
Symmetry, Integrability and Geometry: Methods and Applications SIGMA 15 (2019), 016, 12 pages

The q-Borel Sum of Divergent Basic Hypergeometric

Series rϕs(a; b; q, x)

Shunya ADACHI

Graduate School of Education, Aichi University of Education, Kariya 448-8542, Japan

E-mail: s217m064@auecc.aichi-edu.ac.jp, s.adachi0324@icloud.com

Received June 15, 2018, in final form February 24, 2019; Published online March 05, 2019

https://doi.org/10.3842/SIGMA.2019.016

Abstract. We study the divergent basic hypergeometric series which is a q-analog of diver-
gent hypergeometric series. This series formally satisfies the linear q-difference equation. In
this paper, for that equation, we give an actual solution which admits basic hypergeometric
series as a q-Gevrey asymptotic expansion. Such an actual solution is obtained by using
q-Borel summability, which is a q-analog of Borel summability. Our result shows a q-analog
of the Stokes phenomenon. Additionally, we show that letting q → 1 in our result gives the
Borel sum of classical hypergeometric series. The same problem was already considered by
Dreyfus, but we note that our result is remarkably different from his one.
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1 Introduction

We set q ∈ C∗ and 0 < |q| < 1 throughout this paper. Basic hypergeometric series with the base
q is defined by

rϕs (a; b; q, x) = rϕs

(
a
b

; q, x

)
:=
∑
n≥0

(a1, a2, . . . , ar; q)n
(b1, . . . , bs; q)n(q; q)n

{
(−1)nq

n(n−1)
2
}1+s−r

xn, (1.1)

where x ∈ C, a = (a1, a2, . . . , ar) ∈ Cr, b = (b1, . . . , bs) ∈ Cs and b1, . . . , bs /∈ q−N.

Basic hypergeometric series (1.1) is a q-analog of the classical hypergeometric series

rFs (α;β;x) = rFs

(
α
β

;x

)
:=
∑
n≥0

(α1)n(α2)n · · · (αr)n
(β1)n · · · (βs)nn!

xn, (1.2)

where α = (α1, α2, . . . , αr) ∈ Cr, β = (β1, . . . , βs) ∈ Cs and β1, . . . , βs /∈ Z≤0.

The radius of convergence of the series (1.1) and (1.2) are both∞, 1 or 0 according to whether
r < s+1, r = s+1 or r > s+1. In this paper, we assume r > s+1 and a1a2 · · · arb1b2 · · · bs 6= 0.
Therefore the series (1.1) and (1.2) are divergent in this paper.

Basic hypergeometric series (1.1) formally satisfies the following linear q-difference equation:x(−σq)1+s−r
r∏
j=1

(1− ajσq)− (1− σq)
s∏

k=1

(
1− bk

q
σq

) y(x) = 0, (1.3)

where σq is the q-shift operator defined by σqy(x) = y(qx). As applying the local theory of
linear q-difference equations (cf. Adams [1]), we see that the equation (1.3) has a fundamental
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system of solutions around infinity1:

y
(∞)
i (x) =

θq(−aix)

θq(−x)
rϕr−1

(
ai,

aiq
b1
, aiqb2 , . . . ,

aiq
bs
, 0, . . . , 0

aiq
a1
, . . . , aiq

ai−1
, aiqai+1

, . . . , aiqar
; q,

qb1 · · · bs
a1 · · · arx

)
, 1 ≤ i ≤ r, (1.4)

which are convergent in |x| > |qb1 · · · bs/a1 · · · ar|.
In this paper, we construct an actual solution of (1.3) which admits (1.1) as an asymptotic

expansion and give its analytic continuation, by using q-Borel–Laplace transform (see Theo-
rem 3.1). This result shows a q-analog of Stokes phenomenon. After that, we consider to take
the limit q → 1 in Theorem 3.1 (see Theorem 3.2).

The motivation of this study comes from as follows: Ichinobe [8] obtained the Borel sum of
divergent classical hypergeometric series.

Theorem 1.1 (Ichinobe [8, Theorem 2.1]). Let α = (α1, α2, . . . , αr) ∈ Cr and β = (β1, β2, . . . ,
βs) ∈ Cs. Assume αi − αj /∈ Z, i 6= j. Then rFs(α;β;x) is 1/(r − s − 1)-summable in any
direction d such that d 6= 0 (mod 2π) and its Borel sum f(x) is given by

f(x) = Cαβ

r∑
j=1

Cαβ(j)(−x)−αj s+1Fr−1

(
αj , 1 + αj − β
1 + αj − α̂j

;
(−1)1+s−r

x

)
,

where x ∈ S(π, (r− s+ 1)π,∞) := {x ∈ C∗; |π − arg x| < (r− s+ 1)π/2)} and α̂j ∈ Cr−1 is the
vector which is obtained by omitting the j-th component from α and

Cαβ =
Γ(β)

Γ(α)
, Cαβ(j) =

Γ(αj)Γ(α̂j − αj)
Γ(β − αj)

. (1.5)

Here we use the following abbreviations

Γ(α) =
r∏
l=1

Γ(αl), Γ(α̂j − αj) =
r∏

l=1, l 6=j
Γ(αl − αj).

Since basic hypergeometric series (1.1) is a q-analog of hypergeometric series (1.2), whether
there exists a q-analog of Theorem 1.1 is a natural question. To answer this question, we use the
theory of q-Borel summability. It is a q-analog of the theory of Borel summability and studied by
many authors (cf. Ramis [10], Zhang [13, 14], Di Vizio–Zhang [3] and Dreyfus–Eloy [6]). Drey-
fus [4] proved that for every formal power series solution of a linear q-difference equation with
rational coefficients, we may construct a meromorphic solution of the same equation applying
several q-Borel and q-Laplace transformations of appropriate orders and appropriate direction.

Our results are generalizations of Zhang [13] and Morita [9]. Zhang studied the q-Borel
summability of divergent basic hypergeometric series 2ϕ0 which is the case of r = 2 and s = 0
in our result. Later, Morita obtained similar results with Zhang for 3ϕ1, which is the case of
r = 3 and s = 1 in our result. The common point of their assumptions is that r and s satisfy
r − s = 2. Our result gives the resummation of rϕs in the case of r − s ≥ 2.

This paper is organized as follows. We fix our notions and review the theory of q-Borel
summability in Section 2. Main results of this paper are given in Section 3. In Sections 4 and 5,
we give proofs of Theorem 3.1 and Lemma 4.2 respectively. A proof of Theorem 3.2 is given in
Section 6.

1In his paper, Adams used the function q−
1
2
(logq x)(logq x−1) instead of θq(x). We remark that two functions

q−
1
2
(logq x)(logq x−1) and θq(x) play the same role in constructing formal solutions since they satisfy the same

q-difference equation

σnq y = x−nq−
n(n−1)

2 y.
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On an article of Dreyfus

We note that Dreyfus [5] treated the resummation of basic hypergeometric series (1.1) via q-
Borel summability. But his result is remarkably different from our result: In Dreyfus’ paper,
the order of q-Laplace transform and q-Borel transform are different. Therefore the function he
obtained doesn’t satisfy the same equation with (1.1). To explain this more detail, we use the
following notations which are used in Dreyfus’ paper [5] only in this subsection.

• q > 1 and p = 1/p,

• q := q1/(r−s−1) and p := p1/(r−s−1),

• the definitions of B̂q and L
[d]
q are essentially same with this paper (see Section 2.2).

Under these notations, Dreyfus considered the resummation of rϕs(a; b; p, z). He said that [5,
pp. 478–479]

. . . , we can compute a solution of the same linear σq-equation than rϕs

(
a1, . . . , ar
b1, . . . , bs

; p, z

)
=
∑
n∈N

(a1, . . ., ar; p)n

(b1, . . ., bs; p)n(p; p)n

{
(−1)np

n(n−1)
2
}1+s−r

zn applying successively to it B̂q and L[d]
q .

However, since(
p
n(n−1)

2

)1+s−r
= p−

n(n−1)
2 = q

n(n−1)
2 ,

we have to apply q-Borel transform B̂q to rϕs(a; b; p, z), not q-Borel transform B̂q. In addition,
the computation actually written in [5] seems to be wrong. He said that [5, p. 479]

Applying B̂q to rϕs

(
a1, . . . , ar
b1, . . . , bs

; p, z

)
, we obtain for all d 6≡ (r − s− 1)π[2π]

h(ζ) := rϕr−1

(
a1, . . . , ar

b1, . . . , bs, 0, . . . , 0
; p, (−1)1+s−rζ

)
∈ Hd

q,1.

But actually the function h(ζ) is equal to B̂q(rϕs), not B̂q(rϕs) (see Section 4). Here we

remark that the series B̂q(rϕs) must be still divergent because of q > q. After that, the q-
Laplace transform of h(ζ) was calculated in Lemma 7.2. As a result, the resummation denoted

by S[d]
q (rϕs) in Theorem 7.3 is actually equal to(
L[d]
q ◦ B̂q

)
(rϕs). (1.6)

Since the orders of q-Borel and q-Laplace transformations are different, the function (1.6) doesn’t
satisfy the same equation with rϕs.

However, we remark that the limit q → 1 of S[d]
q (rϕs) in Theorem 7.3 is accidentally same

with the Borel sum of (classical) hypergeometric series (1.2). In other words, the statement of
Theorem 7.4 itself is correct, but the proof is incorrect.

In this paper we give the correct result about the resummation of basic hypergeometric
series (1.1) in Theorem 3.1. In addition, we consider the relation between the resummation and
local solution around infinity (1.4). We remark that this topic wasn’t treated by Dreyfus. In
Theorem 3.2, we give the limit q → 1 of the resummation of (1.1) in Theorem 3.1, with a correct
proof.
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2 Preliminary

2.1 Basic notions

Let us fix our notations. We denote by 0n the n-vector (0, 0, . . . , 0).

For n = 0, 1, 2, . . . , we set the Pochhammer symbol as

(a)n :=

{
1, n = 0,

a(a+ 1) · · · (a+ n− 1), n ≥ 1,

and the q-shift factorial is defined by

(a; q)n :=

n−1∏
j=0

(
1− aqj

)
, (a; q)∞ :=

∞∏
j=0

(
1− aqj

)
.

For any a ∈ C, the infinite product (a; q)∞ is convergent. We set

(a1, a2, . . . , ar; q)n :=

r∏
j=1

(aj ; q)n for n = 0, 1, 2, . . . or n =∞.

The theta function with the base q is defined by

θq(x) :=
∑
n∈Z

q
n(n−1)

2 xn,

which is holomorphic on C∗ = C \ {0}. The following properties hold:

θq(x) = (q,−x,−q/x; q)∞, (2.1)

θq(q
nx) = x−nq−

n(n−1)
2 θq(x), n ∈ Z, (2.2)

θq(qx) =
θq(x)

x
= θq

(
1

x

)
. (2.3)

For λ ∈ C∗, we set the q-spiral [λ; q] := λqZ = {λqn; n ∈ Z}. From the equality (2.1), we see

θq

(
−λ
x

)
= 0 ⇔ x ∈ [λ; q].

We remark that the q-spiral [λ; q] is identified with an element of C∗/qZ.

The q-gamma function Γq(x) is defined by

Γq(x) :=
(q; q)∞
(qx; q)∞

(1− q)1−x.

When q is a real number and satisfies 0 < q < 1, the limit of Γq(x) as q → 1 gives the gamma
function (cf. Gasper–Rahman [7, Section 1.10])

lim
q→1

Γq(x) = Γ(x). (2.4)
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2.2 Review of q-Borel summability

We review the theory of q-Borel summability (cf. Zhang [13, 14] and Dreyfus–Eloy [6]).

Let C[[x]] be the ring of formal power series of x and f̂(x) =
∑
n≥0

anx
n ∈ C[[x]]. For f̂(x), we

define its q-Borel transform B̂q;1 : C[[x]]→ C[[ξ]] by

(B̂q;1f̂)(ξ) :=
∑
n≥0

anq
n(n−1)

2 ξn.

We denote M(C∗, 0) the field of functions that are meromorphic on some punctured neigh-
borhood of 0 in C∗. More explicitly f ∈ M(C∗, 0) if and only if there exists V , an open
neighborhood of 0, such that f is analytic on V \ {0}.

Let [λ; q] ∈ C∗/qZ and f ∈M(C∗, 0). It is said that f belongs to H[λ;q]
q;1 if there exist a positive

constant ε and a domain Ω ⊂ C such that:

•
⋃
m∈Z
{x ∈ C∗; |x− λqm| < ε |qmλ|} ⊂ Ω.

• The function f can be continued to an analytic function on Ω with q-exponential growth
at infinity, which means that there exist positive constants L and M such that for any
x ∈ Ω \ {0}, the following holds:

|f(x)| < Lθ|q|(M |x|).

We note that this estimate does not depend on the choice of λ.

Let [λ; q] ∈ C∗/qZ. For f ∈ H[λ;q]
q;1 , we define its q-Laplace transform L[λ;q]

q;1 : H[λ;q]
q;1 →M(C∗, 0)

by

(
L[λ;q]
q;1 f

)
(x) :=

1

1− q

∫ λ∞

0

f(ξ)

θq
( ξ
x

) dqξ
ξ

=
∑
n∈Z

f(λqn)

θq
(λqn
x

) .
Here, this transformation is given in Jackson integral (cf. Gaspar–Rahman [7, Section 1.10]). For

sufficient small |x|, the function
(
L[λ;q]
q;1 f

)
(x) has poles of order at most one that are contained

in the q-spiral [−λ; q]. We remark that the well-definedness of q-Laplace transform can be
shown in the same way as Théorème 1.3.2 of Zhang [13]. If the function f̂(x) ∈ C[[x]] satisfies(
B̂q;1f̂

)
∈ H[λ;q]

q;1 , we call that f̂(x) is [λ; q]-summable and
(
L[λ;q]
q;1 ◦ B̂q;1f̂

)
(x) is the [λ; q]-sum

of f̂(x).

We give some fundamental properties of q-Borel–Laplace transform without proofs.

Proposition 2.1 (Dreyfus–Eloy [6, Section 1]). Let [λ; q] ∈ C∗/qZ and f be an analytic function.
Then, the followings hold:

•
(
B̂q;1f

)
∈ H[λ;q]

q;1 ,

•
(
L[λ;q]
q;1 ◦ B̂q;1f

)
= f .

Proposition 2.2. Let [λ; q] ∈ C/qZ. For f̂(x) ∈ C[[x]] and g ∈ H[λ;q]
q;1 , the followings hold.

•
(
B̂q;1

(
xmσnq f̂

))
= q

m(m−1)
2 ξmσn+m

q

(
B̂q;1f̂

)
,

•
(
L[λ;q]
q;1 (ξmσnq g)

)
= q−

m(m−1)
2 xmσn−mq

(
L[λ;q]
q;1 g

)
.
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The first equality is shown by direct calculation. The second equality can be proved by using
the property (2.2) of theta function. From this proposition, we have the following important
corollary.

Corollary 2.3. Let f̂(x) ∈ C[[x]] be a formal solution of a linear q-difference equation. If f̂(x)
is [λ; q]-summable, its [λ; q]-sum satisfies the same q-difference equation with f̂(x).

At the end of this section, we give asymptotic properties of the q-Borel–Laplace transform.

Let [λ; q] ∈ C∗/qZ, f̂(x) =
∑
n≥0

anx
n ∈ C[[x]] and f ∈M(C∗, 0). Then we define

f ∼[λ;q]
1 f̂ ,

if for any positive numbers ε and R, there exist positive constants C and K such that for any
N ≥ 1 and

x ∈ {x ∈ C∗; |x| < R} \
⋃
m∈Z
{x ∈ C∗; |x+ λqm| < ε|qmλ|} ,

we have∣∣∣∣∣f(x)−
N−1∑
n=0

anx
n

∣∣∣∣∣ ≤ LMN |q|−
N(N−1)

2 |x|N .

Proposition 2.4 (Dreyfus–Eloy [6, Section 1]). Let [λ; q] ∈ C∗/qZ and f̂ ∈ C[[x]] with
(
B̂q;1f̂

)
∈

H[λ;q]
q;1 . Then

(
L[λ;q]
q;1 ◦ B̂q;1f̂

)
∼[λ;q]

1 f̂ .

3 Main results

In this section, we give our main results which are about the resummation of the basic hyper-
geometric series

f̂(x) = rϕs(a; b; q, x) = rϕs

(
a
b

; q, x

)
. (3.1)

We remark that f̂(x) is the formal power series solution of the linear q-difference equation (1.3).
Our results are stated as follows.

Theorem 3.1. We put k = r − s − 1 and p = qk. Assuming ai/aj /∈ qZ, i 6= j, basic
hypergeometric series (3.1) is [λ; p]-summable for any λ ∈ C∗ \

[
(−1)k; q

]
and its [λ; p]-sum

rfs(a; b;λ; q, x) =
(
L[λ:p]
p;1 ◦ B̂p;1f̂

)
(x) is given by

rfs(a; b;λ; q, x) =
(a2, . . . , ar, b1/a1, . . . , bs/a1; q)∞
(b1, . . . , bs, a2/a1, . . . , ar/a1; q)∞

θp
(
pak1x/λ

)
θp(px/λ)

θq
(
(−1)1−ka1λ

)
θq
(
(−1)1−kλ

)
× rϕr−1

(
a1, a1q/b1, . . . , a1q/bs,0k

a1q/a2, . . . , a1q/ar
; q,

qb1 · · · bs
a1 · · · arx

)
+ idem(a1; a2, . . . , ar), (3.2)

where x ∈ C∗ \ [−λ; p] and |qb1b2 · · · bs/a1 · · · arx| < 1. Here the symbol “ idem(a1; a2, . . . , ar)”
means the sum of r− 1 terms which are obtained by interchanging a1 with each a2, . . . , ar in the
preceding expression. The function rfs(a; b;λ; q, x) has simple poles on the p-spiral [−λ; p].
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From Corollary 2.3 and the well-definedness of q-Laplace transform, we see that the [λ; p]-sum

rfs(a; b;λ; q, x) =
(
L[λ:p]
p;1 ◦ B̂p;1f̂

)
(x) itself becomes the meromorphic solution of (1.3) on some

punctured neighborhood of the origin in C∗. The expression (3.2) gives the analytic continuation
of rfs(a; b;λ; q, x) to the neighborhood of infinity. In addition, this shows a q-analog of the
Stokes phenomenon. Indeed, an actual solution (3.2) has (3.1) as its asymptotic expansion (see
Proposition 2.4) and its value changes depending on the choice of [λ; p] ∈ C∗/pZ. Using the
fundamental system of solutions around infinity (1.4), the [λ; p]-sum (3.2) can be expressed as

rfs(a; b;λ; q, x) =
r∑
j=1

Mj(x, λ)y
(∞)
j (x),

where Mj(x, λ) = CjTj(x, λ) and

Cj =
(b1/aj , b2/aj , . . . , bs/aj ; q)∞

(b1, b2, . . . , bs; q)∞

∏
1≤i≤r, i6=j

(ai; q)∞
(ai/aj ; q)∞

,

Tj(x, λ) =
θp
(
pakjx/λ

)
θp(px/λ)

θq
(
(−1)1−kajλ

)
θq
(
(−1)1−kλ

) θq(−x)

θq(−ajx)
.

The coefficients Mj are called q-Stokes coefficients. Unlike the case of differential equation, the
values of coefficients Mj change continuously dependent on λ ∈ C∗ \

[
(−1)k; q

]
.

Next, we consider to take the limit q → 1 in above result. To consider taking the limit of q,
we restrict q to within a real number, and 0 < q < 1. When q is a complex number, the situation
is more complicated. For detail, see Sauloy [11].

Theorem 3.2. We assume that q ∈ R and 0 < q < 1. Let α = (α1, α2, . . . , αr) ∈ Cr,
β = (β1, β2, . . . , βs) ∈ Cs and αi − αj /∈ Z, i 6= j. Take a parameter λ ∈ C∗ \ (−1)kR+. Then
for any x ∈ C∗ \ (−1)k+1λR+, the following equality holds:

lim
q→1

rfs

(
qα; qβ;λ; q,

(−1)kx

(1− q)k

)
= Cαβ

r∑
j=1

Cαβ(j)(−x)−αj s+1Fr−1

(
αj , 1 + αj − β
1 + αj − α̂j

;
(−1)k

x

)
, (3.3)

where qα =
(
qα1 , qα2 , . . . , qαr

)
, qβ =

(
qβ1 , qβ2 , . . . , qβs

)
and

∣∣ arg (−x) − arg (−1)k−1λ
∣∣ < π.

Cαβ and Cαβ(j) are given by (1.5).

We remark that the left hand side of (3.3) formally converges to rFs(α;β;x) as q → 1.
Therefore, Theorem 3.2 can be seen as a q-analog of Theorem 1.1.

4 Proof of Theorem 3.1

We show that f̂(x) = rϕs(a; b; q, x) is [λ; p]-summable for any λ ∈ C \
[
(−1)k; q

]
. Let g(ξ) be

the p-Borel transform of f̂(x)

g(ξ) = (B̂p;1f̂)(ξ) =
∑
n≥0

(a1, a2, . . . , ar; q)n
(b1, . . . , bs; q)n(q; q)n

{
(−1)nq

n(n−1)
2
}1+s−r

p
n(n−1)

2 ξn.

Then, g(ξ) is convergent in |ξ| < 1 and again can be expressed by basic hypergeometric series:

g(ξ) =
∑
n≥0

(a1, a2, . . . , ar; q)n
(b1, . . . , bs; q)n(q; q)n

(
(−1)−kξ

)n
= rϕr−1

(
a1, a2, . . . , ar

b1, b2, . . . , bs, 0, . . . , 0
; q; (−1)−kξ

)
.

To have the analytic continuation of g(ξ), we use the following proposition.
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Proposition 4.1 (Slater [12] or Gaspar–Rahman [7, Section 4.5]). The analytic continuation
of the basic hypergeometric series rϕr−1(a1, a2, . . . , ar; b1, . . . , br−1; q, ξ) is given by

rϕr−1

(
a1, . . . , ar
b1, . . . , br−1

; q, ξ

)
=

(a2, . . . , ar, b1/a1, . . . , br−1/a1; q)∞
(b1, . . . , br−1, a2/a1, . . . , ar/a1; q)∞

θq(−a1ξ)

θq(−ξ)

× rϕr−1

(
a1, a1q/b1, . . . , a1q/br−1

a1q/a2, . . . , a1q/ar
; q,

qb1 · · · bs
a1 · · · arξ

)
+ idem(a1; a2, . . . , ar). (4.1)

Letting bs+1, . . . , br−1 → 0 in (4.1), it is seen that g(ξ) is continued analytically to ξ ∈
C∗ \

[
(−1)k; q

]
as follows:

g(ξ) =
(a2, . . . , ar, b1/a1, . . . , bs/a1; q)∞
(b1 . . . , bs, a2/a1, . . . ar/a1; q)∞

θq((−1)k−1a1ξ)

θq((−1)k−1ξ)

× s+1ϕr−1

(
ã; b̃; q, (−1)k

qk+1b1 · · · bs
a1−k

1 a2 · · · arξ

)
+ idem(a1; a2, . . . , ar), (4.2)

where ã = (a1, a1q/b1, . . . , a1q/bs) ∈ Cs+1 and b̃ = (a1q/a2, . . . , a1q/ar) ∈ Cr−1. We note that
the basic hypergeometric series s+1ϕr−1 in (4.2) is holomorphic on C∗. In order to obtain (4.2),
we use

lim
b→0

(aq/b; q)nb
n = lim

b→0
(b− aq)

(
b− aq2

)
· · ·
(
b− aqn

)
= (−a)nq

n(n+1)
2 .

Now, we shall show that
(
B̂p;1f̂

)
(ξ) = g(ξ) ∈ H[λ;p]

p;1 for any λ ∈ C∗ \
[
(−1)k; q

]
. The following

lemma holds.

Lemma 4.2. The function g(ξ) has a p-exponential growth at infinity in

Ωδ := C∗ \
⋃
m∈Z

{
ξ ∈ C∗;

∣∣ξ − (−1)kqm| < δ
∣∣qm|}

for any δ > 0.

A proof of this lemma will be given in Section 5. For any λ ∈ C∗ \
[
(−1)k; q

]
, there exists

positive constants δ and ε such that⋃
m∈Z

{
ξ ∈ C∗; |ξ − λpm| < ε|pmλ|

}
⊂ Ωδ.

Therefore we obtain g(ξ) ∈ H[λ;p]
p;1 for any λ ∈ C∗ \

[
(−1)k; q

]
. In the other words, f̂(x) =

rϕs(a; b; q, x) is [λ; p]-summable for any λ ∈ C∗ \
[
(−1)k; q

]
.

We consider the p-Laplace transform of g(ξ). For any λ ∈ C∗ \
[
(−1)k; q

]
, let rfs(a; b;λ; q, x)

be the p-Laplace transform of g(ξ)

rfs(a; b;λ; q, x) =
(
L[λ;p]
p;1 g

)
(x) =

∑
m∈Z

g
(
λpm

)
θp
(λpm

x

) .
Since

θq
(
(−1)k−1a1λp

m
)

θq
(
(−1)k−1λpm

) =
θq
(
(−1)k−1a1λq

km
)

θq
(
(−1)k−1λqkm

) =
1

akm1

θq
(
(−1)k−1a1λ

)
θq
(
(−1)k−1λ

) ,
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s+1ϕr−1

(
ã; b̃; q, (−1)k

qk+1b1 · · · bs
a1−k

1 a2 · · · arλpm

)
=
∑
n≥0

(ã; q)n

(b̃, q; q)n
p
n(n−1)

2

(
pqb1 · · · bs

a1−k
1 a2 · · · arλpm

)n
,

and

θp

(
λpm

x

)
=

(
λ

x

)−m
p−

m(m−1)
2 θp

(
λ

x

)
,

we have

rfs(a; b;λ; q, x) =
(a2, . . . , ar, b1/a1, . . . , bs/a1; q)∞
(b1 . . . , bs, a2/a1, . . . , ar/a1; q)∞

θq
(
(−1)k−1a1λ

)
θq
(
(−1)k−1λ

) 1

θp(λ/x)

×
∑
n≥0

(ã; q)n

(b̃, q; q)n

(
qb1 · · · bs

a1−k
1 a2 · · · arλ

)n ∑
m∈Z

(
λ

ak1x

)m
p
n(n−1)

2
+n−mn+

m(m−1)
2

+ idem(a1; a2, . . . , ar).

Here we remark that∑
m∈Z

(
λ

ak1x

)m
p
n(n−1)

2
+n−mn+

m(m−1)
2 =

(
λ

ak1x

)n ∑
m∈Z

p
(m−n)(m−n−1)

2

(
λ

ak1x

)m−n
=

(
λ

ak1x

)n
θp

(
λ

ak1x

)
.

Therefore we obtain

rfs(a; b;λ; q, x) =
(a2, . . . , ar, b1/a1, . . . , bs/a1; q)∞
(b1 . . . , bs, a2/a1, . . . ar/a1; q)∞

θq
(
(−1)k−1a1λ

)
θq
(
(−1)k−1λ

) θp
(
λ/ak1x

)
θp(λ/x)

×
∑
n≥0

(ã; q)n

(b̃, q; q)n

(
qb1 · · · bs
a1a2 · · · arx

)n
+ idem(a1; a2, . . . , ar).

From

θp
(
λ/ak1x

)
θp(λ/x)

=
θp
(
pak1x/λ

)
θp(px/λ)

(is seen from equality (2.3)) and

∑
n≥0

(ã; q)n

(b̃, q; q)n

(
qb1 · · · bs
a1a2 · · · arx

)n
= rϕr−1

(
ã,0k
b̃

; q,
qb1 · · · bs
a1a2 · · · arx

)
,

we finish the proof.

5 Proof of Lemma 4.2

In this section, we give a proof of Lemma 4.2, that is, we show

|g(ξ)| ≤ Lθ|p|(M |ξ|), ξ ∈ Ωδ,

where L and M are positive constants.
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As easily seen, the following inequality holds.

θ|p|(A|ξ|) + θ|p|(B|ξ|) ≤ θ|p|(C|ξ|),

where A,B > 0 and C = A+ B. Hence, showing that the first term of (4.2) has p-exponential
growth at infinity in Ωδ is sufficient to prove Lemma 4.2. We write the first term of (4.2) as g1(ξ),
i.e.,

g1(ξ) :=
(a2, . . . , ar, b1/a1, . . . , bs/a1; q)∞
(b1 . . . , bs, a2/a1, . . . ar/a1; q)∞

θq
(
(−1)k−1a1ξ

)
θq
(
(−1)k−1ξ

)
× s+1ϕr−1

(
ã; b̃; q; (−1)k

qk+1b1 · · · bs
a1−k

1 a2 · · · arξ

)
,

where ã = (a1, a1q/b1, . . . , a1q/bs) ∈ Cs+1 and b̃ = (a1q/a2, . . . , a1q/ar) ∈ Cr−1.
We show that basic hypergeometric series s+1ϕr−1 has p-exponential growth. It holds that

|(α; q)n| = |1− α||1− αq| · · ·
∣∣1− αqn−1

∣∣ ≤ (1 + |α|)n,

|(aiq/aj ; q)n| = |1− aiq/aj |
∣∣1− aiq2/aj

∣∣ · · · ∣∣1− aiqn/aj∣∣ ≥ ( inf
k∈N∗

{∣∣1− aiqk/aj∣∣})n > 0

for any α ∈ C and 1 ≤ i, j ≤ r. Therefore we obtain∣∣∣∣∣s+1ϕr−1

(
ã; b̃; q; (−1)k

qk+1b1 · · · bs
a1−k

1 a2 · · · arξ

)∣∣∣∣∣ ≤∑
n≥0

|(ã; q)n|
|(b̃, q; q)n|

|p|
n(n+1)

2

∣∣∣∣∣ qb1 · · · bs
a1−k

1 a2 · · · arξ

∣∣∣∣∣
n

≤
∑
n≥0

|p|
n(n+1)

2

(
1

M |ξ|

)n
≤
∑
n∈Z
|p|

n(n+1)
2

(
1

M |ξ|

)n
= θ|p|(M |ξ|),

where M is a positive constant. Hence we have

|g1(ξ)| ≤ C

∣∣∣∣∣θq
(
(−1)k−1a1ξ

)
θq
(
(−1)k−1ξ

) ∣∣∣∣∣ θ|p|(M |ξ|). (5.1)

Here C is a positive constant.
Now, for any ξ ∈ Ωδ, there exist an integer n and

ξ0 ∈ Ωδ ∩ {ξ ∈ C∗; |p| ≤ |ξ| ≤ 1}

such that ξ = pnξ0. Substituting ξ = pnξ0 into (5.1), we have

|g1(ξ)| ≤ C
∣∣∣∣θq((−1)k−1a1ξ0)

θq((−1)k−1ξ0)

∣∣∣∣ (M |a1|k
)−n|p|−n(n−1)

2 θ|p|(M |ξ0|).

Since (
M |a1|k

)−n|p|−n(n−1)
2 =

θ|p|
(
M |a1|k|p|n|ξ0|

)
θ|p|
(
M |a1|k|ξ0|

) =
θ|p|
(
M |a1|k|ξ|

)
θ|p|
(
M |a1|k|ξ0|

)
holds, we obtain

|g1(ξ)| ≤ C

∣∣∣∣∣θq
(
(−1)k−1a1ξ0

)
θq
(
(−1)k−1ξ0

) ∣∣∣∣∣ θ|p|(M |ξ0|)
θ|p|
(
M |a1|k|ξ0|

)θ|p|(M |a1|k|ξ|
)
.
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Now, the function of ξ0∣∣∣∣∣θq
(
(−1)k−1a1ξ0

)
θq
(
(−1)k−1ξ0

) ∣∣∣∣∣ θ|p|(M |ξ0|)
θ|p|
(
M |a1|k|ξ0|

)
is holomorphic on the compact set Ωδ ∩ {ξ ∈ C∗; |p| ≤ |ξ| ≤ 1}. Hence there exists a positive
constant L such that

max
Ωδ∩{ξ∈C∗; |p|≤|ξ|≤1}

∣∣∣∣∣θq
(
(−1)k−1a1ξ0

)
θq
(
(−1)k−1ξ0

) ∣∣∣∣∣ θ|p|(M |ξ0|)
θ|p|
(
M |a1|k|ξ0|

) ≤ L.
6 Proof of Theorem 3.2

A proof of Theorem 3.2 is obtained from the following proposition.

Proposition 6.1 (Askey [2, Section 5]). We assume that q ∈ R and 0 < q < 1. For any
x ∈ C∗ \ R−, we have

lim
q→1

θq
(
qβx
)

θq(qαx)
= xα−β (6.1)

and

lim
q→1

θp
( pαx

(1−q)k
)

θp
( pβx

(1−q)k
)(1− q)k(β−α) = xβ−α. (6.2)

Here we assume | arg x| < π.

Let us give a proof of Theorem 3.2. Substituting a = qα, b = qβ and x = (−1)kx/(1 − q)k
into (3.2), we have

rfs

(
qα; qβ;λ; q,

(−1)kx

(1− q)k

)
=

Γq(β1) · · ·Γq(βs)Γq(α2 − α1) · · ·Γq(αr − α1)

Γq(α2) · · ·Γq(αr)Γq(β1 − α1) · · ·Γq(βs − α1)
(1− q)−kα1

×
θp

(
pα1+1(−1)kx
λ(1−q)k

)
θp

(
p(−1)kx
λ(1−q)k

) θq((−1)1−kqα1λ)

θq((−1)1−kλ)

× rϕr−1

(
qα1 , q1+α1−β1 , . . . , q1+α1−βs ,0k

q1+α1−α2 , . . . , q1+α1−αr ; q; qγ
(1− q)k

(−1)kx

)
+ idem

(
qα1 ; qα2 , . . . , qαr

)
,

where γ = 1 + β1 + · · ·+ βs − (α1 + · · ·+ αr). Since we have

lim
q→1

Γq(β1) · · ·Γq(βs)Γq(α2 − α1) · · ·Γq(αr − α1)

Γq(α2) · · ·Γq(αr)Γq(β1 − α1) · · ·Γq(βs − α1)

=
Γ(β1) · · ·Γ(βs)Γ(α2 − α1) · · ·Γ(αr − α1)

Γ(α2) · · ·Γ(αr)Γ(β1 − α1) · · ·Γ(βs − α1)
,

lim
q→1

θq
(
(−1)1−kqα1λ

)
θq
(
(−1)1−kλ

) =
{

(−1)1−kλ
}−α1 ,

lim
q→1

θp
(pα1+1(−1)kx

λ(1−q)k
)

θp
(p(−1)kx
λ(1−q)k

) (1− q)−kα1 =
{

(−1)k
x

λ

}−α1

,
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lim
q→1

rϕr−1

(
qα1 , q1+α1−β1 , . . . , q1+α1−βs ,0k

q1+α1−α2 , . . . , q1+α1−αr ; q; qγ
(1− q)k

(−1)kx

)
= s+1Fr−1

(
α1, 1 + α1 − β
1 + α1 − α̂1

;
(−1)k

x

)
from (2.4), (6.1), (6.2) and

lim
q→1

(qα; q)n
(1− q)n

= (α)n

respectively, we obtain (3.3).
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