M) on the
resulting jump contour just described is an exponentially small perturbation of the identity
matrix except when ξ ∈ ∂D(ξ−) due to the placement of the contour relative to the sign chart
of Im(ϕ(ξ;−1)) as shown in Fig. 4. Taking the circle ∂D(ξ−) to have clockwise orientation, the
jump condition for F(ξ;M) expresses the mismatch between outer and inner parametrices in
the form F+(ξ;M) = F−(ξ;M)VF(ξ;M), where

VF(ξ;M) = M−3ipσ3/4e−iM3/2ϕ(ξ−;−1)σ3/2Ẏin(ξ;M)Ẏout(ξ)−1eiM3/2ϕ(ξ−;−1)σ3/2M3ipσ3/4

= H(ξ)P(λ; p, τ)λipσ3H(ξ)−1, ξ ∈ ∂D(ξ−), (2.14)

where λ = M3/4Z(ξ). Since the conjugating factors are bounded as M →∞ while λ is bounded
below by a multiple of M3/4 when ξ ∈ D(ξ−), it follows that VF(ξ;M) differs from the identity
uniformly on the jump contour for F(ξ;M) by O

(
M−3/4

)
. The boundary value F−(ξ;M)

necessarily satisfies the integral equation

F−(ξ;M)− I = CΣF
−
(
VF(·;M)− I

)
(ξ)

+ CΣF
−
(
(F−(·;M)− I)

(
VF(·;M)− I

))
(ξ), ξ ∈ ΣF, (2.15)

which is to be solved for F−(·;M) − I ∈ L2(ΣF). Here, for a contour Σ, CΣ
− denotes the right

boundary value Cauchy operator defined by

CΣ
−(F(·))(ξ) :=

1

2πi

∫
Σ

F(z) dz

z − ξ−
, ξ ∈ Σ \ {self-intersection points},
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where the subscript “−” indicates that a nontangential limit is taken toward ξ from the right
side of Σ by local orientation. It is well-known to be a bounded operator on L2(Σ) for contours
such as ΣF, with a norm depending only on geometrical details of the contour. Now due to
the exponential decay of VF(ξ;M) as ξ → ∞ along the four unbounded rays of ΣF, it is
easy to see that not only ‖VF(·;M) − I‖∞ = O

(
M−3/4

)
(uniform estimate on ΣF) but also∥∥VF(·;M)− I

∥∥
2

= O
(
M−3/4

)
(L2 estimate on ΣF). It follows easily that the integral equation

is uniquely solvable in L2(ΣF) with solution satisfying ‖F−(·;M)−I‖2 = O
(
M−3/4

)
as M →∞.

From the integral representation

F(ξ;M) = I +
1

2πi

∫
ΣF

VF(w;M)− I
w − ξ

dw

+
1

2πi

∫
ΣF

(F−(w;M)− I)
(
VF(w;M)− I

)
w − ξ

dw, ξ ∈ C \ ΣF,

the exponential decay of VF(ξ;M)− I as ξ →∞ in ΣF guarantees that

F(ξ;M) = I + F1(M)ξ−1 + F2(M)ξ−2 +O
(
ξ−3
)
, ξ →∞, (2.16)

where

Fk(M) := − 1

2πi

∫
ΣF

(
VF(w;M)− I

)
wk−1 dw

− 1

2πi

∫
ΣF

(F−(w;M)− I)
(
VF(w;M)− I

)
wk−1 dw, k = 1, 2.

Since ξ
(
VF(ξ;M)−I

)
is also in L2(ΣF) with norm proportional to M−3/4, it follows by Cauchy–

Schwarz that

Fk(M) = − 1

2πi

∫
ΣF

(
VF(w;M)− I

)
wk−1 dw +O

(
M−3/2

)
,

k = 1, 2, M →∞. (2.17)

The contribution to the first term from integration over ΣF \ ∂D(ξ−) is exponentially small
as M → ∞, and therefore we may take the integration over just ∂D(ξ−) with no change in
the order of the error estimate. Combining (2.16) with (2.13) and the identity Ẏ(ξ;M) =
Ẏout(ξ) holding for sufficiently large |ξ|, recalling the definition (2.11) together with the rela-
tion Y(ξ;M,−1) = M ipσ3/2W

(
M1/2ξ;−M

)
and the first expansion in (2.1), we see that for

sufficiently large negative y,

V(y) = W 1
21(y) = M−ip/2

√
Me−iM3/2ϕ(ξ−;−1)F 1

21(M),

Q(y) =
V ′(y)

V(y)
= iW 1

11(y)− i
W 2

21(y)

W 1
21(y)

= i
√
M

(
F 1

11(M)− F 2
21(M)

F 1
21(M)

)
,

where M = −y for eiθ = −1. In the case of the formula for Q(y) we also used (2.4) to
eliminate V ′(y). To calculate V(y), we therefore substitute (2.14) into (2.17) for k = 1, replacing
the integration contour by ∂D(ξ−) with clockwise orientation, and use also the expansion (A.9)
from the appendix to obtain:

V(y) =
s(p, τ)

2i
M−ip/2−1/4e−iM3/2ϕ(ξ−;−1)

×

[
1

2πi

∫
∂D(ξ−)

(
w − ξ−

Z(w)

)2ip
dw

Z(w)
+O

(
M−5/4

)]
, M → +∞, y < 0,
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Figure 5. Placement of the jump contour ΣY relative to the sign chart for Im(ϕ(ξ; eiθ)) = Im(ϕ(ξ−; eiθ))

for θ = 11
12π (left panel), θ = 5

12π (central panel), and θ = 1
3π (right panel).

where s(p, τ) 6= 0 is given by (A.8). Since the integrand is analytic within the circle of integration
aside from a simple pole at w = ξ−, we compute it by residues and obtain

V(y) = −s(p, τ)

2i
M−ip/2−1/4e−iM3/2ϕ(ξ−;−1)

×
[
Z ′(ξ−)−2ip−1 +O

(
M−5/4

)]
, M → +∞, y < 0. (2.18)

Note that ϕ(ξ−;−1) = 2 · 3−3/2 and taking two derivatives of (2.12) with Z(ξ−) = 0 and
Z ′(ξ−) > 0 gives Z ′(ξ−) = 31/4. Therefore, also using (A.8) to eliminate s(p, τ), we arrive at
the asymptotic formula (1.11), which is valid for all p ∈ C \ iZ.

Now the dominant contribution to F 1
11(M) is O

(
M−3/2

)
as M →∞. On the other hand, the

dominant contribution to F 2
21(M) is calculated exactly as above, by residues. Since the integrand

now has an additional factor of w, it is easy to see that F 2
21(M)/F 1

21(M) = ξ−+O
(
M−3/2

)
. We

therefore conclude that

Q(y) = −iξ−
√
−y +O

(
y−1
)

= i

√
−y

3
+O

(
y−1
)
, y → −∞.

2.2.2 Generalization to complex y

As soon as eiθ 6= −1, the two critical points of ϕ
(
ξ; eiθ

)
are in general no longer on the same

level of Im
(
ϕ
(
ξ; eiθ

))
. We denote by ξ− = −

(
−1

3eiθ
)1/2

the critical point that agrees with

−1/
√

3 when eiθ = −1. The level set Im
(
ϕ
(
ξ; eiθ

))
= Im

(
ϕ
(
ξ−; eiθ

))
undergoes a bifurcation

in the neighborhood of the other critical point ξ = −ξ−, when eiθ = −1 and then again when
eiθ = e±iπ/3. The bifurcation at eiθ = −1 is harmless from the point of view of placing the jump
contour so as to achieve exponential decay of the jump matrix to the identity relative to the
neighborhood of the point ξ−. However, the bifurcations at eiθ = e±iπ/3 are genuine obstructions
to the basic approach valid for eiθ = −1. The development of the problematic bifurcation as eiθ

ranges over the upper (lower) half semicircle from −1 toward eiπ/3 (toward e−iπ/3) is illustrated
in Fig. 5 (in Fig. 6).

These figures show that the same basic method as applies to the special case of eiθ = −1
also applies over the whole range arg(−y) = arg

(
−eiθ

)
∈
(
−2

3π,
2
3π
)
. Mutatis mutandis, the

construction of the parametrix explained in Section 2.2.1 is the same, as is the analysis of
the error F(ξ;M), and we arrive again at the asymptotic formula (2.18) for V(y) now valid
for | arg(−y)| < 2

3π, except that ϕ(ξ−;−1) has to be replaced with ϕ
(
ξ−; eiθ

)
in the exponent
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Figure 6. As in Fig. 5, but for θ = − 11
12π (left panel), θ = − 5

12π (central panel), and θ = − 1
3π (right

panel).

and that the conformal mapping Z(ξ) has a generalized interpretation. In general, Z(ξ) is the
conformal mapping defined near ξ− by ϕ

(
ξ−; eiθ

)
− ϕ

(
ξ; eiθ

)
= Z(ξ)2 that is chosen to depend

continuously on eiθ. Therefore, Z ′(ξ−) = 31/4
(
−eiθ

)1/4
, and also ϕ

(
ξ−; eiθ

)
= 2 · 3−3/2

(
−eiθ

)3/2
,

so we see that (1.11) holds true as y →∞ with | arg(−y)| < 2
3π. Similarly,

Q(y) = i
(
−y

3

)1/2
+O

(
|y|−1

)
, y →∞, | arg(−y)| < 2

3
π. (2.19)

In both cases, we use the principal branch to interpret the power functions: (−y)P = eP log(−y)

with |Im(log(−y))| < π.

2.2.3 Solution identification

Recall that the function u(x) := −
(

3
2

)1/3Q(−(3
2

)1/3
x
)

is a solution of the Painlevé-II equation
in standard form (1.1) with parameter α = 1

2 + ip. From (2.19), we therefore have shown
that u(x) matches the asymptotic description of the solution u−TT

(
x; 1

2 + ip
)

given in (1.4), and
covering the sector | arg(x)| < 2

3π. According to the analysis of the Riemann–Hilbert problem
arising from the Flaschka–Newell Lax pair of Painlevé-II described in [17, Chapter 11], for
each α ∈ C \

(
Z + 1

2

)
there is exactly one solution of (1.1) consistent with the asymptotic

formula (1.4) (for each choice of the sign ±). Thus u(x) = u−TT

(
x; 1

2 + ip
)
. Having square-root

asymptotics in such a large sector of the complex x-plane, the solutions u±TT(x;α) are two of the
six increasing tritronquée solutions of (1.1) (four others are obtained by ±2

3π rotation symmetry
in the complex x-plane). Each of these six is determined by its leading asymptotic behavior in
a sector of maximal opening angle 4

3π − ε. It is shown in [17] that the leading asymptotic (1.4)
admits correction in the form of a full asymptotic series in decreasing powers of x differing by 3

2
in consecutive terms, the coefficients of which can be determined by formal substitution into the
differential equation (1.1). Thus in particular it holds that

u(x) = −i
(x

2

)1/2
− α

2x
+O

(
|x|−5/2

)
, x→∞, | arg(x)| < 2

3
π.

Using α = 1
2 + ip, this implies also that (2.19) can be improved to

Q(y) = i
(
−y

3

)1
2 −

(
1

4
+ i

p

2

)
1

y
+O

(
|y|−5/2

)
, y →∞, | arg(−y)| < 2

3
π. (2.20)
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The solution u(x) characterized by the asymptotic behavior (1.4) is globally meromorphic and
has poles near x =∞ in the complementary sector | arg(−x)| < 1

3π; equivalently Q(y) has poles
near y = ∞ for | arg(y)| < 1

3π. Indeed, for typical values of eiθ with |θ| < 1
3π, the procedure

of asymptotic analysis of Riemann–Hilbert Problem 2.3 requires the introduction of a two-cut
g-function with one cut shrinking while approaching each of the two critical points of ϕ

(
ξ; eiθ

)
as |θ| ↑ 1

3π (see the right-hand panels of Figs. 5 and 6). Thus the asymptotic behavior is given
in terms of a certain elliptic function of M with modulus depending on θ. Another degeneration
occurs precisely when θ = 0 as the two cuts merge at the origin and thus become a single
cut. This observation implies that the elliptic asymptotics give way to algebraic/trigonometric
asymptotics in the limit y → +∞, and it forms the basis for the proof of Theorem 1.2 which we
turn to next.

3 Proof of Theorem 1.2

To study V(y) and Q(y) in the opposite limit y → +∞, we return to the consideration of
Y
(
ξ;M, eiθ

)
as M → +∞, now in the case eiθ = +1. In this situation there is no distinction

between y and its modulus M , so we just replace M with y > 0 in this section.

3.1 Introduction of g-function

The critical points of ϕ(ξ; 1) form a conjugate pair, and to deal with this it turns out to be
necessary to introduce a so-called g-function. Define

ν :=

√
2

3
, (3.1)

let Σ denote the straight line segment connecting the points ±iν, and then set

g′(ξ) :=
3

2
ξR(ξ)− 3

2
ξ2 − 1

2
, ξ ∈ C \ Σ, (3.2)

where R(ξ) is the function analytic for ξ ∈ C\Σ determined from the conditions R(ξ)2 = ξ2 +ν2

while R(ξ) = ξ+O
(
ξ−1
)

as ξ →∞. It is easy to confirm directly that g′(ξ) = O
(
ξ−2
)

as ξ →∞
so g(ξ) is well defined by the integral

g(ξ) :=

∫ ξ

∞
g′(s) ds, ξ ∈ C \ Σ,

where the path of integration is arbitrary in the domain of analyticity of the integrand. It is
easy to obtain the asymptotic formula

g(ξ) =
1

12ξ
+O

(
ξ−3
)
, ξ →∞. (3.3)

Consider the function h(ξ) := g(ξ)+ 1
2ϕ(ξ; 1). The left-hand panel of Fig. 7 shows the sign chart

for Im(h(ξ)), a function that is continuous across the branch cut Σ, which in turn is part of the
zero level set Im(h(ξ)) = 0. Moreover, it is clear from the definition of h that the sum of the
boundary values taken by h′ on Σ is h′+(ξ) + h′−(ξ) = 0. Therefore, h+(ξ) + h−(ξ), ξ ∈ Σ, is
a real constant. Evaluating this constant for ξ = 0 ∈ Σ using the fact that h is an odd function
of ξ shows that h+(ξ) + h−(ξ) = 0 holds identically for ξ ∈ Σ. Since h is continuous at ξ = ±iν,
this implies that h(±iν) = 0. However, the limiting values taken at ξ = 0 are opposite and
nonzero:

h(0±) := lim
ξ→0

±ξ>0

h(ξ) = g(0±) = ±
∫ +∞

0

[
3

2
ξ2 +

1

2
− 3

2
ξ
√
ξ2 + ν2

]
dξ = ±1

3
ν. (3.4)
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Figure 7. Left: the sign chart for Im(h(ξ)). Center: the original jump contour ΣY for Y(ξ; y, 1) and the

regions A, B, C, D, E, and F . Right: the jump contour ΣZ for Z(ξ; y). The branch cut Σ = Σ+ ∪ Σ−

for g and h is shown in orange.

Remark 3.1. The formula (3.2) can be motivated by the desire to enforce the condition that
h′+(ξ) + h′−(ξ) = 0 or equivalently that g′+(ξ) + g′−(ξ) + ϕ′(ξ; 1) = 0 holds on Σ. Indeed,
the latter equation can be re-arranged to read

(
g′+(ξ) + 3

2ξ
2 + 1

2

)
= −

(
g′−(ξ) + 3

2ξ
2 + 1

2

)
, so(

g′(ξ) + 3
2ξ

2 + 1
2

)2
should have no jump across Σ and hence can be sought as an entire function.

Imposing the integrability condition that g′(ξ) = O
(
ξ−2
)

as ξ → ∞ determines this entire
function up to a constant as the polynomial 9

4ξ
4 + 3

2ξ
2 + c. The formula (3.2) then corresponds

to the choice c = 0. This is the only choice of c for which the polynomial has two simple roots
and one double root.

The central panel of Fig. 7 shows the original jump contour for Y(ξ; y, 1) together with six
regions denoted A, B, C, D, E, and F . We use the function g(ξ) to give a piecewise-analytic
definition of a new matrix unknown as follows:

Z(ξ; y) := Y(ξ; y, 1)

[
1 −τe−2πpeiy3/2ϕ(ξ;1)

0 1

]
e−iy3/2g(ξ)σ3 , ξ ∈ A,

Z(ξ; y) := Y(ξ; y, 1)

[
1 −τ−1eiy3/2ϕ(ξ;1)

0 1

]
e−iy3/2g(ξ)σ3 , ξ ∈ B,

Z(ξ; y) := Y(ξ; y, 1)

[
1 τ−1eiy3/2ϕ(ξ;1)

0 1

]
e−iy3/2g(ξ)σ3 , ξ ∈ C,

Z(ξ; y) := Y(ξ; y, 1)

[
1 0

τe−2πpe−iy3/2ϕ(ξ;1) 1

]
e−iy3/2g(ξ)σ3 , ξ ∈ D,

Z(ξ; y) := Y(ξ; y, 1)

[
1 0

τ−1e−iy3/2ϕ(ξ;1) 1

]
e−iy3/2g(ξ)σ3 , ξ ∈ E,

Z(ξ; y) := Y(ξ; y, 1)

[
1 0

−τ−1e−iy3/2ϕ(ξ;1) 1

]
e−iy3/2g(ξ)σ3 , ξ ∈ F,

and for ξ ∈ C \ (A ∪B ∪ C ∪D ∪ E ∪ F ) we set Z(ξ; y) := Y(ξ; y, 1)e−iy3/2g(ξ)σ3 . The resulting
jump contour ΣZ for Z(ξ; y) is illustrated in the right-hand panel of Fig. 7. Z(ξ; y) is analytic
for ξ ∈ C \ΣZ, and across the arcs of ΣZ the jump condition Z+(ξ; y) = Z−(ξ; y)VZ(ξ; y) holds,
where the jump matrix VZ(ξ; y) is defined as follows:

VZ(ξ; y) :=

[
1 τe−2πpe2iy3/2h(ξ)

0 1

]
, ξ ∈ α+, (3.5)
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VZ(ξ; y) :=

[
1 τ−1e−2πpe2iy3/2h(ξ)

0 1

]
, ξ ∈ β+, (3.6)

VZ(ξ; y) :=

[
1 τ−1e2iy3/2h(ξ)

0 1

]
, ξ ∈ γ+,

VZ(ξ; y) :=

[
0 −τ−1

τ 0

]
, ξ ∈ Σ+ := {ξ ∈ Σ, Im(ξ) > 0}, (3.7)

VZ(ξ; y) :=

[
1 0

τe−2iy3/2h(ξ) 1

]
, ξ ∈ iR+ \ Σ+,

VZ(ξ; y) := e2πpσ3 , ξ < 0, (3.8)

VZ(ξ; y) :=

[
1 0

τe−2πpe−2iy3/2h(ξ) 1

]
, ξ ∈ α−,

VZ(ξ; y) :=

[
1 0

τ−1e−2πpe−2iy3/2h(ξ) 1

]
, ξ ∈ β−,

VZ(ξ; y) :=

[
1 0

τ−1e−2iy3/2h(ξ) 1

]
, ξ ∈ γ−,

VZ(ξ; y) :=

[
0 τ
−τ−1 0

]
, ξ ∈ Σ− := {ξ ∈ Σ, Im(ξ) < 0}, (3.9)

VZ(ξ; y) :=

[
1 τe2iy3/2h(ξ)

0 1

]
, ξ ∈ iR− \ Σ−. (3.10)

Due to the placement of the jump contour ΣZ relative to the sign chart for Im(h(ξ)) illustrated
in Fig. 7, the jump matrix VZ(ξ; y) converges exponentially fast to the identity pointwise on ΣZ

as y → +∞, with the exception of the two halves of Σ and the negative real line, see (3.7), (3.8),
and (3.9).

3.2 Parametrix construction

3.2.1 Outer parametrix

We construct an outer parametrix Żout(ξ) to satisfy the latter jump conditions as follows. Since
ξ−ipσ3 satisfies exactly the normalization condition Z(ξ; y)ξipσ3 → I as ξ → ∞, as well as the
jump condition for Z across the negative real axis, we seek the outer parametrix in the form
Żout(ξ) := J(ξ)ξ−ipσ3 and we require that J(ξ)→ I as ξ →∞ and that J(ξ) be analytic except
on Σ, where

J+(ξ) = J−(ξ)

[
0 −τ−1ξ−2ip

τξ2ip 0

]
, ξ ∈ Σ+, (3.11)

and

J+(ξ) = J−(ξ)

[
0 τξ−2ip

−τ−1ξ2ip 0

]
, ξ ∈ Σ−. (3.12)

These choices guarantee that Żout(ξ) exactly satisfies the jump conditions of Z described by the
jump matrix in (3.7), (3.8), and (3.9). Given p ∈ C \ iZ, observe that there exists a unique
number ` ∈ C such that τ = e` solves the equation τ2 = e2πp − 1 and such that the following
inequalities hold:

−1 < Re

(
2ip+

2`

iπ

)
≤ 1. (3.13)
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Indeed, the relation τ2 = e2πp − 1 determines ` modulo iπZ, and hence a unique definite value
of ` can be chosen so that e2` = τ2 = e2πp − 1 and the inequalities (3.13) hold. We are thus
breaking the symmetry τ 7→ −τ mentioned in the remark at the end of Section 2.1 in order to
facilitate subsequent asymptotic analysis. We note that in the application of Riemann–Hilbert
Problem 2.1 to rogue waves in [3], it is necessary to have τ = 1 for p = ln(2)/(2π); this amounts
to choosing ` = 0 which is consistent with the inequalities (3.13), so we can be assured that the
analysis that follows applies to that special case.

Now, given p and ` as above, let j(ξ) be defined by

j(ξ) :=
pR(ξ)

π

∫
Σ

log(s) ds

R+(s)(s− ξ)
+ iη

+
`R(ξ)

2πi

[∫
Σ+

ds

R+(s)(s− ξ)
−
∫

Σ−

ds

R+(s)(s− ξ)

]
, ξ ∈ C \ Σ,

where the constant η is defined by

η :=
p

iπ

∫
Σ

log(s) ds

R+(s)
.

Here, log(s) refers to the principal branch, and R+(s) refers to the boundary value from the
left by orientation of the integration contour (the direction of which is irrelevant for making j
and η well-defined given the factor R+(s) in the integrand). Thus, taking the integration in the
upward direction, and parametrizing by s = it, we have R+(it) = −

√
ν2 − t2, and hence

η = −2p

π

∫ √
2
3

0

ln(t) dt√
2
3 − t2

=
p

2
ln(6). (3.14)

The function j is analytic for ξ ∈ C \ Σ and the value of the constant η is determined so that
j(ξ)→ 0 as ξ →∞. In fact, it is not difficult to establish that

j(ξ) = −iν

(
p− `

π

)
ξ−1 − 1

6
ipξ−2 +O

(
ξ−3
)
, ξ →∞. (3.15)

The boundary values j±(ξ) taken on Σ+ and Σ− are continuous except at the origin, but
including the other endpoints ξ = ±iν. Since R(ξ) changes sign across Σ = Σ+ ∪ Σ−, the
sum of the boundary values is easy to compute directly:

j+(ξ) + j−(ξ) =

{
2ip log(ξ) + `+ 2iη, ξ ∈ Σ+, Im(log(ξ)) = 1

2π,

2ip log(ξ)− `+ 2iη, ξ ∈ Σ−, Im(log(ξ)) = −1
2π.

Let D(0) denote a disk of sufficiently small radius (less than 1
2ν = 1/

√
6 will do) centered at the

origin. It is straightforward to show that

j(ξ) =

(
2ip+

`

iπ

)
log(ξ) + k(ξ), ξ ∈ D(0), Re(ξ) > 0, (3.16)

where log(ξ) again denotes the principal branch, and where k(ξ) is a function analytic in the full
disk D(0). Letting R1(ξ) denote the analytic continuation of R(ξ) from the right half of D(0)
to all of D(0), a formula for k(ξ) that admits direct evaluation for any ξ ∈ D(0) reads

k(ξ) = iη +
p

π
R1(ξ)

[∫ iν

−M

log(s) ds

R(s)(s− ξ)
+

∫ −M
−iν

log(s) ds

R(s)(s− ξ)

]
+

`

2πi
R1(ξ)

[∫ iν

−M

ds

R(s)(s− ξ)
−
∫ −M
−iν

ds

R(s)(s− ξ)

]
−
(

2ip+
`

iπ

)
log(ξ +M) +

(
2ip+

`

iπ

)
R1(ξ)

∫ 0

−M

[
1

R1(s)
− 1

R1(ξ)

]
ds

s− ξ
,
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where M > 0 is any sufficiently large constant, and where the contour integrals on the first two
lines are taken over straight line segments. It is an exercise to show from this formula that

k(0) = iη − i

(
p− `

π

)
ln(2ν). (3.17)

Now set K(ξ) := J(ξ)e−j(ξ)σ3 . Then J(ξ)→ I as ξ →∞ implies that also K(ξ)→ I as ξ →∞,
and J analytic in C \ Σ implies that the same is true for K. According to (3.11), K(ξ) satisfies
the jump condition

K+(ξ) = K−(ξ)

[
0 −e2iη

e−2iη 0

]
, ξ ∈ Σ (here taken with upward orientation).

We take for K(ξ) the following solution:

K(ξ) := eiησ3S

(
ξ − iν

ξ + iν

)σ3/4
S−1e−iησ3 , S :=

1√
2

[
1 −i
−i 1

]
. (3.18)

This function takes continuous boundary values along Σ except at the endpoints, where it
exhibits negative fourth-root singularities. Moreover, its boundary values from the left and right
half-planes admit analytic continuation into the full neighborhood D(0). The outer parametrix
is thus defined by the formula

Żout(ξ) := K(ξ)ej(ξ)σ3ξ−ipσ3 , ξ ∈ C \ (Σ ∪ R−). (3.19)

3.2.2 Inner parametrices near ξ = ±iν

Let D(iν) denote a disk of sufficiently small radius (less than 1
2ν) centered at ξ = iν. We define

a conformal mapping ξ 7→Wiν(ξ) of D(iν) onto a neighborhood of the origin by the equation

2ih(ξ) = Wiν(ξ)3/2

in which we understand that both sides of this equation are positive real for ξ on the imaginary
axis above ξ = iν. To define the conformal map, we choose the solution Wiν(ξ) that is also
positive for such ξ before analytically continuing the resulting solution to D(iν). That this
procedure succeeds is a consequence of the formula h′(ξ) = 3

2ξR(ξ) and the fact that h(iν) = 0
since h+(ξ) + h−(ξ) = 0 holds identically on Σ and h is continuous at ξ = iν.

Suppose that within the disk D(iν), the contour arcs α+ and β+ are merged into a single
arc carrying the product of their (commuting) jump matrices (see (3.5)–(3.6)), and that this
arc lies along the ray arg(Wiν(ξ)) = 2

3π. Likewise, we take γ+ to lie within D(iν) along the ray
arg(Wiν(ξ)) = −2

3π, while Wiν automatically maps the imaginary axis near ξ = iν to the real
axis so that Σ+ lies along arg(−Wiν(ξ)) = 0 and the imaginary axis above ξ = iν is taken to the
positive real axis. Then, the identity τ2 = e2πp− 1 implies that the jump conditions satisfied by
the product Z(ξ; y)τ−σ3/2(iσ1) (here τ1/2 denotes any fixed square root of τ 6= 0) read as follows
for ξ ∈ D(iν), where λ := yWiν(ξ):

Z+(ξ; y)τ−σ3/2(iσ1) = Z−(ξ; y)τ−σ3/2(iσ1)

[
1 e−λ

3/2

0 1

]
, arg(λ) = 0, (3.20)

Z+(ξ; y)τ−σ3/2(iσ1) = Z−(ξ; y)τ−σ3/2(iσ1)

[
1 0

eλ
3/2

1

]
, arg(λ) = ±2

3
π,

and

Z+(ξ; y)τ−σ3/2(iσ1) = Z−(ξ; y)τ−σ3/2(iσ1)

[
0 1
−1 0

]
, arg(−λ) = 0. (3.21)
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To properly interpret these jump conditions, note that all contours carry the orientation induced
from that shown in the right-hand panel of Fig. 7 by the conformal mapping ξ 7→Wiν(ξ), which
means that the rays in the λ-plane are oriented in the direction of increasing real part.

From the definition (3.19) of the outer parametrix Żout(ξ) that there exists a matrix-valued
function Hiν(ξ) analytic in D(iν) and having unit determinant, such that

Żout(ξ)τ−σ3/2(iσ1) = Hiν(ξ)Wiν(ξ)σ3/4S = Hiν(ξ)y−σ3/4λσ3/4S, ξ ∈ D(iν),

where S denotes the same eigenvector matrix defined in (3.18). Because we would like to build
an inner parametrix that matches well onto the outer parametrix when ξ ∈ ∂D(iν), we take
guidance from the final two factors λσ3/4S and define a matrix A(λ) as the solution of the
following Riemann–Hilbert Problem.

Riemann–Hilbert Problem 3.2 (Airy parametrix). Seek a 2×2 matrix function A(λ) defined
for 0 < | arg(λ)| < 2

3π and 2
3π < | arg(λ)| < π with the following properties:

Analyticity: A(λ) is analytic in the four sectors indicated above, and takes continuous
boundary values from each sector including at the origin.

Jump conditions: The boundary values A±(λ) are related by exactly the same jump con-
ditions satisfied by Z(ξ; y)τ−σ3/2(iσ1) (see (3.20)–(3.21)) but with the indicated directions
extended to infinite rays in the λ-plane oriented in the direction of increasing real part.

Normalization: A(λ)S−1λ−σ3/4 → I as λ→∞.

This problem is well-known to have a unique solution constructed from Airy functions. The
solution has the additional property that the normalization condition is strengthened to

A(λ)S−1λ−σ3/4 = I +

[
O
(
λ−3

)
O(λ−1)

O
(
λ−2

)
O
(
λ−3

)] , λ→∞. (3.22)

We then define an inner parametrix for Z(ξ; y) as follows:

Żin
iν(ξ; y) := Hiν(ξ)y−σ3/4A(yWiν(ξ))(−iσ1)τσ3/2, ξ ∈ D(iν).

Since Wiν(ξ) is bounded away from zero and hence λ is proportional to y when ξ ∈ ∂D(iν), we
then get from (3.22) that

Żin
iν(ξ; y)Żout(ξ)−1 = Hiν(ξ)y−σ3/4A(yWiν(ξ))S−1(yWiν(ξ))−σ3/4yσ3/4Hiν(ξ)−1

= I + Hiν(ξ)y−σ3/4
[
O
(
y−3
)

O
(
y−1
)

O
(
y−2
)

O
(
y−3
)] yσ3/4Hiν(ξ)−1

= I + Hiν(ξ)

[
O
(
y−3
)

O
(
y−3/2

)
O
(
y−3/2

)
O
(
y−3
) ]Hiν(ξ)−1

= I +O
(
y−3/2

)
, ξ ∈ ∂D(iν), (3.23)

where the estimate on the last line holds in the uniform sense on the circle ∂D(iν) in the limit
y → +∞.

A very similar construction gives an explicit parametrix Żin
−iν(ξ; y) defined in a small disk

D(−iν) centered at ξ = −iν in terms of Airy functions, satisfying exactly the jump conditions
of Z within the disk and for which the estimate Żin

−iν(ξ; y)Żout(ξ)−1 = I + O
(
y−3/2

)
holds

uniformly on ∂D(−iν). We will require no further details of these inner parametrices.
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3.2.3 Inner parametrix near ξ = 0

Recall the disk D(0) of sufficiently small radius centered at the origin. We define a conformal
mapping in terms of h(ξ) within D(0) as follows. Here a slightly different approach is required
because h is locally two opposite analytic functions in the left and right half-disks, each of which
has a simple critical point at the origin. Thus, we will define a mapping W0(ξ) on D(0) by two
different conditions:

h(ξ)− h(0±) = ±1

2
W0(ξ)2, ξ ∈ D(0), ±Re(ξ) > 0. (3.24)

Here, h(0±) denotes the limiting value of h(ξ) at ξ = 0 from the domain ±Re(ξ) > 0; see (3.4).
These conditions determine W0(ξ) up to an overall sign as a conformal mapping of the disk D(0)
with the property that W0(0) = 0. We fix the sign by insisting that W ′0(0) > 0. In fact, by
taking two derivatives in (3.24) and setting ξ = 0 we see that

W ′0(0) =
1√
ν

=

(
3

2

)1/4

> 0. (3.25)

We deform the jump contour within D(0) to ensure both that arg(W0(γ±)) = ±1
4π and that

arg(W0(β±)) = ±3
4π. The conformal mapping is real, and therefore it automatically holds that

arg(−ξ) = 0 corresponds to arg(−W0(ξ)) = 0.

Consider the matrix X(ξ; y) explicitly related to Z(ξ; y) for ξ ∈ D(0) as follows:

X(ξ; y) :=



Z(ξ; y)

[
0 τ−1

−τ 0

]
eiy3/2h(0+)σ3(iσ1), 1

2π < arg(ξ) < π,

Z(ξ; y)

[
0 τ

−τ−1 0

]
eiy3/2h(0+)σ3(iσ1), −π < arg(ξ) < −1

2π,

Z(ξ; y)eiy3/2h(0+)σ3(iσ1), | arg(ξ)| < 1
2π.

(3.26)

From this definition, it follows that

X+(ξ; y) = X−(ξ; y), ξ ∈ Σ±, (3.27)

so that X(ξ; y) may be considered to be analytic on Σ±. The remaining jump conditions sa-
tisfied by X(ξ; y) are easily expressed in terms of the rescaled conformal mapping with a new
independent variable λ := y3/4W0(ξ). They read as follows:

X+(ξ; y) = X−(ξ; y)

[
1 0

τ−1eiλ2 1

]
, arg(W0(ξ)) =

1

4
π, (3.28)

X+(ξ; y) = X−(ξ; y)

[
1 τ−1e−iλ2

0 1

]
, arg(W0(ξ)) = −1

4
π,

X+(ξ; y) = X−(ξ; y)

[
1 τe−2πpe−iλ2

0 1

]
, arg(W0(ξ)) =

3

4
π,

X+(ξ; y) = X−(ξ; y)

[
1 0

τe−2πpeiλ2 1

]
, arg(W0(ξ)) = −3

4
π,

and finally,

X+(ξ; y) = X−(ξ; y)e2πpσ3τ−2σ3 , arg(−W0(ξ)) = 0, (3.29)
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where all contours are oriented in the direction of increasing real part (so β± have been re-orien-
ted). To confirm these jump conditions, it is necessary to use the fact that h(0−) + h(0+) = 0.

The jump conditions (3.27)–(3.29) match those of the parabolic cylinder function parametrix
described in the appendix, provided we replace the parameters (p, τ) with (q, µ), where (recall
that ` is a specific number for which τ = e`)

q := p− `

π
and µ :=

1

τ
. (3.30)

It is easy to check that the condition τ2 = e2πp − 1 guarantees that also µ2 = e2πq − 1. It then
follows from the definition (3.19) of the outer parametrix Żout(ξ) and from (3.16) that there
exists a matrix function H0(ξ), independent of y and having unit determinant, that is analytic
in D(0) such that

Żout(ξ)eiy3/2h(0+)σ3(iσ1) = H0(ξ)e−iy3/2h(0+)σ3W0(ξ)−iqσ3

= H0(ξ)e−iy3/2h(0+)σ3y3iqσ3/4λ−iqσ3 , ξ ∈ D(0), Re(ξ) > 0.

Note that, in particular,

H0(0) = eiησ3Se−iπσ3/4S−1e−iησ3ek(0)σ3W ′0(0)−iqσ3(iσ1). (3.31)

Similarly (comparing with (3.26)),

Żout(ξ)

[
0 τ−1

−τ 0

]
eiy3/2h(0+)σ3(iσ1) = H0(ξ)e−iy3/2h(0+)σ3y3iqσ3/4λ−iqσ3 ,

ξ ∈ D(0),
1

2
π < arg(ξ) < π, and

Żout(ξ)

[
0 τ
−τ−1 0

]
eiy3/2h(0+)σ3(iσ1) = H0(ξ)e−iy3/2h(0+)σ3y3iqσ3/4λ−iqσ3 ,

ξ ∈ D(0), −π < arg(ξ) < −1

2
π.

Taking into account the final factor of λ−iqσ3 to obtain a good match on the boundary ∂D(0),
we are led to construct an inner parametrix near the origin by the following formulæ

Żin
0 (ξ; y) := H0(ξ)e−iy3/2h(0+)σ3y3iqσ3/4P(y3/4W0(ξ); q, µ)(−iσ1)e−iy3/2h(0+)σ3 ,

ξ ∈ D(0), Re(ξ) > 0,

Żin
0 (ξ; y) := H0(ξ)e−iy3/2h(0+)σ3y3iqσ3/4P(y3/4W0(ξ); q, µ)(−iσ1)e−iy3/2h(0+)σ3

[
0 −τ−1

τ 0

]
,

ξ ∈ D(0),
1

2
π < arg(ξ) < π, and

Żin
0 (ξ; y) := H0(ξ)e−iy3/2h(0+)σ3y3iqσ3/4P(y3/4W0(ξ); q, µ)(−iσ1)e−iy3/2h(0+)σ3

[
0 −τ
τ−1 0

]
,

ξ ∈ D(0), −π < arg(ξ) < −1

2
π.

Here P(λ; ·, ·) is the solution of Riemann–Hilbert Problem A.1 given in the appendix. We
emphasize that Żin

0 (ξ; y) is an exact local solution of the jump conditions for Z(ξ; y) within the
disk D(0). It satisfies the mismatch condition

Żin
0 (ξ; y)Żout(ξ)−1 = H0(ξ)e−iy3/2h(0+)σ3y3iqσ3/4P(λ; q, µ)λiqσ3y−3iqσ3/4

× eiy3/2h(0+)σ3H0(ξ)−1, ξ ∈ ∂D(0), (3.32)

where λ = y3/4W0(ξ).
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3.3 Error analysis

The global parametrix Ż(ξ; y) for Z(ξ; y) is defined as

Ż(ξ; y) :=


Żin
±iν(ξ; y), ξ ∈ D(±iν),

Żin
0 (ξ; y), ξ ∈ D(0),

Żout(ξ), ξ ∈ C \
(
D(iν) ∪D(0) ∪D(−iν)

)
.

In a preliminary attempt to gauge the accuracy of the approximation of Z(ξ; y) by Ż(ξ; y), we
define the error matrix as E(ξ; y) := Z(ξ; y)Ż(ξ; y)−1 wherever both factors are defined (note
that by definition det(Ż(ξ; y)) = 1 holds everywhere). Because the inner parametrices are in
each case exact local solutions of the jump conditions for Z(ξ; y), it is easy to apply Morera’s
theorem to deduce that E(ξ; y) can be viewed as a function analytic within all three disks:
D(±iν) and D(0). Similarly, because the outer parametrix exactly satisfies the jump condition
for Z(ξ; y) on the part of the negative real axis outside of D(0) and the parts of Σ± lying outside
of all three disks, E(ξ; y) may be considered to be analytic in a neighborhood of these. Therefore,
the only points of non-analyticity for E(ξ; y) correspond to jump discontinuities (i) across the
portions of α±, β±, γ± and iR \ Σ lying outside all three disks (where Z(ξ; y) is discontinuous
while Ż(ξ; y) = Żout(ξ) is analytic) and (ii) across the boundaries of the three disks (where the
parametrix Ż(ξ; y) is discontinuous while Z(ξ; y) is analytic).

For jumps of type (i), we directly compute that E+(ξ; y) = E−(ξ; y)Żout(ξ)VZ(ξ; y)Żout(ξ)−1,
where VZ(ξ; y) is defined on the relevant arcs by (3.5)–(3.10). The placement of the jump
contour ΣZ relative to the sign chart for Im(h(ξ)) as shown in Fig. 7, the fact that for jumps of
type (i), ξ is bounded away from the points ξ = 0,±iν, and the fact that the conjugating factors
are uniformly bounded for such ξ and independent of y, show that E+(ξ; y) = E−(ξ; y)(I +
exponentially small in y and ξ).

For jumps of type (ii), if we take the disk boundaries to be oriented in the clockwise direction,
it is easy to see that E+(ξ; y) = E−(ξ; y)Żin

ξ0
(ξ; y)Żout(ξ)−1 holds when ξ ∈ ∂D(ξ0), for all

three cases ξ0 = 0,±iν. For ξ0 = ±iν we have from (3.23) and its analogue on ∂D(−iν) that
E+(ξ; y) = E−(ξ; y)

(
I +O

(
y−3/2

))
holds uniformly on ∂D(±iν). For ξ0 = 0, we combine (3.32)

with formulæ (A.7)–(A.9) from the appendix and the fact that W0(ξ) is bounded away from
zero on ∂D(0) to conclude that

E+(ξ; y) = E−(ξ; y)H0(ξ)

(
I +

1

W0(ξ)

[
0 c12(y)

−c21(y) 0

]
(3.33)

+

[
O
(
y−3/2

)
O(y−9/4+3Re(iq)/2)

O(y−9/4−3Re(iq)/2) O
(
y−3/2

) ])
H0(ξ)−1, ξ ∈ ∂D(0), y → +∞,

where we have used
∣∣e±2iy3/2h(0+)

∣∣ = 1 (following from (3.4)) and where

c12(y) :=
1

2i
e−2iy3/2h(0+)y−3/4+3iq/2r(q, µ) =

τ
√
πe−iπ/4eπq/22iq

Γ(iq)
e−i(2y/3)3/2y−3/4+3iq/2,

c21(y) :=
1

2i
e2iy3/2h(0+)y−3/4−3iq/2s(q, µ) =

qΓ(iq)eiπ/4e−πq/22−iq

2τ
√
π

ei(2y/3)3/2y−3/4−3iq/2.

(3.34)

Now the inequalities (3.13) and the definition (3.30) of q show that −1
2 < Re(iq) ≤ 1

2 , which

implies that all matrix elements in the error term on the second line of (3.33) are O
(
y−3/2

)
as

y → +∞. However, the terms on the first line are larger; indeed, c12(y) does not decay to zero
at all as y → +∞ if Re(iq) = 1

2 . So it will be necessary to take that term into account explicitly
in order to arrive at a small-norm problem, and it will also be convenient to remove the effect
of c21(y), since for −1

2 < Re(iq) ≤ 1
2 it can decay arbitrarily slowly as y → +∞ for Re(iq) near

the lower end of the allowed range.
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3.3.1 First parametrix for the error

Since c12(y) does not decay when Re(iq) = 1
2 , to cover the whole range −1

2 < Re(iq) ≤ 1
2 we

must construct a parametrix for E(ξ; y) itself, which we will denote by Ė(ξ; y). We want it
to have the following properties. It should be analytic for ξ ∈ C \ ∂D(0), taking continuous
boundary values on ∂D(0) from the interior and exterior. It should converge to the identity as
ξ →∞. Finally, it should satisfy the jump condition

Ė+(ξ; y) = Ė−(ξ; y)H0(ξ)

(
I +

c12(y)

W0(ξ)
σ+

)
H0(ξ)−1, ξ ∈ ∂D(0), σ+ :=

[
0 1
0 0

]
,

in which the circle is taken with clockwise orientation. Given that W0(ξ) has a simple pole at
the origin, a reasonable ansatz for Ė(ξ; y) is that its exterior boundary value is a function with
a simple pole at ξ = 0 and that satisfies the normalization condition at infinity:

Ė+(ξ; y) = I + ξ−1R(y). (3.35)

We then attempt to determine the residue R(y) by insisting that the corresponding boundary
value Ė−(ξ; y) obtained from the jump condition admit analytic continuation to the full interior
of the disk D(0). Thus,

Ė−(ξ; y) = Ė+(ξ; y)H0(ξ)

(
I +

c12(y)

W0(ξ)
σ+

)−1

H0(ξ)−1

=
(
I + ξ−1R(y)

)
H0(ξ)

(
I− c12(y)

W0(ξ)
σ+

)
H0(ξ)−1

needs to be analytic at ξ = 0, where we have used σ2
+ = 0 and (3.35) to obtain the second line.

Noting that det(H0(0)) = 1, the Laurent expansion of H0(0)−1Ė−(ξ; y)H0(0) about ξ = 0 is
therefore

H0(0)−1Ė−(ξ; y)H0(0) = − c12(y)

W ′0(0)
H0(0)−1R(y)H0(0)σ+ξ

−2

+

(
− c12(y)

W ′0(0)
σ+ −

c12(y)

W ′0(0)
H0(0)−1R(y)H′0(0)σ+

+
c12(y)

W ′0(0)
H0(0)−1R(y)H0(0)σ+H0(0)−1H′0(0)

+ H0(0)−1R(y)H0(0)

(
I +

c12(y)W ′′0 (0)

2W ′0(0)2
σ+

))
ξ−1 +O(1), ξ → 0.

To remove the coefficient of ξ−2, we will again use σ2
+ = 0 to express R(y)H0(0) in the rank-1

form

R(y)H0(0) = a(y)e>2 , e2 :=

[
0
1

]
=⇒ R(y)H0(0)σ+ = 0, (3.36)

and a(y) is a vector unknown yet to be determined. Using this form, two terms in the coefficient
of ξ−1 are automatically cancelled, and the condition that this coefficient also vanish becomes

− c12(y)

W ′0(0)
σ+ −

c12(y)

W ′0(0)
H0(0)−1a(y)e>2 H0(0)−1H′0(0)σ+ + H0(0)−1a(y)e>2 = 0.

The first column is an identity, and after multiplying on the left by H0(0), the second column
reads

− c12(y)

W ′0(0)
H0(0)e1 −

c12(y)

W ′0(0)
a(y)e>2 H0(0)−1H′0(0)e1 + a(y) = 0, e1 :=

[
1
0

]
.
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Since e>2 H0(0)−1H′0(0)e1 is a scalar, the solution is explicitly given by

a(y) := c̃12(y)H0(0)e1, c̃12(y) :=
c12(y)

W ′0(0)− c12(y)e>2 H0(0)−1H′0(0)e1
, (3.37)

provided the denominator of the coefficient c̃12(y) is nonzero. Since W ′0(0) > 0 and H0(ξ) are
independent of y, while c12(y) = O

(
y−3/4+3Re(iq)/2

)
as y → +∞, it is clear that c̃12(y) will be

well-defined and will also satisfy c̃12(y) = O
(
y−3/4+3Re(iq)/2

)
if Re(iq) < 1

2 . This is a decaying

estimate as y → +∞. Only in the case Re(iq) = 1
2 is it even possible for Ė(ξ; y) to fail to exist for

sufficiently large positive y. In the latter case, by excluding neighborhoods of certain points, we
may still assume that c̃12(y) = O(1) as y → +∞. Thus it is certainly true that Ė(ξ; y) = O(1)
as y → +∞ with the above caveat if Re(iq) = 1

2 . Since det(Ė(ξ; y)) = 1 the same holds for the
inverse matrix.

Using the rational expression (3.35) together with (3.36) and (3.37) and the identity e1e
>
2 =σ+

then shows that

Ė(ξ; y) = I + c̃12(y)H0(0)σ+H0(0)−1ξ−1, ξ ∈ C \D(0). (3.38)

3.3.2 Second parametrix for the error

We now compare the initial error matrix E(ξ; y) with its parametrix Ė(ξ; y) by setting F(ξ; y) :=
E(ξ; y)Ė(ξ; y)−1. Clearly, F(ξ; y) is analytic in the same domain as is E(ξ; y), and takes its
boundary values on the jump contour in the same continuous fashion. Moreover, since we
require E(ξ; y) → I as ξ → ∞, we also have the corresponding condition on F(ξ; y) because
Ė(ξ; y) → I as ξ → ∞. For all points ξ on the jump contour for E omitting the circle ∂D(0),
we use the uniform estimate on Ė(ξ; y) and its inverse to conclude that the previously obtained
estimates of the deviation of the jump matrix for E(ξ; y) from the identity persist. Hence

F+(ξ; y) = F−(ξ; y)
(
I +O

(
y−3/2

))
, ξ ∈ ΣF \ ∂D(0), (3.39)

where the estimate is in the L∞ sense, but the error term also decays exponentially to zero in
both ξ →∞ and y > 0 along unbounded portions of ΣF. On the circle ∂D(0) where E+(ξ; y) =

E−(ξ; y)VE(ξ; y) and Ė+(ξ; y) = Ė−(ξ; y)VĖ(ξ; y), we have F+(ξ; y) = F−(ξ; y)VF(ξ; y), where

VF(ξ; y) = Ė+(ξ; y)VĖ(ξ; y)−1VE(ξ; y)Ė+(ξ; y)−1, ξ ∈ ∂D(0).

Now, using c12(y) = O(1) along with σ2
+ = 0 and the fact that over the whole range −1

2 <

Re(iq) ≤ 1
2 we have c12(y)c21(y) = O

(
y−3/2

)
as y → +∞, we get

VĖ(ξ; y)−1VE(ξ; y) = H0(ξ)

(
I− c12(y)

W0(ξ)
σ+

)
×
(
I +

c12(y)

W0(ξ)
σ+ −

c21(y)

W0(ξ)
σ− +O

(
y−3/2

))
H0(ξ)−1

= H0(ξ)

(
I− c21(y)

W0(ξ)
σ− +O

(
y−3/2

))
H0(ξ)−1, ξ ∈ ∂D(0),

where σ− := σ>+. Therefore, using (3.38) and defining B(ξ) := H0(0)−1H0(ξ),

H0(0)−1VF(ξ; y)H0(0)

=
(
I + c̃12(y)σ+ξ

−1
)
B(ξ)

(
I− c21(y)

W0(ξ)
σ− +O

(
y−3/2

))
B(ξ)−1

(
I− c̃12(y)σ+ξ

−1
)

= I− c21(y)

W0(ξ)
B(ξ)σ−B(ξ)−1 +O

(
y−3/2

)
, ξ ∈ ∂D(0),
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where again we used σ2
+ = 0 and took into account that c̃12(y)c21(y) = O

(
y−3/2

)
and that

c̃12(y) = O(1). Therefore conjugating again by H0(0),

VF(ξ; y) = I− c21(y)

W0(ξ)
H0(ξ)σ−H0(ξ)−1 +O

(
y−3/2

)
, ξ ∈ ∂D(0), y → +∞. (3.40)

This form suggests that we might finally arrive at a small-norm target problem with jump
matrices uniformly deviating from the identity by O

(
y−3/2

)
if we choose to remove the term

proportional to c21(y) by a second parametrix for the error, which we denote by Ḟ(ξ; y). Tech-
nically, since c21(y) = O

(
y−3/4−3Re(iq)/2

)
which is o(1) as y → +∞ over the whole range of

values −1
2 < Re(iq) ≤ 1

2 , F(ξ; y) already satisfies the conditions of a small-norm problem, but it

is convenient to first construct Ḟ(ξ; y) and then compare to F(ξ; y) before obtaining estimates
from small-norm theory.

Therefore, we define Ḟ(ξ; y) as the matrix analytic for ξ ∈ C \ ∂D(0), normalized to the
identity as ξ → ∞, and whose continuous boundary values on ∂D(0) are related by the jump
condition

Ḟ+(ξ; y) = Ḟ−(ξ; y)

(
I− c21(y)

W0(ξ)
H0(ξ)σ−H0(ξ)−1

)
, ξ ∈ ∂D(0). (3.41)

Of course, the solution of this problem is very similar to that for Ė(ξ; y), and we obtain the
result that

Ḟ(ξ; y) = I− c̃21(y)H0(0)σ−H0(0)−1ξ−1,

c̃21(y) :=
c21(y)

W ′0(0) + c21(y)e>1 H0(0)−1H′0(0)e2
, ξ ∈ C \D(0), (3.42)

and one can check directly that Ḟ−(ξ; y), obtained from evaluating the above expression on ∂D(0)
as Ḟ+(ξ; y) and applying the jump condition (3.41), admits analytic continuation to the interior
of D(0). Unlike c̃12(y) for which existence may require conditions on arbitrarily large y > 0 if
Re(iq) = 1

2 , c̃21(y) always exists as long as y > 0 is sufficiently large and −1
2 < Re(iq) ≤ 1

2 .

3.3.3 Improved error analysis

We finally set

G(ξ; y) := F(ξ; y)Ḟ(ξ; y)−1.

Carrying forward the conditions on y → +∞ sufficient to guarantee that c̃12(y) = O(1) as
y → +∞ (no conditions needed unless Re(iq) = 1

2 in which case it may be necessary to exclude
certain intervals), we can show that G(ξ; y) satisfies the conditions of a small-norm Riemann–
Hilbert problem. Clearly, G(ξ; y) is analytic in the domain ξ ∈ C \ ΣG, where ΣG = ΣF = ΣE,
and G(ξ; y) → I as ξ → ∞ as this normalization holds for both factors in the definition. It
remains to estimate the difference of the jump matrix for G from the identity. First note that
since Ḟ(ξ; y) and Ḟ(ξ; y)−1 are bounded uniformly for y > 0 sufficiently large, it is easy to see
that the estimate (3.39) implies a similar estimate for G(ξ; y):

G+(ξ; y) = G−(ξ; y)
(
I +O

(
y−3/2

))
, ξ ∈ ΣG \ ∂D(0) (3.43)

again with the estimate holding uniformly and also exhibiting exponential decay in both y > 0
and |ξ| on unbounded arcs of ΣG. Because the jump condition (3.41) for Ḟ(ξ; y) on ∂D(0) takes
into account everything except the O

(
y−3/2

)
error term in the jump matrix (3.40) for F(ξ; y), it

is easy to show that the estimate (3.43) extends also to ξ ∈ ∂D(0). Through standard analysis of
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a system of singular integral equations equivalent to the Riemann–Hilbert conditions for G(ξ; y)
(completely analogous to (2.15)) it follows that G(ξ; y) exists for y > 0 sufficiently large (again
with possible exclusions if Re(iq) = 1

2) and satisfies

G(ξ; y) = I + G1(y)ξ−1 + G2(y)ξ−2 +O
(
ξ−3
)
, ξ →∞, (3.44)

where the limit ξ →∞may be taken in any direction, and in which the moments Gk(y), k = 1, 2,
satisfy the estimate Gk(y) = O

(
y−3/2

)
as y → +∞.

Now Z(ξ; y) = E(ξ; y)Ż(ξ; y) = F(ξ; y)Ė(ξ; y)Ż(ξ; y) = G(ξ; y)Ḟ(ξ; y)Ė(ξ; y)Ż(ξ; y). Pro-
vided that ξ = ζy−1/2 is sufficiently large, we may take the rational forms (3.38) and (3.42) for
Ė(ξ; y) and Ḟ(ξ; y) respectively, and also we will have Ż(ξ; y) = Żout(ξ). Therefore, for such ξ,
we have the exact formula

W(ζ; y)ζ ipσ3 = y−ipσ3/2Y
(
y−1/2ζ; y

)
ζ ipσ3

= y−ipσ3/2Z
(
y−1/2ζ; y

)(
y−1/2ζ

)ipσ3eiy3/2g(y−1/2ζ)σ3yipσ3/2

= y−ipσ3/2G
(
y−1/2ζ; y

)
Ḟ
(
y−1/2ζ; y

)
Ė
(
y−1/2ζ; y

)
K
(
y−1/2ζ

)
× ej(y

−1/2ζ)σ3eiy3/2g(y−1/2ζ)σ3yipσ3/2.

This expression admits an asymptotic expansion in descending non-negative powers of ζ−1 as
ζ →∞, i.e., of the form of the expansion in parentheses on the first line of (2.1). It is straight-
forward but tedious to calculate explicitly the first two coefficients W1(y) and W2(y) by combi-
ning (3.44), the rational expressions (3.38) and (3.42), the large-ξ expansion of K(ξ) (see (3.18)):

K(ξ) = I +

[
0 6ip−1/2

−6−ip−1/2 0

]
ξ−1 − 1

12
Iξ−2 +O

(
ξ−3
)
, ξ →∞,

and the expansion (see (3.3) and (3.15))

ej(ξ)σ3eiy3/2g(ξ)σ3 = I +

(
−
√

2

3
q +

1

12
y3/2

)
iσ3ξ

−1

+

(
−1

6
ipσ3 −

1

3
q2I +

1

12

√
2

3
qy3/2I− 1

288
y3I

)
ξ−2 +O

(
ξ−3
)
, ξ →∞.

In substituting from the formulæ (3.38) and (3.42), we use the fact

H0(0)σ±H0(0)−1 =
1

2
W ′0(0)±2iqe±(2iη−2k(0))

[
1 ∓e2iη

±e−2iη −1

]
=

1

2

(
32

3

)±iq/2 [
1 ∓6ip

±6−ip −1

]
,

which follows from (3.31) with the help of (3.14), (3.17), and (3.25), recalling also (3.1). This
leads to the following exact formulæ for V(y) and Q(y):

V(y) = W 1
21(y) = yip+1/2

(
−6−(ip+1/2) +

1

2

(
32

3

)iq/2

6−ipc̃12(y)

+
1

2

(
32

3

)−iq/2

6−ipc̃21(y) +G1
21(y)

)
, (3.45)
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and

Q(y) = iW 1
11(y)− i

W 2
21(y)

W 1
21(y)

= iy1/2

(
1

2

(
32

3

)iq/2

c̃12(y)− 1

2

(
32

3

)−iq/2

c̃21(y) +G1
11(y)

)
− iyip+1N (y)

V(y)
,

where

N (y) :=
1

2

(
32

3

)iq/2

6−ip−1/2c̃12(y)− 1

2

(
32

3

)−iq/2

6−ip−1/2c̃21(y) +
1

2
6−ipc̃12(y)c̃21(y)

+G2
21(y)− 6−ip−1/2G1

22(y) +
1

2

(
32

3

)iq/2

c̃12(y)
(
G1

21(y) + 6−ipG1
22(y)

)
− 1

2

(
32

3

)−iq/2

c̃21(y)
(
G1

21(y)− 6−ipG1
22(y)

)
. (3.46)

Suppose now that −1
2 < Re(iq) < 1

2 , so we are excluding only the endpoint case Re(iq) = 1
2 .

Then from (3.34) we see that c12(y) and c21(y) both decay algebraically as y → +∞, so from
(3.37) and (3.42) we get (also using (3.25)) that

c̃12(y) =

(
2

3

)1/4

c12(y) +O
(
c12(y)2

)
and

c̃21(y) =

(
2

3

)1/4

c21(y) +O
(
c21(y)2

)
, y → +∞. (3.47)

Furthermore, this condition on q guarantees that we are in the small-norm setting for G(ξ; y),
so Gk(y) = O

(
y−3/2

)
holds for k = 1, 2. Then, using (3.34) again we see that (3.45) becomes

simply

V(y) = −
(y

6

)ip+1/2 (
1 +O

(
y−3/4+3|Re(iq)|/2))

= −
(y

6

)ip+1/2
(1 + o(1)), y → +∞. (3.48)

This becomes (1.12) when p = ln(2)/(2π), which means Re(iq) = 0. Similarly, all but the terms
on the first line of (3.46) are O

(
y−3/2

)
, so using (3.34) and (3.47),

N (y) = 24−1/46−ip−1/2y−3/4

×

[
τ
√
πeπq/2

Γ(iq)
e−iπ/4

(
128

3

)iq/2

e−i(2y/3)3/2y3iq/2
(
1 +O

(
y−3/4+3Re(iq)/2

))
− qΓ(iq)e−πq/2

2τ
√
π

eiπ/4

(
128

3

)−iq/2

ei(2y/3)3/2y−3iq/2
(
1 +O

(
y−3/4−3Re(iq)/2

))]
+O

(
y−3/2

)
= 24−1/46−ip−1/2y−3/4

[
τ
√
πeπq/2

Γ(iq)
e−iπ/4

(
128

3

)iq/2

e−i(2y/3)3/2y3iq/2

− qΓ(iq)e−πq/2

2τ
√
π

eiπ/4

(
128

3

)−iq/2

ei(2y/3)3/2y−3iq/2

]
+O

(
y−3/2+3|Re(iq)|), y → +∞.
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The two terms in square brackets are only of equal size in the limit y → +∞ if Re(iq) = 0.
Thus, keeping only the leading term(s), there are three different asymptotic formulæ for Q(y)
in the limit y → +∞ assuming that −1

2 < Re(iq) < 1
2 :

Q(y) =
qΓ(iq)e−πq/2

241/4τ
√
π

e−iπ/4

(
128

3

)−iq/2

ei(2y/3)3/2y−1/4−3iq/2
(
1 +O

(
yM

−(q)
))
,

y → +∞, −1

2
< Re(iq) < 0, M−(q) := max

{
−3

4
− 3

2
Re(iq), 3Re(iq)

}
< 0,

Q(y) =
2τ
√
πeπq/2

241/4Γ(iq)
eiπ/4

(
128

3

)iq/2

e−i(2y/3)3/2y−1/4+3iq/2
(
1 +O

(
yM

+(q)
))
,

y → +∞, 0 < Re(iq) <
1

2
, M+(q) := max

{
−3

4
+

3

2
Re(iq),−3Re(iq)

}
< 0,

and, using the identity [26, equation (5.4.3)] and the relations µ = τ−1 and µ2 = e2πq − 1,

Q(y) = −
2τ
√

2q(e2πq − 1)

(24y)1/4
sin(Θ(y)) +O

(
y−1
)
,

y → +∞, Θ(y) := −
(

2

3
y

)3/2

+
3

2
q ln(y)− 1

4
π +

1

2
q ln

(
128

3

)
− arg(Γ(iq)), q ∈ R.

It is straightforward to translate these formulæ into corresponding the asymptotic formulæ for

u−TT(x;α) = −
(

3
2

)1/3Q(−(3
2

)1/3
x
)

given in the statement of Theorem 1.2, where α = 1
2 + ip. In

doing so, one must express q and τ explicitly in terms of α, or equivalently, p, which results in
the definitions (1.6)–(1.7). This concludes the proof of Theorem 1.2.

4 Proof of Theorem 1.3

The computation of total integrals of Painlevé-II solutions u(x;α) is fairly straightforward when
such solutions are extracted from a Riemann–Hilbert problem associated with the Jimbo–Miwa
Lax pair because the “fundamental” potentials in this setting are the quantities U(y) and V(y)
(see (2.6)) whose asymptotics are easiest to compute for large |y| and whose logarithmic deriva-
tives yield solutions of Painlevé-II.

Since V ′(y)/V(y) = Q(y) and since (2.20) gives asymptotics for Q(y) as y → −∞ up to an
error term that it absolutely integrable in this limit, it is easy to see that

V(y) = K
e−2i(−y/3)3/2

(−3y)1/4+ip/2
exp

(∫ y

−∞

[
Q(η)− i

√
−η

3
+

(
1

4
+ i

p

2

)
1

η

]
dη

)
holds for sufficiently negative y, where K is an integration constant, and where the integral in
the exponent is absolutely convergent. The integration constant K is easily determined from
the asymptotic formula (1.11) valid for V(y) as y → −∞. Therefore we have the representation

V(y) =
τpΓ(ip)e−3πi/4

21+ip
√
πeπp/2

e−2i(−y/3)3/2

(−3y)1/4+ip/2

× exp

(∫ y

−∞

[
Q(η)− i

√
−η

3
+

(
1

4
+ i

p

2

)
1

η

]
dη

)
, (4.1)

which is valid for y < 0 of sufficiently large magnitude that it lies to the left of all real poles
of Q(y).
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Pick a < 0 and b > 0 so that all real poles of Q lie in the interval (a, b). This is possible under
the hypothesis Re(iq) 6= 1

2 according to the defining asymptotic formula (1.4) and Theorem 1.2.
Then using the formula (4.1) for y = a and again the relation V ′(y)/V(y) = Q(y), we get the
following formula, now valid for y > b:

V(y) =
τpΓ(ip)e−3πi/4

21+ip
√
πeπp/2

e−2i(−a/3)3/2

(−3a)1/4+ip/2
exp

(∫ a

−∞

[
Q(η)− i

√
−η

3
+

(
1

4
+ i

p

2

)
1

η

]
dη

+

∫
C(a,b)

Q(η) dη +

∫ y

b
Q(η) dη

)
. (4.2)

Here, C(a, b) is any contour in the complex plane from a to b that avoids all poles of Q. Now
rewriting (3.48) for y > b in the form

V(y) = −
(
b

6

)1/2+ip

exp

(∫ y

b

(
1

2
+ ip

)
dη

η

)
(1 + o(1)),

y → +∞, −1

2
< Re(iq) <

1

2
,

we compare with (4.2) and eliminate V(y) to find

exp

(∫ a

−∞

[
Q(η)− i

√
−η

3
+

(
1

4
+ i

p

2

)
1

η

]
dη

+

∫
C(a,b)

Q(η) dη +

∫ y

b

[
Q(η)−

(
1

2
+ ip

)
1

η

]
dη

)

=

√
2πe2i(−a/3)3/2

τpΓ(ip)
e−iπ(1/2+ip)/2

(
b

√
−a

3

)1/2+ip

(1 + o(1)),

y → +∞, −1

2
Re(iq) <

1

2
. (4.3)

Taking the limit y → +∞ in (4.3) yields the total integral identity

exp

(∫ a

−∞

[
Q(y)− i

√
−y

3
+

(
1

4
+ i

p

2

)
1

y

]
dy

+

∫
C(a,b)

Q(y) dy +

∫ +∞

b

[
Q(y)−

(
1

2
+ ip

)
1

y

]
dy

)

=

√
2πe2i(−a/3)3/2

τpΓ(ip)
e−iπ(1/2+ip)/2

(
b

√
−a

3

)1/2+ip

, −1

2
< Re(iq) <

1

2
,

in which the integral over the interval (b,+∞) is not generally absolutely convergent, but it
necessarily makes sense as an improper integral. Suppose that we take for C(a, b) a real path
with infinitesimal semicircular indentations in the lower half-plane centered at each real pole
of Q. It is well-known that all poles of Q are simple and have residue ±1. Therefore,∫

C(a,b)
Q(y) dy = P.V.

∫ b

a
Q(y) dy + iπ(N+ −N−),

where “P.V.” denotes the Hadamard principal value and N± is the number of real poles of Q of
residue ±1.

Setting A := −(2
3)1/3b < 0 and B := −(2

3)1/3a > 0 so all real poles of u−TT(x;α) =

−
(

3
2

)1/3Q(−
(

3
2

)1/3
x) lie in the interval (A,B), we have established the total integral formu-

la (1.10) for the increasing tritronquée solution u = u−TT(x;α) of (1.1). This completes the proof
of Theorem 1.3.
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Figure 8. The jump contour and jump matrix ṼPII(ζ; y) for W̃(ζ; y). On the segments of the jump

contour within the unit disk, the jump matrix is exactly as shown in Fig. 3.

5 Proof of Theorem 1.4

When p > 0, which also implies that τ ∈ R, Riemann–Hilbert Problem 2.1 has a unique solution
for every y ∈ R as a consequence of Zhou’s vanishing lemma [29]. Indeed, let us define a modified

unknown W̃ as W̃ := W for |ζ| < 1 and W̃ := Wζ ipσ3 for |ζ| > 1. This transformation removes
the jump from the negative real axis for |ζ| > 1, modifies the remaining jump matrices for
|ζ| > 1 by conjugation, and introduces a new diagonal jump across the unit circle. For the
latter, it is convenient in the setting of [29] to take the upper and lower semicircles both to

be oriented from left to right. The jump conditions for W̃(ζ; y) are illustrated in Fig. 8. Now

W̃(ζ; y) satisfies the conditions of an identity-normalized (as ζ →∞) Riemann–Hilbert problem
whose jump matrix is easily checked to satisfy the cyclic condition at each self-intersection point
that is necessary for consistency. Moreover, when p > 0 and y ∈ R, the jump matrix satisfies
ṼPII(ζ; y) = ṼPII(ζ∗; y)† for all non-real ζ and that ṼPII(ζ; y) + ṼPII(ζ; y)† is positive-definite
for all real ζ in the jump contour. The vanishing lemma [29] therefore guarantees the existence

of W̃(ζ; y), which also yields W(ζ; y) by inverting the substitution made for |ζ| > 1. Uniqueness
of the solution is standard, as is the fact that the solution satisfies det(W(ζ; y)) = 1.

The existence of a solution of Riemann–Hilbert Problem 2.1 for every real y when p > 0
actually implies via analytic Fredholm theory that the functions U(y) and V(y) defined by (2.6)
are analytic for y ∈ R. Moreover, these functions are Schwarz reflections of each other: V(y) =
−U(y∗)∗. The relation (2.8) then implies that U(y) and V(y) cannot have any real zeros unless
p = 0 (in which case they vanish identically because W(ζ; y) ≡ I), because U(y) and V(y) would
have to vanish simultaneously. The same argument shows that U(y) and V(y) cannot have any
real critical points for positive real p. Therefore, when p > 0, P(y) and Q(y) defined by (2.9) are
nonvanishing analytic functions for y ∈ R, and they are related by the symmetry Q(y) = P(y∗)∗.
This implies that when p > 0, the increasing tritronquée solution u = u−TT

(
x; 1

2 + ip
)

of (1.1)
for α = 1

2 + ip is globally analytic and nonvanishing for real x. Applying the symmetries (1.5)
for x ∈ R then shows that u−TT

(
x,−1

2 + ip
)
, u+

TT

(
x, 1

2 − ip
)
, and u+

TT

(
x,−1

2 − ip
)

are global
nonvanishing solutions for x ∈ R whenever p > 0. This completes the proof of Theorem 1.4.
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Figure 9. The jump contour in the λ-plane and jump matrix VPC.

Appendix A. Parabolic cylinder function parametrix

Consider the contour shown in Fig. 9 and the indicated jump matrix defined thereon.

Riemann–Hilbert Problem A.1 (parabolic cylinder parametrix). Let p, τ ∈ C be related by
τ2 = e2πp−1. Seek a 2×2 matrix-valued function P(λ) = P(λ; p, τ) with the following properties.

Analyticity: P(λ) is analytic for λ in the five sectors S0 : | arg(λ)| < 1
4π, S1 : 1

4π <
arg(λ) < 3

4π, S−1 : − 3
4π < arg(λ) < −1

4π, S2 : 3
4π < arg(λ) < π, and S−2 : − π <

arg(λ) < −3
4π. It takes continuous boundary values on the excluded rays and at the origin

from each sector.

Jump conditions: P+(λ) = P−(λ)VPC(λ), where VPC(λ) is the matrix function defined
on the jump contour shown in Fig. 9.

Normalization: P(λ)λipσ3 → I as λ→∞ uniformly in all directions.

To solve Riemann–Hilbert Problem A.1, first note that there can be at most one solution,
and if it exists it must have unit determinant. This problem has no solution if p ∈ iZ \ {0} for
the same reason as in the case of Riemann–Hilbert Problem 2.1, and its solution is P(λ) ≡ I if
p = 0.

Therefore we now assume that p 6∈ iZ, and consider the matrix Q(λ) := P(λ)e−iλ2σ3/2.
This change of variables removes the exponentials e±iλ2 from the jump conditions, from which it
follows that Q′(λ) and Q(λ) satisfy exactly the same jump conditions. Appealing to invertibility
and the specified regular behavior of P near λ = 0 we see that Q′(λ)Q(λ)−1 is an entire
function of λ. If P(λ) has an asymptotic expansion as λ→∞ consistent with the normalization
condition and hence of the form P(λ) =

(
I + λ−1P[1] + · · ·

)
λ−ipσ3 , the additional assumption

that the series is differentiable term-by-term with respect to λ shows by a Liouville argument
that Q′(λ)Q(λ)−1 = −iλσ3 + i

[
σ3,P

[1]
]
; therefore Q(λ) is a matrix solution of the first-order

system

dQ

dλ
=

[
−iλ r
s iλ

]
Q, r := 2iP

[1]
12 , s := −2iP

[1]
21 . (A.1)
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Eliminating the second row of Q and rescaling by t =
√

2e−iπ/4λ shows that the first row
elements of Q satisfy Weber’s equation for parabolic cylinder functions [26, equation (12.2.2)]

d2Q1k

dt2
−
(

1

4
t2 + a

)
Q1k = 0, a :=

1

2
(1 + irs), k = 1, 2.

This differential equation has particular solutions U(a,±t) and U(−a,±it), and the special func-
tion U(·, ·) is described in detail in [26, Section 12]. In each of the five sectors, the general solution
can be written as a linear combination of a suitable “numerically satisfactory” fundamental pair:

Q1k(λ) =



rA
(0)
k U(a, t) + rB

(0)
k U(−a, it), λ ∈ S0,

rA
(1)
k U(a, t) + rB

(1)
k U(−a,−it), λ ∈ S1,

rA
(−1)
k U(a,−t) + rB

(−1)
k U(−a, it), λ ∈ S−1,

rA
(2)
k U(a,−t) + rB

(2)
k U(−a,−it), λ ∈ S2,

rA
(−2)
k U(a,−t) + rB

(−2)
k U(−a,−it), λ ∈ S−2.

The first row of the matrix differential equation (A.1) then gives the elements of the second
row explicitly in terms of those of the first and their derivatives; however the derivatives can be
eliminated using [26, equations (12.8.2)–(12.8.3)], and we therefore obtain

Q2k(λ) =
√

2e−iπ/4



−A(0)
k U(a− 1, t) + i

(
a− 1

2

)
B

(0)
k U(1− a, it), λ ∈ S0,

−A(1)
k U(a− 1, t)− i

(
a− 1

2

)
B

(1)
k U(1− a,−it), λ ∈ S1,

A
(−1)
k U(a− 1,−t) + i

(
a− 1

2

)
B

(−1)
k U(1− a, it), λ ∈ S−1,

A
(2)
k U(a− 1,−t)− i

(
a− 1

2

)
B

(2)
k U(1− a,−it), λ ∈ S2,

A
(−2)
k U(a− 1,−t)− i

(
a− 1

2

)
B

(−2)
k U(1− a,−it), λ ∈ S−2.

In each sector, the asymptotic expansion [26, equation (12.9.1)]:

U (a, t) ∼ e−
1
4
t2t−a−

1
2

∞∑
j=0

(−1)j

(
1
2 + a

)
2j

j!(2t2)j
, t→∞, | arg(t)| < 3

4
π (A.2)

can be used to obtain the asymptotic behavior of the matrix elements of Q(λ). Since the
normalization condition on P(λ) = Q(λ)eiλ2σ3/2 = Q(λ)e−t

2σ3/4 forbids exponential growth, it

is necessary that A
(i)
1 = 0 and B

(i)
2 = 0 for all sector indices i = 0,±1,±2. From the jump

conditions it follows that the second column of Q must match between sectors S0 and S1, as

well as between sectors S−1 and S−2. This implies that A
(0)
2 = A

(1)
2 and that A

(−1)
2 = A

(−2)
2 .

Similarly, the first column of Q must match between sectors S0 and S−1, as well as between

sectors S1 and S2. This implies that B
(0)
1 = B

(−1)
1 and that B

(1)
1 = B

(2)
1 . Lastly, the jump

condition between sectors S2 and S−2 implies that B
(−2)
1 = e−2πpB

(2)
1 = e−2πpB

(1)
1 and that

A
(2)
2 = e−2πpA

(−2)
2 = e−2πpA

(−1)
2 . Therefore, if Q(i)(λ) denotes the restriction of Q(λ) to λ ∈ Si,

we have so far found that

Q(0)(λ) =

[
rB

(0)
1 U(−a, it) rA

(0)
2 U(a, t)√

2eiπ/4
(
a− 1

2

)
B

(0)
1 U(1− a, it)

√
2e3iπ/4A

(0)
2 U(a− 1, t)

]
, λ ∈ S0, (A.3)

Q(1)(λ) =

[
rB

(1)
1 U(−a,−it) rA

(0)
2 U(a, t)√

2e−3iπ/4
(
a− 1

2

)
B

(1)
1 U(1− a,−it)

√
2e3iπ/4A

(0)
2 U(a− 1, t)

]
, λ ∈ S1,

Q(−1)(λ) =

[
rB

(0)
1 U(−a, it) rA

(−1)
2 U(a,−t)√

2eiπ/4
(
a− 1

2

)
B

(0)
1 U(1− a, it)

√
2e−iπ/4A

(−1)
2 U(a− 1,−t)

]
, λ ∈ S−1,
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Q(2)(λ) =

[
rB

(1)
1 U(−a,−it) e−2πprA

(−1)
2 U(a,−t)√

2e−3iπ/4
(
a− 1

2

)
B

(1)
1 U(1− a,−it) e−2πp

√
2e−iπ/4A

(−1)
2 U(a− 1,−t)

]
,

λ ∈ S2,

Q(−2)(λ) =

[
e−2πprB

(1)
1 U(−a,−it) rA

(−1)
2 U(a,−t)

e−2πp
√

2e−3iπ/4
(
a− 1

2

)
B

(1)
1 U(1− a,−it)

√
2e−iπ/4A

(−1)
2 U(a− 1,−t)

]
,

λ ∈ S−2. (A.4)

Now taking λ → ∞ in each sector we find that the matrix P(λ) = Q(λ)eiλ2σ3/2 satisfies the
required normalization condition provided that

a =
1

2
− ip which implies that rs = −2p, (A.5)

and that the remaining unknown coefficients are subject to the following:

rB
(0)
1 = e−πp/4eip ln(2)/2, A

(0)
2 =

e−3iπ/4

√
2

e−πp/4e−ip ln(2)/2,

rB
(1)
1 = e3πp/4eip ln(2)/2, A

(−1)
2 =

eiπ/4

√
2

e3πp/4e−ip ln(2)/2. (A.6)

Only the values of the constants r and s remain undetermined. It is interesting to observe
that if one tries to use the definitions in (A.1) to find r and s from the formulæ (A.3)–(A.4)
after substituting from (A.5) and (A.6) and using the asymptotic expansion (A.2) for the off-
diagonal entries, one finds simply the truisms r = r and s = s. These constants must therefore
be determined from the only other information we have not yet used: the nontrivial jumps
captured by the first (resp. second) column of the jump matrix VPC for arg(λ) = 1

4π,−
3
4π

(resp. for arg(λ) = −1
4π,

3
4π). In particular, the jump condition for arg(λ) = 1

4π requires that

Q
(1)
11 (λ) = Q

(0)
11 (λ) + τQ

(0)
12 (λ),

which given all available information is equivalent to the condition

eiπ(a+1/2)/2U(−a,−it) + e−iπ(1+1/2)/2U(−a, it)

= τr
e−iπ/4

√
2

e−πp/2e−ip ln(2)U(a, t), a =
1

2
− ip, arg(t) = 0.

But it is easy to check that this matches the connection formula [26, equation (12.2.18)] for the
parabolic cylinder function U(·, ·) provided that

r = r(p, τ) := 2eiπ/4√π eπp/2eip ln(2)

τΓ(ip)
. (A.7)

Using (A.5) one then deduces that

s = s(p, τ) = − 2p

r(p, τ)
=

e3iπ/4

√
π
τpΓ(ip)e−πp/2e−ip ln(2). (A.8)

At last all free parameters have been determined, and it is straightforward to verify with the use
of connection formulæ for U(·, ·) that the other jump conditions that we have not yet enforced
are automatically satisfied.
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Remark A.2. In fact, the unenforced jump conditions cannot contain any further information,
because the cyclic product of the jump matrices for Q is the identity (as must be the case for
consistency at the origin). This matrix identity modulo unit determinant amounts to three
conditions, which determine all of the off-diagonal entries of VPC given any one of them.

This completes the solution of Riemann–Hilbert Problem A.1. We pause to point out that
the normalization condition on P(λ) = P(λ; p, τ) indeed holds in every sense we assumed at
the start in order to derive the differential equation (A.1), and therefore in particular from the
asymptotic expansion (A.2),

P(λ; p, τ)λipσ3 = I +
1

2iλ

[
0 r(p, τ)

−s(p, τ) 0

]
+

[
O
(
λ−2

)
O
(
λ−3

)
O
(
λ−3

)
O
(
λ−2

)] , λ→∞. (A.9)

In fact, (A.2) shows that the diagonal (resp. off-diagonal) elements have explicit asymptotic
expansions in descending even (resp. odd) powers of λ. The full expansion of P(λ)λipσ3 as
λ→∞ is the same in all five sectors.

In the special case that p > 0, which also implies that τ ∈ R, we may use the identity for
the modulus of the gamma function on the imaginary axis (see [26, equation (5.4.3)]) to deduce
that s = −r∗.
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