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Abstract. This is a review article exploring similarities between moduli of quiver represen-
tations and moduli of vector bundles over a smooth projective curve. After describing the
basic properties of these moduli problems and constructions of their moduli spaces via geo-
metric invariant theory and symplectic reduction, we introduce their hyperkähler analogues:
moduli spaces of representations of a doubled quiver satisfying certain relations imposed by
a moment map and moduli spaces of Higgs bundles. Finally, we survey a surprising link
between the counts of absolutely indecomposable objects over finite fields and the Betti
cohomology of these (complex) hyperkähler moduli spaces due to work of Crawley-Boevey
and Van den Bergh and Hausel, Letellier and Rodriguez-Villegas in the quiver setting, and
work of Schiffmann in the bundle setting.
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1 Introduction

The goal of this survey article is to describe several parallels between moduli of bundles and
quiver representations. The main topics are divided into 3 parts:

• Properties and constructions of moduli spaces (Sections 2 and 3).

• Associated hyperkähler moduli spaces (Section 4).

• Cohomology of hyperkähler moduli spaces and counting indecomposable objects (Sec-
tion 5).

Within the text there are several exercises for the reader, as well as some interesting open
problems.

We will focus on some of the most fundamental and striking similarities between these modu-
li problems; however, it is not possible to properly survey several important results concerning
these moduli problems with the care they deserve. We will largely omit the study of the asso-
ciated moduli stacks and techniques for studying the cohomology of moduli spaces via Harder–
Narasimhan recursions on the stack [2, 19, 54]. Moreover, we will not discuss Hall algebras
associated to these moduli problems in any depth, or the relationship with Donaldson–Thomas
theory; for a comprehensive introduction to Hall algebras see [57].

Moduli of quiver representations generalise many natural problems in linear algebra (for ex-
ample, the classification of similar matrices via Jordan normal form). Despite their seemingly
simple nature, quiver moduli spaces are ubiquitous in algebraic geometry (in fact, every projec-
tive variety arises as a quiver grassmannian [55]). Moreover, the study of such moduli spaces
can shed light on related moduli problems and questions in representation theory.

The moduli problem most closely related to that of quiver representations is moduli of vec-
tor bundles (or coherent sheaves) on a smooth projective curve. Both moduli problems have
associated abelian categories of homological dimension 1 and have associated moduli stacks
which are smooth. In order to construct moduli spaces, one must restrict to a class of stable
(or semistable) objects, then one obtains smooth moduli spaces of stable objects. These mo-
duli spaces can be constructed as algebraic quotients using geometric invariant theory [46] (for
bundles, the construction was given by Mumford, Newstead and Seshadri [46, 50, 62], and for
quivers, this construction was given by King [37]), or, when over the complex numbers, via
symplectic reduction. In fact, quiver moduli spaces have a finite dimensional symplectic con-
struction, whereas moduli of vector bundles have an infinite dimensional gauge-theoretic sym-
plectic construction [2]. For quivers, the algebraic and symplectic quotients are homeomorphic
via the Kempf–Ness theorem [36, 37]. The Kobayshi–Hitchin correspondence [15, 48, 65] gives
the corresponding relationship for the gauge theoretic constructions of moduli spaces of vector
bundles. Before proceeding, let us mention one important difference between moduli spaces of
bundles and quiver representations: although moduli spaces of semistable vector bundles on
a curve provide compactifications of moduli spaces of stable vector bundles, moduli spaces of
semistable quiver representations are only projective over an associated affine quiver variety.

We then turn to the study of associated (non-compact) hyperkähler moduli spaces. The
symplectic constructions of moduli spacesM of quiver representations and vector bundles both
arise by considering a smooth symplectic action of a Lie group on a complex vector space (in
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the case of vector bundles, the group and vector space both have infinite dimension). We can
upgrade this to a hyperkähler setting by taking the cotangent lift of this action and then per-
form a hyperkähler reduction to construct a hyperkähler analogue H ofM such that T ∗M⊂ H.
The hyperkähler reductions we obtain are moduli spaces of representations of a doubled quiver
satisfying certain relations imposed by a moment map (closely related to Nakajima quiver va-
rieties [47]) and moduli spaces of Higgs bundles [24, 63]. We also describe constructions of
submanifolds (known as branes [35]) in these hyperkähler moduli spaces with particularly rich
holomorphic and symplectic geometry [4, 5, 8, 9, 16, 27].

Finally we survey several surprising results relating the counts of absolutely indecomposable
objects of these moduli problems over finite fields and the Betti cohomology of their associated
hyperkähler moduli spaces. For quivers, this is due to work of Crawley-Boevey and Van den
Bergh [13] and Hausel, Letellier and Rodriguez-Villegas [21], and was motivated by Kac’s work
in representation theory [32]. This work inspired Schiffmann [58] to formulate and prove an
analogous statement for bundles, which lead to formulae for the Betti numbers of moduli spaces
of Higgs bundles in the coprime setting.

The structure of this article is as follows: Sections 2 and 3 describe the basic properties and
constructions of moduli spaces of quiver representations and vector bundles respectively. In Sec-
tion 4, we introduce the associated hyperkähler moduli spaces and survey some constructions of
interesting submanifolds known as branes. In Section 5, we provide the proof of Crawley-Boevey
and Van den Bergh relating the counts of absolutely indecomposable quiver representations with
the Betti numbers of the associated hyperkähler moduli spaces, and then sketch how Schiffmann
extends this to bundles.

2 Moduli spaces of quiver representations

2.1 Quiver representations over a field

A quiver Q = (V,A, h, t) is a finite connected directed graph consisting of finite sets of ver-
tices V and arrows A with head and tail maps h, t : A→ V giving the directions of the arrows.
Throughout this section, we fix a field k.

Definition 2.1. A k-representation of Q is a tuple W := ((Wv)v∈V , (ϕa)a∈A) where:

• Wv is a finite-dimensional k-vector space for all v ∈ V ;

• ϕa : Wt(a) →Wh(a) is a k-linear map for all a ∈ A.

The dimension vector of W is the tuple dimW = (dimWv)v∈V . A morphism between two
k-representations W := ((Wv)v∈V , (ϕa)a∈A) and W ′ := ((W ′v)v∈V , (ϕ

′
a)a∈A) is a tuple of linear

maps (fv : Wv →W ′v)v∈V such that for all a ∈ A the following diagram commutes

Wt(a)

ft(a)
��

ϕa //Wh(a)

fh(a)
��

W ′t(a)

ϕ′a //W ′h(a).

The category Rep(Q, k) of k-representations of Q is a k-linear abelian category. For two k-
representations W and W ′ of Q, the set of morphisms between them is a k-vector space denoted
HomQ(W,W ′) and similarly one can consider the spaces of extensions between such representa-
tions.
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Example 2.2 (the Jordan quiver). Let Q be the one loop quiver. Then a k-representation
of Q is a vector space W with an endomorphism φ : W → W . Two representations (W,ϕ) and
(W ′, ϕ′) of Q are isomorphic if dimW = dimW ′ and there is an isomorphism f : W →W ′ such
that f ◦ϕ = ϕ′◦f . In particular, for any representation (W,ϕ) of Q of dimension n we can choose
a basis of W to obtain an isomorphic representation (kn,M), where M ∈ Matn×n(k). A different
choice of basis would replace M with a conjugate matrix SMS−1. Thus the isomorphism classes
of n-dimensional k-representations ofQ are in bijection with conjugacy classes of (n×n)-matrices.
For an algebraically closed field k, we can classify the latter using Jordan normal forms.

Exercise 2.3. For k-representationsW := ((Wv)v∈V , (ϕa)a∈A) andW ′ := ((W ′v)v∈V , (ϕ
′
a)a∈A) of

a quiver Q, show that a tuple φ = (φa)a∈A ∈
∏
a∈A

Hom(Wt(a),W
′
h(a)) determines a representation

of Q

e(W,W ′, φ) :=

(
(W ′v ⊕Wv)v∈V ,

(
ϕ′a φa
0 ϕa

)
a∈A

)
,

which fits into a short exact sequence of quiver representations

0→W ′ → e(W,W ′, φ)→W → 0.

Show that this defines a map β :
∏
a∈A

Hom(Wt(a),W
′
h(a)) → Ext1

Q(W,W ′) which fits in an exact

sequence

0 −→ HomQ(W,W ′) −→
∏
v∈V

Hom(Wv,W
′
v)

α−→
∏
a∈A

Hom(Wt(a),W
′
h(a))

β−→ Ext1
Q(W,W ′) −→ 0,

where α is defined by α((fv)v∈V ) := fh(a) ◦ ϕa − ϕ′a ◦ ft(a). In particular, deduce that

dim HomQ(W,W ′)− dim Ext1
Q(W,W ′) =

∑
v∈V

dimWv dimW ′v −
∑
a∈A

dimWt(a) dimW ′h(a).

Following this observation, we define a bilinear form on the free abelian group on the set of
vertices V .

Definition 2.4. The Euler form associated to Q is a bilinear form on ZV given by

〈d, d′〉Q :=
∑
v∈V

dvd
′
v −

∑
a∈A

dt(a)d
′
h(a),

where d = (dv)v∈V and d′ = (d′v)v∈V . The symmetrised Euler form is defined by

(d, d′)Q := 〈d, d′〉Q + 〈d′, d〉Q,

and the associated Tits quadratic form is defined by qQ(d) := 〈d, d〉Q.

By Exercise 2.3, the Euler form relates the dimensions of the Hom and Ext groups:

〈dimW, dimW ′〉Q = dim HomQ(W,W ′)− dim Ext1
Q(W,W ′).

In fact, we can view this as the Euler characteristic of Hom•Q(W,W ′) as all higher Ext groups
vanish for quiver representations by Exercise 2.6 below.
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Remark 2.5.

1) The Euler form depends on the orientation of Q. The Euler form is symmetric if and only
if Q is symmetric (that is, for any two vertices v and w, we have |a : v → w| = |a : w → v|).

2) The quadratic form qQ on ZV associated to the Euler form only depends on the underlying
graph of the quiver Q. In fact, properties of this quadratic form can be related to the
properties of the underlying graph (for example, if Q is a Dynkin quiver, then qQ is
positive definite [11, Section 4].)

Exercise 2.6 (the category of quiver representations has homological dimension 1). For U ∈
Rep(Q, k), we can apply HomQ(−, U) to any short exact sequence 0→W ′ →W →W ′′ → 0 in
Rep(Q, k) to obtain a long exact sequence

0→ HomQ(W ′′, U)→ HomQ(W,U)→ HomQ(W ′, U)→ Ext1
Q(W ′′, U)→

→ Ext1
Q(W,U)→ Ext1

Q(W ′, U)→ Ext2
Q(W ′′, U)→ · · · .

Using the description of Ext1
Q in Exercise 2.3, prove that Ext1

Q(W,U) → Ext1
Q(W ′, U) is sur-

jective, from which it follows that Ext2
Q(W ′′, U) = 0 for all W ′′ and U and thus Rep(Q, k) has

homological dimension 1.

Remark 2.7. The path algebra k(Q) of Q over k is the k-vector space spanned by all paths
in Q (including a trivial path ev at each vertex v) with multiplication given by concatenation of
paths. In general, this is a non-commutative algebra, which is generated by the paths of length 0
(the vertices V ) and the paths of length 1 (the arrows A). We note that the path algebra is
a finite dimensional k-algebra if and only if Q has no oriented cycles. Moreover, the category
Rep(Q, k) is equivalent to the category of left k(Q)-modules (see [10, Proposition 1.2.2]). One
can also calculate Ext groups of quiver representations by taking projective resolutions of the
associated k(Q)-module.

Definition 2.8. A quiver representation W is

1) simple if it has no proper non-zero subrepresentations,

2) indecomposable if it cannot be written as a direct sum of proper subrepresentations.

Clearly every simple representation is indecomposable.

Exercise 2.9 (Schur’s lemma and simple quiver representations). For a simple k-representa-
tion W of Q, prove that EndQ(W ) is a division algebra using Schur’s lemma. Hence, if k is
algebraically closed, deduce that EndQ(W ) ∼= k and AutQ(W ) ∼= k×.

Example 2.10. For any quiver Q, there are simple representations S(v) indexed by the vertices
of V , where S(v)w is zero for all w 6= v and S(v)v = k and all the linear maps are zero. In fact,
if Q is a quiver without oriented cycles, then these are the only simple representations (see [10,
Proposition 1.3.1]).

Exercise 2.11. Find a quiver Q such that

• there is a simple representation not of the form S(v),

• there is a indecomposable representation which is not simple.

Remark 2.12. For a field extension k ⊂ k′ we have a natural functor

−⊗k k′ : Rep(Q, k)→ Rep(Q, k′)

given by extension of scalars.
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Exercise 2.13. Show that extension of scalars does not in general preserve simple (respectively
indecomposable) quiver representations. For example, consider k = R ⊂ k′ = C with a 2-
dimensional representation of the Jordan quiver.

In fact, the category Rep(Q, k) of k-representations of Q is a Krull–Schmidt category, which
means that the endomorphism ring of every idempotent representation is local (see Lemma 5.17)
and every representation is isomorphic to a finite direct sum of indecomposable representations
(and up to permutation, the indecomposable representations in such a direct sum are uniquely
determined up to isomorphism); for details, see [10, Theorem 1.3.4].

2.2 GIT construction of moduli spaces

In this section, we describe King’s construction [37] of moduli spaces of representations of a quiver
Q = (V,A, h, t) over a field k. We fix a dimension vector d = (dv)v∈V ∈ NV . Then every k-
representation of Q of fixed dimension vector d is isomorphic to a point of the following affine
k-space

Repd(Q) :=
∏
a∈A

Matdh(a)×dt(a) .

The reductive k-group GLd :=
∏
v∈V

GLdv acts algebraically on Repd(Q) by conjugation: for

g = (gv)v∈V ∈ GLd and M = (Ma)a∈A ∈ Repd(Q), we have

g ·M :=
(
gh(a)Mag

−1
t(a)

)
a∈A (2.1)

and the orbits for this action are in bijection with the set of isomorphism classes of d-dimensional
k-representations of Q by Exercise 2.14 below. There is a subgroup ∆ := {(tIdv)v∈V : t ∈ Gm} ⊂
GLd acting trivially on Repd(Q) and therefore a quotient of the action of GLd is equivalent to
a quotient of the action of Gd := GLd/∆. We have that

〈d, d〉Q = dim GLd − dim Repd(Q). (2.2)

Exercise 2.14. Show the orbit and stabiliser of M ∈ Repd(Q)(k) have the following descrip-
tions:

GLd(k) ·M = {M ′ ∈ Repd(Q)(k) : M ′ ∼= M}

and

StabGLd(k)(M) ∼= AutQ(M).

Moreover, deduce from (2.2) and Exercise 2.3 that

dim Ext1
Q(M,M) = codim(GLd(k) ·M).

One would like to construct a moduli space for quiver representations as a quotient of this
action using geometric invariant theory (GIT) [46]. Since Repd(Q) is an affine variety and GLd
is a reductive group, the ring of invariant functions

O(Repd(Q))GLd =
{
f : Repd(Q)→ A1 : g · f = f ∀ g ∈ GLd

}
is a finitely generated k-algebra and the inclusion O(Repd(Q))GLd ↪→ O(Repd(Q)) induces
a GLd-invariant morphism π : Repd(Q) → Repd(Q)//GLd := SpecO(Repd(Q))GLd of affine
varieties, which is the affine GIT quotient. The double quotient notation indicates that this is
not an orbit space in general, as π identifies orbits whose closures meet.
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Exercise 2.15. Let k be an algebraically closed field. For the Jordan quiver with dimension
vector n, we have that Repd(Q) = Matn×n ∼= An2

with GLn acting by conjugation. Show that

O(Repd(Q))GLn = k[σ1, . . . , σn],

where σi ∈ O(Repd(Q)) are the coefficients of the characteristic polynomial (viewed as functions
on Repd(Q) which are invariant under conjugation). In particular, deduce that π : Repd(Q)→
Repd(Q)//GLn ∼= An identifies orbits when n ≥ 2 (for example, use the classification of orbits
given by Jordan normal form). In fact, this is a special case of a result of Le Bruyn and Procesi
described below, as the coefficients of the characteristic polynomial of a matrix can be computed
by taking traces of powers of the matrix.

The affine GIT quotient π : Repd(Q)→ Repd(Q)//GLd may identify all orbits; for example,
if there are no non-constant invariant functions, which is the case if Q has no oriented cycles by
the following theorem.

Theorem 2.16 (Le Bruyn and Procesi [40]). The ring of invariants O(Repd(Q))GLd is generated
by taking traces along oriented cycles in Q.

Instead King constructs a GIT quotient of the GLd-action on an open subset of Repd(Q) by
linearising the action using a stability parameter θ = (θv)v∈V ∈ ZV . The stability parameter θ
determines a character χθ : GLd → Gm

χθ((gv)v∈V ) :=
∏
v∈V

(det gv)
θv , (2.3)

which descends to a character of Gd if and only if χθ(∆) = 1 (that is, θ · d :=
∑
v∈V

θvdv = 0).

Let Lθ denote the GLd-linearisation on the trivial line bundle Repd(Q) × A1, where GLd
acts on A1 via multiplication by χθ. Then we can use invariant sections of positive powers
of Lθ to construct a GIT semistable set and a GIT quotient. As in [37], the invariant sec-
tions of positive tensor powers Lnθ of this linearisation are χnθ -semi-invariant functions; that is,
f : Repd(Q)→ A1 satisfying f(g ·X) = χθ(g)n f(X), for all g ∈ GLd and all X ∈ Repd(Q). We
let O(Repd(Q))GLd,χ

n
θ denote the subset of χnθ -semi-invariant functions; then

H0(Repd(Q),Lnθ )GLd = O(Repd(Q))GLd,χ
n
θ .

Since ∆ acts trivially on Repd(Q), invariant sections of Lnθ for n > 0 only exist if χθ(∆) = 1
(i.e., θ · d = 0).

Definition 2.17. For the GLd-linearisation on Repd(Q) given by χθ, we say a point X ∈
Repd(Q) is GIT semistable if there exists n > 0 and an GLd-invariant section f of Lnθ with
f(X) 6= 0. We let Repd(Q)χθ-ss denote the subset of semistable points.

The semistable set is an open subset of Repd(Q) and is non-empty only if θ·d = 0. Henceforth,
we shall assume that θ · d = 0 in order to have a non-empty semistable set.

Mumford’s linearised version of GIT gives us a GIT quotient

Repd(Q)χθ-ss → Repd(Q)//χθGLd := Proj

⊕
n≥0

O(Repd(Q))GLd,χ
n
θ

 .

Remark 2.18. The 0th graded piece O(Repd(Q))GLd,χ
0
θ = O(Repd(Q))GLd is the ring of in-

variant functions, and we have a projective (and thus proper) morphism

p : Repd(Q)//χθGLd → Repd(Q)//GLd = SpecO(Repd(Q))GLd

to an affine variety. If Q is a quiver without oriented cycles, then O(Repd(Q))GLd = k and
Repd(Q)//χθGLd is a projective variety.



8 V. Hoskins

The GLd-invariant sections of positive powers of Lθ are also used to determine a GIT notion
of stability with respect to χθ (see, [37, Definition 2.1] for k = k, where we note that the
notion of stability is modified to account for the presence of the global stabiliser ∆). This
determines an open subset Repd(Q)χθ-s of χθ-stable points and the GIT quotient restricts to
a quotient π|Repd(Q)χθ-s : Repd(Q)χθ-s → Repd(Q)χθ-s/GLd which is a geometric quotient (which
in particular, is an orbit space) of the GIT stable set.

Using the Hilbert–Mumford criterion to relate GIT semistability of geometric points with sta-
bility for 1-parameter subgroups λ : G→ GLd, King proves that the GIT notion of (semi)stabi-
lity can be translated to a notion of (semi)stability for d-dimensional representations of Q. For
points over a non-algebraically closed field, GIT stability is related to a notion of geometric
stability for representations as described below.

Definition 2.19 (semistability). Let θ ·d = 0. We say a d-dimensional k-representation W of Q
is:

1) θ-semistable if θ · dimW ′ ≥ 0 for all k-subrepresentations 0 6= W ′ (W .

2) θ-stable if θ · dimW ′ > 0 for all k-subrepresentations 0 6= W ′ (W .

3) θ-polystable if it is isomorphic to a direct sum of θ-stable representations of equal slope.

4) θ-geometrically stable if W ⊗k k′ is θ-stable for all field extensions k′/k.

There are natural notions of Jordan–Hölder filtrations, and we say two θ-semistable k-represen-
tations of Q are S-equivalent if their associated graded objects for their Jordan–Hölder filtrations
are isomorphic.

Exercise 2.20 (rephrasing of stability as a slope-type condition). For θ ∈ ZV , we define the
slope of a k-representation W of Q by

µθ(W ) :=

∑
v∈V

θv dimkWv∑
v∈V

dimkWv
.

Let θ′v := θv
∑
w∈V

dw −
∑
w∈V

θwdw for all v ∈ V ; then show that
∑
v∈V

θ′vdv = 0 and that slope

semistability with respect to θ and θ′ coincide (where slope semistability means all subrepresen-
tations have slope less than or equal to the slope of the representation). Furthermore, show for
d-dimensional representations of Q that (−θ′)-semistability (as in Definition 2.19) is equivalent
to slope semistability with respect to θ′.

The slope version of (semi)stability enables one to easily define Harder–Narasimhan (HN)
filtrations for quiver representations. In [54], Reineke used the HN stratification on Repd(Q)
(together with the HN system in an associated Hall algebra) to give formulae for the Poincaré
polynomials of moduli spaces of semistable representations of quivers without oriented cycles,
when semistability is taken with respect to a generic stability parameter in the following sense.

Definition 2.21. A stability parameter θ ∈ ZV is called generic with respect to d if θ · d = 0
and for all non-zero d′ ∈ NV with d′ < d (i.e., d′ 6= d and d′v ≤ dv for all v ∈ V ), we have
θ · d′ 6= 0.

Remark 2.22. For a generic stability parameter θ with respect to d, every θ-semistable k-
representation of Q is also θ-stable.

Using the Hilbert–Mumford criterion, which gives a criterion for GIT semistability using
1-parameter subgroups of GLd, King shows the open subsets Repd(Q)θ-ss and Repd(Q)θ-gs of
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θ-semistable and θ-geometrically stable k-representations in Repd(Q) coincide with the GIT
semistable and stable locus respectively:

Repd(Q)θ-ss = Repd(Q)χθ-ss and Repd(Q)θ-gs = Repd(Q)χθ-s.

Hence, the GIT quotientMθ-ss
d (Q) := Repd(Q)//χθGd is a k-variety that co-represents the modu-

li functor of θ-semistable k-representations of Q of dimension d (up to S-equivalence). Moreover,

Mθ-gs
d (Q) := Repd(Q)χθ-s/Gd is an open k-subvariety ofMθ-ss

d (Q) that co-represents the moduli
functor of θ-geometrically stable k-representations of Q of dimension d (up to isomorphism). In

general,Mθ-gs
d (Q) does not admit a universal family in general; however, there is a Brauer class

controlling the obstruction to admitting a universal family and an associated universal twisted
family over Mθ-gs

d (Q) (cf. [28, Proposition 4.18]). We will refer to both these spaces as moduli
spaces.

Exercise 2.23. Consider the n-arrow Kronecker quiver with V = {v1, v2} and A = {ai : v1 →
v2}ni=1. For the dimension vector d = (1, 1), we have Repd(Q) ∼= An with the action of GLd ∼=
Gm × Gm given by (t1, t2) 7→ diag

(
t2t
−1
1 , . . . , t2t

−1
1

)
. If we naturally identify O(Repd(Q)) ∼=

k[x1, . . . , xn] with each variable corresponding to an arrow, then O(Repd(Q))GLd = k. Moreover,
show that for θ+ = (1,−1) and θ− = (−1, 1) we have the following semistable loci and GIT
quotients: Repd(Q)θ+-ss = ∅ and

Repd(Q)θ−-ss = An − {0} 7→ Repd(Q)//θ−GLd = Proj(k[x1, . . . , xn]) ∼= Pn−1.

Exercise 2.24 (stable representations are simple). Prove that a θ-stable k-representation of Q
is simple. If k is algebraically closed, deduce that the automorphism group of a θ-stable repre-
sentation of Q is isomorphic to the multiplicative group k×.

In fact, for an arbitrary field k, the stabiliser group of an θ-geometrically stable k-represen-
tation is the subgroup ∆ ⊂ GLd (for example, see [28, Corollary 2.14]). The action of Gd :=

GLd/∆ on Repd(Q)θ-gs is free and the geometric quotient Repd(Q)θ-gs →Mθ-gs
d (Q) is a principal

Gd-bundle; thus Mθ-gs
d (Q) is smooth. Provided Repd(Q)θ-gs 6= ∅, we have

dimMθ-gs
d (Q) = dim Repd(Q)− dim Gd = dim Repd(Q)− dim GLd + 1 = 1− 〈d, d〉Q.

Remark 2.25. In fact, it is a theorem of Gabriel that the Tits form qQ(d) := 〈d, d〉Q is positive
definite if and only if the underlying graph of Q is a simply-laced Dynkin diagram; this is in
turn equivalent to each of the following statements:

i) qQ(d) ≥ 1,

ii) there is an open Gd-orbit in Repd(Q),

iii) there are only finitely many Gd-orbit in Repd(Q).

By Exercise 2.14 we see (ii) implies (i) and the equivalence of (ii) and (iii) holds as the closure
of any orbit is a union of finitely many orbits and, as Repd(Q) is irreducible, any open orbit is
dense.

For an algebraically closed field k, the closed points of Mθ-ss
d (Q) are in bijection with S-

equivalence classes of Gd(k)-orbits of χθ-semistable rational points, where two k-representa-
tions M1 and M2 are S-equivalent if their orbit closures intersect in Repd(Q)χθ-ss. By [37,
Proposition 3.2(ii)], this is the same as the S-equivalence of M1 and M2 as θ-semistable repre-
sentations of Q. Moreover, for k algebraically closed, we have Mθ-s

d (k) = Repd(Q)θ-s(k)/Gd(k).
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Remark 2.26. For a non-algebraically closed field, the rational points of these moduli spaces
do not in general correspond to rational orbits. In [28], for a perfect field k, we show using
Galois cohomology and descent that there is an injection

Repd(Q)θ-gs(k)/Gd(k) ↪→Mθ-gs
d (Q)(k),

and that the remaining points in Mθ-gs
d (Q)(k) that do not come from isomorphism classes of

k-representations can be described as representations of Q over central division algebras over k
(or equivalently as twisted quiver representations). More precisely, as the moduli stack[

Repd(Q)θ-gs/GLd
]
→Mθ-gs

d (Q)

is a Gm-gerbe overMθ-gs
d (Q), we can pull this gerbe back along Spec k →Mθ-gs

d (Q) to obtain a
type map

T : Mθ-gs
d (Q)(k)→ Br(k) := H2

ét(k,Gm).

We prove that a necessary condition for a division algebra D ∈ Br(k) to lie in the image of T
is that deg(D) :=

√
dimk(D) divides the dimension vector d; that is, d = dD deg(D) for some

dimension vector dD. Moreover, we interpret the fibre T −1(D) using Galois descent as the space
of isomorphism classes of θ-geometrically stable dD-dimensional representations of Q over the
division algebra D. This gives a complete description of Mθ-gs

d (Q)(k) in terms of isomorphism
classes of representations over division algebras with centre k. Let us mention two special cases
of this result:

• For k = R, we have Br(R) = {R,H} and so the points in Mθ-gs
d (Q)(R) are rational or

quaternionic quiver representations (and the latter only occur if 2|d).

• For a finite field k = Fq, the Brauer group is trivial; thusMθ-gs
d (Q)(Fq) is precisely the set

of isomorphism classes of θ-geometrically stable d-dimensional Fq-representations of Q.

2.3 Symplectic construction of complex quiver varieties

Over the complex numbers, the Kempf–Ness theorem [36] relates certain geometric invariant
theory quotients by reductive groups to smooth symplectic reductions by maximal compact
subgroups [36]. In the case of quiver moduli, we have a complex reductive group GLd acting
on a complex affine space Repd(Q), and via a Kempf–Ness theorem, the GIT quotient of GLd
acting on Repd(Q) with respect to χθ : GLd → Gm is homeomorphic to the smooth symplectic
reduction of the action of a maximal compact subgroup of GLd on Repd(Q) as described by
King [37]. In this section, we briefly explain this alternative symplectic construction.

The complex reductive group GLd is the complexification of the maximal compact subgroup

Ud =
∏
v∈V

U(dv).

We consider the Hermitian form H : Repd(Q)× Repd(Q)→ C defined by

H(X,Y ) =
∑
a∈A

Tr
(
XaY

†
a

)
,

where Y † is the complex conjugate transpose of Y . Let ωR(−,−) := − ImH(−,−); then ωR
is a (smooth) symplectic form on the manifold Repd(Q). In fact, the complex structure on
Repd(Q) is compatible with this form, and so Repd(Q) is naturally a (flat) Kähler manifold.
Moreover, the form ωR is preserved by the action of Ud, as H is Ud-invariant.



Parallels between Moduli of Quiver Representations and Vector Bundles over Curves 11

Definition 2.27. A moment map for a symplectic action of a compact Lie group K on a smooth
symplectic manifold (M,ω) is a smooth map µR : M → k∗ := Lie(K)∗ which is equivariant with
respect to the given K-action on M and the coadjoint action of K on k∗ and lifts the infinitesimal
action in the sense that

dmµR(ξ) ·B = ωm(Bm, ξ)

for all m ∈M and ξ ∈ TmM and B ∈ k, where Bm ∈ TmM denotes the infinitesimal action of B
on m.

We are interested in the situation where K acts linearly on a complex vector space M = Cn.
A K-invariant Hermitian inner product H on M gives M the structure of a Kähler manifold,
as we can write H = g − iω, where g is a metric and ω a Kähler form. In this situation, by the
following exercise, a moment map always exists but it is not necessarily unique as we can always
shift it by a central value of k∗.

Exercise 2.28. Let K act linearly on M = Cn and pick a K-invariant Hermitian inner product
H = g− iω on M . Prove that a moment map for the K-action on (M,ω) is given by µR : M → k∗

with

µR(m) ·B :=
i

2
H(Bm,m).

Furthermore, show that we can shift this moment map by any central value χ ∈ k∗.

In particular, there is a moment map µR : Repd(Q) → u∗d for the action of Ud on Repd(Q)
given by

µR(X) ·B =
i

2
H(BX , X) =

∑
a∈A

Tr
(
(Bh(a)Xa −XaBt(a))X

†
a

)
.

By identifying ud ∼= u∗d using the Killing form, we obtain a map µ∗R : Repd(Q)→ ud where

µ∗R(X) =
∑
a∈A

[Xa, X
†
a] =

 ∑
a : h(a)=v

XaX
†
a −

∑
a : t(a)=v

X†aXa


v∈V

.

Moreover, any tuple θ = (θv)v∈V ∈ ZV defines a character χθ : GLd → Gm whose restriction
to Ud has image in U(1). Hence, we can view the derivative dχθ|Ud

: ud → u(1) ∼= 2πiR as
a coadjoint fixed point of u∗d (often we also denote this by θ or χθ); this coadjoint fixed point
can be used to shift the moment map.

Such shifting of the moment map by a central value merely corresponds to considering differ-
ent fibres of the moment map; this choice can be used to produce different symplectic reductions
as follows.

Definition 2.29. For a symplectic K-action on (M,ω) with moment map µR : M → k∗, we
define the (smooth) symplectic reduction of the K-action on M at a coadjoint fixed point χ ∈ k∗

to be the topological quotient

µ−1
R (χ)/K.

We note that the level set µ−1
R (χ) ⊂M is K-invariant by the equivariance of µR.
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If χ is a regular value of µR (i.e., the differential of µR at every point in the preimage µ−1
R (χ) is

surjective), then µ−1
R (χ) ⊂M is a smooth submanifold. If K is a compact Lie group acting freely

on µ−1
R (χ), then the topological quotient µ−1

R (χ)/K is a smooth manifold by the slice theorem
and moreover, it inherits a (smooth) symplectic form from the form ω on M by the Marsden–
Weinstein theorem [41]. If in fact, (M,ω) is a Kähler manifold (i.e., there is a compatible
complex structure and Riemannian metric on M), then the symplectic reduction is also Kähler,
provided it is smooth. If K acts on µ−1

R (χ) with finite stabilisers, then µ−1
R (χ)/K is a symplectic

orbifold, and more generally if K acts with positive dimensional stabilisers, then µ−1
R (χ)/K can

be given the structure of a stratified symplectic manifold.
Let (M,ω) be a Kähler manifold that is a smooth affine (or projective) complex variety with

a Fubini–Study form. If there is a linear action of a complex reductive group G on M for which
a maximal compact subgroup K < G preserves ω, then the Kempf–Ness theorem [36] provides
a homeomorphism between the geometric invariant theory quotient ofM byG and the symplectic
reduction of M by K. We recall that the GIT quotient depends on a choice of linearisation of
the action. In the case when M is projective, this work extends to give a comparison between an
algebraic GIT stratification and a symplectic Morse-theoretic stratification [38, 49]. In the affine
setting M ⊂ An, if χ : G→ Gm is a character which is used to linearise this action, then we can
restrict χ to maximal compact subgroups and take derivatives to obtain dχ|K : k→ u(1) ∼= 2πiR;
this defines an element of k∗, which by abuse of notation we also denote by χ. Then the Kempf–
Ness theorem gives an inclusion µ−1

R (χ) ↪→Mχ-ss which induces a homeomorphism

µ−1
R (χ)/K →M//χG.

More precisely, the Kempf–Ness theorem states that the G-orbit closure of a χ-semistable orbit
in M meets the level set µ−1

R (χ) in a unique K-orbit and the inclusion µ−1
R (χ) ↪→Mχ-ss induces

the above homeomorphism; for details in this affine setting, see [37] and [26], which also relates
the GIT instability stratification with the symplectic Morse-theoretic stratification.

Let us return to the action of G = GLd on M = Repd(Q), then θ determines a charac-
ter χθ of GLd and a coadjoint fixed point θ ∈ u∗d. The inclusion µ−1

R (χθ) ⊂ Repd(Q)θ-ss induces
a homeomorphism

µ−1
R (χθ)/Ud ' Repd(Q)//χθGLd (2.4)

and if θ is generic with respect to d (so that semistability and stability with respect to θ coincide
for d-dimensional representations of Q), then this symplectic reduction is a smooth symplectic
(in fact, Kähler) manifold.

3 Moduli spaces of vector bundles over curves

The moduli problem of classifying algebraic vector bundles over a smooth projective curve has
many similarities with that of quiver representations, which we explain in this section.

3.1 Vector bundles over a curve

Let X be a smooth projective curve over a field k. The genus of X is g(X) := h0(X,ωX), where
ωX := Ω1

X is the canonical line bundle.
We will often use the equivalence between the category of (algebraic) vector bundles on X

and the category of locally free sheaves on X. We recall that this equivalence is given by
associating to a vector bundle F → X the sheaf F of sections of F . One should be careful when
going between vector bundles and locally free sheaves, as this correspondence does not preserve
subobjects in general.
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Although the category of locally free sheaves is not abelian, the category Coh(X) of coherent
sheaves of OX -modules is abelian. The category Coh(X) has homological dimension 1, as Ext-
groups can be described as sheaf cohomology groups:

Exti(E ,F) = H i(X,Hom(E ,F)),

which vanish for i ≥ 2 as dimX = 1. Moreover, the first cohomology groups can be described
using Serre duality.

We can also define an Euler characteristic by

χ(E) := dimH0(X, E)− dimH1(X, E)

and for a pair E and F of locally free sheaves, we define an Euler form by

〈E ,F〉 := χ
(
E∨ ⊗F

)
= dim Hom(E ,F)− dim Ext1(E ,F).

In fact, using the Riemann–Roch formula, this Euler characteristic is entirely described by the
invariants of these sheaves

〈E ,F〉 = rk E degF − rkF deg E + rk E rkF(1− g)

analogously to the case for quiver representations.

3.2 Construction of moduli spaces of vector bundles

In this section, we outline some different constructions of moduli spaces of (algebraic) vector
bundles of rank n and degree d over X. We start with an algebraic approach using geometric
invariant theory which generalises to the construction of moduli spaces of coherent sheaves
over projective schemes. We then survey the gauge theoretic construction over the complex
numbers as an infinite-dimensional symplectic reduction, which generalises to principal bundles
and hyperkähler analogues, such as Higgs bundles (cf. Section 4.3).

3.2.1 Slope stability for vector bundles

Definition 3.1. The slope of a non-zero vector bundle E over X is the ratio

µ(E) :=
degE

rkE
.

A vector bundle E is slope stable (resp. semistable) if every proper non-zero vector subbundle
E′ ⊂ E satisfies

µ(E′) < µ(E) (resp. µ(E′) ≤ µ(E) for semistability).

A vector bundle E is polystable if it is a direct sum of stable bundles of the same slope.

Remark 3.2. Since the degree and rank are both additive on short exact sequences of vector
bundles

0→ E → F → G→ 0,

the following statements hold:

1) If two out of the three bundles have the same slope µ, the third also has slope µ.

2) µ(E) < µ(F ) (resp. µ(E) > µ(F )) if and only if µ(F ) < µ(G) (resp. µ(F ) > µ(G)).
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Exercise 3.3. Let L be a line bundle and E a vector bundle over X; then show

i) L is stable,

ii) if E is stable (resp. semistable), then E ⊗ L is stable (resp. semistable).

If we fix a rank n and degree d such that n and d are coprime, then the notion of semistability
for vector bundles with invariants (n, d) coincides with the notion of stability.

Exercise 3.4 (stable vector bundles are simple). Let f : E → F be a non-zero homomorphism
of vector bundles on X over k = k; then prove the following statements.

i) If E and F are semistable, µ(E) ≤ µ(F ).

ii) If E and F are stable of the same slope, then f is an isomorphism.

iii) Every stable vector bundle E is simple: End(E) = k.

3.2.2 GIT construction

The moduli problem of rank n and degree d vector bundles over X is unbounded, in the sense
that there is no finite type k-scheme parameterising all such vector bundles. We can overcome
this problem by restricting to moduli of semistable vector bundles, which is bounded by work of
Le Potier and Simpson [64]. The first construction of moduli spaces of semistable vector bundles
over X were given by Mumford [46], Seshadri [62] and Newstead [50, 51]. In these notes, we
will essentially follow the construction due to Simpson [64] which generalises the curve case to
a higher-dimensional projective scheme. An excellent indepth treatment of the construction
following Simpson can be found in the book of Huybrechts and Lehn [31]. We will exploit the
fact that we are over a curve to simplify some of the arguments; for example, the boundedness
of semistable sheaves is significantly easier over a curve, and in fact if we assume that the degree
is sufficiently large, we have the following boundedness result.

Lemma 3.5. Let F be a locally free sheaf over X of rank n and degree d > n(2g − 1). If the
associated vector bundle F is semistable, then the following statements hold:

i) H1(X,F) = 0;

ii) F is generated by its global sections.

Proof. For i), we argue by contradiction using Serre duality: if H1(X,F) 6= 0, then dually
there would be a non-zero homomorphism f : F → ωX . We let E ⊂ F be the vector subbundle
generically generated by the kernel of f , which is a vector subbundle of rank n− 1 with

degE ≥ deg ker f ≥ degF − degωX = d− (2g − 2).

In this case, by semistability of F , we have

d− (2g − 2)

n− 1
≤ µ(E) ≤ µ(F ) =

d

n
;

this gives d ≤ n(2g − 2), which contradicts our assumption on the degree of F .
For ii), we let Fx denote the fibre of the vector bundle at a point x ∈ X. If we consider the

fibre Fx as a torsion sheaf over X, then we have a short exact sequence

0→ F(−x) := F ⊗OX(−x)→ F → Fx = F ⊗ kx → 0,

which gives rise to an associated long exact sequence in cohomology and it suffices to show that
H1(X,F(−x)) = 0. To prove this vanishing, we apply part i) above to the sheaf F(−x) =
F ⊗OX(−x) which is also semistable with deg(F(−x)) = d− n > n(2g − 2). �
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Given a locally free sheaf F of rank n and degree d that is generated by its global sections,
we can consider the evaluation map

evF : H0(X,F)⊗OX → F ,

which is, by assumption, surjective. If also H1(X,F) = 0, then by the Riemann–Roch formula

χ(F) = d+ n(1− g) = dimH0(X,F)− dimH1(X,F) = dimH0(X,F);

that is, the dimension of the 0th cohomology is fixed and equal to N := d+n(1− g). Therefore,
we can choose an isomorphism H0(X,F) ∼= kN and combine this with the evaluation map for F ,
to produce a surjection

qF : O⊕NX � F

from a fixed trivial vector bundle. Such surjective homomorphisms from a fixed coherent sheaf
are parametrised by a Quot scheme, which is a natural generalisation of the Grassmannian
varieties (for a thorough treatement of Quot schemes, see [52]).

Let Q := Quotn,dX
(
O⊕NX

)
be the Quot scheme of rank n, degree d quotient sheaves of the

trivial rank N vector bundle. Let Qµ-(s)s ⊂ Q denote the open subscheme consisting of quotients
q : O⊕NX → F such that F is a slope (semi)stable locally free sheaf and H0(q) is an isomorphism.

For a semistable sheaf F , we note that different choices of isomorphism H0(X,F) ∼= kN

give rise to different points in Qµ-ss. Any two choices of the above isomorphism are related
by an element in the general linear group GLN and this gives rise to an action of GLN on
the Quot scheme Q such that the orbits in Qµ-(s)s(k) are in bijective correspondence with the
isomorphism classes of (semi)stable locally free sheaves on X with invariants (n, d). In fact, the
diagonal Gm < GLN acts trivially, and so it suffices to take a quotient by the action of SLN to
construct a moduli space.

We linearise this action to give an equivariant projective embedding in order to construct
a GIT quotient. There is a natural family of invertible sheaves on the Quot scheme arising from
Grothendieck’s embedding of the Quot scheme into the Grassmannians: for sufficiently large m,
we have a closed immersion

Q = Quotn,dX
(
O⊕NX

)
↪→ Gr

(
H0
(
OX(m)⊕N

)
,M
)
↪→ P

(
∧M H0

(
OX(m)⊕N

)∨)
,

where M = mr + d + r(1 − g). We let Lm denote the pull back of OP(1) to the Quot scheme
via this closed immersion. There is a natural linear action of SLN on H0

(
OX(m)⊕N

)
= kN ⊗

H0(OX(m)), which induces a linear action of SLN on P
(
∧MH0

(
OX(m)⊕N

)∨)
; hence, Lm admits

a linearisation of the SLN -action.

This linearised action has a GIT quotient

Qss → Q//LmSLN ,

where Qss denotes the GIT semistable locus and, as Q is projective, this GIT quotient is also
projective. Provided we take d sufficiently large and m sufficiently large, the notion of GIT
semistability for this SLN -action coincides with slope semistability; that is Qµ-ss = Qss [64].
Over an algebraically closed field, GIT stability corresponds to slope stability, and over an
arbitrary field k, GIT stability corresponds to geometric stability (cf. [39]). The above GIT
quotient is a moduli space

Mss
C(n, d) := Q//LmSLN
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for semistable rank n degree d vector bundles over X (up to S-equivalence), and its restriction
to the GIT stable locus is a moduli space for geometrically stable vector bundles (up to iso-
morphism). As we are over a curve, the open subscheme Qss ⊂ Q is smooth; however, the GIT
quotient Mss

C(n, d) of this smooth variety may be singular, as the action is not necessarily free.

For coprime rank and degree, semistability and stability coincide and, as stable vector bundles
are simple, it follows that the GIT quotient is a PGLN -principal bundle (by Luna’s étale slice
theorem). In this case, the projective moduli space M = Mss

C(n, d) is also smooth. Moreover,
using the deformation theory of vector bundles, one can describe the Zariski tangent spaces
to M by

T[E]M∼= Ext1(E , E).

In particular, dimM = n2(g − 1) + 1. Over a higher-dimensional base, we have the same
description of the tangent spaces at stable sheaves, except now the obstruction to smoothness
of the moduli space (and Quot scheme) lies in a second Ext group, which could be non-zero; see
[31, Corollary 4.52].

3.2.3 Functorial construction

Álvarez-Cónsul and King [1] provide a construction of moduli spaces of semistable sheaves by
functorially embedding this moduli problem into a moduli problem for quiver representations.
More precisely, Simpson’s GIT construction [64] of moduli spaces of sheaves on a polarised
variety (X,OX(1)) depends on choices of natural numbers m � n � 0 (first one takes n
sufficiently large, so all semistable sheaves are n-regular and can be parametrised by a Quot
scheme, and then one takes m sufficiently to embed this Quot scheme in a Grassmannian and
give a linearisation of the action). In [1], a functor

Φn,m := Hom(OX(−n)⊕OX(−m),−) : Coh(X)→ Rep(Krn,m)

from the category of coherent sheaves on X to the category of representations of a Kronecker
quiver Krn,m with two vertices n, m and dimH0(OX(m − n)) arrows from n to m is used for
m � n � 0 to provide an embedding of the subcategory of semistable sheaves with Hilbert
polynomial P into a subcategory of semistable quiver representations of fixed dimension (where
both the semistability parameter and dimension vector depend on n, m and P ). This functorial
approach is then used to construct the moduli space of semistable sheaves on X with Hilbert
polynomial P using King’s GIT construction of quiver moduli spaces.

3.2.4 Gauge-theoretic construction

Over k = C, Atiyah and Bott [2] use an alternative gauge theoretic construction of this moduli
space as a symplectic (in fact, Kähler) reduction.

In this complex setting, the curve X can be viewed as a compact Riemann surface. Rather
than working in the algebraic category, we can switch to the holomorphic category, by using the
GAGA-equivalence, which gives an equivalence between the category of algebraic bundles on X
(viewed as an algebraic curve) and the category of holomorphic vector bundles on X (viewed
as a complex manifold); for details, see [61]. A holomorphic vector bundle can be viewed as
a complex vector bundle with a holomorphic structure, which one can equivalently view as
a Dolbeault operator, as the integrability condition holds trivially for dimension reasons. For
a fixed complex vector bundle E → X, we consider

C = C(E) := {holomorphic structures on E};
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this is an infinite-dimensional complex vector space which is modelled on Ω0,1(X,End(E)).
Furthermore, we can pull back holomorphic structures along bundle homomorphisms of E and
so this gives an action of

GC := Aut(E)

on C such that the orbits are precisely the isomorphism classes of holomorphic structures on E.
The central group C∗ < G, which corresponds to scalar multiples of the identity map on E, acts
trivially on C.

In order to construct a quotient of such an action, Atiyah and Bott relate the GC-space C to
a space of unitary connections. We recall that the bundle of frames of E is a principal GLn(C)-
bundle, where n = rkE. Since U(n) is a maximal compact subgroup of GLn(C), any principal
GLn(C)-bundle admits a reduction to U(n), which we can equivalently think of as a Hermitian
metric h on E. We can thus fix a Hermitian metric h on E.

Definition 3.6. An affine connection on E is a linear map ∇ : Ω0(X,E)→ Ω1(X,E) satisfying
the Leibniz rule. We say ∇ is h-unitary if dh(s1, s2) = h(∇(s1), s2) + h(s1,∇(s2)) for all sec-
tions si of E.

Let A = A(E, h) denote the space of h-unitary affine connections on E; this is an infinite-
dimensional complex affine space which is modelled on Ω1(X,End(E, h)), where End(E, h) de-
notes the bundle of h-skew Hermitian endomorphisms of E. We can also view A as the space of
connections on the principal U(n)-bundle associated to (E, h).

Definition 3.7. Let G := Aut(E, h) denote the h-unitary automorphisms of E; then GC =
Aut(E) is the complexification of G. We call G the unitary gauge group and GC the complex
gauge group.

The unitary gauge group G acts on A of unitary connections and we can relate this to the
action of the complex gauge group GC on C using the following isomorphism.

Lemma 3.8 (Atiyah–Bott isomorphism). There is an isomorphism A(E, h) → C(E) given by
∇ 7→ ∇(0,1), which we view as a Dolbeault operator on E.

As we are working on a curve, there is no integrability condition and ∇(0,1) defines a holo-
morphic structure on E. The inverse is given by taking the Chern connection ∇∂E ,h associated

to a holomorphic structure ∂E on E and a Hermitian metric h. Locally the Atiyah–Bott iso-
morphism corresponds to the isomorphism

Ω1(u(n)) ∼= Ω0,1(gln).

Although the space A and the isomorphism A ∼= C both depend on the choice of Hermitian
metric h, we can identify the space of Hermitian metrics on E with Aut(E)/Aut(E, h) = GC/G.
Thus any two Hermitian metrics on E are related by a complex gauge transformation.

The space A has the structure of a smooth symplectic manifold: if we identify T∇A ∼=
Ω1(X,End(E, h)), then ωR : T∇A× T∇A → R is defined by

ωR(β, γ) :=

∫
X

Tr(β ∧ γ),

where Tr(β ∧ γ) ∈ Ω2(X). In this infinite-dimensional setting, ωR being non-degenerate means
that it induces an injection T∇A → T ∗∇A. The inner product given by the trace also induces an
isomorphism

LieG∗ = Ω0(X,End(E, h))∗ ∼= Ω2(X,End(E, h)).

We recall that the curvature of ∇ ∈ A is the form F∇ := ∇2 ∈ Ω2(X,End(E, h)).
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Lemma 3.9. The G-action on A is symplectic with moment map µ : A → Ω2(X,End(E, h)) ∼=
LieG∗ given by taking the curvature (modulo a sign): µ(∇) = −F∇.

The sign here appears due to our sign conventions for the infinitesimal lifting property of the
moment map. We leave the verification of this infinitesimal lifting property and the equivariance
of µ as an exercise.

To construct a symplectic reduction of the G-action on A, we need to take the level set at
a coadjoint fixed point. Since the Lie algebra of the unitary group has centre Z(u(n)) = iRIn, we
similarly have that all imaginary scalar multiplies of the identity map on E are central in LieG.
Fix a Riemannian metric on X whose associated volume form induces the given orientation
on X; then there is an associated Hodge star operator ? : Ωk(X)→ Ω2−k(X). Using this Hodge
star operator, we can view the moment map taking values in LieG by

µ : A → LieG, ∇ 7→ − ? F∇.

Definition 3.10. A h-unitary connection ∇ on E is projectively flat if ?F∇ ∈ Ω0(X,End(E, h))
is a constant element in the centre of u(n); that is, an imaginary scalar multiple of IdE .

In fact, the scalar appearing for such projectively flat connections is related to the slope µ(E).

Exercise 3.11. Using the fact that the degree of E can be defined using the curvature F∇ of
any connection on E via

deg(E) :=

∫
X

i

2π
Tr(F∇),

prove that if ∇ is a projectively flat h-unitary connection (i.e., ?F∇ = −iµIdE for some constant
µ ∈ R), then the constant µ is equal to the slope of E (provided we normalise our Riemmannian
metric so the integral of its associated volume form over X is equal to 2π).

The symplectic reduction of the G-action on A at the central value iµ(E)IdE ∈ LieG is
a moduli space

Mproj. flat
E,h := µ−1(iµ(E)IdE)/G

for unitary gauge equivalence classes of projectively flat h-unitary connections on E. In fact,
as A ∼= C has a compatible complex structure, it is naturally an infinite-dimensional Kähler
manifold and so the associated moduli space inherits a Kähler structure if G/U(1) acts freely on
the level set µ−1(iµ(E)IdE), which is the case if E has coprime rank and degree.

In order to relate this symplectic reduction with holomorphic structures, we need the following
definition.

Definition 3.12. A Hermitian–Einstein connection on a complex vector bundle E is a projec-
tively flat affine connection that is unitary for some Hermitian metric on E.

The moduli space of semistable vector bundles is homeomorphic to the moduli space of
representations π1(X)→ U(n) by the Narasimhan–Seshadri correspondence [48]. An alternative
gauge theoretic interpretation of this result was provided by Donaldson [15] and Uhlenbeck and
Yau [65] by relating the moduli space of projectively flat h-unitary connections on E to the mo-
duli space of holomorphic structures on E; this is called the Kobayashi–Hitchin correspondence.

Theorem 3.13 (Kobayashi–Hitchin correspondence [15, 48, 65]). A holomorphic vector bundle E
is slope polystable if and only if its underlying complex vector bundle admits a Hermitian–
Einstein connection. Moreover, this connection is unique up to unitary gauge transformations.
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A holomorphic structure is slope semistable if and only if its GC-orbit closure contains a holo-
morphic structure that is polystable; let Css (resp. Cps) denote the set of semistable (resp.
polystable) holomorphic structures. By the Kobayashi–Hitchin correspondence, every point
in Css has GC-orbit closure that meets µ−1(iµ(E)IdE) in a unique G-orbit. The inclusion

µ−1(iµ(E)IdE) ↪→ Css

induces a real-analytic isomorphism between the moduli space of projectively flat unitary connec-
tions and the moduli space of S-equivalence classes of semistable holomorphic bundles Css//GC '
Cps/GC. This homeomorphism can be viewed as an infinite-dimensional version of the Kempf–
Ness theorem, as it relates the symplectic reduction of the G-action on A with the S-equivalence
classes of orbits of the complexified group GC in the semistable locus Css.

4 Hyperkähler analogues of these moduli spaces

4.1 Algebraic symplectic quiver varieties

Throughout this section we assume that k is a field of characteristic different from 2.

Definition 4.1 (doubled quiver). The double of a quiver Q = (V,A, h, t) is the quiver Q =
(V,A, h, t) where A = A tA∗ for A∗ := {a∗ : h(a)→ t(a)}a∈A.

One key motivation for introducing the doubled quiver is that

Repd
(
Q
)

= Repd(Q)× Repd(Q)∗ ∼= T ∗Repd(Q)

is an algebraic symplectic variety, with the Liouville symplectic form ω on this cotangent bundle.
Explicitly, if X = (Xa, Xa∗)a∈A and Y = (Ya, Ya∗)a∈A are points in Repd

(
Q
)
, then

ω(X,Y ) =
∑
a∈A

Tr(XaYa∗ −Xa∗Ya). (4.1)

The action of GLd on Repd
(
Q
)

preserves this symplectic form and there is an algebraic
moment map µ : Repd

(
Q
)
→ gl∗d := Lie(GLd); explicitly, for X ∈ Repd

(
Q
)

and B ∈ gld we
have

µ(X) ·B =
∑
a∈A

Tr(Xa∗(BX)a) =
∑
a∈A

Tr(Xa∗(Bh(a)Xa −XaBt(a))), (4.2)

where BX = (Bh(a)Xa−XaBt(a))a∈A is the infinitesimal action of B on (Xa)a∈A. This algebraic
moment map is a GLd-equivariant morphism satisfying the infinitesimal lifting property dXµ(η)·
B = ω(BX , η). The Killing form on the Lie algebra of each general linear group induces an
identification gld ∼= gl∗d, so we can view the moment map as a morphism µ : Repd

(
Q
)
→ gld

given by µ(X) =
∑
a∈A

[Xa, Xa∗ ].

The group Gd = GLd/∆ has Lie algebra gd := {(Bv)v∈V ∈ gld :
∑

v∈V Tr(Bv) = 0} consisting
of tuples of matrices with total trace zero. We note that the image of this moment map lies
in gd.

Definition 4.2. Let χ : GLd → Gm be a character and let η ∈ gld be a coadjoint fixed point;
then GLd acts on µ−1(η) by the equivariance property of the moment map. The algebraic
symplectic reduction of the GLd-action on Repd

(
Q
)

at (χ, η) is the GIT quotient µ−1(η)//χGLd.
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If GIT semistability and stability for the Gd-action on µ−1(η) with respect to χ agree, then the
variety µ−1(η)//χGLd is a smooth algebraic symplectic variety, with algebraic symplectic form
induced by the Liouville form on T ∗Repd(Q) by an algebraic version of the Marsden–Weinstein
theorem (see [17]).

The closed subvariety µ−1(η) ↪→ Repd
(
Q
)

induces a closed immersion

µ−1(η)//χθGLd ↪→Mθ-ss
d

(
Q
)
.

Nakajima quiver varieties can also be constructed in this manner (for example, see [17]).

Remark 4.3. A tuple η = (ηv)v∈V ∈ kV determines an adjoint fixed point η = (ηvIddv)v∈V ∈
gld(k). Moreover, we have that µ−1(η) = Repd(Q,Rη) is the subvariety of Repd

(
Q
)

of repre-
sentations satisfying the relations

Rη =

{ ∑
a : t(a)=v

MaMa∗ −
∑

a : h(a)=v

Ma∗Ma = ηvIdv ∀ v ∈ V
}
.

Hence µ−1(η)//χθGLd is the moduli space of θ-semistable d-dimensional representations of
(Q,Rη). Under the correspondence between k-representations of Q and modules over the path
algebra k(Q), the representations satisfying the relations Rη correspond to modules over certain
quotients of k(Q). More precisely, the category of k-representations of (Q,Rη) corresponds to
the category of modules over the algebra

Πη := k(Q)/

(∑
a∈A

[a, a∗]−
∑
v∈V

ηvev

)
,

where ev denotes the trivial path at v. The algebra Π0 at η = 0 is called the preprojective algebra
of Q.

Exercise 4.4. Prove that a necessary condition for the existence of a k-representation of (Q,Rη)
of dimension d is that η ·d =

∑
v∈V

ηvdv = 0 holds in k (Hint: take traces of the equations defining

these relations).

In fact, the equation η · d = 0 in k ensures that η ∈ gld(k) actually lies in gd(k), which is
a necessary condition for µ−1(η)(k) to be non-empty, as µ has image in gd.

Lemma 4.5. Let θ be a generic stability parameter with respect to d; then for a field k of charac-

teristic zero or sufficiently large prime characteristic, we have Repd
(
Q,Rθ

)
= Repd

(
Q,Rθ

)θ-ss
= Repd

(
Q,Rθ

)θ-gs
.

Proof. It suffices to prove this claim after base changing to an algebraic closure of k and so we
can assume k is algebraically closed and check the statement on closed points. By Exercise 4.4,
if there exists a d′-dimensional k-representation of

(
Q,Rθ

)
, then θ · d′ = 0 holds in k. Since θ

is generic with respect to d, then for all dimension vectors d′ < d, the equation θ · d′ 6= 0 also
holds in k, when k has characteristic 0 or p � 0. Hence any k-representation of

(
Q,Rθ

)
of

dimension d is θ-semistable (and θ-stable), as it has no subrepresentations, which proves the
claim. �

4.2 Hyperkähler quiver varieties

Over the complex numbers, the algebraic symplectic reduction has a hyperkähler structure,
as it can be interpreted as a hyperkähler reduction via the Kempf–Ness theorem. Indeed the
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cotangent bundle of a complex vector space is naturally hyperkähler and the action of the
maximal compact subgroup Ud < GLd on Repd

(
Q
) ∼= T ∗Repd(Q) preserves this hyperkähler

structure, so one can instead perform a hyperkähler reduction [25].
More generally, we can perform a hyperkähler reduction of the cotangent bundle of a complex

vector space M = Cn. A Hermitian form H on M gives a symplectic form on M and an
identification M ∼= M∗. Using the identification C × C ∼= H given by (m,α) 7→ x − jα in each
coordinate, we obtain an identification T ∗M ∼= M×M ∼= Hn which we can use to equip T ∗M with
a hyperkähler structure. More precisely, we obtain complex structures I, J and K corresponding
to right multiplication by i, j and k on Hn and the hyperkähler metric g is the real part of the
Quaternionic inner product

Q : Hn ×Hn → H, (z, w) 7→
n∑
l=1

zlw
†
l ,

where w†l denotes the quaternionic conjugate. Thus we can write Q = g− iωI− jωJ− kωK, such
that

ωI(−,−) = g(I−,−), ωJ(−,−) = g(J−,−) and ωK(−,−) = g(K−,−).

We thus obtain a hyperkähler structure (g, I, J,K, ωI, ωJ, ωK) on T ∗M . We often write the Kähler
structures as a pair (ωR, ωC), where ωR = ωI and ωC = ωJ + iωK, which is the Liouville algebraic
symplectic form on T ∗M .

Now suppose we additionally have a linear action of a complex reductive group G on M = Cn
and a maximal compact subgroup K < G for which the Hermitian form H is invariant. Then the
induced K-action on T ∗M preserves the symplectic forms (ωR, ωC) and there is a hyperkähler
moment map µHK := (µR, µC), where µR : T ∗M → k∗ is a smooth moment map for the K-action
and µC : T ∗M → g∗ is an algebraic moment map for the G-action. Explicitly, we have

µR(m,α) ·B :=
i

2
(H(Bm,m)−H(Bα, α)) and µC(m,α) · C = α(Cm),

where B ∈ k and C ∈ g and (m,α) ∈ T ∗M .
For a pair (χ, η) ∈ k∗×g∗ of coadjoint fixed points, the hyperkähler reduction of the K-action

on T ∗M at (χ, η) is the topological quotient of the K-action on µ−1
HK(χ, η) := µ−1

R (χ) ∩ µ−1
C (η).

By the Kempf–Ness theorem, this hyperkähler reduction is homeomorphic to the GIT quotient
of G acting on µ−1(η) with respect to the character of G obtained from χ by exponentiating
and complexifying; thus

µ−1
HK(χ, η)/K ∼= µ−1

C (η)//χG.

In particular, if K acts with finite stabilisers on this level set of the hyperkähler moment map,
then this hyperkähler reduction inherits an orbifold hyperkähler structure [25].

Let us apply this to the quiver setting: we have M = Repd(Q) and G = GLd and we take the
Hermitian form H on Repd(Q) as in Section 2.3, which is invariant under the action of K = Ud.
The hyperkähler metric g on T ∗M ∼= Repd

(
Q
)

is given by

g(X,Y ) = Re

(∑
a∈A

Tr
(
XaY

†
a

))
;

thus, ωR = ωI is given by

ωR(X,Y ) = Im

(∑
a∈A

Tr
(
X†aYa

))
and ωC = ωJ + iωK
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is the Liouville algebraic symplectic form ω described in (4.1). Moreover, µC : Repd
(
Q
)
→ gl∗d

is the algebraic moment map µ given by (4.2) and µR : Repd
(
Q
)
→ u∗d is given by

µR(X) ·B =
i

2

∑
a∈A

Tr
(
Bh(a)XaX

†
a −Bt(a)X

†
aXa

)
.

Via the identification ud ∼= u∗d, we obtain a map µ∗R : Repd
(
Q
)
→ ud given by

µ∗R(X) =
i

2

∑
a∈A

[
Xa, X

†
a

]
.

If χθ-semistability coincides with χθ-stability on µ−1(η), then we obtain a hyperkähler structure
on the algebraic variety µ−1(η)//χθGLd via the Kempf–Ness homeomorphism.

Remark 4.6. Let θ be a generic stability parameter with respect to d. Then θ-semistability and
θ-stability for C-representations of Q coincide and the moduli spaceMθ-ss

d (Q) of θ-semistable C-
representations of Q is a smooth algebraic variety with a natural Kähler structure coming from
the Kempf–Ness homeomorphism. As in work of Proudfoot [53], we can view the hyperkähler
reduction of Repd

(
Q
)

at (θ, 0) as a hyperkähler analogue of the Kähler manifold Mθ-ss
d (Q) in

the sense that

T ∗Mθ-ss
d (Q) ⊂Mθ-ss

d

(
Q,R0

)
= µ−1

C (0)//χθGLd '
(
µ−1
R (θ) ∩ µ−1

C (0)
)
/Ud

is contained as a dense open subset (provided Mθ-ss
d (Q) 6= ∅). Indeed, if π : Repd(Q)θ-ss →

Mθ-ss
d (Q) denotes the GIT quotient, which is a principal Gd-bundle as θ is generic, then for

X ∈ Repd(Q)θ-ss we have a short exact sequence

0→ TX(Gd ·X)→ TX Repd(Q)→ Tπ(X)Mθ-ss
d (Q)→ 0

and dually

T ∗π(X)M
θ-ss
d (Q) =

{
ξ ∈ T ∗X Repd(Q) : ξ(AX) = 0 ∀A ∈ gd

}
=
{
ξ ∈ T ∗X Repd(Q) : µC(X, ξ) = 0

}
.

Thus, we have

T ∗Mθ-ss
d (Q) ∼=

{
(X, ξ) ∈ µ−1

C (0) ⊂ T ∗Repd(Q) : X∈Repd(Q)θ-ss
}
/Gd ⊂ µ−1

C (0)//χθGd.

4.3 Moduli spaces of Higgs bundles

Let X be a smooth projective complex curve and fix a rank n and degree d. Then the moduli
space of Higgs bundles can be viewed as a hyperkähler analogue of the moduli space M =
Mss

X(n, d) of semistable vector bundles of rank n and degree d over X. By the gauge theoretic
construction, M is homeomorphic to a symplectic reduction of the unitary gauge group G on
the space of unitary connections A. In this section, we upgrade this to a hyperkähler setting
by considering the action of G on the cotangent bundle T ∗A. This will give us a moduli space
H = Hss

X(n, d) of semistable Higgs bundles which contains the cotangent bundle T ∗M as a dense
open subset.

The deformation theory of vector bundles give a description of the tangent spaces to M at
an isomorphism class [E ] of a stable locally free sheaf:

T[E]M∼= Ext1(E , E) ∼= H1(X, End(E))

and by Serre duality, we have T ∗EM ∼= H0(X, End(E) ⊗ ωX). The elements in this cotangent
space are holomorphic Higgs fields on E in the sense of the following definition.
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Definition 4.7. A holomorphic Higgs bundle over X is a pair (E ,Φ) consisting of a holomorphic
vector bundle E over X and a holomorphic homomorphism Φ: E → E ⊗ ωX called a Higgs field.
We define slope semistability for (E ,Φ) by checking the inequality of slopes for all holomorphic
Higgs subbundles (i.e., holomorphic subbundles E ′ ⊂ E that are Φ-invariant in the sense that
Φ(E ′) ⊂ E ′ ⊗ ωX).

Remark 4.8. For coprime rank and degree, semistability and stability coincide for Higgs bun-
dles.

We recall that the gauge theoretic construction of the moduli space M = Mss
X(n, d) of

semistable vector bundles is as the space of S-equivalence classes of complex gauge orbits in the
space of semistable holomorphic structures Css

Mss
X(n, d) = Css//GC ' Cps/GC

and by the Kobayashi–Hitchin correspondence, this space is homeomorphic to the symplectic
reduction of G on the space of unitary connections (A, ωR).

Let us fix a complex vector bundle E and Hermitian metric h. The space C of holomorphic
structures (or Dolbeault operators ∂E) on E has cotangent bundle T ∗C ∼= C ×Ω1,0(X,End(E)).
We write elements of T ∗C as pairs (∂E ,Φ), where Φ ∈ Ω1,0(X,End(E)) defines a (not ne-
cessarily holomorphic) Higgs field. The cotangent space T ∗C is an affine space modelled on
Ω0,1(X,End(E))×Ω1,0(X,End(E)) and its Liouville form is a holomorphic symplectic form ωC
for the complex structure I (coming from the complex structure on E → X). Moreover, the
natural GC-action on T ∗C admits a holomorphic moment map µC : T ∗C → LieG∗C given by

µC(∂E ,Φ) := 2i∂EΦ.

We note that the zero level set of this moment map consists of pairs (∂E ,Φ), where Φ defines
a holomorphic Higgs field on the holomorphic bundle E = (E, ∂E); that is (E ,Φ) is a holomorphic
Higgs bundle. We let µ−1

C (0)ss denote the subset of slope semistable holomorphic Higgs bundles
and we define the moduli space of Higgs bundles as the holomorphic symplectic reduction

Hss
C(n, d) := µ−1

C (0)ss//GC

equal to the set of S-equivalence classes of semistable GC-orbits in µ−1
C (0) (or equivalently, the

set of polystable stable GC-orbits).
In fact, T ∗C is naturally an infinite dimensional flat hyperkähler manifold, as via the Atiyah–

Bott isomorphism C ∼= A, we can equip T ∗C with a real symplectic form ωR and associated
Kähler metric (coming from the real symplectic form ωR on A in Section 3.2.4). More precisely,
we can identify T ∗A ∼= A × Ω1(X,End(E, h)) on which the unitary gauge group G naturally
acts. We note that there is an isomorphism

T ∗C ∼= A× Ω1(X,End(E, h)) given by (∂E ,Φ) 7→
(
∇∂E ,h,Φ− Φ∗

)
,

where ∇∂E ,h denotes the Chern connection associated to (∂E , h). In fact, (∂E ,Φ) ∈ T ∗C de-
termines a GLn(C)-connection ∇∂E ,h + Φ + Φ∗ on the associated principal GLn(C)-bundle.
Therefore, we can think of this cotangent bundle as the space of complex connections on E. The
real moment map for the induced G-action on T ∗C is given by

µR(∂E ,Φ) = −F∂E − [Φ,Φ∗],

where F∂E denote the curvature of the associated Chern connection ∇∂E ,h and [α, β] := α∧β+
β ∧ α is the extension of the Lie bracket to Lie algebra-valued forms.
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In particular, we have a hyperkähler moment map µHK = (µR, µC) for the G-action on T ∗C.
The zero level set of the hyperkähler moment map is the set of solutions of Hitchin’s self-duality
equations [24]. Any such solution determines an associated GLn(C)-connection which is flat and
thus requires d = 0. To deal with vector bundles of non-zero degree, we take the level set at the
value (?iµ(E)IdE , 0) ∈ LieG∗ × LieG∗C; then consider the hyperkähler reduction

MHit :=
(
µ−1
R (?iµ(E)IdE) ∩ µ−1

C (0)
)
/G,

which is a moduli space of solutions to Hitchin’s equations (appropriately modified for d 6= 0) up
to gauge equivalence. ThenMHit admits a triple of holomorphic structures I, J and K and a hy-
perkähler metric on its smooth locus. If n and d are coprime, thenMHit is a smooth hyperkähler
manifold. A generalisation of the Kobayashi–Hitchin correspondencen correspondence for vector
bundles to Higgs bundles due to Hitchin [24] and Simpson [63] states that a holomorphic Higgs
bundle (E ,Φ) is slope polystable if and only if (E ,Φ) admits a Hermitian metric h such that

−(F∂E + [Φ,Φ∗]) = ?iµ(E)IdE .

Hence, the complex structure I on MHit gives the moduli space of Higgs bundles.

Remark 4.9. Let E be a semistable vector bundle corresponding to a point inM :=Mss
X(n, d);

then for any Φ ∈ T ∗[E]M, we note that (E ,Φ) is a semistable Higgs bundle. In fact, we have an
inclusion

T ∗M⊂ H

and we can view H as a hyperkähler analogue of M analogously to the notion of a hyperkähler
analogue of the GIT quotient of a complex affine space (see [53] and Remark 4.6). We recall
that the quiver moduli space Mθ-ss

d (Q) has a hyperkähler analogue given by the moduli space
Mθ-ss

d

(
Q,R0

)
of representations of the doubled quiver satisfying the equations R0 imposed by

zero level set of the complex moment map.

The inclusion T ∗M ⊂ H is strict in general, as there are unstable vector bundles which
can be equipped with a Higgs field for which the associated Higgs pair is stable; for example,
this is the case if there are no Higgs subbundles. Indeed we have the following example due to
Hitchin [24].

Exercise 4.10. Suppose that X has genus at least 2 and that L is a square root of ωX . Then
prove that E = L ⊕ L−1 is unstable as a vector bundle, but admits a Higgs field Φ such that
(E ,Φ) is stable.

4.4 Branes

Branes are submanifold of hyperkähler manifolds with particularly rich geometry (in the sense,
that they are either Lagrangian or holomorphic with respect to a triple of Kähler structures).
In this section, we summarise some constructions of branes in the quiver and bundle settings
arising from fixed loci of automorphisms on these moduli spaces. We will use the language of
branes as in [35] as follows.

Definition 4.11. A brane in a hyperkähler manifold (M, g, I, J,K, ωI, ωJ, ωI) is a submanifold
which is either holomorphic or Lagrangian with respect to each of the three Kähler structures
on M . A brane is called of type A (respectively B) with respect to a given Kähler structure if
it is Lagrangian (respectively holomorphic) for this Kähler structure.

Exercise 4.12. By using the quaternionic relations between the 3 complex structures, show
that there are 4 possible types of branes: BBB, BAA, ABA and AAB.
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We note that the brane-type depends on choosing a triple of Kähler structures (although often
there is a natural choice). All triples of hyperkähler structures can be related using hyperkähler
rotations.

4.4.1 Branes in hyperkähler quiver varieties

Starting from a quiver Q, moduli spaces of representations of the doubled quiver Q (satisfying
some relations) have a natural algebraic symplectic structure and, over k = C, a natural hy-
perkähler structure, provided these varieties are smooth (cf. Section 4.2). The study of branes in
Nakajima quiver varieties was initiated in [16], where the authors use involutions such as com-
plex conjugation, multiplication by −1 and transposition, to construct different branes. In [27]
we construct branes associated to quiver automorphisms in the following sense.

Definition 4.13. For a quiver Q = (V,A, h, t), a pair of automorphisms σ = (σV : V →
V, σA : A→ A) is a

1) covariant automorphism of Q if σA(a) : σV (t(a))→ σV (h(a)) for all a ∈ A,

2) contravariant automorphism of Q if σA(a) : σV (h(a))→ σV (t(a)) for all a ∈ A.

Under certain compatibility conditions of an automorphism σ of Q with the dimension vec-
tor d and stability parameter θ, we show this automorphism determines an automorphism of
Mθ-ss

d (Q) and we describe the components of the fixed locus. In the hyperkähler setting, for an
automorphism of a doubled quiver Q we then describe the geometry of this fixed locus acting
on the associated hyperkähler reduction in the language of branes.

Theorem 4.14 ([27]). Let σ be an involution of Q such that σ(a∗) = σ(a)∗ for all a ∈ A. For
choices of d, θ and η that are σ-compatible, σ induces an involution on H := µ−1(η)//χθGLd.
If θ is generic with respect to d, then H is a smooth hyperkähler manifold and the fixed locus
has the following brane type

if σ(A) ⊂ A if σ(A) ⊂ A∗
Hσ BBB BAA

Hσ◦τ ABA AAB

where τ : C→ C denote complex conjugation.

In particular, we see that all four types of branes (BBB, BAA, ABA and AAB) can be
constructed as the fixed locus of an involution. In fact, we can also construct BBB-branes as
fixed loci of a subgroup of quiver automorphisms of order higher than 2. Moreover, we provide
a decomposition of these fixed loci using group cohomology and give moduli-theoretic description
of each of the components appearing in these decompositions. For a quiver involution σ (or more
generally a group of quiver automorphisms), the fixed loci components are described in terms of
twisted equivariant quiver representations [27], and for complex conjugation τ , the components
of the fixed locus are described in terms of real or quaternionic quiver representations [28].

4.4.2 Branes in Higgs moduli spaces

The gauge theoretic construction of moduli spaces of Higgs bundles naturally generalises from
the general linear group to any complex reductive group G. In this way, one obtains moduli
spaces HG of G-Higgs bundles which inherit a hyperkähler structure on their smooth locus. We
let I, J and K denote the complex structures as above, such that I corresponds to the original
complex structure on X and gives the moduli space of Higgs bundles. Branes in HG have been
constructed in [4, 5, 8, 9] as fixed points sets of involutions on HG associated to anti-holomorphic
involutions on G and X.
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Theorem 4.15 ([4, 5, 8, 9]). Let H := HG be a smooth Higgs moduli space and σG : G→ G and
σX : X → X be anti-holomorphic involutions. Then there are induced involutions σG and σX
on H such that

i) HσG is a BAA-brane,

ii) HσX is a ABA-brane,

iii) HσG◦σX is a AAB-brane.

In [4, 5, 8, 9], some components of the fixed loci have been given moduli-theoretic descriptions:
HσG contains a moduli space of GσX -Higgs bundles, HσX contains a component corresponds to
representations of the orbifold fundamental group of (X,σX), and components of HσG◦σX can
be described as moduli spaces of pseudo-real Higgs bundles.

Baraglia and Schaposnik [5] conjecture that under Langlands duality, which relates the moduli
spaces HG and HGL of Higgs bundles for G and its Langlands dual group GL, the BAA-brane
HσGG ⊂ HG corresponds to a BBB-brane HH ⊂ HGL , where H < GL is a complex subgroup
(the so-called Nadler group) corresponding to the involution σG.

4.4.3 Open questions on branes in hyperkähler moduli spaces

The current techniques for the construction of branes in hyperkähler moduli spaces involve
taking the fixed locus of a finite group action. An interesting question is whether all branes can
be constructed in this manner. It seems unlikely that this is the case, particularly if one uses the
more general notion of brane which comes with a coherent sheaf supported on this subvariety.
A related problem is to classify all automorphisms of hyperkähler moduli spaces, in case new
automorphisms arise and give new constructions of branes; for Higgs bundle moduli spaces, this
analysis is performed in [3].

5 Counting indecomposable objects and Betti numbers

For both quiver representations and vector bundles, there is a surprising link between the counts
of absolutely indecomposable objects over finite fields and the Betti numbers of the (complex)
hyperkähler moduli spaces described above. This was first discovered for indivisible dimen-
sion vectors on quivers without loops by Crawley-Boevey and Van den Bergh [13], and was
motivated by a conjecture of Kac concerning the non-negativity of the coefficients in the poly-
nomial AQ,d(q) counting absolutely indecomposable d-dimensional Fq-representations of Q. The
proof of Kac’s positivity conjecture for arbitrary Q and d was given by Hausel, Letellier and
Rodriguez-Villegas [21].

In these works, the key idea is to provide a cohomological interpretation of the coefficients
of AQ,d(q). In [13], this cohomological interpretation for indivisible dimension vectors is as
the Betti numbers of hyperkähler quiver varieties associated to the doubled quiver. In [21],
for an arbitrary Q and d, by attaching legs to each vertex in Q, they obtain as associated
quiver Q̃d and indivisible dimension vector d̃. The generic algebraic symplectic reduction for
this extended quiver is smooth, and its compactly supported cohomology admits an action by a
finite group generated by the reflections at the new vertices. They interpret the coefficients of
the Kac polynomials as the dimensions of the sign isotypical component of this cohomology by
making use of an arithmetic Fourier transform. Furthermore, they give similar cohomological
interpretations of the refined Donaldson–Thomas invariants of quivers.

This work on quiver representations inspired Schiffmann [58] to formulate and prove an
analogous statement for bundles in the coprime setting, which lead to formulae for the Betti
numbers of moduli spaces of Higgs bundles and eventually gave a proof of the conjectures of
Hausel and Rodriguez-Villegas [22] on these Betti numbers.
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In this section, we focus of the proof of this result in the quiver setting following the arguments
of Crawley-Boevey and Van den Bergh. After this proof, we discuss the parallel argument in
the bundle setting.

The statement in the quiver setting

Let Q be a quiver and d be a dimension vector. Motivated by questions in representation theory
of quiver representations, Kac studied the properties of the count of absolutely indecomposable
quiver representations over finite fields [32, 34].

Definition 5.1. Let q be a prime power. Then a quiver representation W over Fq is absolutely
indecomposable if W ⊗Fq Fq is an indecomposable quiver representation. Let AQ,d(q) denote the
number of isomorphism classes of absolutely indecomposable representations of Q over Fq with
dimension vector d.

Exercise 5.2. For an Fq-representation W of Q of dimension d prove the following.

a) If W is absolutely indecomposable, then W is indecomposable.

b) The converse holds if d is an indivisible dimension vector.

Kac proved thatAQ,d(q) is a polynomial in q with integer coefficients, and conjectured that the
coefficients are natural numbers (see Section 5.5 below). In order to formulate the result required
for the proof of this conjecture for quivers without loops and indivisible dimension vectors given
Crawley-Boevey and Van den Bergh [13], we recall that there is an algebraic moment map
µ : Repd

(
Q
)
→ gld for the GLd-action on the space of representations of the doubled quiver

over any field k. The zero level set of the moment map defines relations R0 on the doubled
quiver Q such that µ−1(0) = Repd

(
Q,R0

)
is the space of representations of the preprojective

algebra. Choose a generic stability parameter θ with respect to d; then θ-semistability and θ-
stability (and θ-geometric stability) coincide for d-dimensional k-representations of Q (and also
for the double quiver Q). The associated algebraic symplectic reduction

X0 := µ−1(0)//χθGd =Mθ-ss
d

(
Q,R0

)
is a moduli space of θ-stable d-dimensional representations of

(
Q,R0

)
. Moreover, as semistability

coincides with stability and all stable representations are simple, X0 is a smooth algebraic variety
which inherits an algebraic symplectic structure from Repd

(
Q
)
. If k = C, then X0 is a (non-

compact) hyperkähler manifold such that T ∗Mθ-ss
d (Q) ⊂ X0.

Theorem 5.3 (Crawley-Boevey and Van den Bergh [13]). Let Q be a quiver without loops and d
be an indivisible dimension vector. For a generic stability parameter θ with respect to d and for
a finite field Fq of sufficiently large prime characteristic, we have

AQ,d(q) =
e∑
i=0

dimH2e−2i(X0(C),C)qi,

where e = 1
2 dimX0 = dimMθ-ss

d (Q). In particular, AQ,d(q) is a polynomial in q with coefficients
in N.

A summary of the strategy of the proof

Let us first outline the main steps involved in the proof.
Step 1: Deforming the moment map fibre to produce a cohomologically trivial family. We will

construct a family X → A1 over any field k whose special fibre over 0 is X0 and whose general



28 V. Hoskins

fibre is isomorphic to X := Mθ-ss
d

(
Q,Rθ

)
= µ−1(θ)//χθGd by taking X := µ−1(L)//χθGLd for

the line L ⊂ gd ⊂ gld joining 0 and θ. Working over k = C, we use the hyperkähler structure on
Repd

(
Q
)

to show that this family is topologically trivial (and so the singular cohomology of X0

and X are isomorphic). From this we will deduce that X and X0 have the same point count
over a finite field of sufficiently large characteristic (see Step 6).

Step 2: Purity of the special fibre X0 via the scaling action. We show that the natural
dilation action on Repd

(
Q
)

given by scaling the morphisms over each arrow induces a Gm-
action on X0 that is semi-projective; that is, the fixed locus (X0)Gm is projective and the limit
of all points in X0 under the action of t ∈ Gm as t→ 0 exists. Consequently, one can construct
a Bia lynicki-Birula decomposition of X0 which gives rise to a description of the cohomology (and
other algebro-geometric invariants) of X0 in terms of its Gm-fixed locus, which is smooth and
projective. In particular, this enables us to deduce that X0 is cohomologically pure in Step 3.

Step 3: Purity and point counting over finite fields. In this step, we explain how the
Poincaré polynomial of X and X0 can be computed by counting points over finite fields. The
Weil conjectures and comparison theorems between singular and `-adic cohomology, enable one
to calculate the Betti numbers of a smooth projective complex variety Y with good reduction Z
mod p by counting the Fq-points of Z, where q is a power of p. Unfortunately, X and X0 are
not projective; however, we explain that the same conclusions still hold for a smooth variety Z
over Fq if Z is pure and has polynomial point count (that is, |Z(Fqr)| is a polynomial in qr).
The plan is to apply this to X0, which is smooth and pure by Step 2. In the next two steps, we
will show that X has polynomial point count over finite fields of sufficiently large characteristic.

Step 4: Point counting for the general fibre X and absolutely indecomposable representa-
tions. The goal of this step is to relate the Fq-point count |X(Fq)|, which is the number of
isomorphism classes of θ-stable d-dimensional Fq-representations of

(
Q,Rθ

)
, with the number

AQ,d(q) of absolutely indecomposable d-dimensional Fq-representations of Q, where q is a power
of a sufficiently large prime p. More precisely, we will show that for Fq of large characteristic

AQ,d(q) = q−e|X(Fq)|,

where e := 1
2 dimX.

For p sufficiently large, we will show that all points in µ−1(θ) are θ-stable and the rela-
tionship between these two counts follows from work of Crawley-Boevey [12] studying the
lifting of Q-representations to

(
Q,Rθ

)
-representation under the restriction of the projection

Repd
(
Q
)
→ Repd(Q) to the level set µ−1(θ) = Repd

(
Q,Rθ

)
. More precisely, Crawley-Boevey

proves that the image on Fq-points of π : µ−1(θ) → Repd(Q) is the set of indecomposable d-
dimensional Fq-representations of Q and also describes the fibres using self-extension groups of
quiver representations.

Step 5: Kac’s theorem on absolutely indecomposable quiver representations. In this step, we
survey Kac’s work on absolutely indecomposable quiver representations over finite fields. The
starting point for this work is a beautiful theorem of Gabriel, which describes the indecomposable
complex representations of a quiver whose underlying graph is a Dynkin diagram in terms of the
positive roots of the Lie algebra associated to this Dynkin diagram. Kac generalised this work
to arbitrary quivers by associating to such a quiver Q (or strictly speaking its underlying graph)
a root system ∆Q ⊂ ZV (for a quiver without loops, this is the root system of an associated
Kac–Moody Lie algebra gQ). More precisely, he shows that absolutely indecomposable quiver
representations of dimension d exists over a finite field precisely when d is a positive root of ∆Q

and proves that the count AQ,d(q) is polynomial in q with integer coefficients. One of Kac’s
conjectures on AQ,d(q) was the non-negativity of the coefficients; the proof of this conjecture
follows from [13, 21] as we see in the final step.

Step 6: Specialisation and relating the cohomology of the special fibre and general fibre.
Finally we relate various cohomology groups associated to X and X0 in order to prove the main
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result. In order to pass between the GIT quotients over the field of complex numbers and various
finite fields, we first state a result concerning GIT over the integers and base change. Since the
varieties Repd

(
Q
)

and GLd, as well as the moment map µ, are defined over the integers, the
family X → A1 is also defined over the integers. The key result we need is that over an open
subset of SpecZ the construction of these GIT quotients commutes with base change and the
family X→ A1 is smooth.

Using the (topological) triviality of the family X → A1 over C and the comparison theorem
together with Deligne’s base change result for direct images, we obtain isomorphisms between
the compactly supported `-adic cohomology of the base changes of X0 and X to Fp for p � 0.
By the Grothendieck–Lefschetz trace formula, we deduce that for a finite field Fq of sufficiently
large characteristic p, the point counts of X and X0 coincide

|X0(Fq)| = |X(Fq)|.

There is a more direct proof of this equality due to Najakima which utilises the Bia lynicki-Birula
decompositions on X and appears an appendix in [13]; however, we have chosen to present the
original proof of Crawley-Boevey and Van den Bergh in Step 1, as it utilises the hyperkähler
structure in a rather ingenious way.

Over a finite field Fq of characteristic p � 0, the Fq-variety X0 is pure and smooth and
has polynomial point count equal to qeAQ,d(q); hence, this polynomial is the `-adic Poincaré
polynomial of X0 ×Fq Fp for p� 0 and ` 6= p. Since X0 is the mod q reduction of the complex
variety X0,C, we then deduce Theorem 5.3 from the comparison theorem and Poincaré duality.

5.1 Deforming the moment map to produce a cohomologically trivial family

As the stability parameter θ satisfies θ · d = 0, it determines a central element (θIdv)v∈V ∈ gd,
which we also denote by θ. Let L = kθ ⊂ gd denote the line joining θ and 0. Then we consider
the fibres of the moment map over points in L; let

X := µ−1(L)//χθGd,

which we naturally view as a family over L ∼= A1. The special fibre of X over 0 ∈ A1 is
precisely the variety X0 considered above and the general fibre of X over a non-zero point in A1

is isomorphic to the variety

X :=Mθ-ss
d

(
Q,Rθ

)
= µ−1(θ)//χθGd.

We note that we can construct the family X→ A1 over any field k and also over SpecZ, as the
varieties Repd

(
Q
)

and GLd and the morphism µ are all defined over the integers.

Proposition 5.4 ([13, Lemma 2.3.3]). Over k = C, the family X→ A1 is topologically trivial.

Proof. We recall that Repd
(
Q
)

is hyperkähler and so it has a 2-sphere of Kähler structures,
as the multiplicative group H∗ acts (by right multiplication) on Repd

(
Q
)
; this permutes the

complex structures and the subgroup SU(2) ∼= {β ∈ H : ββ† = 1} acts isometrically with respect
to the hyperkähler metric. Let us write the hyperkähler moment map for the action of the
maximal compact subgroup Ud < GLd as a map

µHK : Repd
(
Q
)
→ Im(H)⊗R u∗d, X 7→ i⊗ µI(X) + j⊗ µJ(X) + k⊗ µK(X),

where µI = µR and µJ + iµK = µC = µ. For the H∗-action on Im(H) given by β · α = βαβ†, the
hyperkähler moment map is H∗-equivariant: for β ∈ H∗ and X ∈ Repd

(
Q
)
, we have

µHK(X · β) = βµHK(X)β†.
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We will use the transitivity of the H∗-action on Im(H)◦ := Im(H) − {0} to construct a tri-
vialisation X0 × C ∼= X. Since this action is transitive, for fixed α ∈ Im(H)◦ the action map
(−) · α : H∗ → Im(H)◦ admits a continuous section s : C → H∗ over any contractible subset
C ⊂ Im(H)◦ containing α. For any coadjoint fixed point θ ∈ u∗d, we obtain a local continuous
trivialisation of the hyperkähler moment map

µ−1
HK(α⊗ θ)× C ∼= µ−1

HK(C ⊗ θ), (X, c) 7→ X · s(c),

which is Ud-equivariant and so gives rise to a continuous isomorphism

µ−1
HK(α⊗ θ)/Ud × C ∼= µ−1

HK(C ⊗ θ)/Ud.

We apply this to α = i ∈ C = {i + jC} ⊂ Im(H)◦. Then µ−1
HK(α⊗ θ) ∼= µ−1

R (θ) ∩ µ−1
C (0) and

µ−1
HK(C ⊗ θ) = µ−1

HK((i + jC)⊗ θ) = µ−1
R (θ) ∩ µ−1

C (Cθ) = µ−1
R (θ) ∩ µ−1

C (L)

and so we obtain a continuous trivialisation over C ∼= C(
µ−1
R (θ) ∩ µ−1

C (0)
)
/Ud × C ∼=

(
µ−1
R (θ) ∩ µ−1

C (L)
)
/Ud.

By the Kempf–Ness theorem this gives a homeomorphism

X0 × C = µ−1
C (0)//χθGLd × C ∼= µ−1

C (L)//χθGLd = X,

which proves that the family X→ C is topologically trivial. �

We will apply this result to deduce that over a finite field Fq of sufficiently large prime
characteristic the Fq-varieties X0 and X have the same point count; an algebraic proof is also
given by Nakajima in [13].

5.2 Purity of the special fibre X0 via the scaling action

In this section, we consider the GIT quotientX0 over a field k. We recall thatX0 :=µ−1(0)//χθGd

is projective over the affine variety Aff(X0) := µ−1(0)//GLd, which is equal to the spectrum of
the ring of GLd-invariants on µ−1(0) = Repd

(
Q,R0

)
. Thus we have a commutative diagram

µ−1(0)θ-ss

��

� � // µ−1(0)

π

��
X0

p // Aff(X0),

where the map p is projective and the map π denotes the affine GIT quotient. Since θ is generic
with respect to d, the k-variety X0 is smooth (as in the proof of Lemma 5.22 below).

There is a dilating Gm-action on Repd
(
Q
)

given by scalar multiplication on the matrices over
all arrows with a unique fixed point corresponding to the origin. Moreover, the limit of every
point in Repd

(
Q
)

under the action of t ∈ Gm as t→ 0 exists and is equal to the origin. Hence,
this is a semi-projective Gm-action in the sense of the following terminology introduced in [23].

Definition 5.5. A Gm-action on a smooth quasi-projective variety Z is semi-projective if ZGm

is projective and for all z ∈ Z the limit lim
t→0

t · z exists in Z.

Here by this limit existing, we mean that the map Gm → Z given by t 7→ t · z extends to
a morphism A1 → Z (such an extension is unique if it exists, as Z is separated).
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Example 5.6. The moduli space of semistable Higgs bundles of coprime rank and degree over
a smooth projective algebraic curve has a semi-projective Gm-action given by scaling the Higgs
field [63].

The key feature of semi-projective Gm-actions is that they give rise to a Bia lynicki-Birula
decomposition [7] of Z, which gives a description of the cohomology (and other invariants, such
as the Chow groups and motive) of Z in terms of that of its fixed locus. Since the fixed locus is
smooth and projective, we will deduce that Z is (cohomologically) pure in Section 5.3.

The scaling Gm-action on Repd
(
Q
)

commutes with the GLd-action and the algebraic moment
map is Gm-equivariant with respect to this action and the Gm-action on gld of weight 2. Hence,
there is an induced Gm-action on µ−1(0) and its GIT quotients X0 and Aff(X0) such that the
map p : X0 → Aff(X0) is Gm-equivariant. We can then prove that this Gm-action on X0 is
semiprojective as in [23].

Proposition 5.7. This scaling action of Gm on X0 is semi-projective.

Proof. This argument is given in [13] and in [23]. We first show that this statement holds for
the affine variety Aff(X0). Let x0 := π(0) ∈ Aff(X0) denote the image of the origin 0 ∈ µ−1(0)
under the affine GIT quotient π. Then x0 is fixed by the Gm-action as π : µ−1(0) → Aff(X0)
is Gm-equivariant. In fact, this is the only Gm-fixed point in Aff(X0) and all other points
x ∈ Aff(X0) satisfy lim

t→0
t·x = x0, as the same statement holds for µ−1(0) and thus the Gm-action

on Aff(X0) = SpecO
(
µ−1(0)

)GLd induces a grading on O
(
µ−1(0)

)GLd which is concentrated in
non-positive degrees and with weight zero piece isomorphic to k.

Since p is projective and Gm-equivariant, the fixed locus XGm
0 = p−1(x0) is projective and

the flow under the Gm-action as t→ 0 exists for all points in X0. Thus the Gm-action on X0 is
semi-projective. �

Hence, there is an associated Bia lynicki-Birula decomposition [7] of X0 and the flow X0 →
p−1(x0) under this Gm-action defines a homotopy retract. In particular, the cohomology of X0

can be described in terms of the cohomology of the smooth projective variety p−1(x0). By
Proposition 5.11 below, we deduce that X0 is (cohomologically) pure.

5.3 Purity and point counting over finite fields

By the Weil conjectures and comparison theorems between singular and `-adic cohomology, the
Betti numbers of a smooth projective complex variety Y , which is defined over a number field
and has good reduction Z modulo a prime p, can be calculated by counting points of Z over Fq
where q is a power of p. In this section, we will explain a generalisation of the above statement
to smooth pure varieties.

Example 5.8. Let us consider the point count of Pn. Over Fq, we have

|Pn(Fq)| =
qn+1 − 1

q − 1
= 1 + q + q2 + · · ·+ qn

and the coefficients are precisely the even Betti numbers of Pn.

Let us start by recalling the properties of `-adic cohomology that we will need to define purity.
Let p be a prime number and q be a power of p and fix a prime ` 6= p. For a Fq-variety Z, we
write Z := Z ×Fq Fq for the base change to the algebraic closure. The (compactly supported)
`-adic cohomology groups of Z

H i
c

(
Z,Q`

)
:= lim

←
H i
c,ét

(
Z,Z/lrZ

)
⊗Zl Ql
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are finite-dimensional Q`-vector spaces that have many of the properties of the usual (compactly
supported) singular cohomology groups defined for varieties over k ⊂ C. Let Z and Y be Fq-
varieties; then we have the following properties.

• Functoriality: for proper morphisms f : Z → Y we have H i
c

(
Y ,Q`

)
→ H i

c

(
Z,Q`

)
.

• Künneth isomorphisms: H i
c

(
Y × Z,Q`

) ∼= H i
c

(
Y ,Q`

)
⊗H i

c

(
Z,Q`

)
.

• Vanishing properties: H i
c

(
Z,Q`

)
6= 0 only for 0 ≤ i ≤ 2 dimZ.

• For a Zariski-locally trivial An-fibration Y → Z, we have H i
c

(
Y ,Q`

) ∼= H i−2n
c

(
Z,Q`

)
⊗

H2
c

(
A1,Ql

)⊗n
.

• Gysin long exact sequences for closed subvarieties Z ⊂ Y with U := Y − Z

· · · → H i
c

(
U,Q`

)
→ H i

c

(
Y ,Q`

)
→ H i

c

(
Z,Q`

)
→ H i+1

c

(
U,Q`

)
→ · · · .

• Poincaré duality for smooth Fq-varieties.

For a indepth treatement of étale cohomology and the Weil conjectures, see the book of
Milne [43].

Let Fq be a finite field of positive characteristic p. For a Fq-variety Z, we let FrZ : Z → Z
denote the relative Frobenius. The fixed points of the relative Frobenius on Z are precisely the
set of Fq-points in Z and similarly the fixed points of FrnZ are Z(Fqn). In fact, the number of
such points can be computed using the induced Frobenius action on H i

c

(
Z,Q`

)
.

Theorem 5.9 (the Grothendieck–Lefschetz trace formula). Let Z be a smooth variety over
a finite field Fq of characteristic p > 0. Then for l 6= p, we have

|Z(Fqn)| =
2 dimZ∑
i=0

(−1)i Tr
(

FrnZ : H i
c

(
Z,Ql

))
.

The final part of the Weil conjectures was Deligne’s proof of the Riemann hypothesis: for
a smooth and projective Fq-variety Z all eigenvalues of FrZ on H i

c(Z,Ql) have absolute value qi/2

(for any choice of embedding Ql ↪→ C). This motivates the following definition of purity.

Definition 5.10. An Fq-variety Z is (cohomologically) pure if all eigenvalues of FrZ onH i
c

(
Z,Ql

)
have absolute value qi/2.

Thus Deligne proved that all smooth projective varieties are pure. We can now give a standard
proof of the purity of a smooth quasi-projective variety with a semi-projective Gm-action using
the Bia lynicki-Birula decomposition [7]. In particular, this will provide a proof of the purity of
the Fq-variety X0 mentioned at the end of Section 5.2.

Proposition 5.11 ([13, Lemma A.2]). Let Z be a smooth quasi-projective Fq-variety with a semi-
projective Gm-action; then Z is pure.

Proof. The assumptions imply that Z has the following Bia lynicki-Birula decomposition [7].
Let ZGm = ∪j∈JZj denote the decomposition of the fixed locus into connected components;
then there is a decomposition

Z =
⊔
j∈J

Z+
j , where Z+

j :=
{
z ∈ Z : lim

t→0
t · z ∈ Zj

}
and the limit map pj : Z+

j → Zj is a Zariski locally trivial affine space fibration. By assumption,
the smooth varieties Zj are projective, and thus pure; the same also holds for the smooth
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strata Z+
j , as pj : Z+

j → Zj is a Zariski locally trivial affine fibration. Finally, the fact that Z
is quasi-projective means that there is a filtration of Z by closed subsets whose successive
differences are the strata Z+

j , and one can show that the Gysin sequences associated to this

filtration of Z split into short exact sequence using the purity of the strata Z+
j . Consequently,

we deduce that Z is also pure. �

For certain pure smooth Fq-varieties, their `-adic Betti numbers can be described using the
following result.

Lemma 5.12 ([13, Lemma A.1]). Let Z be a smooth variety defined over Fq which is pure and
has polynomial point count over Fqr ; that is |Z(Fqr)| = P (qr) for a polynomial P (t) ∈ Z[t]. Then

P (q) =
∑
i≥0

dimH2i
c

(
Z,Q`

)
qi

and in particular P (t) ∈ N[t].

Let us finally note that via the comparison theorem between étale and singular cohomology,
one can relate this result concerning `-adic cohomology with the usual singular cohomology. We
will return to this statement in the final step.

In fact, we will want to compare the Betti cohomology of a complex variety with the point
count of a reduction of this variety to a finite field using a theorem of Katz, which appears as
an appendix in [22]. For a complex variety ZC, we can choose a spreading out ZR of Z over
a finitely generated Z-algebra R (i.e., ZC = ZR ×R C) and let Z be a reduction of ZR to some
finite field Fq. If Z has polynomial point count PZ(t) ∈ Z[t]; then the E-polynomial of ZC (whose
coefficients are the virtual Hodge numbers) is given by EZC(x, y) = PZ(xy). If additionally the
compactly supported cohomology of Z is pure, then PZ(q) = EZ

(
q1/2, q1/2

)
= Pc

(
ZC, q

1/2
)

(where Pc denotes the compactly supported Poincaré polynomial).

5.4 Point count for the general fibre and absolutely indecomposable
representations

In this section, we let p be a prime number and q be a power of p. The goal is to compute
|X(Fq)|. The first result we need, is that for all sufficiently large primes, all points in µ−1(θ) are
θ-stable by the following lemma.

Lemma 5.13. Let θ be a generic stability parameter with respect to d. Then for a field k = Fq
of sufficiently large prime characteristic, we have µ−1(θ)θ-ss = µ−1(θ)θ-s = µ−1(θ).

Proof. This follows by Lemma 4.5 as µ−1(θ) = Repd
(
Q,Rθ

)
. �

In order to count points of µ−1(θ) over Fq, we will relate such representations of
(
Q,Rθ

)
with absolutely indecomposable representations of Q using a theorem of Crawley-Boevey [12,
Theorem 3.3] concerning the liftings of indecomposable representations of Q to

(
Q,Rθ

)
. We

recall that there is a natural projection Repd
(
Q
)
→ Repd(Q), whose restriction to the fibre of

the moment map over θ we denote by

π : µ−1(θ)→ Repd(Q).

Theorem 5.14 (Crawley-Boevey [12]). For θ generic with respect to d, the image of π : µ−1(θ)
→ Repd(Q) on Fq-points is the set of indecomposable representations. Moreover, the fibre of π
over an indecomposable d-dimensional Fq-representation W of Q is identified with the dual of
the space of self-extensions of W

π−1(W ) ∼= Ext1
Q(W,W )∗.
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Proof. For W ∈ Repd(Q)(Fq), we consider the dual of the exact sequence in Exercise 2.3

0→ Ext1
Q(W,W )∗ → Repd(Q

op)→ gl∗d → End(W )∗ → 0.

Then W lifts to a representation of
(
Q,Rθ

)
if and only if θ is in the image of Repd(Q

op)→ gl∗d;
that is,

∑
v∈V

θv Tr(fv) = 0 for any f ∈ End(W ). If W = W1 ⊕ W2 and f ∈ End(W ) is the

projection onto W1, then it follows that θ · dim(W1) = 0. Since θ is assumed to be generic
with respect to d, we see that only indecomposable representations of Q can lift to

(
Q,Rθ

)
. To

prove that an indecomposable representation lifts, one uses the fact that End(W ) is local for W
indecomposable (see Lemma 5.17). �

A final technical tool required to relate the point count of X with absolutely indecomposable
representations of Q over finite fields of large characteristic is Burnside’s formula for the number
of orbits under a finite group action.

Lemma 5.15 (Burnside’s formula). Let G be a finite group acting on a finite set Y , then

|Y/G| := 1

|G|
∑
g∈G
|Y g| = 1

|G|
∑
y∈Y
|StabG(y)|.

Now we can state and prove the main result of this section.

Proposition 5.16 (Crawley-Boevey and Van den Bergh). Let d be indivisible and θ be generic
with respect to d. Then for a prime p� 0 and q a power of p, we have

AQ,d(q) = q−e|X(Fq)|,

where e := 1
2 dimX.

Proof. For primes p� 0 and q = pr, we have that all points in the Fq-variety µ−1(θ) are θ-stable
by Lemma 5.13. Hence µ−1(θ) → X = µ−1(θ)//χθGd is a principal Gd-bundle. Furthermore,
as the Brauer group of Fq is trivial, the rational points of X are isomorphism classes of Fq-
representations of

(
Q,Rθ

)
so

X(Fq) ∼= µ−1(θ)(Fq)/Gd(Fq)

and as Gd-acts freely on µ−1(θ), we have

|X(Fq)| =
|µ−1(θ)(Fq)|
|Gd(Fq)|

. (5.1)

We now relate this point count to AQ,d(q) using Theorem 5.14. Since d is indivisible, Fq-
representations of dimension d are indecomposable if and only if they are absolutely indecom-
posable. We let Repd(Q)a.i. denote the constructible subset of absolutely indecomposable d-
dimensional representations of Q. By definition of AQ,d(q), we have

AQ,d(q) :=
∣∣Repd(Q)a.i.(Fq)/Gd(Fq)

∣∣
and by Burnside’s formula (Lemma 5.15) this equals

AQ,d(q) =
1

|Gd(Fq)|
∑

W∈Repd(Q)a.i.(Fq)

q−1|EndQ(W )|,
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where we use that StabGd
(W ) ∼= AutQ(W )/Gm and so |StabGd

(W )| = q−1|EndQ(W )| by
Lemma 5.17 below. Then by Theorem 5.14, we obtain

AQ,d(q) =
1

|Gd(Fq)|
∑

W∈µ−1(θ)(Fq)

q−1 |End(π(W ))|
|Ext1(π(W ), π(W ))|

. (5.2)

Since dimπ(W ) = d, we have that

〈d, d〉Q = dim EndQ(π(W ))− dim Ext1
Q(π(W ), π(W ))

by Exercise 2.3. Therefore, combining (5.1) and (5.2) we obtain

AQ,d(q) = q〈d,d〉Q−1|X(Fq)|.

Finally, we recall from (2.2) that 〈d, d〉Q = dim GLd − dim Repd(Q) and so dimMθ-ss
d (Q) =

1 − 〈d, d〉Q, as Gm
∼= ∆ ⊂ GLd acts trivially. Since X is an algebraic symplectic reduction of

the action on Repd
(
Q
)

at a regular value, we have dimX = 2 dimMθ-ss
d (Q). Thus 1−〈d, d〉Q =

1
2 dimX, which completes the proof. �

It remains for us to describe the endomorphism ring of an absolutely indecomposable repre-
sentation.

Lemma 5.17. Let W be an indecomposable Fq-representation of Q. Then the following state-
ments hold.

i) Every endomorphism of W is either nilpotent or invertible.

ii) EndQ(W ) is local with nilpotent radical Endnil
Q (W ).

iii) kW := EndQ(W )/Endnil
Q (W ) is a finite field containing Fq.

If W is absolutely indecomposable, then kW = Fq and

|EndQ(W )|
|AutQ(W )|

=
q

q − 1
.

Proof. By the fitting lemma, for an endomorphism f of W we have W = ker(f r)⊕ Im(f r) for
some r as W has finite length, and thus either f is nilpotent or invertible. As a corollary, any
finite-dimensional algebra which has only 0 and 1 as idempotents, is a local ring with nilpotent
radical. This proves the first two statements. For any local ring with nilpotent radical, the
quotient by this ideal is a division algebra. Hence kW := EndQ(W )/Endnil

Q (W ) is a finite division
algebra and by Wedderburn’s theorem, we deduce that kW is a finite field kW containing Fq.
This proves the first three statements.

Let n = [kW : Fq] and W ′ = W ⊗Fq kW ; then as Fq is perfect, we have

kW ′ =
EndQ(W ′)

Endnil
Q (W ′)

∼=
EndQ(W )

Endnil
Q (W )

⊗Fq kW = kW ⊗Fq kW = k⊕nW .

Hence W ′ is a direct sum of n pairwise non-isomorphic indecomposable kW -representations. In
particular, if W is absolutely indecomposable, then W ′ is indecomposable and thus kW = Fq.

For an absolutely indecomposable representation W , let p : EndQ(W )→EndQ(W )/Endnil
Q (W )

∼= Fq denote the projection; then as Endnil
Q (W ) = p−1(0) and AutQ(W ) = p−1(F×q ), we have

|Endnil
Q (W )|

|AutQ(W )|
=

1

q − 1
.

The final formula then follows, as |EndQ(W )| = |Endnil
Q (W )|+ |AutQ(W )|. �
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5.5 Kac’s theorem on absolutely indecomposable quiver representations

The starting point for Kac’s work [32, 34] is a remarkable discovery of Gabriel, which relates the
indecomposable representations of quivers of finite representation type1 and the positive roots of
semisimple Lie algebras. Before stating this theorem, we recall that for a quiver without oriented
cycles, the simple objects in Rep(Q, k) are in bijection with the set of vertices V . Hence, the
dimension vector induces an isomorphism

dim: K0(Rep(Q, k))→ ZV

from the Grothendieck group of this category to the free abelian group generated by V .

Theorem 5.18 (Gabriel). Let Q be a connected quiver without oriented cycles.

1) Q is of finite type if and only if the underlying graph of Q is simply-laced Dynkin diagram.

2) In this case, if gQ denotes the corresponding semisimple complex Lie algebra for this Dynkin
diagram, then dim: K0(Rep(Q, k)) → ZV induces a bijection between the set of isomor-
phism classes of indecomposable representations of Q and the set of positive roots of g.

A nice exposition of this result is given in [10]. Bernstein, Gelfand and Ponomarev [6] pro-
vided a proof of this result which enhances this remarkable link between quiver representations
and Lie algebras, by using reflection functors associated to the vertices of Q to construct all
indecomposable representations of a quiver Q of finite representation type from simpler ones
analogously to the way all positive roots in the corresponding Lie algebra arise from the simple
roots by reflections given by elements of the Weyl group.

Kac [32] associates to a quiver Q with n vertices a root system ∆Q ⊂ Zn and Weyl group WQ

that only depend on the underlying graph of Q as follows; in [33] the necessary modifications
for quivers with loops is given. For a quiver Q, we recall that the Euler form 〈−,−〉Q on the
lattice Zn defines a matrix BQ = (bij) where

bij :=

{
1− |a : i→ i| if i = j,

−|a : i→ j| if i 6= j.

The symmetrised form (−,−)Q has associated symmetric matrix AQ = B+Bt
Q. If Q is a quiver

without loops, then AQ is a symmetric generalised Cartan matrix. Let {α1, . . . , αn} denote the
standard basis of Zn and we define the set of fundamental roots ΠQ = {αi : aii = 2} to be the
basis vectors corresponding to vertices without loops. Then each fundamental root αi ∈ ΠQ

determines a reflection ri ∈ Aut(Zn) defined by ri(αj) = αj − aijαi and we define the Weyl
group WQ to be the subgroup generated by the fundamental reflections. There is an associated
root system ∆Q = ∆+

Q∪−∆+
Q where ∆+

Q is a set of positive roots, which decompose into real and
imaginary roots. The real roots are the images of the fundamental roots under the Weyl group;
these are the only roots if Q is of finite representation type. For the construction of the imaginary
roots, see [33, Section 1.1]. If Q is a quiver without loops, then there is a (typically infinite-
dimensional) Lie algebra gQ called the Kac–Moody Lie algebra associated to the symmetric
generalised Cartan matrix AQ.

Theorem 5.19 (Kac [32, 34]).

1) The number of AQ,d(q) of absolutely indecomposable quiver representations over Fq does
not depend on the orientation of Q and satisfies AQ,w(d)(q) = AQ,d(q) for w ∈WQ.

1A quiver Q is of finite representation type if there are only finitely many isomorphism classes of indecomposable
representations of Q.
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2) The map dim: K0(Rep(Q, k))→ ZV induces a surjective map from the set of isomorphism
classes of indecomposable representations over k = k of Q onto the set of positive roots
of ∆+

Q.

3) AQ,d(q) is a polynomial in q with integral coefficients.

For the polynomial behaviour ofAQ,d(q) it suffices to prove that the number IQ,d(q) of isomor-
phism classes of indecomposable d-dimensional Fq-representations of Q is given by a polynomial
in q by using standard reductions involving Galois descent. By the Krull–Schmidt theorem and
induction on d, it then suffices to show the countMQ,d(q) of isomorphism classes of d-dimensional
Fq-representations of Q is polynomial in q. Kac computes MQ,d(q) using Burnside’s theorem,
where one must sum over all conjugacy classes of GLd for all d by enumerating all possible Jor-
dan normal forms using polynomials (giving the splitting field) and partitions (giving the sizes of
the Jordan blocks). He then deduces the polynomial behaviour of MQ,d(q) (and thus AQ,d(q)).
Kac proves the independence of the orientation of Q using reflection functors and the fact that
indecomposable representations correspond to orbits in Repd(Q) with unipotent stabiliser group.

Hua [29] provided more explicit formulae for the polynomials AQ,d(q) by considering genera-
ting functions for these counts, where one sums over all dimension vectors by introducing formal
variables {Xv; v ∈ V }. For each d = (dv)v∈V , we write Xd =

∏
v∈V

Xdv
v ; then the Krull–Schmidt

theorem for Rep(Q, k) gives a formal identity∑
d∈NV

MQ,d(q)X
d =

∏
d∈NV {0}

(
1−Xd

)−IQ,d(q)
. (5.3)

For very simple quivers and low dimension vectors, it is possible to directly calculate AQ,d(q).

Exercise 5.20. For each of the following quivers and dimension vectors, calculate the Kac
polynomial AQ,d(q):

a) The Jordan quiver with dimension vector n ∈ N.

b) The 2-arrow Kronecker quiver with dimension vector d = (1, 1).

5.6 Specialisation and relating the cohomology of the special fibre
and general fibre

In this final step, we will relate various cohomology groups associated to X and X0 in order
to prove the main result. In order to pass between the field of complex numbers and various
finite fields, we will need to first state some results concerning GIT over the integers and base
change. Indeed the affine space Repd

(
Q
)
, the group GLd, and the moment map µ are all defined

over the integers, and so we can instead consider the above GIT quotients over SpecZ using
Seshadri’s GIT over a (Nagata) base ring. Although extensions of base fields commute with
taking invariants (and thus taking the semistable set and the formation of the GIT quotient
commute with base field extensions), the same is not true over rings.

Let us consider the following set up: let R be a finitely generated Z-algebra with a maximal
ideal p ⊂ R such that R/p ∼= Fq and fix an embedding R ↪→ C. Then for a variety Z over
S := SpecR, we can construct by base change:

1) an Fq-variety Z := Z ×SpecR SpecFq (the reduction of Z mod q) and

2) a complex variety ZC := Z ×SpecR SpecC.

Now suppose that G is a reductive group scheme over S acting on Z with respect to an ample
linearisation, then we want to know whether formation of the GIT quotient commutes with these
various base changes. In fact, for our purposes, it suffices to understand this for R = ZN = Z

[
1
N

]
where N ∈ Z such that p - N and so we can apply the following result.
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Lemma 5.21 ([13, Appendix B]). For S := SpecZN , we let G be a reductive group scheme
over S acting on a quasi-projective S-scheme Z with respect to an ample linearisation. Then
there is a non-empty open subscheme U ⊂ S over which the formation of the GIT semistable set
and GIT quotient commutes with base change; that is, for all points s : Spec k → U , we have

Zss ×S k = (Z ×S k)ss and (Z//G)×S k ∼= (Z ×S k)//(G ×S k).

We note that an open subset U ⊂ S := SpecZN has the form U = SpecZM for some N |M ,
and this means we just need to replace N by a sufficiently large multiple. If moreover p - N , then
we can base change from S = SpecZN to Fp when applying the above result. More precisely,
for a variety Z over S we have the following base changes

ZFp

��

// ZFp
//

��

Z

��

ZCoo

��
SpecFp // SpecFpr // S SpecCoo

and provided N is sufficiently large these base changes all commute with the formation of GIT
quotients and semistable sets by the above lemma.

We will also need the following preliminary result concerning the smoothness of X0 and X
over finite fields of large characteristic.

Lemma 5.22. Let θ be generic with respect to d, then there is a non-empty open subset U ⊂
SpecZ over which the morphism f : X→ A1 is smooth.

Proof. It suffices to prove that f is smooth after base changing to k = Q, as by a spreading
out argument it is sufficient to prove that f is smooth over Q (as then the same statement
holds over Z after inverting finitely many primes) and smoothness can be checked after any field
extension. Since θ is generic, the notions of θ-stability and θ-semistability for d-dimensional
k-representations coincide. As any θ-stable k-representation of Q is simple, we see that Gd

acts freely on Repd
(
Q
)θ-s

. Hence the infinitesimal action at these points is trivial and so

it follows that the restriction of the moment map µ to Repd
(
Q
)θ-s

is smooth, as µ lifts the
infinitesimal action. Consequently, for the line L = kθ in the Lie algebra of Gd, we see that
the induced morphism µ−1(L)θ-s → L is smooth, and as Gd acts freely on µ−1(L)θ-s, the Gd-
quotient µ−1(L)θ-s → X is also smooth. Hence, we deduce that f : X → L ∼= A1 is also smooth
over k. �

We are now in a position to complete the proof. The first goal is to relate the point count
of X0 and X in large characteristic.

Proposition 5.23. For a finite field Fq of sufficiently large characteristic p, we have

|X0(Fq)| = |X(Fq)|.

Proof. Using the (topological) triviality of the family X → A1 over C and the comparison
theorem together with Deligne’s base change result for direct images, we deduce that for p� 0
and ` 6= p, there are isomorphisms

H i
c

(
X ×Fq Fp,Q`

) ∼= H i
c

(
X0 ×Fq Fp,Q`

)
in `-adic cohomology that are compatible with the Frobenius endomorphisms. By applying the
Grothendieck–Lefschetz trace formula to both X and X0, which are both smooth Fq-varieties in
large characteristic by Lemma 5.22, we deduce the claim. �



Parallels between Moduli of Quiver Representations and Vector Bundles over Curves 39

Remark 5.24. A more direct proof of this result is given by Nakajima as an appendix in [13],
which involves comparing the Bia lynicki-Birula decomposition on the total space of the family X
with the decompositions on the fibres of this family.

Putting all of the above together, we obtain the proof of Crawley-Boevey and Van den Bergh.

Proof of Theorem 5.3. Let Fq be a finite field of sufficiently large characteristic p so that
the construction of the GIT quotient X commutes with base change and the family X → A1

is smooth. By Proposition 5.16 and Theorem 5.19, we see that X has polynomial point count
given by

|X(Fq)| = q−dAQ,d(q).

Provided p� 0, this point count coincides with that of X0 by Proposition 5.23. Since X0 is pure
by Propositions 5.7 and 5.11, we deduce that the `-adic Poincaré polynomial of the Fq-variety X0

for q = pr and p sufficiently large is given by

AQ,d(t) = t−e
∑
i≥0

dimH2i
c

(
X0 ×Fq Fp,Q`

)
ti, (5.4)

where e = 1
2 dimX0 and ` 6= p is prime.

Now consider the family X→ A1 over SpecZN for sufficiently large N indivisible by p, then
by base change we can obtain the Fp-variety X0 ×Fq Fp and the complex variety X0,C and these
base changes commute with the formation of the GIT quotient. In particular, the complex
variety X0,C is defined over Q and the Fp-variety X0 is a mod p reduction of this complex
variety. By smooth base changes results and the comparison theorem [SGA4:3, Exposé XVI,
Theorem 4.1], we obtain from (5.4) the corresponding equality for the Poincaré polynomial of
the sheaf cohomology of X0,C with values in the constant sheaf C

AQ,d(q) = q−e
∑
i≥0

dimH2i
c (X0,C,C)qi.

By Poincaré duality for the smooth variety X0,C of dimension 2e, we deduce

AQ,d(q) =
e∑
i=0

dimH2e−2i(X0,C(C),C)qi,

where now we switch from sheaf cohomology to the singular cohomology of the analytic varie-
ty X0,C(C). �

5.7 A brief survey of Schiffmann’s results for bundles

Let X be a smooth projective curve over a finite field Fq. Then the category of coherent sheaves
over X is an abelian category of homological dimension 1 with a group homomorphism

cl : K0(Coh(X))→ Z2, [F ] 7→ cl(F) = (rk(F), deg(F))

through which the Euler form factors

〈E ,F〉 = rk E rkF(1− g) + rk E degF − rkF deg E .

Moreover, this is a Krull–Schmidt category and so there is naturally a notion of (absolutely)
indecomposable objects.

For coprime rank n and degree d, Schiffmann discovered an analogous relationship between
the count An,d(X) of isomorphism classes of indecomposable vector bundles on X/Fq and the
Betti cohomology of the moduli space of semistable Higgs bundles on X. In fact, the case of
vector bundles involves several technical issues which did not arise in the quiver setting:
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1) For quivers, the count of absolutely indecomposable representations of Q was polynomial
in the size of the finite field and was independent of the orientation. Moreover, there was
a representation theoretic interpretation: the underlying graph of the quiver determined
a root system and Weyl group, under which the polynomial counting absolutely indecom-
posable representations was invariant. For bundles on curves, one would like to understand
the behaviour of this count as X varies in the moduli space of genus g curves over Fq and
give a representation theoretic interpretation of the associated polynomial.

2) There are many more vector bundles than quiver representations: while the stack of quiver
representations of fixed dimension vector is a finite type stack, the stack of vector bundles
of fixed class is only locally of finite type. Hence, to prove the polynomial behaviour of the
count of indecomposable bundles, one cannot uses the Krull–Schmidt theorem and count
all vector bundles, as this is infinite.

3) Although the moduli space of Higgs bundles admits a gauge theoretic construction as
a holomorphic symplectic reduction, we need an algebraic version for working over finite
fields. Furthermore, to relate Higgs bundles to indecomposable vector bundles, it is neces-
sary to employ a similar trick to the above trick of Crawley-Boevey and Van den Bergh:
one needs to find a suitable family of algebraic symplectic reductions over the affine line
that contains the moduli space of Higgs bundles as the special fibre.

The description of the behaviour of this count as X varies in the moduli space of genus g
curves is achieved by Schiffmann in [58]: he proves that there is a polynomial (depending on
(n, d) and the genus g of the curve) in the Weil numbers of a curve over a finite field which gives
the counts An,d(X) for any curve X over a finite field by evaluation at the Weil numbers of X;
moreover, by work of Mellit [42], this polynomial is actually independent of the degree d. To state
this precisely, we recall that the Weil numbers of a genus g smooth projective curve X/Fq are
the eigenvalues σ1, . . . , σ2g of the Frobenius acting on H1

ét

(
X×Fq Fq,Ql

)
. If we fix an embedding

Ql ↪→ C, then we can view the Weil numbers of X as a tuple of complex numbers of absolute
value q

1
2 and order them as complex conjugate pairs (σ2i−1, σ2i) which satisfy σ2i−1σ2i = q for

all 1 ≤ i ≤ g. This tuple gives rise to a point in the torus

Tg :=
{

(α1, . . . , α2g) ∈ G2n
m : σ2i−1σ2i = σ2j−1σ2j ∀ 1 ≤ i, j ≤ g

}
and the natural action of Wg := Sg n (S2)g takes care of the choices in the above ordering
into complex conjugate pairs. Let π : Tg(C) → Tg(C)/Wg denote the quotient map and define
σX := π(σ1, . . . , σ2g) to be the image of the Weil numbers of X.

Let Rg := Q[z1, . . . , z2g : z2i−1z2i = z2j−1z2j ∀ 1 ≤ i ≤ g]Wg . Then we can evaluate any
element in Rg at σX for any genus g smooth projective curve X over a finite field. In genus 0,
we set R0 = Q[q±].

Theorem 5.25 (Schiffmann [58]). For a fixed genus g and pair (n, d) ∈ N×Z, there is a unique
element Ag,n,d ∈ Rg such that for any smooth projective geometrically connected curve X of
genus g over a finite field, we have

Ag,n,d(σX) = An,d(X).

Mellit [42] showed this polynomial Ag,n,d is actually independent of the degree d and so we
can write simply Ag,n; this proof is combinatorial and does not give a geometric reason for
this independence. Moreover, these polynomials exists in rank n = 0 and count absolutely
indecomposable torsion sheaves.

In fact, Schiffmann also provides a representation theoretic interpretation of Wg, Tg and Rg:

the Frobenius FrX on H1
ét

(
X ×Fq Fq,Ql

) ∼= Ql
2g

is an element of the general symplectic group
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GSp
(
H1

ét

(
X ×Fq Fq,Ql

))
where we equip this vector space with the intersection form. The

character ring of this general symplectic group is Rg and (Tg,Wg) are a maximal torus and
associated Weyl group of GSp(2g,Ql).

Schiffmann’s proof of this theorem gives rise to explicit (but complicated) formulae for these
polynomials; these were later substantially combinatorially simplified by Mellit [42]. The fact
that the number of absolutely indecomposable vector bundles overX of fixed class is finite follows
from the observation that any sufficiently unstable coherent sheaf is decomposable as its Harder–
Narasimhan filtration must split in some place, and so the stack of absolutely indecomposable
vector bundles is a constructible substack of a finite type stack. Therefore, An,d(X) also counts
isomorphism classes of absolutely indecomposable coherent sheaves over X of this class. The
standard arguments for quivers involving Galois cohomology and the Krull–Schmidt theorem
still apply to reduce the problem to counting all isomorphism classes of coherent sheaves on X
of this class, but this number is infinite for n > 0. In fact, we should also point out that
this count is not the same as the stacky volume of the stack of coherent sheaves, where one
weights the count by the inverses of the size of the automorphism groups (this stacky volume
has a very elegant formula involving the Zeta function of the curve [18]). Instead, Schiffmann
uses a suitable truncation of the category of coherent sheaves on X given by the subcategory of
positive coherent sheaves (i.e., sheaves whose HN subquotients have positive degrees). Similarly
to the case of quivers, one can perform a unipotent reduction and partition the stack of positive
sheaves by Jordan normal types.

Furthermore, the coefficients of these polynomials satisfy some form of positivity. For this,
Mozgovoy and Schiffmann [45, 58] relate the polynomialAg,n(t, . . . , t) ∈ Q[t] with the (compactly
supported) Poincaré polynomial of moduli spaces of semistable Higgs bundles over a genus g
smooth complex projective curve for any d coprime to n (recall that Ag,n,d = Ag,n is independent
of d by work of Mellit [42]).

Theorem 5.26 (Schiffmann [58]). Let XC be a smooth complex projective curve of genus g and
Hss
XC

(n, d) denote the moduli space of semistable Higgs bundles over XC of coprime rank and
degree. Then∑

i≥0

H i
c

(
Hss
XC(n, d),Q

)
tn = t2(1+(g−1)n2)Ag,n(t, . . . , t).

We note that for coprime (n, d), the notions of absolutely indecomposable and indecomposable
coincide. In fact, Schiffmann’s proof of this theorem is inspired by the work of Crawley-Boevey
and Van den Bergh: it involves relating Ag,n to the point count of moduli spaces of semistable
Higgs bundles on a curve over a finite field (provided the characteristic is sufficiently large) by
fitting this moduli space into a family over A1. Indeed the forgetful map from the stack of stable
Higgs bundles to the stack of vector bundles does not land in the indecomposable locus (for
example, consider Exercise 4.10). Therefore, one needs a slightly perturbed model of the Higgs
bundle moduli space to compare with indecomposable vector bundles.

To construct such a family, Schiffmann uses a variant of the construction of the functorial
construction of moduli of sheaves due to Álvarez-Cónsul and King [1] which depends on a choice
of two polarising line bundles (L1,L2) on X (rather than two twists of the same bundle); the
choice of two line bundles enables a construction of a family of a algebraic symplectic reductions
Y → A1 over any field k such that Y0 = Hss

X(n, d) and, moreover, the fibre Y1 can be compared
with indecomposable vector bundles. More precisely, Y is constructed as the GIT quotient of
the preimage of a line under an algebraic moment map on the cotangent bundle of an affine
variety. The affine variety in question arises as a closed subvariety in the representation space
of a Kronecker quiver with h0

(
L∨2 ⊗ L1

)
arrows, where the dimension vector is determined by

the class (n, d) and the degrees of the pair of line bundles using the Euler form for sheaves on X
(for the detailed construction, see [58, Sections 6.3–6.8]).
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After constructing the family Y → A1 with Y0 = Hss
X(n, d), Schiffmann shows that over any

finite field Fq of sufficiently large characteristic the following statements hold:

1) the schemes Y0 and Y1 are smooth (which uses standard properties about GIT quotients
of free group actions, see [58, Lemma 6.5]),

2) the point counts of Y0 and Y1 over Fq coincide (which is proved by using a contracting
Gm-action on Y, see [58, Proposition 6.9]),

3) the point count of Y1 is polynomial (this is proved by relating this to the count Ad,n(X)
by the following formula, for details see [58, Lemma 6.4 and Section 6.9]):

|Y1(Fq)| = q1+(g−1)r2Ad,n(X). (5.5)

The moduli space of stable Higgs bundles over a finite field is already known to be cohomo-
logically pure (for example, see [23, Section 1.3]) and so (5.5) also gives an explicit formula
for the `-adic Poincaré polynomial of the moduli space of stable Higgs bundles on X. Finally
by spreading out a smooth projective curve XQ of genus g defined over Q to some localisation
R := Z

[
1
N

]
of the integers, one can relate the `-adic Poincaré polynomial of Hss

XQ
(n, d) with the

moduli space Hss
XR×Fq(n, d) of the base change of XQ to a finite field Fq of large characteristic,

and by the comparison theorem one can also relate this to the singular Poincaré polynomial
(with C-coefficients) of the base change XC = XR ×R C (in the above, we use cohomology with
compact supports). Since the diffeomorphism class of the complex variety Hss

XC
(n, d) is indepen-

dent of the choice of smooth projective curve XC of genus g (as they are all diffeomorphic to
the genus g character variety for GLn), this enables Schiffmann to relate Ag,n with the Poincaré
polynomial of Hss

XC
(n, d) for any XC (see [58, Section 6.10] for further details).

5.8 Representation theoretic interpretations of the Kac polynomials

The Kac polynomialsAQ,d andAg,n for quivers and curves have representation theoretic interpre-
tations given by considering Hall algebras associated to quivers and curves, which is beautifully
surveyed in [59].

In the quiver case, Kac conjectured that the constant term of AQ,d for a quiver Q without
loops was the dimension of the d-th root space in the decomposition of the associated Kac–Moody
algebra gQ; this conjecture was proved for indivisible dimension vectors d in [13] and in general
by Hausel [20]. Hall algebras then enter the picture as a way to construct gQ from the moduli
stack of all quiver representations. More precisely, the objects in the Hall algebra HQ associated
to the category of Fq-representations of Q are functions [Repd(Q)/Gd](Fq) → C and one can
construct a so-called spherical Hall algebra as the subalgebra of HQ ⊗ C

[
ZV
]

generated by the
characteristic functions of the simple representations and the group algebra C

[
ZV
]
. By work of

Ringel and Green, this spherical Hall algebra of Q is isomorphic to the positive Borel subalgebra
of the Drinfeld–Jimbo quantum enveloping algebra of gQ. The full quantum enveloping algebra
of gQ is given by taking the Drinfeld double of this spherical Hall algebra (see [59, Section 2]).
The relationship between the Kac polynomial AQ,d and moduli spaces of stable representations
of the doubled quiver Q with relations R0 imposed by the zero level set of the moment can be
extended to the stack of all representations of

(
Q,R0

)
, which can be viewed as the cotangent

stack of the moduli stack of representations of Q. More precisely, the Poincaré polynomials
of the stacks of representations of

(
Q,R0

)
for varying d can be expressed in terms of the Kac

polynomials AQ,d for varying d (see [59, Theorem 4.2]); this formula combines a purity result
of Davison [14] with a point count of Mozgovoy [44]. Furthermore, work of Schiffmann and
Vasserot [60] equips the Borel–Moore homology of the stack of representations of

(
Q,R0

)
with

an associative algebra structure, known as the two-dimensional cohomologoical Hall algebra
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of the quiver (see [59, Section 4.2]); this 2d-cohomological Hall algebra is conjectured to be
a deformation of the universal enveloping algebra of a graded Lie algebra attached to Q, whose
Hilbert series coincides with the Kac polynomial.

In the curves case, the representation theoretic interpretation of Ag,n involves a spherical Hall
algebra, which is constructed analogously to above, but replacing the characteristic functions of
simple quiver representations with constant functions on the moduli stack of rank n degree d
coherent sheaves with n ≤ 1. There is also a corresponding 2d-cohomological Hall algebra in
the curves cases associated to the stack of Higgs sheaves, which can be viewed as the cotangent
stack of the moduli stack of coherent sheaves [56]. The representation theoretic interpretation
of these Hall algebras is ongoing work of Schiffmann and collaborators; for a nice overview of
this work, see [59, Sections 5–8].

5.9 Related open questions

As described in Section 4.4, there are several interesting actions on moduli spaces of quiver rep-
resentations and vector bundles on curves, as well as their hyperkähler analogues (for example,
these actions often arise from automorphisms of either the base field, the quiver or the curve).
One can also count indecomposable objects in a category which respect an automorphism (or
subgroup of automorphisms). A natural question is to consider the count of such absolutely in-
decomposable invariant objects and study their properties; for example, one could ask whether
one obtain polynomial counts and whether the coefficients are non-negative. An even more am-
bitious question is whether there should be a cohomological interpretation of the non-negativity
of the coefficients. In a more representation theoretic direction, one would hope to be able
to attach some sort of a root system to such a category with an action by an automorphism
group, such that the invariants of indecomposable objects respecting these automorphisms are
the positive roots.

This question was partially investigated for quiver representations respecting a so-called ad-
missible quiver automorphism by Hubery [30], who showed that the number of isomorphism
classes of absolutely indecomposable invariant representations over a finite field is a rational
polynomial in the size of the field, and moreover, this is independent of the orientation and
invariant under the Weyl group. Furthermore, he showed that the dimensions of the inde-
composable representations are specified by the positive roots of an associated symmetrisable
Kac–Moody Lie algebra. It would be interesting to investigate whether the coefficients could be
described in terms of the cohomology of an associated brane in the corresponding hyperkähler
quiver variety given by taking the fixed locus of this automorphism group.
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[8] Biswas I., Garćıa-Prada O., Anti-holomorphic involutions of the moduli spaces of Higgs bundles, J. Éc.
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