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Abstract. We study braid group actions on Yangians associated with symmetrizable Kac—
Moody Lie algebras. As an application, we focus on the affine Yangian of type A and use
the action to prove that the image of the evaluation map contains the diagonal Heisenberg
algebra inside é[N.
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1 Introduction

The purpose of this paper is to introduce braid group actions on Yangians and study their
properties. Moreover we give an application for the affine Yangian of type A.

Braid group actions on Kac—Moody Lie algebras and their integrable representations are
classical. Lusztig initiated the study of braid group actions on quantized enveloping algebras
associated with Kac-Moody Lie algebras. See [15, notes on Part VI] for historical remarks.
They are fundamental tools for the construction of the PBW bases of the quantized enveloping
algebras of finite type in [13, 14] (see also [8, 11, 16]). Then Lusztig [12] used the PBW basis for
the construction of the canonical basis in ADE type. The braid group action is important also
in affine type. Beck [1] used it to construct the Drinfeld generators and proved the equivalence
of two presentations of the quantized affine algebra.

Another important family of quantum groups are Yangians which were introduced by Drin-
feld. The Yangian Y (g) associated with a simple Lie algebra g contains the universal enveloping
algebra U(g) as a subalgebra and it is easy to see that the braid group action on U(g) ex-
tends to Y(g). Although this is a trivial observation, it seems that properties of the braid
group action on the Yangian have not been seriously studied. (A different kind of braid
group actions on quantized affine algebras and Yangians are studied by Ding—Khoroshkin [3].
It differs from the action introduced in this paper and our results are independent of their
work.)

Let us give a remark on a difference between the situations for the quantized enveloping
algebra and the Yangian. The Yangian Y (g) is known to be an additive degeneration of
the quantized enveloping algebra U,(g) of affine type. The braid group acting on Ugy(g) is
of affine type, while one acting on Y(g) is of finite type. Thus the symmetry of Yangian
coming from this consideration is smaller than that of quantized enveloping algebra given by
Lusztig.

We can define the Yangian associated with a symmetrizable Kac-Moody Lie algebra g. Then
we see that the braid group of g acts on it. In this paper we mainly focus on the affine Yan-
gian Y(E:[ N) of type A and the general case is studied in Appendix A. The affine Yangian Y(E:[ N)
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is a two-parameter deformation of the universal enveloping algebra of the universal central ex-
tension of sl [s, til] , and is related to many interesting objects; symmetry of the spin Calogero—
Sutherland model [9, 17]; Schur—Weyl type duality for degenerate double affine Hecke algebra [4];
quiver variety associated with the cyclic quiver [9, 18].

The affine Yangian Y(s:[N) contains U (5A[N) as a subalgebra and hence it admits an action of
the braid group associated with sly. We give a formula for the action on generators of degree
one. We use it to show the compatibility of the braid group action and the coproduct on Y(f:[ N)
introduced by Guay [5], Guay—Nakajima—Wendlandt [6]. This compatibility result holds for the
Yangian of arbitrary finite or affine type except for Agl) and Agz) as discussed in Appendix A.
See Propositions 3.12 and A.4 for precise statements.

We hope to apply the braid group action to the study of structure theory and representation
theory of the affine Yangian. As a first step, we consider the following in the second half of the
paper.

Guay [5] introduced an evaluation map for the affine Yangian Y(ﬁA[N) whose target space
is a certain completion of U (é[N). By its definition, the image contains U (f:[N), and we have
expected that it contains U (ﬁ[N). We give an affirmative answer to this question, under a cer-
tain assumption on the parameters, by constructing elements of Y(E:[N) whose images by the
evaluation map coincide with generators of the diagonal Heisenberg algebra inside j[ ~ (Theo-
rem 4.18). To construct such elements, we use the braid group action. Certainly it is desirable
to lift the Heisenberg subalgebra inside the affine Yangian and we will come back to this problem
in a future.

Our main result Theorem 4.18 implies that the pull-back of an irreducible g}[ y-module by the
evaluation map is irreducible as a module of Y(:”:[N). We determine the highest weights of the
evaluation modules in [10].

The plan of this paper is as follows. In Section 2, we define the affine Yangian Y(§[N) and
recall some automorphisms and the coproduct. In Section 3, we introduce the braid group
action and study its properties. In particular, the compatibility with the coproduct is proved
in Section 3.4. We construct elements of Y(s:[N) whose images by the evaluation map coincide
with Heisenberg generators in Section 4. In Appendix A, we consider the braid group action on
the Yangian associated with a symmetrizable Kac-Moody Lie algebra. Then we give a proof of
the compatibility with the coproduct when it is known to be well-defined.

2 Affine Yangian

2.1 Affine Yangian

Fix an integer N > 3 throughout the paper. We use the notation {z,y} = xy + yz.

Definition 2.1. The affine Yangian Y(:':[N) is the algebra over C generated by x;rr, ;. hiy
(i € Z/NZ, r € Z>0) with parameters e, e € C subject to the relations:

[hi,r, hj7s] = 0, [:L':ru [E;S] = 5ijhi,7’+57 [hi,o’ x]i,r] = :l:aijl‘jfr’
€1+ &9 €1 — &2
[hi,r+17ﬂffs] - [hz‘,mﬂffsﬂ] = iaijT{hi,r,x;‘; - mz‘jT[hi,rﬁUfs],

g1+e¢€
[xi%wrl’xfs} - [“"i:r’“"fsﬂ} = i%‘¥ xfmxfs} — My

Z [:Uizrw(l)’ [x’:{:Tw@)’ e [xi:rw(lfaij)’x;lfs] s H =0, i # 7

w€61_ai]-

- _62[ z:’*,:ﬂ ;'*,:5]7
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where
2 ifi=j, 1 ifj=i-1,
a;; =< -1 ifi=j5+1, mi; =4 —1 ifj=i+1,
0 otherwise, 0 otherwise.

Remark 2.2. In this paper, we define sly =sly ® (C[t, t_l] @ Cc without the degree operator.
In [6], the Yangian Y;(g) of affine type is defined to be an algebra containing the degree opera-
tor d and one without d is denoted by Y;(g’). In particular, the algebra defined in Definition 2.1
coincides with Y3 .(g') in the notation of [6, Definition 7.1].

The subalgebra generated by l‘xo, T;o, hio (i € Z/NZ) is isomorphic to U(s:[N) (See [5,
Theorem 6.1] for N > 4 and [7, Theorem 6.9] in general). We write - 37?,:07 h; = hip and

S

identify them with the standard Chevalley generators of sly. Let {ai}ticz/nz be the simple

N—1 N—1
roots of sly. The null root § is given by d = > a;. Let & = 3. @; be the highest root
i=0 i=1
of sl and h_y the coroot corresponding to —8. We denote by A, A+, and Afﬁ the set of
roots, positive roots, and positive real roots for sly, respectively. We need to consider sly @ Cd
with the degree operator to deal with the coproduct on Y(ﬁ[N). Fix a nondegenerate invariant
symmetric bilinear form (, ) on sly & Cd such that (z;F,z;) = 1 and denote the induced bilinear
form on the dual of the Cartan subalgebra by the same letter.
Let W be the Weyl group of sly generated by the simple reflections s; (i € Z/NZ). We
denote by sy the reflection porresponding to the highest root 0. For each o € A, we assign the

translation element ¢, in W. For example, we have spsy = tg. The action of ¢, on the root
N-1
lattice Q = > Za; of sly is given by t4(A) = X — (a, \)d for A € Q.
i=1
Set h =¢1 +¢e9 and hj1 = hi1 — gh? We can deduce the following identities directly from

the defining relations of Y(:‘:[N).
Lemma 2.3. We have

[hi,l,xﬂ = :t2a:ii71 + ﬁ{hi,gvfE , Vzi71,xﬂ = :|:2x2-i71, [azi xi] = :th(z;t)2,

3,104

h 1 — &2 . . .
[h@l,ZC;‘:] =F <.1‘;|7:1 + §{h2,$;t} — My 5 .%j:) if i=j5+1.

2.2 Automorphisms

We introduce algebra (anti-)automorphisms of Y(glN) which will be used later.
Let w be the algebra anti-automorphism of Y(E:[N) defined by :ci:r — xT hiy = hi,. Here

7,7
anti-automorphism means that the invertible operator w satisfies w(XY) = w(Y)w(X). It is easy

to check that it is well-defined. The following algebra automorphism corresponds to a rotation
of the Dynkin diagram.

Proposition 2.4 ([4, Lemma 3.5]). The assignment

r r
+ ™\ r—s_+ T\ r—s
Tigp 7 E :<S)52 Tic1s hir = E :<8>52 hi-1,s
s=0

gives an algebra automorphism p on(f:[N).

. +y_ ..t +
In particular we have p(z;;) = z;~, ; + €227 4.
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Remark 2.5. The relation between generators Xij:r7 H;, with parameters A, § used in [4, 5]
and ours are as follows:

" /r N r—s "y N r—s
X[;%r = Z <S) (4(51 - 52)) x[)iy,y HO,?” = Z <S> <4(€1 - 52)) hgjs,

s=0 s=0
S SALLID T (R N
1 N
)\—h, B—ih—z(gl—EQ).

2.3 Coproduct

A formula for the coproduct on the affine Yangian Y(s:[N) was stated in [5]. Guay—Nakajima—
Wendlandt [6] gave a detailed proof of the well-definedness. To recall it, we consider a big-
ger algebra Y(s[N &) (Cd), which is generated by zi hir, d with defining relations given in

2,77
[6, equation (2.8)]. Moreover we need certain completions Y(glN ® Cd) @Y(E:[N ® Cd) and
Y(glN)<§>Y (f:[N) of the tensor products since the coproduct involves infinite sums. See [6, Sec-
tion 5] for the precise definition of the completion.

We define the half Casimir operator Q4 as follows. Let {ux} be a C-basis of the Cartan
subalgebra of sly @ Cd and {uk } its dual basis with respect to the nondegenerate bilinear

form (, ). Let {x‘(lk)}ae&lgkgmulm be a root vector basis satisfying (:B,(f),a:(l) ) = 0. Here

mult o denotes the dimension of the root space corresponding to . We take simple root vectors

as a:gz = a:;t Put

Q+:Zuk®uk+ Z x@i@x&k)
k a€A+
1<k<mult o

as an element of Y(f:[N @ (Cd) QY (ﬁ[N @ (Cd).
Define a C-linear operator [J on Y(glN) by J(X) = X ®1+1® X. Note that (J is not an
algebra homomorphism, but satisfies O([X, Y]) = [O(X),d(Y)].

Theorem 2.6 ([6, Definition 4.6, Theorem 4.9, Proposition 5.18, Section 7]). There exists an
algebra homomorphism A: Y(S[N) — Y(s[N)<§>Y(5[N) uniquely determined by

A(X) =0(X) for X = xzi,hi,
A(xf) =0(z) —hl@ ], 4],
A(‘/Ei—J) =U(z;;) + hlzy ©1,Q4],
A(hig) = O(hin) + hlh @ 1,Q4].
Remark 2.7. Explicitly we have

1@z Q1) =-hoxf + Z x(_kc)y ® [z, 2],

DJEA+
1<k<mult a

[z, ®1,Q4] =2, ®h; + Z [551_737(—160)5} ®zfy),

a€A+
1<k<mult «

[hi ®1,Q4] = — Z (a4, @) :E(_lg[ ®z(l.

Are
ISANN

Hence the target of A is Y(f:[N)®Y (sA[N) without d.
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3 Braid group action

We define automorphisms 7T; (i € Z/NZ) of the affine Yangian and study their properties.

3.1 Definition

Since the adjoint actions of xzi on Y(sA[N) are locally nilpotent, the operators exp ad xzi are well
defined by

o0

expadacfE = Z%(adx%)n.
n=0

These are algebra automorphisms of Y(E:[N) as ad l‘;t are derivations. We define an algebra
automorphism 7; of Y(s:[N) for each i € Z/NZ by

T, = exp ad xj expad(—x; ) expad a:j

This operator appears in [6] and is used to construct real root vectors of Yangians.

3.2 Braid relations

A proof of the following proposition is exactly the same as one for the fact that {T;} satisfy the
braid relations as automorphisms of U (5[N). We give a proof for the sake of completeness.

Proposition 3.1. The operators {T;} satisfy the braid relations. That is, we have
TT; =TT ifa; =0, TIT =TT ifa;=—1,

For each w € W with a reduced expression w = s;, - - - 5;,, we can define an algebra automor-
phism T3, of Y(s[N) by T\, = Tj, - - - T;, thanks to the braid relations.

Let us start the proof with some preparations. A proof of the following formulas is straight-
forward.

Lemma 3.2. Assume a;; = —1. Then

(i) expadx; sends:

zf = 2], af = af + [of 2], x; &y +h— ), P
+ + + ot +

hi = h; — 2z, hj v hj+ ;" [xi,wj]H[xi,xj],

[mi,a:j]nﬁ[xi,xj]—i-xj;

(ii) expad(—z; ) sends:

+ + R + + - SR

x] = xl +h -, zf =y, x; =, T; [:Ui,xj],
- - + ot + +

hi = hi — 2z, hj = hj +x;, [ 2] = [2f 2] — 2],

o7 27] = [z, 27 ]

The following two propositions are well known. Proposition 3.3 follows from Lemma 3.2.
Then Proposition 3.4 follows from Proposition 3.3.
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Proposition 3.3. We have

—x; ifi=j, —a ifi=j,
T,(a;;') = [x:r,a:j] if ai; = —1, TZ(:EJ_) = —[x;,a:;] if a;j = —1,
.CU;_ if Qi5 = 0, 1'3_ if Qi5 = 0,
Ti(hj) = { hj +hi if aij = =1,
hj if Qi = 0.
Proposition 3.4. Assume a;; = —1. Then we have
TG ol T ) =a. Tk =y

1

Proof of Proposition 3.1. We use that poexpad Xop™" = expad ¢(X) holds for any algebra

automorphism ¢. If a;; = 0, then we have
TiTjTi_l = expadT; (xj) expadT; (—x]_) expadT; (x;L) =1Tj
by the formulas in Proposition 3.3. If a;; = —1, then we have
T = expad Ty (o)) expad T (o ) expad T3 (o) = T,
by the formulas in Proposition 3.4. The proof is complete. |
We give an alternative definition of 7j.
Proposition 3.5. The operator T; coincides with exp ad (—x;) exp ad x;r exp ad (—x;)
Proof. Put 7] = expad (—x;) exp ad x:r exp ad (—x;) for a while. Then we have
TiTZ-'Ti_1 =expadT; (—m;) exp ad T; (:):j) exp ad T; (—x;) =T;
by the formulas in Proposition 3.3. Hence the assertion is proved. |

Note that TZ}_1 is given by

expadz; expad (—{L‘:r) expadz; = expad (—x;r) expadz; expad (—:Bf)
Lemma 3.6. We have (i) woT; =T; ow and (ii) poT; = Tj_1 o p.

Proof. For the assertion (i), we use w(expad X(Y)) = expad(—w(X))(w(Y)). Then we have
w(T;(X)) = T!(w(X)). Since we have proved T} = T;, the assertion holds.
The assertion (ii) is obvious. |

Let M be a Y(f:[N)—module and assume that xli acts on M locally nilpotently. Then an
automorphism TZ-M of M is defined similarly. The following property is immediate.

Proposition 3.7. Let M be a Y(f:[N) -module and assume that xli acts on M locally nilpotently.
Then for any X € Y(E:[N) and m € M,

TM(Xm) = T,(X)T} (m)
holds.

In fact, this is a general property for any associative algebra such that it contains U (s:[N) as
a subalgebra and the operators exp ad :c;t are well-defined.
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3.3 Action on generators

+

i hj1. We will use the following formulas.

We compute the action of T; on x7
Lemma 3.8. Assume a;; = —1. Then
(i) expadz; sends:
vl =l — h(xj)Qv
xi_l = @i+ hig —afy = 5{hi i} + h(a; )
LT,
[xz T i) e o T i) +Z;,
{hiaf o {hiaf} - 4(af)”,

(a:*)Q — (w*)Q;

(2 3

x; ) sends:

(ii) expad(—
zfy = af +hin— o — Hhia b+ h(z;)?,
vy i = her)
xj_’l — 333‘_,1 — [ml y T 1]
hia e hig — 27 — h{hs, z; } + 3h(z .*)2
{hi, ; }H{hu ai} = 3{hi, 2y} —2{af 27} +2h7 + 4(x; )

()" = @)+ 0f o (@) { b} = {hisay } = {af a7}

Proof. By a direct computation using the defining relations of Y(s:[N) with Lemma 2.3. For
example, by

adx ( 21) - hi717

1= t{lat o :2h<x:>2+4n<xr>2=6n<xr>2,

we have
expadx;r(:l:ijl):xijl—l—hi,l—xxl—g{hl,xl }—I—h( ) [ |
Proposition 3.9. We have

i+ Hhiy} ifi=,

’L
Ti(xfy) = Ifa 1) if aij = —1,
a?jl z'faij = O,
11+2{hz,5€, if i =7,
TZ(%_l) = [xz Ly 1] if ai; = —1,
T if ai; =0,
—hip — h{zf, 27} ifi=7,

Ti(hja) =  hya +hia + 5{af 27} +mi 5% he - if ai = —1,
hjl ifaij:().
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Proof. The formulas for a;; = 0 trivially hold. Let us consider the other cases.
We compute Tz(xj_l) First assume ¢ = j. We have

expad(—x;)expadmj(zijl):expad(— 7)) (e + hig — oy — Bl o} + 0(z)?)
= (w0 = Bx;)?) + (hix = 2wy = h{hi, o } + 3h(a; ))
= (#fy + han — ;1_%{}%% b+ (e ) )
— b hs ety = 3{hiay } — 2{af a7} + 202 + 4(x))?)
() 0f () (o = (b} = {af 2y ))
:_xi,l + 5 {hi,af } + (] )
Then we have
expadx;r(—x;”l—i-%{h“xz }+ h(z; ) )
= —(ohy = 1)) + Bt} = 4)) + b = oty + b{hat )

Next assume a;; = —1. Then we have

Tl(xj_l) = expada: expad( _) (azj 1) = expada:j(a:;l — [:UZ X5, 1])

=Tj1— ([#7,2 j,l] +aj,) = [95;’1:;,1]'
The formulas for T; ( ;rl) are obtained by applying w to these results.
We compute T;(h;j1). First assume ¢ = j. Then we have
Ti(hiy) = Ti([of, 2;4]) = [—2;, oy + 3{hi,af }] = =iy — h{x, a7 } + hh7.
Next assume a;; = —1. Then we have

Tihj) = Ti([], 25,]) = [[o 27 ], = o7, 254]]
=—[[[=" 2] 27 ) 25, ] = [27, [, 2] ] 2] ]
Since we have
[z 25 ] 2] 2] = (a2 ], 25,] = [=2] 25, ] = —hia
and
277 [l 2f |25 )] = [, [2f hya]] = [o7 2ify + 3 {hy 2} — myi 95220 ]

= —hix+5({[z bl 2} + {hy [ 2 T}) + myi ==
:_hi,l 2{:1,’2, z} hhh 2 - EQmﬂhZ,

we conclude

Ti(hj1) = hjo + hig + 3{af, z; } + hhihj + 2552 m;h;.
We can easily obtain the formulas for T;(h;1) from these identities. [
Proposition 3.10. Assume a;; = —1. Then we have

T1TJ($Z+1) = $I1 - mij€12€2x - *{T( j ) 7}

nTj(xz’_,l):xj_l_mwal 825’3 —5{90 ( )}

TiTj(hip) = hji — my; 92520 — Mot x; }+h{T 0, Ti(x) -
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Proof. We show the first identity. Since we have

T,T5(a}y) = Ti([2],2f]) = [[of 2] ), —aiy + 3 b2 Y],

it follows from
Hx;",xﬂ,x;l] = [hi71,xﬂ (le + 5 {hz, ] } mUL;”x;')

and

ey ] b ] = {{[= 27 ) il )+ {hi, [[2 25 ] 2]}
= —{[z)ayliary = {hiaf} = {Tie)) 2} = {hisa] )

The second identity is obtained by applying w to the first one. The third identity follows from

TTy(hin) = BT ([201,27]) = [2]y = my=52a) = H{T(e)), 7}, 25

J ]

and

HTile7) i }ay] = {[Tule)s 25 ] 27} + {Tilaf), [27, 27 ]}
={ix} {T() i(25)} u

We give formulas for T7?. Proofs are straightforward.
Proposition 3.11. We have T2(X) X for X = a; a7y (ag # —1), g, hey (k € Z/NZ).
We have T?(X) = =X for X = 3 wjil (aij = —1). In particular, T = 1.
3.4 Compatibility with the coproduct

The goal of this subsection is to prove the following proposition.
Proposition 3.12. We have Ao T; = (T;  T;) o A.

We use the following lemma to prove Proposition 3.12.
Lemma 3.13. We have (T; @ ;)0 = Q4 + 2] @2, —z; @ .

Proof. Note that the bilinear form (, ) is Tj-invariant. Therefore, if {uz} and {u*} are dual
bases, then {T;(ug)} and {T;(u*)} are also dual bases. Moreover, if we put

k . N
" Tz( gz()a)) faeA \ {ai, —Oéi},

Yo = x:r if o = o,
x; if @ = —aqy,

then {y&k)} also satisfy (y&k), y@a) = i, and we have

{T (xz(xk )}aeA+,1§k§mulm = {y&k)}aeAJr,lgkgmulta U {_xz'—} \ {x:r}V
(

{j—‘z(aj—lcoé)}aeA+,1§k§multa = {ygg(l}aeA+,1§k§multa U {—[L‘j} \ {ﬂ?;}

Hence we obtain

(T, T — Q= (—2f) @ (—2;) —2; @ [ |

(]
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Proof of Proposition 3.12. We use
D). = —of @b [0().0]) = hioa;
(see [6, Lemma 4.2]).
For X = :L';t, hj, both AT;(X) and (T; ® T;)A(X) are equal to OT;(X). Hence it is enough
to show AT; (le) =(T;® Tl)A(le) since Y(E[N) is generated by x , hj, x] 1 (J €Z/NZ).
First assume ¢ = j. We claim that the both sides coincide with
OT;(«fy) +h([1@ 2], Q4] + 27 @ hy).
The left-hand side is
A=y + 3 {hi 27 })
= = (O(y) + hley @1,04]) + 30({hi, 277 }) + h(hi @ 27 + 27 @ hi)
=0T () +h(—[s7 © 1.04] +h@ oy 27 ©h),
hence we see the claim by — [3:1_ ®1, Q+] +h @z, = [1 ®x; , Q+}. The right-hand side is
(T T)(O() ~ h1 9o, 0.]) = DT (eh) ~ WL Ter). (T T
=0T(z)) +hl@e, Q4 + o] @2y —a; @af]
= OT(fy) + h([1 907,04 +a7 @ h),

hence the claim holds.
Next assume a;; = 0. Then the left-hand side is A(le) The right-hand side is

(I; ® ) (O(af,) - h[l@af,Q1]) = OT(af,) - AL @ Ti(a] ), (T ® T,)Q4]
=0(zj) —h[l@e], Q) + o) @z —a; @ o]
=0(),) —hl@a], Q] = Aag,),

hence the claim holds.
Finally assume a;; = —1. We claim that the both sides coincide with

OT(ah) — A([1® To(x), 9] — f @ 27).
The left-hand side is
A([z25,]) = [O@F),0(],) - k1@ 2], Q4]]
= OT(5,) - h[O(=7), L@ a7, Q4]].
Then we see the claim by
[B(), L], 0] = [[O( )1®~’v 94 ]+ [teaf, D), Q4]
~ Lo n(a). 0] + Lo s}, —=f ©h] = 10 T(). 2] - of 0o}
The right-hand side is
(T 0 T)(Oh) - Al 9af.0.]) = DT}, — Al @ T} (1 9 T
=0Ti(x),) -1 Ti(x]), Ay + 2] @ a7 — a7 @]
:DTl(iL‘j—) h([ ®T( )Q+]—x ® x; )

hence the claim holds. [ |



Braid Group Action on Affine Yangian 11

4 Heisenberg generators

4.1 Affine Lie algebra élN
Let gl be the complex general linear Lie algebra consisting of N x N matrices. We denote
by E;; the matrix unit with (¢, j)-th entry 1, and set 1 = Z E;;. The indices i, j of E; ; are

regarded as elements of Z /N Z. The transpose of an element X of gl is denoted by ‘X
Let gly = gly ® C[t,t71] @ Ce be the affine Lie algebra whose Lie bracket is given by

[X Rt",Y ® ts] = [X,Y] @t + 1450 tr(XY)c, c is central.
We denote the element X ® ¢t* by X (s). We identify the generators as usual:
:(,'a_ :ENJ(I), JJO_ = F N(—l), h() :EN,N_E1,1+07
zf = B, z; = Eip1, hi = E;; — Eiy1,i41, i # 0.
We define automorphisms analogous to w and p for é[N. Let w be the anti-automorphism
of U(gly) defined by w(X(s)) =X (—s) and w(c) = c. The assignment

azzi — :cii_l, h; — hi_1, cr e, 1(s) — 1(s) + ds0c

gives an algebra automorphism p of U (é[ N)-
Lemma 4.1. We have ,O(Eij(s)) = Eifl,jfl(s + 5@'71 - 5j,1) + 557051‘,1(%716.

Proof. We can show the identities for ¢ # j inductively from those for the Chevalley generators.
Then we can show

h_g(s) ifi=1,

. (4.1)
hi—1(s) otherwise

p(hi(s)) = {

for s # 0. Indeed we have p(hi(s)) = p([E12(s), E21]) = [En1(s+ 1), E1 n(—1)] = h_g(s) for
i = 1. The other cases are similarly proved. The identity (4.1) will be used later.

Let us consider the case ¢ = j. The case s = 0 is proved as follows. Note that the identity

N-1
1= ) ih; + NEy n holds. Applying p to the both sides, we obtain
i=1
N—1
1+c= Z thi—1 + Np(EN’N).
i=1

The right-hand side is equal to

N-1

Z ihi — Nhy—1 + c+ Np(Enn),
=1

hence we have p(Enx n) = En N +hy-1 = En—1 n—1. Then we can inductively show

p(Eii) = p(hi + Eiy1541) =hi1 + By = Ei 1,1
fori=N—-1,N—2,...,2. Fori =1, we have p(E11) = p(h1 + E22) = ho+ E11 = EnnN +c.
The case s # 0 is similarly proved by considering

N-1

1(s) = > _ihi(s) + NEyn(s)

=1
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We similarly define an algebra automorphism
T; = expad x;r exp ad (—:z;) exp ad :zsz+
of U(gly)-
Lemma 4.2. We have T;(X(s)) = T;(X)(s) for X € gly if i # 0.
Proof. Obvious from the definition of T} and the Lie bracket of gl N |
Lemma 4.3. We have

E171(S) - 55’00 Zf_] == N,
To(Ejj(s)) = ¢ EnN(s) +dsoc if j =1,
E;;(s) otherwise

and
Eit1it1(s) ifj=1,

Ti(Ej;(s)) = Eii(s) ifj=i+1,  i#0.
E;;(s) otherwise,

Proof. We show the case i # 0. By Lemma 4.2, it is enough to consider the case s = 0.

N—1
Apply T; to the identity 1 = ) jh; + NEn . Then the left-hand side is Tj(1) = 1 and the
j=1
right-hand side is

N-1
N_1 jhj—NhN_l—l-NTN_l(EMN) ifi=N—1,
. i=1
T\ D dhi+ NEnN | =95,
=1 jhj + NT(EnN) otherwise.
j=1
This shows
En_1n_q1 ifi=N-1,
T;(EnnN) = b .
Enn otherwise.
Now let i« = 1. We can inductively show that En_1 n_1,En_2 N—2,...,F33 are invariant

under 77 and

T1(E22) = Ti(ha + E33) = ho + h1 + E33 = Eq 1,
Ti(Evq) =Ti(h + E22) = —h1 + E11 = Egp.

Thus we have shown the assertion for ¢ = 1. Similarly we can show the other cases.
The case ¢« = 0 is obtained from the case ¢ = 1 by applying p and using Lemma 4.1. |

Enjii(l) if0<k<N-2

Lemma 4.4. We have T0T1-~-Tk_1(a;2):{ Ey1(2) ifk=N-1
—EbEnNa =N -1
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Proof. First we prove the assertion for 0 < k < N — 2 by induction on k. The case k = 0 is
trivial. Assume that it holds for &, then

TT1 - Do Tie(yn) = DT -+ T (2 24 ]) = (DT -+ T ()

= [ENk+1(1), Bg+1k+2] = Engr2(1).

Next we prove the assertion for k = N — 1. We have

ToTr - Tn-2(zy 1) = ToTy - Tn-s3([2N_g 2N _1]) = [ToT1- - Tn-3(zn_o): To(zn )]
=[Enn-1(1),—En-11(1)] = —En1(2).

The proof is complete. |

Lemma 4.5. Leti < j. We have

LTy T ($j) =FE;j1, LTy T ($;) =FEji1,, (4.2)
TiTj—1 - Tigr(z]) = (-1 "Eijp,  TiTj—1Tipa(a;) = (1) " Ejj,. (4.3)
Proof. The assertion is easily proved by induction. |

Lemma 4.6. We have

Ti(Eit1,) = Eij fj+1<i<N-1 or i+2<j, (4.4)
Ti(Ejiv1) = Ej, fl1<i<j—2 or j<i-—1, (4.5)
Ti(Eip) = —Eiy11 if2<i<N-1, (4.6)
Ti(Bay) = —Fyiy1  if3<i<N-—1. (4.7)

Proof. The identity (4.5) is deduced from (4.4) by applying w. We use (4.2) to show the other
identities as

TTi T T (x]) = TjTjqa- - Ti—a(x ) = Eij if j+1<i<N-—1,
Ti(Eit1,5) =

TiTi1Tivo - Tjoa (z '+):E,] ifi+2<y,
Ty(Eip) = Ty Timg(x;_,) = ThTo -+ Ti—o T (w_ 1) =TTy Ti—o([z; 1, 27 ])
= [NTs- - Ti—2(z;_y),%; | = [Ei1, Biq14] = —Eiv1,1,
Ty(Eo;) =TT - Tig (i) = ToTs - - T;o T (- l) =TTs- - Ti—o([z], 2 4])
= [z], ToT5- - Tica (2 ,)] = [Biit1, B2i) = —Faiv1. u

4.2 Evaluation map

The evaluation map for the affine Yangian Y(E:[N) was introduced by Guay [5]. It is an affine
analog of the well-known evaluation map from Y (sly) to U(gly). Let U(é[N) _ be the

comp,
completion of U (ﬁ[N) defined in [10, Definition 2.5]. From now on, we regard the central
element ¢ of j[N as a complex number.
The following result can be deduced from a formula for ev(H;;) (i # 0) where H;; =
hi1+ (i/2)(e1 — €2)hi, given in [5, Section 6, pp. 462-463]. See [10] for details.

Theorem 4.7 ([5, 10]). Assume hc = Neo. Then there exists an algebra homomorphism
ev: Y(s[N) — U(g[N) uniquely determined by

comp,—

eV(xZo) =], ev(zg) =z, ev(hio) = hi,
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N

(1+ Nea)ag +h ) Y Epa(s+1)Exi(—s) ifi=0,
520 k=1

ev(x;rl) =< (1 +ie9)x; —i—hz (ZE’““ —5)

s>0
N

+ Y Bran(s+1)Ei(—s — 1)) if i # 0,
k=i+1
( N

(1+ Neg)zg +7 > Y Epn(s)Brp(—s—1) ifi=0,
s>0 k=1

ev(z;y) = q (1 +ie2)z; +hZ(ZEkz Eiy1k(—s)

s>0

+ Z Eyi(s +1)Eir1x(— 8—1)> if 1 # 0,

\ k=i+1
(1 + N€2)h0 — FLEN,N(EI,I - C)
N

+0> > (B (s)Eng(—s) — Era(s + 1) B p(—s— 1)) ifi=0,

s>0 k=1 A
7
(1 +ie2)hi — hE; ;B 41 + hz (Z By i(s)E;i 1(—5)
ev(hm) = >0 Vi1
N .
+ Z Eri(s + DEix(=s = 1) ZEkl-i-l Eit1x(=5)
k=i+1
N
n Z Erit1(s+1)Eipp(—s — 1)> if i # 0.
\ k=i+1

We will use the following property.
Proposition 4.8. We have
(i) woev=evouw, (ii) poev =evop, (iii) Ty oev = evoT;.

Proof. The assertion (i) is immediate from the definition of ev. The assertion (ii) is stated in
[5, Section 6, p. 463] and a proof is given in [10, Proposition 3;6]. Since ev is the identity on the
subalgebra U(s[N) and 7; is defined via the generators of U (5[N), the assertion (iii) holds. W

4.3 Construction of Heisenberg generators

We construct elements a,, (m € Z) of the affine Yangian Y(§[N) such that ev(a,,) = 1(m) under
the assumption g # 0.
First consider the case m = 0.

Proposition 4.9. We have
N-1
vV <Z ]NIZ'J) =&l +c+ %02
i=0
Proof. Put

N N
A=Y Eun(s)Bni(=s),  Bo=3_> Epls+1)Eyu(—s— 1),

5>0 k=1 520 k=1
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N
A = Z (Z Eyi(8)Eix(—s) + Z Eii(s + 1) Ejp(—s — 1)) ; i # 0,

s>0 k=i+1
N
Bi=>)_ <Z Brip1(8)Eir1u(=s) + Y Bripa(s + 1) Eiprp(—s — 1)) ;1 #0,
5>0 k=i+1
so that

ov (iL ) o (1+N€2)h — 7(E]2VN+(E171—C)2) —|—h(A0—B0) leZO,
T\t dea)hi — BB + B2 i40) + B(A; — By) otherwise.

Here we use
—hENN(Bi —¢) = §h§ = =5 (EX n + (B0 — )?),
—hE;iEipri41 — 3hi = —5(E} + El i), i # 0.
Then we have A;11 — B; = Ei+1,z’+1 fori=0,...,N — 1, where we regard Ay = Ag. Therefore

N—-1 N—-1 N N
v (Z izi,l) =cH e (Nho +)° zh) -8 <QZE2 — 2By, +c2> +hY E?
i=0 i=1 i=1 =1
N—-1

—c—l—a‘gZzh —i—Nagho—l—thll—ch
=1

By the assumption hc = Nea, we have
N€2h0 + hCELl - %62 = NgQ(EN,N + C) _ %62 — NsQEN,N + %02
N-1
The assertion holds since we have 1 = ) ih; + NEn N. |
i=1

Assume fic = Neg and g9 # 0. Put

L /N1
= — <Z hi71—c—302> .
2 \i=o

Then we have ev(ag) = 1 by Proposition 4.9.
Next consider the case m > 1. For each ¢ € Z/NZ and a fixed m, define an element w(i, m)
of the affine Weyl group W by

w(z m) = tm Si+15i4+2 " 5;—3S;—2-

D
This element has the property w(i, m)(a;—1) = —a; + md. Hence the elements
[JZ;_, Tw(i,m) (m;’__l)] > [LL’:_, Tw(i,m) (‘7"2_—1,1)]

have weight md. We will see

e h_e(m) if 1 = 07
[ Twgim) (2721)] = (=)™ x {hi(m)

in Lemma 4.13, and will compute the value of

ev ([, Twim) (z211)]) = [, Twim) ev ($z+—11)]
in Proposition 4.15. Then we will take the summation over ¢ in Proposition 4.16. The result
will yield a construction of the elements a,, in Theorem 4.18.
By Lemma 3.6(ii), p 0 Toy(im) = Tw(i—1,m) © p holds. The case i = 1 will be important. Note
that w(1,1) = sgs3---sy—1 and t_,, = $283- - S0S150 - * - S3.

otherwise
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Lemma 4.10. We have

Ei1(s) ifi=1,
Es5(s) + ds0c  ifi =2,
Ti_ ., (Eii(s)) = 22(8) + 050 f )
E33(s) —ds0c ifi =3,
Em’(s) if4 < ) < N
for any s € Z.
Proof. The assertion is easily proved by Lemma 4.3. |

Lemma 4.11. We have
Twam)(E11(8)) = E11(8),  Tw,m)(ENN(=8)) = Ea2(—s) + ds0(m — 1)c
for any s € Z.

Proof. The assertion follows from

TyTy---Tn_1(E1,1(s)) = Ev1(s), 215 - Tn-1(En,N(—5)) = E22(—s)
and Lemma 4.10. [ |
Lemma 4.12. We have

Eyn(m—1) ifi=0,

Eit1,:(m) otherwise.

Tw(i,m)(mj—l) = (_1)m71 X {

Proof. We prove the assertion for ¢ = 1. The other cases are deduced from this case by
applying p and Lemma 4.1. First assume m = 1. Recall T,,1 1) = T2T3---Ty—1. We have

DTy Tn-1(ag) = ToTs - Ino([o)_y 20 ]) = [T Tv—2(ay_y), 24 ]
v (42 [Ean, Eni(1)] = E21(1),

hence the case m = 1 is proved. Next consider the case m > 2. Since the case m = 2 yields the
equality for general m > 2 inductively, it is enough to prove

Ti_,,(E21(1)) = —E2.1(2).
Since E5 (1) is invariant under 7; for 3 <i < N — 1, we have

Ti ,,(E21(1) = ToT5 - - ToyTh To(Fa,1(1)). (4.8)
We have

ToT\To(E21 (1)) = ToTh To (ToTs - - - Tn—1 () = ToW o Ts - Tn—2 (2, ) = —Ena(2).

Here the second equality follows from the braid relations and Proposition 3.4, and the last from
Lemma 4.4. Then the right-hand side of (4.8) is

by (4.4)

by Lemma 4.2
PEEET (T Ty 1 (Bna))(2) T =T —Eaa(2),

ToTs - Tn_1(—En1(2))

hence the assertion is proved. |
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Lemma 4.13. We have

(2 Ty (21)] = (=1 x {h_e(m) ifi=0,

hi(m)  otherwise.
Proof. Immediate from Lemma 4.12. |
Lemma 4.14. We have
Tow(1,m) (B (s + 1) Eng(—5))
E171(S+1)E271(—8+m— 1) if k=1,
( 1)m—1 E3’1(S —m+2)E273(—3+2m—2) if k=2,
= (— X .
Epi11(s+1)Eypy1(—s+m —1) if3<k<N-—1,

By (s +m)(Eza(—s) +d,0(m — 1)) if k= N.

Proof. We prove

El,l(s—l—l) if k=1,
—1)m=DWNHD (B3 (s —m +2)) if k=2,
T (Frals + 1)) = { Y (=Fa 2 (49)
*E]H_Ll(s + 1) if3<k<N-1,
(=)™ 1By (s +m) ifk=N
and
(=)™ 1Ey1(—s+m —1) ifk=1,
—1)m=ON(_ By g(—s42m —2)) if k=2,
Tw(1,m) (Eng(—s)) = ( )m_l (=B ) . (4.10)
(=)™ N —Eapy1(—s+m—1)) if3<k<N-1,

EQ’Q(—S) + (55’0(777, — 1)0 if k=N.

The equalities (4.9) for k = 1 and (4.10) for £ = N follow from Lemma 4.11.

Consider (4.9) for Kk = N and (4.10) for k¥ = 1. Note that Lemma 4.12 for ¢ = 1 is nothing
but (4.9) for k = N and s = 0. We can prove the other cases by applying [—, Eq 1(%s)] to this
case as

[Tow1,m)(En (1)), E1i(£5)] = Tuam) ([Ena (1), Eri(£5)]) = Towam) (Exi(1 £ 5)).

Here we use the fact that Fy1(+£s) is invariant under T, ,) proved in Lemma 4.11. In the
sequel, we prove (4.9) and (4.10) for 2 < k < N — 1.
We prove (4.9). First we consider the case m = 1. We prove

Tw(l,l) (Ek,l(s + 1)) = —Ek+171(8 + 1)

for 2 < k < N — 1 by induction on k. Since T(11) = 1275 --Tn-1 does not involve Tp, it is
enough to prove T,(11)(Ek,1) = —Eky1,1 by Lemma 4.2. When k = 2, we have

ToTs- - Tn-1(27) =To(z7) = —E3;1.
Assume that the assertion holds for k. Since we have Ej 11 = —T)(Ex,1) by (4.6),
T3 Tn—1(Exg11) = —ToTs - T 1Tk (Eg1) = T Do - - T—1(Ek )

by (4.6
= Ty1(Ery1,1) v & )—Ek+2,1‘
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Thus we have proved the case m = 1. Next we consider the case m > 2. Since the case m = 2
yields the equality for general m > 2 inductively, it is enough to prove:

Ti oy (Bsa(s +1)) = (=) E3.(s), (4.11)
Ti oy (Eri11(s+1)) = Egpra(s+1)  if3<k<N -1 (4.12)
If we prove the assertion for s = 0, we can prove the other cases by applying [—, E1,1(s)] to

this case by using the fact that Ej1(s) is invariant under 7 , proved in Lemma 4.10. We
prove (4.11) for s = 0. Since we have F3; = —T5(z7 ), the left-hand side of (4.11) for s = 0 is

STy Ty - Ty Ty Ty (To (7)) (1) ¥ 2% —mymy - Ty T (1) N 2En 1 (1))
= ()N DTy T Ty (2f) = ()N T Ty (7))
= (—1)NT2(II) = (—1)N+1E3,1.

We prove (4.12) for s = 0 by backward induction on k. The case k = N — 1 is proved as
LT ToT Ty - Ts(xf) = ToTs - ToTi (ah_y) = ToTs - Ty—o(zg) = 2 .

Assume that the assertion holds for k. Since we have Ej 1 = Ty, (Ek+1,1) by (4.4),
Ti_,, (Bea(1) = T, Te(Brs1,1(1) = T T, (Brs11(1)) = T (Brs11(1)) = Era(1).

Here the second equality holds by k& > 3. Thus we have proved (4.9).
We prove (4.10). First we consider the case m = 1. We prove

Eng(=s)) = —Engt1(—s)

for 2 < kK < N — 1 by backward induction on k. By Lemma 4.2, it is enough to prove
—F5 +1. When k = N — 1, we have

s’
El
=
=
I

LT Tno1(zy_y) = —ToTs - Tna(z_,) = —E2n
by (4.2). Assume that the assertion holds for k. Since we have En ;1 = Ti—1(En ) by (4.5),

ToTs - Tn-1(Eng—1) = ToT3 - Tn_1Th—1(Eng) = TuToTs - Tn—1(En k)

by (4.5
= —Ti(E2 k1) v & )—Ez,k-

Thus we have proved the case m = 1. Next we consider the case m > 2. Since the case m = 2
yields the equality for general m > 2 inductively, it is enough to prove:

Ti_ oy (B23(=5)) = (=) Ba(—s +2), (4.13)
Ti oy (Bogii(—=5)) = —Eapi(—s+1) if3<k<N-1 (4.14)
If we prove the assertion for s = 0, we can prove the other cases by applying [E2 2(—s), —] to this

case by using the fact that E2(—s) is invariant under 7; ,  for s > 1 proved in Lemma 4.10.
We prove (4.13) for s = 0. Since we have

Tn_1Tn—2- Ts3(z3) = ()N 3By
by (4.3), and

by (

ToT Ty (EZ,N) =TToTh (EQ,N) :44) T\ Ty (ELN) by Len;ma 44

Ti(—Ena(2)),



Braid Group Action on Affine Yangian 19

the left-hand side of (4.13) for s =0 is
(~D)N 2Ty T T (BEni (2) = ()N 2N Ts - Ty—1 (En i (2))

byg'@ (—1)N72T2T1 (E3,1)(2) = (_1)N72T2T1 (_T2 (xl_))@)
= ()N ' Ta(23) (2) = (-1)VEza(2).

We prove (4.14) for s = 0 by induction on k. Assume k = 3. Since we have Ey4 = Th(z7 ), the
left-hand side of (4.14) for s = 0 is

ToTs---ToTh Ty -+ T3 (T2 (1‘;)) =105 --ToTyTy---Ty (ZL‘;) =T1T5---ToTy (x;)
by Ler&ma 4.4 TyTy- Ty (EN’g(l)) by (4 4) T2T3(E4 3)( ) =T (xg')(l) = —E274(1).

Assume that the assertion holds for k. Since we have Ejjio = —Tjhi1(E2,41) by (4.7), the
left-hand side is

Ti_o, (Bops2) = =T oy Toy1 (Bogr1) = —Trp1Tr_o, (B2pt1)
= Tht1(Bopy1) (1) = —Eappa(1).

Here the second equality holds by k& > 3. |

For a fixed m > 1, put
Sij(p) = Eij(p)Eji(m — p).
Proposition 4.15. We have
(277 Tutiamy v (271 1)]

N m—2
— (—1ym! <Ai +0Y (Pik—Qix) —h Y Eis(s+ DEis1i1(—s +m — 1)) . (4.1p)
k=1 5=0

where
(1 + ( )Eg)h g(m) + (m — 1)hch,g(m) + ﬁcEN,N(m) ifi = 0,
A; = ¢ (14 Neg)hi(m) + (m — 1)hchi(m) if i =1,
(14 (i — 1)ea)hi(m) + (m — 1)hchi(m) + hchi(m) if2<i<N-—1,
P = Z Sk,i(p(i, k)), Qi = Z Sk,i+1(q(i, k)).
520 s>0

The integers p(i, k) and q(i, k) are given by

s+m—1 ifk=1,

s—m+1 ifk=2
p(0,k) =

S if3<k<N-1,
s+1 ifk=N,
(s ifl<k<i—1,
s+1 if k=1,
p(i, k) =4 s+m ifk=1+1, 1<i<N-2

s—m+2 ifk=i+2,
(s +1 ifi+3<k<N,




20 R. Kodera

s—m+1 ifk=1,

5 if2<k<N-2, , p(0,k) +1 ifi=0,

PN — 1K) = . olirk) = 70 |
s+1 ifk=N—1, p(i, k) otherwise.
s+m ifk=N,

Proof. We prove the assertion for ¢ = 1. By Lemma 4.14, we have

(=)™ 1, my ev (2 )

N
= (=1)"" (14 Nea)Typ(1.m) () + (*Um_lhz ZTw(l,m) (Bra(s + 1) Eng(—s))
>0 h=1

= ( 1)m 1(1 + NEQ) w(1,m) (a:o ) + (m — 1)th2,1(m)

+ hz <E171(S + 1)E271(—S +m — 1) + Eg,l(s + m)EQQ(—S)
s>0
N
+ E31(s —m+2)Eag(—s+2m—2)+ > Epi(s+ 1) Eyp(—s+m — 1)>.
k=4

Therefore
(—1)™ o, Ty ev(a,)] = (1 + Ne)ha(m) + (m — Lhchy (m)

+hz< S12(s+ 1)+ Er11(s+ 1)hi(—=s+m — 1) + hi(s + m)Ea2(—s) + Sa2.1(s + m)
s>0

N
— S32(s —m+2)+ S31(s —m+2) +§: ‘%28+1—%%1@+1D> (4.16)
k=4

Here we use Lemma 4.13. Since we have

Z (ELl(s + Dhi(—s+m—1)+ hi(s+ m)Egg(—s))

s>0
m—2
= Z (S11(s+1) = Saa(s+m)) — Z Er1(s+1)Eap(—s+m —1),
s>0 s=0

the right-hand side of (4.16) is equal to

(1+ Neg)hi(m) + (m — 1)hchy(m)

N
+hz<<511 (s+1)+S21(s+m)+S31(s —m+2) +ZSk1 S+1)>

5>0 k=4
N
- (51,2(8 + 1)+ Saa(s+m)+ Ss2(s —m+2)+ ZSk,Q(S + 1)))
k=4
m—2
—hY  Eii(s+1)Eya(—s+m—1).
s=0

Hence the assertion holds for ¢ = 1. Then apply p to (4.15) for ¢ = 1. The left-hand side is

ot Tty v (@)]) = [ Tuomy v (s + 2208)]
= [23, Two,m) v (%1)] + e2h_g(m).
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Here we use Proposition 4.8(ii) and Lemma 4.13. Consider the right-hand side. We can see

P(Al) = Ay + 82h_9(m) — hCEN,N(m),

P07N+EN7N(m)C if k= 1,
p(Pr) = .
P07k_1 1f2§k§N,

p(El,l(s + 1)E272(—S +m — 1)) = EN}N(S + 1)E171(—S +m — 1)

p(Q1k) = Qok—1,

Hence the assertion holds for ¢ = 0. Then apply p to (4.15) for ¢ = 0. Similarly the left-hand
side is
([ Tutomy ¥ (55 1)]) = [5F—1: Ty (55 _a,)] + e2bn-a(m),

and for the right-hand side, we can see

p(Ao) = An—1 +eahn_1(m) + heEn n(m),

Qn-1Ny — Enn(m)c if k=1,
QON-1k-1 if2<k <N,

p(EnN(s+ DB (s +m—1)) = Eyana(s+ DEvN(=s+m—1).

p(Pok) =Pn-1k-1,  p(Qok) = {

Note that ¢ never appears in the last equality as —s +m — 1 cannot be 0 for 0 < s < m — 2.
Hence the assertion holds for ¢ = N — 1. Continuing this process we prove the assertions for
i=N—-2,N—3,...,2 since we have

p(Air1) = Ai + e2hi(m),  p(Pip1k) = Pik—1, p(Qiv1k) = Qik—1,
p(Bit1i41(s + 1) Bigoa(—s +m — 1)) = Eii(s + 1) Eit141(—s +m — 1). u

Proposition 4.16. We have

N-1
ov <(_1)m_1 Z [z, Toim) (xj_l,l)]> = e9l(m) + ARy, (4.17)

Ry = (—1)™ 1235 Touim) (% Z > hi(p)hi(m —p)

p=1 1<i<j<N-1

m—1 N-2
- > <E1,N(p ~1DEni(m—p+1)+ Y Eir2i11(p)Eipriya(m — p))
p=—m+2 1=0
0
+ Z <E1N 1\p —1)EN_1,1(m—p+1)+E2,N(p—1)EN,2(m—p+ 1)
p=—m-+2

+ Z Eii3iv1(0)Eig1,i43(m — p)) .

Remark 4.17. The point of the statement of Proposition 4.16 is as follows: although each term
ev ([ac:r, Too(i,m) (xl'-tm)]) lies in the completion of U(g[N), we obtain R,, an element of U(s[N)
as a remainder term after cancellation.
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Proof. We use the notation in Proposition 4.15. We have

N—1 N-1 N-1
> Ai=e <(N —Dh_g+ Nhy+ Y (i - 1)h,~> (m) + he (EN,N + ) hi) (m)
=0

=2 =2

N-1
=& <(N —Dh_g+ Nhy+ > (N +i— 1)hi + NEMN) (m)
=2

N—-1
= &9 <Z th; + NEN,N> (m) = e21(m).

i=1
N
In the second equality we use the condition ic = Nea. We compute > (Piy1,— Qi k) as follows:
k=1
N 2m—3 m—2
Z(P[)k_QN 1k ZSle—m—i—l +ZSQNS—m+1)
k=1 s=0 s=0
m—2
+ Svoan(0)+ ) Syn(s+ 1),
s=0

N m—2 2m—3
Z(Plvk _QOk Z 5171 S + 1 Z 5271(5—771,-1—2)
k=1 s=0 s=0

m—2

+ 2531 s—m—|—2)+SN1( )

S=
N m—2 2m—3
D Pk — Qik) = Siin1(0) + Y Sivrira(s +1) Z Sit2,i+1(8 —m +2)
k=1 s=0

m—2
+ZSi+3’i+1(s—m+2) for 1 <i< N -3,
s=0

m—2
(Pn—1k — QN—2,k) :ZSLN 1(s=m+1)+ Sy_2n-1(0)
s=0

m—

-
l\)

2m—3
S 1(s+1) ZSNN (s —m+2).

+

Hence the assertion holds by

Sn(1 ifi=0
()" af Tygamy (2724) = wall) it ]
’ Sii+1(0)  otherwise
and
N—
(Sii(s+1) = Eii(s + 1)Eiy141(—s +m — 1))
0

—_

1=

N-1

(Z Eii(s+ 1)hi(—=s+m — 1)> + Enn(s+1)h_g(—s+m—1)
lezl N-1

= (Bii— Evn)(s+ Dhi(-s+m—1)=> > hj(s+ Dhi(-s+m—1). R

i=1 i=1 j>i
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Applying w to (4.17), we obtain

< m 12 w( z; 11) _]> :521(—m)+hw(Rm)-

Now the following theorem has been proved.

Theorem 4.18. Assume he = Neg and ez # 0. Let Ry, (m > 1) be the element of Ulsly) C
Y(s[N) as in Proposition 4.16, and define for m € 7Z,

<( met Z x;, wzm j_—l,l)] _hRm> ifm>0,
1 Nl
am:gx (Zhl—C—QC) if m=0,

N-1
((-1)’”‘1 > | Twiimmy (w1 1) 7] — M(Rm)> if m < 0.

1=0

Then we have ev(ap) = 1(m). In particular, the image of the evaluation map ev contains
Ul(gly)-

Corollary 4.19. Assume hc = Neg andeg # 0. Then the l)ull—back of an irreducible é[N—module
by the evaluation map ev is irreducible as a module of Y(s[N).

Remark 4.20. If e5 = 0, we cannot apply our construction. In fact, if we assume ¢ # 0, the
condition hic = Neg and €2 = 0 implies €1 = 0. The affine Yangian at £ = €9 = 0 is isomorphic to
the universal enveloping algebra of the universal central extension of the Lie algebra sly [5, til] .
Moreover the evaluation map becomes the genuine evaluation at s = 0. In this situation, the
image of the evaluation map is U (glN), and hence it does not contain the Heisenberg algebra
generated by 1(m) (m € Z).

Remark 4.21. We do not know whether the elements a,, (m € Z) satisfy the Heisenberg
relations. The construction of the Heisenberg subalgebra inside the affine Yangian will be left
as a future work.

A General case

We use the notation (ad X)™(Y) = (ad X)™(Y)/n! for divided power operators.

A.1 Yangian and braid group action

Let (asj)ijer be a symmetrizable generalized Cartan matrix and fix integers (d;);cr such that
(d;a;j)ijer is symmetric. We denote by g the corresponding Kac—Moody Lie algebra. Then the
Yangian Y (g) is defined to be generated by :U”, hiy (i € I, r € Z>p) with a parameter
h € C subject to the relations:

7,7

[, hjs] = 0, [, 25 ] = dijhigts, [hz 0,7;,] = tdiaya;,,
[ ir+1, L j s] - [hz’,mxf%l] +d; a’Z]Q{hZ ry L j s
[ zr—l—l’ ] [$??r7$fs+l] = idial] {xz ) ]S

> [:cfrw(l>,[xfrm),...,[:cl.%rw(mij),xjfs]...]]:0, i #j.

w661—ai]-
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Set xzi = x;to, hi = h;o. Then the standard Chevalley generators of g are identified with
&Pt d7 ey d
Following [6], we define
T; = expad d;l/zazj exp ad (—d;l/ ) expadd, 1/2

In the sequel, we put e; = d, 1/2 + , fi=d; 1/2 x; .

Proposition A.1. The operators {T;} satisfy the braid relations. That is, we have

TT; =TT, ifa; =0, TIT =TT ifa;=—1,
TITT; = Ty T ifay=—2,  TLLILT = TLITIT if ai = 3.

Proof. The identities follow from

Ti(ej) = ej, T;(f;) = fis ai; =0,
LiTj(ei) = ej, TT;(fi) =[5, a;; = —1,
TT5Tiles) = 5, TTT(f) = £, aij = —2,

TLTTTiTi(es) = e5,  TTyLTT(f) = fi, ag=—3
as in the proof of Proposition 3.1. |

Proposition A.2. We have

—x7 if i =j, —h; ifi =3,
Ti(e7) = (xadd, ?ef) " (@) ifay <0, Tilhy) = hj—ayhi ifag <0,
T if ai; =0, h; if a; =0,
—zf) + H{hi,z] if i = 7,
Tz(xjfl) = (:I: add,; 1/2 x; )( a”)(xjjfl) if a;; <0,
xjj-fl if a;j = 0.

Proof. The formulas for T; (z i) T;(h;) are deduced from well-known formulas for the Chevalley
generators. We produce a computation of T( ) for a;; < 0 since the case T; ( ) for a;; <0

is verified in a very similar way. Put m = —a;;. We have
T;(z; ) = expad e;expad(—fi) (z; ) = i (=1)" expade;(ad fi)"(z7) (A.1)
i\ Ly ) ) j — ol i [ i) .

We can prove
n n n—1
expade;(ad f;)"(z7) = <k> (H(m — z>> (ad f;)" (2 ) (A.2)
k=0 I=k

by induction on n. Indeed, if we assume the assertion for n, we have

exp ad e; (ad fl)”'H( z; 7) = ad (expad e;(f;)) (expade;(ad f;)" :r;)) (A.3)

— ad (fy+d b — e;) (Z (Z) (gm _ z>> (ad fz-)k(xj—)> .

k=0
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Since we have
ad h;(ad f,)k(acj_) = d;(—2k +m)(ad fz)k(ﬂf]—)

and

B
—_

ad e;(ad fz)k(m]_) =) (ad fi)k_s_l(ad di_lhi)(ad fi)%(z

T
|
= O

the coefficient of (ad fz)k(a:j_) in (A.3) is

() (i) 0 i o)

- (kjl> (H <m—z>> (k+1)(m — k).

I=k+1

It is easy to see that this is equal to

(e o)

Thus (A.2) is proved. Then (A.1) is equal to

S5 )]
n=0 k=0 1=k
mo m m —
=3 Cl wan ) ~ <Z<‘1>"k<n—:>>
k=0 =k

The formula for Tz(xz_ 1) is proved in a way similar to Proposition 3.9. We use

wh) =2y — &),

( :
expadei(aci_’l) =1, —|—dl-_1/2h 1 —:(:11 {hz,xl }+d1/2h( +)2,
expade;({hy, &} }) = {hi,af} — 4d)? (a})?,
expade;((z)°) = ()7,
expad(—fi) (¢11) = 2, +d; Phiy — apy — B, a7} + 4] ()’
expad(—fz-)(:vi_,l) =z — dil/2h(:ci_)2,
expad(—f;)(hin) = hiy — 2}z, — A R{hi ;) + 3dih(;),
expad(—fi) ({hi,x ) = {hg, 2 _3{;%,% Y —2d?{at ay )

+2d;Ph 4 4d)? (7)),

@
%
3
o
(oW
D
=
=
—
&
=t
SN—
[\V]
SN—"
Il

- d‘_l/Q{hivxz’_} - {xz T }

i)

(—2s+m)(ad fl)k_l(:z:;) =k(m—Fk+1)(ad fi)k_l(m;),

(27)° i 03 o (27)” 4 a1 {h,f

As we mentioned, T; ( ) for a;; < 0 is computed by replacing x; with z; in the argument

for T; ( ) Then the forrnulas for T; ( ) are obtained from those for T (

) by applying w.
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Remark A.3. In this appendix we impose no further condition on (a;j); jer, and hence on g,
to study the braid group action. However the defining relations of Y (g) given here may not
produce a correct definition of Yangian for some generalized Cartan matrix. For example, it is
known that for Y (sly) the defining relations should be modified as in [9, Definition 5.1] or [2,
Section 1.2] (In [9], some relations are missing). In [7, equation (2.1)], the authors suggest the
following condition:

for all ¢ and j, if a;; < —2 then aj; = —1 holds.

See [7, Section 2, Lemma 4.2, Remark 5.15] for an explanation on some evidences.

A.2 Compatibility with the coproduct

Assume that g is a Kac-Moody Lie algebra of finite or affine type except for Agl) and Agz)‘ Then
the coproduct A on Y (g) is well-defined by the same formula as in Theorem 2.6 [6, Definition 4.6,
Theorem 4.9, Proposition 5.18]. Let us prove the main result of this appendix.

Proposition A.4. We have Ao T; = (T; ® T;) o A.

Proof. Lemma 3.13 holds in a general situation and we use it. It is enough to prove AT; (acjl) =
(T; ® E)A(aﬁjl) for a;; < 0 since the proofs concerning the other generators are the same as in
the proof of Proposition 3.12. We claim that the both sides coincide with

OTi(a},) — h([1@ Ti(2}), Q4] — d%af ® (ader) 90~ (a7)).

7 7 J

The left-hand side is

A((ad ei)(_a“)(l‘;fl)) = (ad D(ei))(_a“)(D(m;rl) —h[l®z!, Q)

=0Ti(z],) - h([(ad D(e:)) ") (1@ at), 4]

—aij

+ > [(adO(e)) "™ (1@ 2}), (ad D(ei))@)(m)})
n=1

—OTy(at) - h([l OT(h), 2] + 3 [1® (adeg) 25 (z), (ad D(ei))(")(QJr)]).
n=1

We show
—aij

> [1® (ade) @™ (z}), (ad O(e) ™ ()] = —d?zf @ (ad e;) oY) (=)).
n=1

Since we have

—d;Pat @n; ifn=1,

(2

(ad D(e;)) ™ (Q4) = < af @ 2 ifn=2,
0 if n >3,
we see
—ai;
Z [1® (ad A ) (x;r), (ad D(ei))(”)(fh_)]
n=1

= 10}, ~at oh) = —dat e
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if a;; = —1, and

Z [1® (ad e;) 7@ (:rj), (ad D(ei))(”)(QQ]

n=1

= [1® (ad e;) ("%~ (a:;r), —di_l/zaj;r ® hi] + [1® (ad e;)("%2) (:Ej),:z‘:r ® x|

= d; 2 (2di(~aij — 1) + diayj)ai © (ade;) "D (aF)
— dz/Q(—ai_j — l)x:r ® (ad ei)(_aij_l) (:Uj)
— —dil/zzc;r ® (ad ei)(*“ifl) (x;“)

if a;; < —2, hence the claim holds. The right-hand side is

(10 T)(O(at,) — bl @ at,0,]) = DT (aT,) — h[1 @ Ti(s), (T © T4 ]

—DT(L) h[ ®T( )Q++x+®x —xl®xﬂ

— 07 () - A([LO Ta). 0] +af © (L) a7] - o7 @ [T, 7).

) J

Then the desired identity follows from

1 .
Cayede) 9 w]). P8
1 —a;;—1 e - .
= (_aij)!d;/Q 7;) (adei) 4 1(addi lhi)(adei) (1';'_)

—ai;—1

1
— ‘dil/Q Z (2n+aij)(adei)_“”_1($j)
(_aij)' n=0
L —aij— 1/2 —aij =
- (—aij)!di/ aij(ade;) ™" (2f) = —d;*(ad ;)"0 («7)
and
[1_;(:(;+) $+] _ #(adel) 2%} (ﬂf ) d1/2el - _ 1 dl/Q(ad ) aij+1 (,’_'[,‘+) = 0 .
i) (—aij)! )& (—aij)! v J
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