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Abstract. We construct a functional model (direct integral expansion) and study the
spectra of certain periodic block-operator Jacobi matrices, in particular, of general 2D partial
difference operators of the second order. We obtain the upper bound, optimal in a sense,
for the Lebesgue measure of their spectra. The examples of the operators for which there
are several gaps in the spectrum are given.
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1 Introduction

Consider a block-operator Jacobi matrix on the Hilbert space F = `2(Z,H)

(Ju)q := Aq−1uq−1 +Bquq +A∗quq+1, Bq = B∗q , q ∈ Z, uq ∈ H, (1.1)

where the blocks {Aq, Bq} are bounded linear operators on the Hilbert space H. Under the
standard assumption sup

q∈Z
(‖Aq‖+ ‖Bq‖) <∞ on the entries, the matrix J generates a bounded

and self-adjoint operator J on F .
We are primarily interested in the case when H = `2(Z), and the blocks Bq, Aq are themselves

Hermitian (not necessarily real symmetric) 1D Jacobi matrices

(Ju)q := Aq−1uq−1 +Bquq +Aquq+1, q ∈ Z, uq = (uq(l))l ∈ `2(Z). (1.2)

The block matrices of this type are known as Jacobi-block-Jacobi matrices. So,

Aq = J
(
{aq,r}r∈Z, {αq,r}r∈Z

)
, Bq = J

(
{cq,r}r∈Z, {bq,r}r∈Z

)
, (1.3)

with real entries {aq,r} ({cq,r}) along the main diagonal, and complex entries {αq,r} ({bq,r}) and
their conjugates along the diagonals above and below the main one, respectively.

Such block-operator model arises when we deal with 2D partial difference operators L of the
second order of the form

(Lũ)ik := ai−1,kui−1,k + ai,kui+1,k + bi,k−1ui,k−1 + bi,kui,k+1 + ci,kui,k, (1.4)

on the Hilbert space `2
(
Z2
)
. A natural isometry U0 between `2

(
Z2
)

and F

ũ = (ui,k)i,k∈Z → u = U0ũ = (uj)j∈Z : uj = (. . . , uj,−1, uj,0, uj,1, . . . )
′
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transforms the operator L in (1.4) into J := U0LU
−1
0 on F , where

(Ju)j = Aj−1uj−1 +Bjuj +Ajuj+1, j ∈ Z,
Aj := diag(aj,k)k∈Z, Bj := J

(
{cj,k}k∈Z, {bj,k}k∈Z

)
, (1.5)

see, e.g., [1, Section VII.3]. This is a special case of the model operator J (1.2) with αj,k = 0.
In particular, for 2D discrete Schrödinger operators H (aj,k = bj,k = 1) we have

(Hũ)i,k := ui−1,k + ui+1,k + ui,k−1 + ui,k+1 + ci,kui,k, (1.6)

so

Aj = I, Bj = J
(
{cj,k}k∈Z, {1}

)
,

1D discrete Schrödinger operators.
Let pj ∈ N, j = 1, 2. A sequence of complex numbers {wq,r}q,r∈Z is called (p1, p2)-periodic if

wq+k1p1,r+k2p2 = wq,r, ∀q, r, k1, k2 ∈ Z.

The operator J in (1.2) is called (p1, p2)-periodic if {aq,r}, {αq,r}, {cq,r}, and {bq,r}, q, r ∈ Z,
are (p1, p2)-periodic. Equivalently,

1) all the blocks Aq, Bq are p2-periodic 1D Jacobi matrices;

2) J is block periodic with period p1: Aq+p1 = Aq, Bq+p1 = Bq.

We say that the partial difference operator L (1.4) is (p1, p2)-periodic, if all the coefficients are
(p1, p2)-periodic, or equivalently, J (1.5) is (p1, p2)-periodic.

In Section 2 we recall a direct integral expansion (a functional model) for the (p1, p2)-periodic
operator J in (1.2)–(1.3) and establish the banded structure of its spectrum σ(J). In Section 3
we estimate the Lebesgue measure of σ(J).

Theorem 1.1. Let p1, p2 ≥ 3. The Lebesgue measure of the spectrum for the periodic operator J
in (1.2)–(1.3) admits the upper bound

|σ(J)| ≤ min
(m,n)∈Z2

Rm,n, (1.7)

where

Rm,n := 4

p1∑
j=1

(|bj,n|+ 2|αj,n|) + 4

p2∑
k=1

(|am,k|+ 2|αm,k|)− 8|αm,n|. (1.8)

The sequence {Rm,n} is (p1, p2)-periodic, so minimum in (1.7) is actually taken over the finite
set of indices m = 1, . . . , p1 and n = 1, . . . , p2.

The similar result holds for min(p1, p2) = 2, see Remark 3.1 below.
Note that there is a simple general bound for |σ(J)| (which has nothing to do with periodicity)

based on the fact that J is a three-diagonal block-matrix

|σ(J)| ≤ 2‖J‖ ≤ 2(2 max
n
‖An‖+ max

n
‖Bn‖)

≤ max
n

(8 max
m
|αn,m|+ 4 max

m
|an,m|) + max

n
(4 max

m
|bn,m|+ 2 max

m
|cn,m|). (1.9)

The point is that certain parameters, such as cn,m, which appear in (1.9), do not enter (1.7).
So, once some values of cn,m are large enough, bound (1.7) is better that (1.9). On the other
hand, (1.7) contains sums of the entries compared to (1.9), which does not.
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There is another upper bound for the length of the spectrum, based on Gershgorin’s theorem,
which is discussed in Remark 3.3.

For the 1D scalar, p-periodic Jacobi operator J the estimates for the spectrum

|σ(J)| ≤ 4(a1a2 · · · ap)1/p

were obtained in [7, 9]. Here an are the off-diagonal entries of J . Recently the second author [11]
improved this result to

|σ(J)| ≤ 4 min
n
an.

We see that both bounds do not depend on the diagonal entries, so the lack of cm,n in (1.7)
looks reasonable.

Corollary 1.2. For a 2D periodic, partial difference operators of the second order L in (1.4)
the spectral estimate is

1

4
|σ(L)| ≤ min

n

p1∑
j=1

|bj,n|+ min
m

p2∑
k=1

|am,k|.

In particular, |σ(H)| ≤ 4(p1 + p2) for 2D periodic, discrete Schrödinger operators H (1.6).

The estimate |σ(H)| ≤ 4(p1 + p2) was previously obtained in [10].
We complete the paper with examples of 2D discrete Schrödinger operators with explicitly

computed spectra, and an operator, which has a maximal number of gaps in its spectrum.

2 Direct integral expansion

We begin with auxiliary, Hermitian matrix-functions of the order p2

An(x2) =



an,1 αn,1 eix2αn,p2

αn,1 an,2 αn,2

αn,2 an,3 αn,3

. . .
. . .

. . .

αn,p2−2 an,p2−1 αn,p2−1
e−ix2αn,p2 αn,p2−1 an,p2


(2.1)

and

Bn(x2) =



cn,1 bn,1 eix2bn,p2
bn,1 cn,2 bn,2

bn,2 cn,3 bn,3
. . .

. . .
. . .

bn,p2−2 cn,p2−1 bn,p2−1
e−ix2bn,p2 bn,p2−1 cn,p2


, (2.2)

x2 ∈ [0, 2π), and combine them in a single block matrix-function S of the order p := p1p2,

S = S(x1, x2) =



B1 A1 eix1Ap1

A1 B2 A2

A2 B3 A3

. . .
. . .

. . .

Ap1−2 Bp1−1 Ap1−1
e−ix1Ap1 Ap1−1 Bp1


, (2.3)

x1, x2 ∈ [0, 2π), the main object under consideration, known as a symbol.



4 L. Golinskii and A. Kutsenko

Denote T2 := [0, 2π)× [0, 2π), and put

L =

∫ ⊕
T2

Cpdx1dx2
4π2

= L2
(
T2,Cp

)
=



g1(x1, x2)
g2(x1, x2)

...
gp1(x1, x2)

 : gk(x1, x2) =


gk,1(x1, x2)
gk,2(x1, x2)

...
gk,p2(x1, x2)


 ,

where

gk,j(x1, x2) =
∑

m,n∈Z
ĝk,j(m,n)eimx1+inx2 ∈ L2

(
T2
)
,

k = 1, 2, . . . , p1, j = 1, 2, . . . , p2.

We have

‖g‖2L =
∑
k,j

‖gk,j‖2L2(T2) =
∑

k,j,m,n

|ĝk,j(m,n)|2.

There is a natural isometry U : L → F = `2
(
Z, `2(Z)

)
which acts by

U


g1
g2
...
gp1

 = u = (ur)r∈Z, ur = (ur(s))s∈Z : uk+p1m(j + p2n) = ĝk,j(m,n). (2.4)

Assume that p1, p2 ≥ 3. The above symbol S defines a multiplication operator M(S) on L by

M(S)g = S


g1(x1, x2)
g2(x1, x2)

...
gp1(x1, x2)

 =


h1(x1, x2)
h2(x1, x2)

...
hp1(x1, x2)

 (2.5)

with

h1(x1, x2) = B1g1 +A1g2 + eix1Ap1gp1 ,

hl(x1, x2) = Al−1gl−1 + Blgl +Algl+1, l = 2, . . . , p1 − 1,

hp1(x1, x2) = Ap1−1gp1−1 + Bp1gp1 + e−ix1Ap1g1. (2.6)

The result below is a cornerstone of 2D discrete, Floquet–Bloch theory, see [12, Section 5.3]
for 1D theory (the calculation in dimension 2 is completely analogous).

Theorem 2.1. Let p1, p2 ≥ 3. The (p1, p2)-periodic operator J (1.2)–(1.3) is unitarily equivalent
to the multiplication operator M(S) (2.5)–(2.6)

J = UM(S)U−1,

U is defined in (2.4).

Remark 2.2. There is nothing special in the case min(p1, p2) = 2, but the symbol looks
differently. Precisely, if p1 ≥ 3, p2 = 2, we have

An =

[
an,1 αn,1 + eix2αn,2

αn,1 + e−ix2αn,2 an,2

]
,

Bn =

[
cn,1 bn,1 + eix2bn,2

bn,1 + e−ix2bn,2 cn,2

]
, n = 1, . . . , p1, (2.7)
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and S is of the form (2.3). If p1 = 2, p2 ≥ 3, we take A1, B1, A2, B2 as in (2.1), (2.2), and

S(x1, x2) =

[
B1 A1 + eix1A2

A1 + e−ix1A2 B2

]
. (2.8)

Finally, if p1 = p2 = 2, then An, Bn, and S are of the form (2.7)–(2.8).

Denote by λ1 ≥ λ2 ≥ · · · ≥ λp, λj = λj(x1, x2), the set of all eigenvalues of S, labeled in
the non-increasing order. According to the general result on the spectrum of multiplication
operators,

σ(J) = σ(M(S)) =

p⋃
k=1

Λk, Λk :=
[

inf
T2
λk(x1, x2), sup

T2

λk(x1, x2)
]
, (2.9)

the k’s band in the spectrum. So we come to the following

Corollary 2.3. The spectrum of the (p1, p2)-periodic Jacobi-block-Jacobi matrix (1.2) has the
banded structure

σ(J) =

p⋃
k=1

Λk, p := p1p2,

with the closed intervals Λk (2.9). So, the number of the gaps in the spectrum does not exceed
p− 1.

Note that for a (p1, p2)-periodic, 2D discrete Schrödinger operator the symbol S takes the
form

S(x1, x2) =



B1(x2) Ip2 eix1Ip2
Ip2 B2(x2) Ip2

Ip2 B3(x2) Ip2
. . .

. . .
. . .

Ip2 Bp1−1(x2) Ip2
e−ix1Ip2 Ip2 Bp1(x2)


,

Bn(x2) =



cn,1 1 eix2

1 cn,2 1
1 cn,3 1

. . .
. . .

. . .

1 cn,p2−1 1
e−ix2 1 cn,p2


, x1, x2 ∈ [0, 2π).

3 Spectral estimates for periodic block-Jacobi operators

In this section we are aimed at proving Theorem 1.1. By Corollary 2.3,

σ(J) = σ(M(S)) =

p⋃
k=1

Λk, Λk = [lk, rk] (3.1)

are the closed intervals, swept by the k-th eigenvalue λk(x1, x2), arranged in the non-increasing
order, as the pair (x1, x2) runs over T2.

We are looking for two constant matrices S±, i.e., independent of (x1, x2), so that

S− ≤ S ≤ S+ ⇒ λ−k ≤ λk(x1, x2) ≤ λ+k , (3.2)
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where λ±1 ≥ λ
±
2 ≥ · · · ≥ λ±p are eigenvalues of S±, arranged in the non-increasing order. Hence,

|σ(M(S))| ≤
p∑

k=1

(rk − lk) ≤
p∑

k=1

(λ+k − λ
−
k ) = tr(S+ − S−). (3.3)

To this end put

A1
n =



an,1 αn,1

αn,1 an,2 αn,2

αn,2 an,3 αn,3

. . .
. . .

. . .

αn,p2−2 an,p2−1 αn,p2−1
αn,p2−1 an,p2


,

A2
n(x2) =



eix2αn,p2

e−ix2αn,p2

 ,

so A1
n and A2

n are Hermitian matrices, and let An = A1
n +A2

n. Similarly,

B1n =



cn,1 bn,1
bn,1 cn,2 bn,2

bn,2 cn,3 bn,3
. . .

. . .
. . .

bn,p2−2 cn,p2−1 bn,p2−1
bn,p2−1 cn,p2


,

B2n(x2) =



eix2bn,p2

e−ix2bn,p2

 ,

so B1n and B2n are Hermitian matrices, and let Bn = B1n + B2n. It follows that

S(x1, x2) = S1 + S2(x1, x2) (3.4)

with

S1 =



B11 A1
1

A1
1 B12 A1

2

A1
2 B13 A1

3
. . .

. . .
. . .

A1
p1−2 B1p1−1 A1

p1−1
A1

p1−1 B1p1


,
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S2(x1, x2) =



B21 A2
1 eix1Ap1

A2
1 B22 A2

2

A2
2 B23 A2

3
. . .

. . .
. . .

A2
p1−2 B2p1−1 A2

p1−1
e−ix1Ap1 A2

p1−1 B2p1


.

In decomposition (3.4) of the symbol, S1 is a constant matrix, and S2 is sparse, i.e., it contains
few nonzero entries.

Next,

S2 = S3 + S4 +

p1−1∑
j=1

Ej

with

S3 := diag
(
B21, . . . ,B2p1

)
, S4 :=


eix1Ap1

e−ix1Ap1

 ,
and

E1 :=



0 A2
1 0

A2
1 0 0

. . .

0 0 0
. . .

. . .
. . .

. . .
. . .


, E2 :=



0 0 0

0 0 A2
2

. . .

0 A2
2 0

. . .
. . .

. . .
. . .

. . .


, . . .

Ep1−1 :=


. . .

. . .
. . .

. . .
. . . 0 0 0
. . . 0 0 A2

p1−1
. . . 0 A2

p1−1 0


.

Since Ap1 = G1 +G∗1 +G2 with

G1 :=


0 eix2αp1,p2

αp1,1 0
αp1,2 0

. . .
. . .

αp1,p2−1 0

 , G2 := diag(ap1,1, . . . , ap1,p2),

the matrices of the order p2, we have

S4 =

 eix1G1

e−ix1G∗1

+

 eix1G∗1

e−ix1G1

+

 eix1G2

e−ix1G2


= S ′4 + S ′′4 + S ′′′4 ,
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so

S(x1, x2) = S1 + S3 + S ′4 + S ′′4 + S ′′′4 +

p1−1∑
j=1

Ej . (3.5)

As the next step toward (3.2), let us turn to the absolute value |A| = (A∗A)1/2 of a matrix A,
which occurs in the polar representationA = V |A|. For an Hermitian matrixA, its absolute value
can be defined as follows. Denote by P+ (P−) the projection onto the nonnegative (negative)
eigenspace of A. Then

A = A+ −A−, |A| = A+ +A−, A± := ±P±A ≥ 0.

It is clear from this definition that

−|A| ≤ A ≤ |A|, −
N∑
j=1

|Aj | ≤
N∑
j=1

Aj ≤
N∑
j=1

|Aj |. (3.6)

We apply (3.6) to decomposition (3.5) to obtain (3.2) with

S± := S1 ±D, D := |S3|+ |S ′4|+ |S ′′4 |+ |S ′′′4 |+
p1−1∑
j=1

|Ej |,

and so, by (3.3),

|σ(J)| = |σ(M(S))| ≤ 2 trD. (3.7)

The value on the right side of (3.7) can be computed explicitly

trD := tr |S3|+ tr |S ′4|+ tr |S ′′4 |+ tr |S ′′′4 |+
p1−1∑
j=1

tr |Ej |.

Indeed,

|S3| = diag
(∣∣B21∣∣, . . . , ∣∣B2p1∣∣), ∣∣B2j ∣∣ = diag(|bj,p2 |, 0, . . . , 0, |bj,p2 |);

tr |S3| =
p1∑
i=1

tr
∣∣B2i ∣∣ = 2

p1∑
i=1

|bi,p2 |.

Next, since

|G1| = (G∗1G1)
1/2 = diag(|αp1,1|, |αp1,2|, . . . , |αp1,p2 |),

|G∗1| = (G1G
∗
1)

1/2 = diag(|αp1,p2 |, |αp1,1|, . . . , |αp1,p2−1|),

we see that

tr |S ′4| = 2 tr |G1| = 2

p2∑
i=1

|αp1,i|, tr |S ′′4 | = 2 tr |G∗1| = 2

p2∑
i=1

|αp1,i|.

Clearly,

tr |S ′′′4 | = 2 tr |G2| = 2

p2∑
i=1

|ap1,i|.
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Finally,

|Ej | = diag
(
0, . . . , 0,

∣∣A2
j

∣∣, ∣∣A2
j

∣∣, 0, . . . , 0),∣∣A2
j

∣∣ = diag(|αj,p2 |, 0, . . . , 0, |αj,p2 |), j = 1, 2, . . . , p1 − 1,

and so

tr |Ej | = 2 tr |A2
j | = 4|αj,p2 |,

p1−1∑
j=1

tr |Ej | = 4

p1−1∑
j=1

|αj,p2 |.

A combination of the above equalities gives

tr |D| = 2

p1∑
j=1

(
|bj,p2 |+ 2|αj,p2 |

)
+ 2

p2∑
i=1

(
|ap1,i|+ 2|αp1,i|

)
− 4|αp1,p2 |,

and hence

|σ(J)| ≤ 2 trD = 4

p1∑
j=1

(
|bj,p2 |+ 2|αj,p2 |

)
+ 4

p2∑
i=1

(
|ap1,i|+ 2|αp1,i|

)
− 8|αp1,p2 |.

Let us note that there is nothing special in the choice of indices p1, p2 in the latter inequality.
Indeed, it is not hard to find a unitary operator (block-shift) W = Wm,n on `2

(
Z, `2(Z)

)
so that

Ĵ := WJW ∗ is again the block-Jacobi operator (1.2) with the shifted entries. Since σ(J) = σ
(
Ĵ
)
,

the result follows. The proof of Theorem 1.1 is complete.
Corollary 1.2 is a special case with αi,k = 0 for L, and ai,k = bi,k = 1 for H.

Remark 3.1. In the case when either of p1, p2 equals 2, the argument is the same with expres-
sions (2.7), (2.8) in place of (2.1)–(2.3). In particular, for p1 = p2 = 2 we have

1

4
|σ(J)| ≤ |a2,1|+ |a2,2|+ |b1,2|+ |b2,2|+ 2(|α1,2|+ |α2,1|+ |α2,2|).

Remark 3.2. In [8, Theorem 3.11] H. Krüger obtained a uniform upper bound for the length
of the spectral bands Λk (2.9) for multidimensional periodic Schrödinger operators, which for
d = 2 reads

|Λk| ≤ 4π

(
1

p1
+

1

p2

)
.

The latter implies the bound for the length of the whole spectrum

|σ(H)| ≤ 4π(p1 + p2). (3.8)

Compared to Corollary 1.2, an extra factor π is on the right side of (3.8).

Remark 3.3. There is yet another way to obtain the upper bound for the length of σ(J), based
on Gershgorin’s theorem [6, Theorem 6.1.1]. Indeed, let the symbol

S(x1, x2) = ‖si,j(x1, x2)‖pi,j=1.

Denote by Gn the Gershgorin disk (interval)

Gn(x1, x2) :=

{
λ ∈ R : |λ− snn(x1, x2)| ≤

∑
j 6=n

|sn,j(x1, x2)|, n = 1, . . . , p

}
.
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It is important that in our case sn,n and |sn,j | are constants, that is, do not depend on x1, x2,
see (2.1)–(2.3), and so do the Gershgorin intervals Gn. By Gershgorin’s theorem, the spectral
bands (2.9)

Λk ⊂ G :=

p⋃
n=1

Gn,

and so

|σ(J)| ≤ |G| ≤
p∑

n=1

|Gn| ≤ 2
∑
i 6=j

|si,j |,

the two times sum of all off-diagonal entries of the symbol S. In view of (2.3), the latter leads
to the bound

|σ(J)| ≤ R̃ := 2

p1∑
i=1

p2∑
j=1

(
4|αi,j |+ 2|ai,j |+ 2|bi,j |

)
. (3.9)

Compared to (1.7), there is a double sum on the right side (3.9). It is easy to see that
R̃ ≥ max

(m,n)∈T2
Rm,n, so the bound (1.7)–(1.8) is better than (3.9).

We proceed with two examples which illustrate the optimal character of the bound in Theo-
rem 1.1.

Example 3.4. Assume that

Aq ≡ 0, Bq = S + S−1 + 4qI, q = 1, . . . , p1, Bq+p1 = Bq,

S is the standard shift in `2(Z). In other words, we have

aq,r = αq,r ≡ 0, bq,r ≡ 1, cq,r = 4q, q = 1, . . . , p1, cq+p1,r = cq,r.

Now the block-Jacobi operator J (1.1) is block-diagonal, J = diag(Bq)q∈Z. Since σ(Bq) =
[4q − 2, 4q + 2], we see that σ(Bj) ∩ σ(Bk) is at most one point set for j, k = 1, . . . , p1, j 6= k.
Hence,

σ(J) =

p1⋃
q=1

σ(Bq) = [2, 2 + 4p1] ⇒ |σ(J)| = 4p1,

and the factor 4 in Theorem 1.1 is optimal.

Example 3.5. Assume that Aq ≡ I, Bq ≡ B, where B = diag(βr)r∈Z is a diagonal periodic
matrix with

βr = 4r, r = 1, 2, . . . , p2, βr+p2 = βr.

In this case J = J({B}, {I}) is unitarily equivalent to the orthogonal sum

J '
p2⊕
k=1

(
J0 + 4kI

)
,

J0 is the discrete Laplacian in `2(Z), so again

σ(J) =

p2⋃
k=1

[4k − 2, 4k + 2] = [2, 2 + 4p2] ⇒ |σ(J)| = 4p2.

This example again illustrates the optimal character of Theorem 1.1.
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4 Examples of explicitly computed spectra

The discrete version of the famous Bethe–Sommerfeld conjecture concerns the structure of the
spectrum of periodic, discrete Schrödinger operators H (1.6) (and their multidimensional ana-
logues). It claims that for small enough potentials {cik} such spectrum is a union of at most
two closed intervals, with the gap open at the zero energy. Moreover, the spectrum is a single
interval as long as at least one number p1, p2 is odd. The result was proved for d = 2 in [2],
with a partial case for coprime periods in [8], and for an arbitrary dimension d ≥ 2 in [5]. This
result contrasts strongly with the one-dimensional case, wherein a generic p-periodic operator
has the spectrum with p− 1 gaps open.

It turns out that Corollary 2.3 enables one to find the spectra for certain (2, 2)-periodic
discrete Schrödinger operators H (1.6), with not necessarily small potentials. Indeed, by Re-
mark 2.2, the symbol is now

S(x1, x2) =

[
B1 τ(x1)I2

τ(−x1)I2 B2

]
with τ(x) := 1 + eix,

B1 =

[
c11 τ(x2)

τ(−x2) c12

]
, B2 =

[
c21 τ(x2)

τ(−x2) c22

]
.

The characteristic polynomial of the symbol is

D(λ) = det
(
S(x1, x2)− λI4

)
=

∣∣∣∣B1 − λI2 τ(x1)I2
τ(−x1)I2 B2 − λI2

∣∣∣∣ .
To compute this determinant we apply the Schur formula, which reduces determinants of or-
der 2n to ones of order n (see, e.g., [4, Section II.5]). Precisely, if A1, A2, A3, A4 are n × n
matrices, and A1A3 = A3A1, then∣∣∣∣A1 A2

A3 A4

∣∣∣∣ = det(A1A4 −A3A2).

Hence,

D(λ) = detD(λ), D(λ) =
(
(B1 − λI2)(B2 − λI2)− |τ(x1)|2I2

)
. (4.1)

Example 4.1. Let

cij = (−1)i+jc, i, j = 1, 2, c > 0.

We find explicitly the spectrum of the corresponding operator H (1.6):

σ(H) =
[
−
√
c2 + 16,−c

]
∪
[
c,
√
c2 + 16

]
.

Indeed,

(B1 − λI2)(B2 − λI2) =

[
c− λ τ(x2)
τ(−x2) −c− λ

] [
−c− λ τ(x2)
τ(−x2) c− λ

]
=

[
λ2 − c2 + |τ(x2)|2 2τ(x2)(c− λ)
−2τ(−x2)(c+ λ) λ2 − c2 + |τ(x2)|2

]
,
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and, by (4.1),

D(λ) =
(
λ2 − c2 + |τ(x2)|2 − |τ(x1)|2

)2 − 4|τ(x2)|2
(
λ2 − c2

)
=
(
ζ + |τ(x2)|2 − |τ(x1)|2

)2 − 4|τ(x2)|2ζ

=
(
ζ − |τ(x2)|2 − |τ(x1)|2

)2 − 4|τ(x2)|2|τ(x1)|2, ζ = λ2 − c2.

So, the eigenvalues of the symbol are

λ1(x1, x2) =
√
c2 + (|τ(x2)|+ |τ(x1)|)2,

λ2(x1, x2) =
√
c2 + (|τ(x2)| − |τ(x1)|)2,

λ3(x1, x2) = −λ2(x1, x2), λ4(x1, x2) = −λ1(x1, x2).

The spectral bands (3.1) are

Λ1 =
[
c,
√
c2 + 16

]
, Λ2 =

[
c,
√
c2 + 4

]
, Λ3 = −Λ2, Λ4 = −Λ1,

as claimed.

Remark 4.2. The latter example is a key one in [8], wherein it is shown that there is a gap in
the spectrum for all c > 0. For the similar computation of the spectrum for various lattices see
[3, Theorem 3.5].

Example 4.3. Consider now a two-parameter family of (2, 2)-periodic Schrödinger operators
with

c11 = −c22 =: c1, c12 = −c21 =: c2, c1, c2 > 0.

Denote β(x1, x2) := |τ(x2)|2 − |τ(x1)|2, so for D in (4.1) one has

D(λ) =

[
(λ− c1)(λ+ c2) + β(x1, x2) −2λτ(x2)

−2λτ(−x2) (λ− c2)(λ+ c1) + β(x1, x2)

]
and hence

D(λ) =
(
λ2 − c21

)(
λ2 − c22

)
+ 2β(x1, x2)

(
λ2 − c1c2

)
+ β2(x1, x2)− 4λ2|τ(x2)|2.

The roots of this biquadratic polynomial can be found explicitly. For z = λ2, D1(z) = D(λ), we
have

D1(z) = z2 − z
(
c21 + c22 + 4|τ(x2)|2 − 2β(x1, x2)

)
+ (β(x1, x2)− c1c2)2

= z2 − z
(
c21 + c22 + 2|τ(x2)|2 + 2|τ(x1)|2

)
+ (β(x1, x2)− c1c2)2

= z2 − 2Az +B,

where

A :=
c21 + c22

2
+ |τ(x1)|2 + |τ(x2)|2, B := (β(x1, x2)− c1c2)2 ≥ 0.

The roots z± of D1 are

z±(x1, x2) = A±
√
D,

D = A2 −B =

[
(c1 − c2)2

2
+ 2|τ(x2)|2

] [
(c1 + c2)

2

2
+ 2|τ(x1)|2

]
≥ 0.
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Hence, 0 ≤ z−(x1, x2) ≤ z+(x1, x2) for each (x1, x2) ∈ T2, and

λ1(x1, x2) = −λ4(x1, x2) =
√
z+(x1, x2), λ2(x1, x2) = −λ3(x1, x2) =

√
z−(x1, x2).

We begin with the interior gap at the origin. Clearly, this gap is open if and only if

l2 = min
T2

z−(x1, x2) > 0.

The latter is equivalent to

min
T2

B(x1, x2) = min
T2

(
2(cosx1 − cosx2)− c1c2

)2
> 0.

So, the interior gap at the origin is open if and only if c1c2 > 4.
There are another two gaps (possibly closed), symmetric with respect to the origin, which we

refer to as “exterior gaps”. Such gaps are open if and only if

max
T2

z−(x1, x2) < min
T2

z+(x1, x2). (4.2)

It is easy to see that

min
T2

z+(x1, x2) = z+(π, π) =
c21 + c22

2
+
|c1 − c2|

2
= max

(
c21, c

2
2

)
.

On the other hand, it is a matter of elementary (though lengthy) calculus to check that

max
T2

z−(x1, x2) = z−(0, π) =
c21 + c22

2
+ 4− |c1 − c2|

2

√
(c1 + c2)2 + 16.

So, (4.2) is equivalent to

c21 + c22
2

+ 4− |c1 − c2|
2

√
(c1 + c2)2 + 16 < max

(
c21, c

2
2

)
.

A simple sufficient condition for the exterior gaps to be open is

c21 > c22 + 8. (4.3)

To summarize, the conditions (4.3) and c1c2 > 4 ensure the existence of all three gaps, under
conditions (4.3) and c1c2 ≤ 4 the exterior gaps are open. When c1 = c2 + ε, ε > 0 small enough,
and c2 > 2 only interior gap is open.

We complete with a discrete Schrödinger operator (1.6), which has maximal number of gaps
in its spectrum.

Example 4.4. Let H be a (p1, p2)-periodic, discrete Schrödinger operator with the potential

ci,j =
(i− 1)p2 + j

ε
, i = 1, . . . , p1, j = 1, . . . , p2, 0 < ε <

1

8
.

The symbol is now

S(x1, x2) =


B1 Ip2 eix1Ip2
Ip2 B2 Ip2

. . .
. . .

. . .

Ip2 Bp1−1 Ip2
e−ix1Ip2 Ip2 Bp1

 ,

Bn(x2) =



(n−1)p2+1
ε 1 eix2

1 (n−1)p2+2
ε 1

. . .
. . .

. . .

1 np2−1
ε 1

e−ix2 1 np2
ε

 , n = 1, 2, . . . , p1.
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The Gershgorin intervals (see Remark 3.3) take the form

Gk =

[
k

ε
− l, k

ε
+ l

]
, k = 1, 2, . . . , p, l = 3 or 4.

In any event, such intervals are disjoint for ε < 1/8, and, by Gershgorin’s theorem, each Gk
contains exactly one eigenvalue λk(x1, x2) of the symbol for all (x1, x2) ∈ T2. So, the spectral
bands Λk ⊂ Gk and, by Corollary 2.3, there are p− 1 gaps in the spectrum of H, as claimed.
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