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Abstract. Let Fg = G/Po be a flag manifold associated to a non-compact real simple
Lie group G and the parabolic subgroup Pg. This is a closed subgroup of G determined
by a subset © of simple restricted roots of g = Lie(G). This paper computes the second
de Rham cohomology group of Fg. We prove that it is zero in general, with some rare
exceptions. When it is non-zero, we give a basis of H?(Fg, R) through the Weil construction
of closed 2-forms as characteristic forms of principal fiber bundles. The starting point is the
computation of the second homology group of Fg with coefficients in a ring R.

Key words: flag manifold; cellular homology; Schubert cell; de Rham cohomology; charac-
teristic classes

2010 Mathematics Subject Classification: 57T15; 14M15

1 Introduction

A real flag manifold is a homogeneous manifold Fg = G/Pg where G is a connected Lie group
with Lie algebra g which is non-compact and semi-simple, and Pg is a parabolic subgroup of G.
Real grassmannians and projective spaces belong to the family of real flag manifolds.

Topological properties of these manifolds have been of interest for several authors. The
fundamental group of real flag manifolds was considered by Wiggerman [12] giving a continuation
to the work of Ehresmann on real flag manifolds with G = SL(n,R). The integral homology of
real flag manifolds has been studied by Kocherlakota who gives an algorithm for its computation
through Morse homology [6], based on previous work of Bott and Samelson [1]. A different
approach to study their homology is given by Rabelo and the second named author of this
paper [8], focusing on the geometry involved in the cellular decomposition of the manifolds.
Mare [7] considered the cohomology rings of a subfamily of real flag manifolds, namely, those
having all roots of rank greater of equal than two. Real flag manifolds of split real forms are
not part of the subfamily considered in [7].

The present paper focuses on the computation of the second de Rham cohomology group
of real flag manifolds. Our motivation comes from symplectic geometry; it is well known that
the annihilation of the second de Rham cohomology group is an obstruction to the existence of
symplectic structures on compact manifolds. It is worth stressing that we deal with real flag
manifolds associated to any non-compact real form G of complex simple Lie groups, and any
parabolic subgroup, without restrictions.

To obtain the cohomology groups, we start with the explicit computation of second homology
groups with coefficients on a ring R, Ha(Fg, R). The description of Hy(Fe, R) does not follow
directly from the works of Kocherlakota and Rabelo-San Martin. Instead it requires to work
over the root systems. The classification of the homology groups is achieved in Theorem 4.1,
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after developments in Sections 2 and 3 where we apply the tools of Rabelo-San Martin [8].
Mainly, we show that Hs(Fg, R) is a torsion group, except when there are roots of rank 2 in the
system of restricted roots of the real flag. The rank of a root « is rank o = dim g, + dim go,,
where these subspaces are the root spaces associated to « and 2« (if it is a root).

It follows that H3g(Fe,R) = {0} unless the root system of the real Lie algebra contains
roots having rank 2. Moreover, the number of such roots gives the dimension of H gR(F@,R)
(see Theorem 5.1 below). These data can be read off from the classification table of real simple
Lie algebras (see Warner [11, pp. 30-32]) and hence H2 (Fo,R) can be completely determined.
We summarize the computation of the second de Rham cohomologies in Theorem 4.1.

Once we have the classification of the real flag manifolds Fg satisfying H2; (Fe,R) # {0} we
search for differential 2-forms representing a basis of these non-trivial spaces.

We get such a basis by applying the Weil construction to the principal fiber bundle 7:
K — Fg with structure group Kg = Pg N K, where K is a maximal compact subgroup of G,
and Fg = G/Po = K/Kg. To perform the Weil construction we choose in a standard way
a left invariant connection w in the principal bundle K — Fg with curvature form . Each
adjoint invariant f in the dual £g of the Lie algebra g of K¢ yields an invariant closed 2-form f
in K/Kg. We prove that the 2-forms f exhaust the 2-cohomology classes by exhibiting a basis
formed by characteristic forms which is dual to the Schubert cells that generate the second real
homology. B

To prove the surjectivity of the map f — f it is required a careful description of the center
of Kg which we provide in Section 6 by looking first at the center of the M group where M = K4
is the isotropy group of the maximal flag manifold. In Section 7 we apply the previous results to
get the desired dual bases of differential 2-forms in Theorem 7.3. In Section 8 we illustrate our
results with concrete computations in the flag manifolds of the real simple Lie algebras su(p, q),
p < g, that are real forms of sl(p 4 ¢, C) and realize the Lie algebras of types AIll; and Allls.

As consequence of our results, we obtain that a real flag manifold does not carry symplectic
structures, unless its corresponding root system contains roots of rank 2. Moreover, if the system
contains roots of rank 2, the only case where the manifold is symplectic is when the real flag
manifold is actually the product of complex flag manifolds of the form SU(n)/T.

2 Cellular decomposition and boundary maps

This section aims to fix notations and to introduce the preliminaries for the rest of the paper.
For the classical theory the reader is referred to the books of Knapp [4], Helgason [3] and
Warner [11]. The treatment of the cellular decomposition and the boundary maps of real flag
manifolds follows the presentation given in the work of L. Rabelo and L. San Martin [8].

Let g be a non-compact real simple Lie algebra and let g = €@ s be a Cartan decomposition.
Let a be a maximal abelian subalgebra of s and denote II the set of restricted roots of the
pair (g,a). Let ¥ be a subset of simple roots and denote IT* the set of positive and negative

roots, respectively. The Iwasawa decomposition of g is given by g=t@adn withn= > g,
aellt
and g, the root space corresponding to a.

Given a simple Lie group G with Lie algebra g, denote K, A and N the connected subgroups
corresponding to the Lie subalgebras £, a and n, respectively.
To a subset of simple roots © C II there is associated the parabolic subalgebra

Po=a®m® Y ga® Y G

a€llt ac(©)~

where m is the centralizer of a in ¢ and (©)~ is the set of negative roots generated by ©. The
minimal parabolic subalgebra p is obtained for © = @. The normalizer Pg of pg in G is the
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standard parabolic subgroup associated to ©. In this manner, each subset ©® C X defines the
homogeneous manifold Fg = G/Pg; these homogeneous manifolds are the object of study of
this paper. Denote by bg the class of the identity in Fg, that is, bg = ePg. For © = & the
index © is dropped to simplify notations and F is referred as the maximal flag manifold, also
called full or complete flag manifold. When © # @&, Fg is called partial flag manifold.

Let W be the Weyl group associated to a. This is a finite group and is generated by reflec-
tions r, over the hyperplanes a(H) = 0 in a, with « a simple root and H a regular element. The
length ¢(w) of an element w € W is the number of simple reflections in any reduced expression
as a product w = rg, -+ -74, of reflections with o; € 3. Denote IT,, = IIT N wIl~, the set of
positive roots taken to negative by w=!. For © C ¥, Wg denotes the subgroup of W generated
by r with o € ©.

The Weyl group is isomorphic the quotient M*/M of the normalizer M* of a in K over the
respective centralizer M. It acts, through M*, on Fg and the left N classes of the orbit M*bg
give a decomposition of Fg, known as the Bruhat decomposition:

Fo = ]_[ N - wbg.
wWeGW/W@

One should notice that N - wbg does not depend on the choice of the representative, namely,
N -wibg = N - webg whenever w1 Wg = wolWVe.

A cellular decomposition of the flag manifold Fg is given by Schubert cells S& = cl(V - wbe)
with w a representative of wWeg; here cl denotes closure. The dimension of the Schubert cell
defined by wWeg is

dim 89 = Z dim gq.

a€ll,\(O)+
For the maximal flag this formula reads dim S,, = »_ dimgs. If w € W has reduced expression
W="Tq, T, then net
t
dim Sy =) _ dim(ga, + 920;) (2.1)

=1

(see [12, Corollary 2.6]). In particular, dim S,, = ¢(w) for all w € W if g is a split real form. For
a simple root «, we denote

rank « := dim g, + dim goq.

Notice that rank o = dim S,,_,. Moreover, goq = {0} if dim g, = 1 so that rank o = 2 if and only
if dimg, = 2. If w =ry, - 74, is a reduced expression then dim S,, > ¢(w) = t if and only if
ranka; =1 foralli=1,...,t.

At this point we fix, once and for all, reduced expressions of the elements w in W, w =
Tay Ty, as & product of simple reflections. Such decompositions determine the characteristic
maps which describe how Schubert cells are glued to give the cellular decomposition of Fg [8].

In what follows we recall the definition of the cellular complex and the boundary map giving
the homology of Fg with coefficients in a ring R. We give explicit formulas for the boundary
maps up to dimension 3 which will be used in the next section.

Let C; be the R-module freely generated by Sy, w € W and dim S, =4, for i =0,...,dimTF.
Notice that Cy = R since there is just one zero-dimensional cell, namely the origin {b}. Define

Yeplit = {ov € ¥ ranka = dim g, = 1},
Yo ={a € X: ranka = 2}.
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Proposition 2.1.

o Cy is the free module spanned by Sy, with o € Ygpis -
e Cy is the free module spanned by Sy, with o # B € Xgple and by Sy, with a € ¥a.

o C3 is the free module spanned by Sy,r4r, with B # o # v € Ygpiit, by Spory with a € Yo
and 8 € Xgplit, or vice-versa, and by Sy, with o € ¥ and rank o = 3.

Proof. By definition S, Sy,rg, Srorgr, are of dimensions 1, 2 and 3 respectively, when «a, 3,7 €
Ysplit and v # o # B and dim S,, = 2 if rank @ = dim g, = 2. Similarly one obtains dim S,, = 3
if and only if 2« is not a root and dimg, = 3 or dimg, = 2 and dim gg, = 1 since 2« is not
a root if dimg, = 1.

Given w = 1473, dim Sy, = 3 only if dim(gq + g2o) = 2 and dim(gg + g23) = 1, or vice-versa.
But, dim(gs + g2o) = 2 implies dimg, = 2 and 2« is not a root. Thus dim S,, = 3 implies
a € Y9 and B € Xgp, or the inverse situation for a and 3. |

The chain complex of the partial flag manifold Fg is constituted by minimal Schubert cells.
For any w € W there exists a unique w; € wWe such that IT*Nw; ' TI~N(O) = & [8, Lemma 3.1].
Such element is called minimal in wWe and satisfies dim S& = dim S,,,. Denote W the set
of minimal elements in W with respect to ©. For ¢ = 0,...,dimFg let Cie C C; be the free R
module spanned by S, with w € ngin and dim S, = 7. Next we describe the minimal elements
giving cells of dimension < 3.

Lemma 2.2.

o w =1y is minimal if and only if o ¢ O,
o w =r4rg is minimal if and only if B ¢ © and rga & (©),

o w = rrgry is minimal if and only if v ¢ © and 5, ryrga ¢ (O).

Proof. The only positive roots taken into a negative root by w = r, with a € ¥ are a and 2«
when this is a root. So IIT Nr II7 N(O)T = & if and only if a ¢ O. If w = rorg, with o, 8 € 3,
a # 3 then the positive roots taken to negative by r,rg are 3, rga and the multiples 23 and
rg(2a) when they are actually roots. Hence w is minimal if and only if 5 ¢ © and rga ¢ (O).
Similarly, for w = rqrgry, with o # 8 # v we have

wIl™ NIT = {v,2v,7,8,2r, 8, 7yrga, 2ryrgat NIIT.
Thus w = r4rgry is minimal if v, r, 3, r,rza are not in (©). |

The boundary operator 0 applied to a Schubert cell S,, of dimension 4, gives a linear combi-
nation of Schubert cells of dimension ¢ — 1

oSy, = Zc(w, w) Sy (2.2)

'LU/

The coefficients ¢(w,w’) are given in [8, Section 2]. These coefficients are always 0 or £2 and

they behave as follows (see also [10]). For a@ € ¥ we denote ¥ := %, so that (", ) is an

integer for 8 € ¥ (see for instance [3]).

1. Given w = 74, -+ 7, € W, one has c¢(w,w’) = 0 for any v’ € W which is not obtained
from w by removing a reflection r,.

2. fw=ra - Tay  Ta, and W' =714, -+ 74, , then c(w,w’) = 0.
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3. Assume w =71, - Tq, and W =1rq, -+ Ty, -+ - 7o, are reduced decompositions of w and w’
respectively. If rank a; = 1 then c(w,w’) = £(1 — (—1)"(“”“")) where

o(w,w') = Z (o, B) dim g, U=Tapyy Ty (2.3)
Belly

Otherwise, ¢(w,w) = 0.

Notice that if w = rq, -+ 74, is a reduced expression, the coefficients ¢(w,w’) are non-zero
only when, by erasing a reflection r,, with i # ¢, a reduced expression of a root w’ with
dim S,y = dim S,, — 1 is obtained.

The choice of the sign + in c¢(w,w’) is given by the degree of a certain map depending on
w and w' [8, Theorem 2.6] and it can be determined precisely. The computations here will not
need the exact number, so the + will be present along the paper.

The next proposition gives the boundary of cells in C; for i < 3.

Proposition 2.3. Given simple roots o, B, v there are the following expressions for the boundary
operator O:

1. 9S,, = 0.

2. If a # B then 0S,,ry = c(rarp,18)Srs- In particular, if Sy,r, is a 3-cell then 9S;,,, = 0.
(This is the case when a € ¥o and f € Egpli, o1 vice-versa.)

3. If a # 3 then

OSrargra = C(TaTBTas T8Ta) Srars- (2.4)
4. If v # a and o, B,y € Xgplit then

OSrarsry = (el Ty TaTy) Srar, + c(rargras 147)Srar.. (2.5)

Proof. The boundary of S, contains only the O-cell hence 9, = 0 regardless the dimension
of S,,. For the cell STQTB its boundary OS’TQTB has no component in the direction of S,, which
obtained by removing the last reflection rg from rorg. If ranka = 2 then c(rqorg,rg) = 0
because S;; has codimension 2 in S;,.;. On the other hand if rank 3 = 2 then c(rars,rg) =
+(1 - (—1)"(7"“773””3)) = 0 since o(rqrg,rg) = (@, B)dimgg is even. This proves the second
statement. The last two statements follow from the fact that c(rqrsry,ra73) = 0 (removal of
the last reflection) and c(rqargry, rar) = 0 since 72 =1 is not a reduced expression. |

The boundary map 88111: Cie — Ci@_ 1 is defined through the boundary map 0 for the homol-
ogy of the maximal flag. Given S, with w € Wé“in, let I, be the set of minimal elements w’
such that dim S, = dim S,, — 1. Define

opingG = Z c(w, w') Sy

w' €1y,

The homology of Fg with coefficients in R is the homology of the complex (Ce, agﬁn) [8, Theo-
rem 3.4]. Proposition 2.3 gives the boundary map of minimal cells up to dimension three.
Propositions 2.1 and 2.3 and Lemma 2.2 account to a description of the second homology
group of a real flag manifold in terms of its split part and the roots of rank 2 in the system. In
the text below we include the maximal flag case F as the particular instance Fg with © = @.
Denote ggpiit the split real form whose Dynkin diagram is given by Ygpi¢. Set Ogpiie = ONMXgpiit
and 229 = {a € ¥\O: ranka = 2} and let Fg_,, be the flag manifold of g1t associated to Ogplit-

split
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Theorem 2.4. Let g be a non-compact simple Lie algebra with simple system of restricted
roots ¥ and fit © C X. Let Fg be the flag manifold of g determined by © and let Fo_,,, be as
above. Then

H2 (]F@’ R) = Hz(]F@split7 R) @ Z R : S'ra'

aEE?

Remark 2.5. The boundary operator dg of the flag manifolds of a non-compact real simple
Lie algebra g is basically determined by the homology of its split part gspii¢ as pointed out in [8,
p. 18]. Theorem 2.4 is a particular instance of this fact.

3 Homology groups of flag manifolds of split real forms

In this section we compute the second homology groups of real flag manifolds associated to split
real simple Lie algebras. We obtain these homology groups trough the explicit computation of
the coefficients c(w,w’). These coefficients are either zero or +2, so @ = 0 if the characteristic
of R is char R = 2. Thus in the sequel we assume char R # 2.

The maximal flag case (with g split) is treated first since it gives the model for the partial
flag by restriction of the boundary map to the set of minimal cells. Even though the homology
of flag manifolds of type G is treated in [8], we consider those here for the sake of completeness
of the presentation.

3.1 Maximal flag manifolds

The results below make reference to the lines in Dynkin diagrams associated to simple real Lie
algebras g which are split.

Lemma 3.1. Let a, B be simple roots with o # 3. Then 0S;,r, = £2S,, if and only if o and
are either simple linked, or double linked and « is a long root.

Proof. By Proposition 2.3 we have 9S;,,, = c(rars,75)S;; where
c(rarg,rg) = £(1 — (—1)l" A dimes) (3.1)

Since g is a split real form dimgg = 1, thus ¢(rqrg,73) = 0 if and only if (¥, ) is even,
otherwise ¢(rqrg,73) = 2 and 9S,,,, = £25,,. We have (", 8) is even only when (", ) = 0
or when « and 8 are linked by a double line with « the short root. |

Corollary 3.2. If a diagram has only simple lines then 0: Co — Cy is surjective. If a diagram
has double lines then the image of 0: Co — Cy is spanned Sy, with 3 a short simple root, or (3
long simple root such that there exists a € 3 simple linked to 3.

Three simple roots «, 3, v are said to be in an As configuration (in this order) if they are
linked as follows

Oo0——0O0——O
a B v

In this case, dS5;,r, = £25,, and 95, ,, = £25,;
Na,py = E1 such that 9(Sy,rs + Na,5,75rs
element in the kernel of 9: Co — C;.

5, 5o there is a (unique) choice of a sign
) = 0. Therefore, each Az configuration gives an

Proposition 3.3. If a diagram has only simple lines the kernel of 0 = 02: Co — C1 is spanned
by the following elements:

® S,y with (o, ) =0 and



De Rham 2-Cohomology of Real Flag Manifolds 7

® Srours + NapySrrs with a, B, 7y in an Az configuration (in this order) and 145, = +1
the sign such that O(Sy,r, + na,ﬂ,'ysmr@) =0.

Proof. Lemma 3.1 and the reasoning above show that the elements in the statement are indeed
in the kernel of 0: Co — C;. One should see that these are the only generators.

The boundary 9S;,,, is a multiple of S,, hence an element of kerds is a sum of linear
combinations of 2-cells of the form

ansmjrﬁ, with n; € R forall j € J.
jeJ

In such a linear combination we can take a; not orthogonal to 3 for all j because 95;,,, = 0 if
<a7 5> =0.

In a simply laced diagram a set of roots {«;, 8} appearing in a linear combination as above
(aj, B) # 0 occurs only in an Az configuration (with 8 the middle root) or if the roots are in
a Dy configuration as follows

o2

L

ar B a3
A linear combination 115y, T —i—ngSTQQTB —i—ngST%,TB € ker 0 associated to a Dy configuration
belongs to the span of the combinations Sy, + 7a,8,45r,r; given by Az configurations where
as above 14,3, = £1 is the sign such that 8(5’7«,”«[3 + nawgﬁSrwﬁ) = 0. In fact, suppose first that
OSro.rs = 8Srajr5 for all i # j, that is, Ny B.as = Nay f.as = Nag,f.as = —1. Then

B(nls}aﬁw +>n25%aﬂ% + n3Sy ) =0

a3z’

is the same as 2(n; + ng + n3) = 0 so that n3 = —(n; + ng) because char R # 2. Hence

3
5 niSrairﬁ = nl(Sralrﬁ - Sra3rﬂ) + n2(Sra2r/3 - Sra37"5)
=1

= nl(Sralrg + 77@1,,8,@351”&37‘3) + n2(87"a2r5 + naz,ﬂyassrasrg)

as we wanted to show. If the images 95;, r, have two coincident signs and one opposite,
3

a similar argument gives >_ n;Sy,,
i=1

the A3 subdiagrams. |

rg @s a combination of the elements in the kernel given by

In a diagram with double lines, another configuration becomes relevant. The roots «, 3,
are said to be in a C3 configuration if they are linked as follows

a By oy
As in an As configuration, 85’%,«[3 = :EQSTB and 85’,«”& = :|:2S,~B because 3 is the short root
in the double link with 4. Hence there is a (unique) sign 74,53, = *1 such that 9(S,,; +
’r]a757’yST'Yrﬁ) = 0'

Proposition 3.4. If a diagram has double lines, then the kernel of 9: Co — Cy is spanned
by Srorg with (o, 8) =0 and Sy r, + NoBySryrg With «, B, v in an As configuration, as in the
previous proposition together with the following generators:

° Srarﬁ with o # B double linked and o the short root and
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® Srors t Ha,fySryrg with o, B, 7y in a C3 configuration (in this order) and piap = £1 the
sign such that O(Sy,rs + Na,p~Sryrs) = 0.

TR

Proof. The proof of this proposition is the same as the previous one. The elements in the
previous proposition and those in the statement belong to the kernel of 9: Co — Cj.

On the other hand for a linear combination of 2-dimensional cells in ker 0 we can assume that
it has the form ) n;S;, »; with a; not orthogonal to 8 for all j. Again, the only possibilities is

J

J€J
that 3 and o/s are in a C3, A3 or a Dy configuration. The last case is in fact a linear combination
of A3 configurations so the result follows. |

With the next proposition complete the computation of the kernel of 0: Co — Cy by con-
sidering the Lie algebra Gs.

Proposition 3.5. If the diagram is of type Go then the kernel of 3: Co — Cy is zero.

Proof. Recall that GGo has two simple roots aq,as linked by a triple line. Thus Sral,,% and
Srayra, SPan Ca. These roots satisfy (ay,az) = —1 and (ay,c1) = —3. Then by (2.3),
0(Ta;TaysTa;) = (), ;) is odd for 1 < i # j < 2and thus c(ra;Taj Ta;) = £2. Therefore
OSro ra, = £2Sy,, and 0S5, r, = £25,,, . [

Next we focus on the computation of the boundaries of the 3-dimensional cells, that is, the
image of 9: C3 — Ca. Such cells are of the form Sy, with a # 8 # v (a = v is allowed)
whose boundaries are given by Proposition 2.3:

35wm = c(rargry, rar'y)Srar.y + c(rargry, 7‘57"7)577,7”V

with ¢(rqrgry, rary) = 0 in the case v = a. The coefficients have the form +(1—(—1)7), where o
is as in (2.3). Namely,

o o(rarary,rary) = (BY,7), for v # a, since the only positive root taken to negative by r,
is «y itself. Thus

c(rargry, rary) = £(1 — (_1)<5V7’Y>)_ (32)

o o(rarary,rary) = (¥, B) + (¥, rz7) since the positive roots taken to negative by r,rg =
(rgry)~! are B and rgvy. Therefore,

c(rargry, rary) = £(1 — (—1)<av”3>+<av’rm>). (3.3)

Proposition 3.6. Let o, 5,7 € X.

1. If a and B are linked by a double line and « is a short root then

08,

rararg = £2Sr,rg-

2. If (o, B) = 0, B is long and vy is such that (y",a) = —1 then
DSy rary = £2Sr0rs-

3. If (a, B) = 0 and (¥, B) = —1 then

OSrorry = £2Sr0r,.
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Proof. If o and 3 are as in (1) then (8", a) = —1 and (", 8) = —2. Hence

o(rgrarg,rarg) = (8", a) + (8", 7af) = (8", a) + (B, B + 2a)
= 3<5\/,a> + <5v76> = _1a
which is odd. Therefore c(rgrqarg, r7or3) = £2 showing the first assertion.
For the second item, (", ) = 0 implies dS, = c(ryTaTg;TaT)Srars Which is non-zero
since

yTalg

a(ryrarg,rarg) = (v, ) + (v, 8) = =1+ (v", B)

is odd.
For the last assertion, the assumption (v",3) = —1 implies that removing from 77,75 the
reflection 7, one has

c(raryrg, rarg) = £2
by (2.3). On the other hand, the exponent reached when removing the first reflection r, is
o(raryrg, Tar) = (@, v + 14 8) = (@, 27 + B) = 2(a, ),
which is even. Hence c(rory7rg,7475) = 0 and 9S,,rrs = £25;,75- [ |
Proposition 3.7. Let o, 3,7 € X in an A3 or a C3 configuration. Then
OSrpryry = :l:2(S’r‘a'r'B + na,ﬁ,ysmrﬁ),

where 1a,p. is the sign such that O(Sryrs + Na,g,ySryrs) = 0.
Proof. By hypothesis, the roots verify (v, 3) = —1 = (a", 8) and («,) = 0. These conditions
give c(roryrg,rarg) = £2. In addition, o(rqryrg,ryrg) = (a¥,y +r,0) = (@, 8) = —1 so

c(raryrg, Ty1g) = +2. This proves 0S5, rs = £2(Sr,rs + VS r), for some v = £1. The fact
that 02 = 0 implies O(Srars +vSpr;) = 0 which forces v = 14,5, and the choice of the sign is
the right one. |

The results in this section yield the following expressions for the 2-homology of the maximal
flag manifolds.

Theorem 3.8. Let F be the mazimal flag manifold of a split real form g. Then

Hy(F,R)=0 if g is of type Gy and
Hy(F,R)=R/2R&---® R/2R otherwise.

The number of summands equals the number of generators of ker(9: Co — C1) given in Propo-
sitions 3.3 and 3.4.

Proof. If g is of type G2 the kernel of 9 is trivial as shown in Proposition 3.5. If g is not of
type Ga, the generators of the kernel of 0: Co — C; were given in Propositions 3.3 and 3.4.
Each such generator has a +2 multiple which is indeed a boundary. In fact, let S, be a 2-cell
such that 95, = 0. Then either (a,3) =0 or a and 8 are double linked with a short.

In the double linked case with o the short root we have 9S,,.,r, = £25;,,, because of (1)
in Proposition 3.6.

On the other hand for («, 8) = 0 suppose first that g is of type C; and 8 = a;. Then there
exists v € ¥ such that (7", a) = —1 so that (2) of Proposition 3.6 gives 05, s = £2Sr,r,-
If g is not of type C; or B # oy in the C) case there always exists v € ¥ with (yV,3) = —1.
Item (3) in the same proposition gives 9Sy,r r; = £25;,7;-

Finally, each generator of the form S, with a, 3,7 € ¥ in an A3 or U3 diagram has a +2
multiple in the image of 0: C3 —> Cs as shown in Proposition 3.7. |
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3.2 Partial flag manifolds

At this point, all the relevant computations of kernel and images of the boundary map is done.
To deal with the homology of the partial case, © # &, we need to determine when does a cell Sy,
in the kernel corresponds to a minimal element and when does a boundary in R-.S,, is the image
of a minimal cell.

Proposition 3.9. If a diagram has only single and double lines, the kernel of ('%nin: (32@ — Cle)
1s spanned by the following elements:

® Sy with o, B ¢ O and (o, B) = 0,
® Srory with B ¢ O, a and B double linked and o short,

® Srors t+ 77;4,,8,787"77“/3 whenever «, B, v form a *3 diagram, in this order, with 5 ¢ ©.

Proof. By Lemma 2.2, any w = r,rs is a minimal element under the first two conditions, and
also rorg and r,rg are minimal when they fit into an A3 or C'3 diagram with 3 ¢ ©. Hence any
element in the list above is indeed in C9. Also, their image under J in the maximal flag is zero,
SO agﬁn is zero. |

In the case of a Gy diagram, ker(d: Co — C1) = {0} and thus ker(9g": Co — Cy) is zero
independently of ©.

By Lemma 2.2, w = r,7g7~ is a minimal element in W if and only if v, .3, r,rga are all
outside (O).

Proposition 3.10. For any ¢ ©, the following cells are in Cg) :

® Siorarg with a, B double linked and o short;
® Sroryrg with o, B, v in an Az or Cy diagram (in this order);

® Srorry witha & ©, B# o and (v, ) # 0;
® S rary with a & © and (a,v) # 0.

Proof. Let w = rgrorg with o and 3 double linked, « short and 8 ¢ ©. Then 3, rga = a +
and 737, =  + 2« are all outside (©). Hence Srﬁrarﬁ € C:?.

Let , 3, v be in *3 configuration (in this order) and let w = rqry7r3. Then rgy = v+(8Y,7)8
and rgrya = rga = 3 + o have non-zero component in 3, so w is minimal.

If B # o, a,f ¢ O and (v,5) # 0 then rgy has non-zero component in 8 and rgrya =
a— (v, a)—(BY,rya)f which has non-zero component in . Therefore w = 747473 is minimal.
The proof of the last item follows in a similar way. |

The propositions above together with the proof of Theorem 3.8 show that if .S, is a 2-di-
mensional cell corresponding w € ngin then +25,, is a border. This leads to the following
conclusion.

Theorem 3.11. Let Fg be a partial flag manifold of a split real form g. Then for any ©

Hy(Fo,R) =0 if g is of type Go and
H>(Fe,R)=R/2R&---® R/2R otherwise.

The number of summands equals dimker (98 : C9 — CP).
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4 Classifications

Let Fg be a flag manifold associated to a non-compact simple real Lie algebra g. Theo-
rems 2.4, 3.8 and 3.11 imply that the second homology group of Fg is determined by the simple
roots in Ygpi; and Xo.

The multiplicities (and hence the ranks) of the restricted roots of simple real Lie algebras
can be read from the classification table of the real forms (see, e.g., [11, pp. 30-32]). If for a Lie
algebra g the sets Xg; and Yo are empty (that is, if rank o > 3 for every o € X) then the
second homology of any flag manifold associated to g is zero. The Lie algebras having roots
with rank o < 2 are listed in Table 1 below. The homology of the flag manifolds associated to
the Lie algebras in the list is given in the following theorem that summarizes Theorems 2.4, 3.8
and 3.11.

Theorem 4.1. Let Fg be the flag manifold associated to a non-compact simple real Lie algebra g
and to the subset © C % of restricted simple roots. If char R # 2 then

e Hy(Fo,R) =0 if and only if g is of type Go for any © or if g is not of type G2 and both
Yeplit and X are contained in ©. This is the case if g does not appear in Table 1.

e Hy(Fo, R) is non-zero and has only torsion components R/2R if and only if g is not of
type G2, Xo C © and Xgp1i¢ is not contained in ©. In particular, if g is a split real form,
not of type Go.

e Hy(Fo, R) contains a free R module if and only if XoN(X\O) # &. The rank of the module

equals the cardinality of this intersection.

Notation. In Table 1, the simple roots of B;, C; and Fy are labelled according to the following

diagrams
Byl > 2 O—Of—O%O F,
o Q2 o—1/0y a1 az /agz oy

C,,l>3 o——O0— -
a2 apn1 o

5 De Rham cohomology

The computation of the second de Rham cohomology group of real flag manifolds was the first
motivation of this work. This cohomology group can be obtained from the homology groups
studied along this paper. In fact, by the universal coefficient theorem (see for instance [2]) we
have, for a real flag manifold Fg, HCQIR(IE‘@,R) ~ R* where s is the rank of the free Z-module
in Hy(Fg,Z). Therefore the description of the homologies of the flag manifolds of Theorem 4.1
combined with Table 1 yield the following.

Theorem 5.1. Let Fg be the flag manifold associated to a non-compact simple real Lie algebra g
and to the subset © C X of restricted simple roots. Then HgR(IFe,R) = 0 unless g is of types
AIIL;, AllL,, DLy, EII and $2N(X\O) # @. In that case Hig (Fo,R) ~ R® with s = [N (X\O)].

As particular cases, one obtains that H gR(]F@, R) = 0 for any flag manifold Fg of a split real
form.

The objective now is to get invariant differential forms that represent the 2-cohomologies
of the flag manifolds of the Lie algebras AIIly, AIll,, DI; and EII. These 2-forms will be
obtained by the Weil construction that provides closed differential forms as characteristic forms
of principal bundles. In the next theorem we recall this construction for differential 2-forms
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Lie algebra | Dynkin diagram Ysplit Yo

AT A, ) -
AIIIl Bl - {041, cee ,Ozlfl}
AIHQ Cl {Ozl} {al, e ,al,l}
BI; By X —

BI, B, {aq,...,aq_1} —

CI ] ) —

DIl Bl {051, N ,Oél_l} i

DI, By foa, .} {ou}

DI; D, Y —
DHIl Cl {al} -

EI Eg by —

EII F4 {051, 052} {043, 044}
EV Er X —

EVI Fy {a1, 2} —

EVII Cg {al}

EVIII Ey by —

EIX F4 {051, 062} —

FI Fy by —

G Ga by —

Table 1. Lie algebras having roots with rank < 2.

Theorem 5.2 (see Kobayashi-Nomizu [5, Chapter XII]). Let 7: Q — M be a principal bundle
with structural group L having Lie algebra . Endow Q with a connection form w whose curvature
2-form (with values in 1) is Q2. Take f € [* which is L-invariant (that is, f o Ad(g) = f for all
g € L). Then the 2-form foQ is such that there exists a closed 2-form f on M with foQ = 7*f.
The de Rham cohomology class off remains the same if the connection is changed.

As a complement to this theorem we note that if L is compact then its Lie algebra [ is
reductive and a necessary condition for the existence of an invariant f € [*, f = 0, is that [ has
non trivial center 3([), that is, [ is not semi-simple and is # {0}. If furthermore L is connected
then this condition is also sufficient and an invariant f is given by f(-) = (X, -) with X € 3(I)
where (-,-) is an invariant inner product in [. If L is not connected the invariant f € [* are
given by f(-) = (X,-) as well with X € 3(I) fixed by the non-identity components of L. This
construction yields a map 3(I) — H?(M,R) that depends in an isomorphic way on the invariant
inner product (-,-) in [. (This map can be defined also via a negative definite form like —(-,-).)

Given a flag manifold Fg = K/Kg we will apply the Weil construction to the principal
bundle K — K/Kg. For this bundle in which the total space is the Lie group K we can take
left invariant connections yielding invariant differential forms in the base space K/Keg.

For a flag manifold Fg = K/Kg associated to one of the Lie algebras AIIl;, AIlly, DIy or EII
we intend to prove that there are enough f € £g so that the 2-forms f exhaust the 2-cohomology.
To this purpose it is required to describe the center of tg. When Fg = F is a maximal flag
manifold then F = K/M where M is the centralizer of a in K. In the next section we discuss
the center 3(m) of the Lie algebra m of M.

6 M-group and Satake diagrams

In this section we obtain preparatory results that will allow us, in the next section, to get the
characteristic forms in the flag manifolds. Its purpose is to see how the Lie algebra m of M and
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its center 3(m) can be read off from the Satake diagram of the real form g. Before starting let us
write some notation and facts related to the Satake diagrams. Denote by g¢ the complexification
of g and let u C gc be a compact real form of gc adapted to g, that is, g = ¢ @ s is a Cartan
decomposition where £ = gNu and s = g Niu. Denote by ¢ and 7 the conjugations in g¢ with
respect to u and g respectively. To say that u is adapted to g is the same as saying that these
conjugations commute and the Cartan involution § = o7 = 70 is an automorphism leaving
invariant both g and u. The subalgebra ¢ is the fixed point set of  implying that 7 = —1 on it.

Starting with the maximal abelian subspace a C s let h D a be a Cartan subalgebra of g
and complexify it to the Cartan subalgebra hc C ge. The Cartan subalgebra h decomposes as
h = b ® a with b C . The Cartan subalgebras h and h¢ are invariant by o, 7 and § = o7.

Denote by Il¢ the set of roots of (gc, he) and by II the set of restricted roots of (g, a). Each
a € II is the restriction to a of a root in Ilc. For av € b define H, € he by a(-) = (Ha, ) and
denote by hgr the real subspace spanned by H,, o € IIc. The roots are real on a and purely
imaginary in by so that a = hgr N b, hr = ibr N h and hr = ihy ® a. The last decomposition
is orthogonal with respect to the Cartan—Killing inner product in hr because 7 is an involutive
isometry satisfying 7 = —1 in ih and 7 =1 in a.

A root a € Il¢ is said to be imaginary if & o 7 = —a. Denote by Il the set of imaginary
roots. There are the following equivalent ways to define Ilyy,:

1. A root a € Il¢ is imaginary if and only if it annihilates on a. In fact, if H € a then
T(H) = H so that a(H) = a(r7(H)) = —a(H). Conversely if « is zero on a then H, is
orthogonal to a in hg so that H, € ih; therefore

aoT(H)=(Hy,7H) = (TH,, H) = —a(H)

showing that a € Ilyy,.

2. a € Il¢ is imaginary if and only if H, € ih; because the decomposition hg = ih; @ a is
orthogonal.

3. Let H € a be regular real, that is, B(H) # 0 for every g € II. Then « € Il¢ is imaginary
if and only if a(H) = 0. In fact, the roots in II are the restrictions to a of the roots in Il¢
and « is imaginary if and only if it annihilates on a. For this characterization the choice
of the regular element H is immaterial.

To get the Satake diagram take a regular real H € a and let ¥¢ C Ilg be a simple system
of roots such that «(H) > 0 for every o € ¥¢. Equivalently ¥¢ is the simple system of roots
associated to a Weyl chamber bﬁg containing H in its closure. The Satake diagram is obtained
from the Dynkin diagram of ¥¢ by painting black the imaginary roots in ¢ and by joining
with a double arrow two roots «, 8 € ¢ whose restrictions to a are equal.

The set X1y, of imaginary roots in ¢ is given by

Yim = {Oé € Xc: Oé(H) :0}.

If B € X¢ \ X then S(H) > 0. Hence a positive root v is a linear combination of Xy, if and
only if 7v(H) = 0 so that Iy, is the set of roots (X,) spanned by the simple imaginary roots.

The next proposition allows to reconstruct b from the Satake diagram. For its statement
we use the following notation

e by is the subspace spanned by iH, with « € X1, (or what is the same « € Ipy,).

® YC arr is the union of pairs of simple roots in a Satake diagram that are linked by a double

arrow. Eé—’arr is the subset of Y 4 of pairs of simple roots not linked to imaginary roots.

Yo and XL are the restrictions to a of the roots in 2C,arr and Eé arr

o respectively.
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® DBar is the subspace spanned by iH, with  running through the set of differences v = a— 3
with {o, B} € Ec arr-

Proposition 6.1. b, = him D Harr-

Proof. As mentioned above there is the orthogonal direct sum hr = ih; @ a which implies that
bim C bi. Also, if @ and g8 are simple roots linked by a double arrow then v = o — 3 is zero
on a which means that H, is orthogonal to a so that iH, € bi. Hence ba C bhi. We have
B1m N harr = {0} because ¥¢ is a basis. A dimension check shows that the sum is the whole
space. In fact, dim b is the number of roots in X¢ (rank of g) while dim a (real rank of g) is the
number of white roots not linked plus dim h,,, which is half the number of white linked roots.
Finally dim by, is the number of black roots. Hence dim b, = dim by, + dim b, concluding the
proof. |

The abelian subalgebra is one of the pieces of m. The other piece is the subalgebra generated
by the imaginary roots which are described next.

Proposition 6.2. Let g, be the subalgebra of gc generated by the root spaces (gc)a with
a € Iy, Then g is a complex semi-simple Lie algebra whose Dynkin diagram corresponds
to the simple roots Yim,.

Put &y = g Nu. Then €, is a compact real form of g and therefore it is semi-simple.
Moreover, by is a Cartan subalgebra of ¥ry,.

Proof. The first statement holds because Ily, is a root system generated by Xy, which is
a simple system of roots. Regarding to the subalgebra £, it can be proved that (gc)a is
contained in £ + it if « is imaginary (see [9, Lemma 14.6]). Hence gr, C €+ it implying that
trn C €. By the Weyl construction of the compact real form applied simultaneously to gc
and gry, it follows that the intersection fy, = g Nu is a compact real form of gry,. Finally,
Y1m is a simple system of roots of g, so that by, which is spanned by iH, with a € Xy, is
a Cartan subalgebra of £y,. |

Now we combine the above pieces to write down the Lie algebra m from the Satake diagram
of g.

Proposition 6.3. m = &, ® 3(m) with £, semi-simple and 3(m) the orthogonal complement

of bim in by.

Proof. The centralizer of a in gc is 3 = bc ® > (gc)a- Thus m = 3N ¢ = by @ &p,. Since
aeHIm

Him C Em we have m = b%m @ &y, where []Ilm is the orthogonal complement of b, in hr. Any
imaginary root is zero on hﬁn so that this subspace commutes with €r,. This implies that
3(m) = b, because by, is semi-simple. [

By Proposition 6.1 we have b = by D harr S0 that hf-m # {0} if and only if by # {0} which
means that the Satake diagram of g has double arrows. Diagrams with arrows are called outer
diagrams (because  is an outer automorphism of gc). By the above proposition 3(m) = b1 so
we get the following case where 3(m) is not trivial.

Proposition 6.4. m has non-trivial center if and only if the Satake diagram of g is outer and
3(m) = b,

Remark 6.5. For o, € ¥& and v = a — f3, iH, € bf‘m = 3(m). In fact, if § is an imaginary

C,arr
root, then (iH,,iH;) = 0 since o and /8 are orthogonal (non-adjacent) to any imaginary root.
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The diagrams AIll;, Allly, DI and EII appearing in Theorem 5.1 whose Lie algebras have
flag manifolds with non-trivial 2-cohomology are outer diagrams. We reproduce them below.

‘ o0——~O0O—
AIIL | Alll I I I I
oO——O0—
O—O— -

DI, O—O0—O0— ©—< EII <

In these diagrams a simple restricted root o € ¥ has ranka = 2 if and only if it is the
restriction of 7,0 € Eé’arr, that is, we have g = Ejrr.

The diagrams Allly, DIs and EII have no imaginary roots. Hence in these Lie algebras
m = b, is abelian. For AIIIl; the imaginary simple roots form an A; Dynkin diagram. So that
in AIIT; we have #1, ~ su(k) some k, that is, m = su(k) @ 3(m) where dim 3(m) is the number
of pairs of roots linked double arrows and equals the real rank of the Lie algebra.

Now we use the well known fact that every connected component of M contains an element

that commutes with 3(m) to conclude that 3(m) is fixed by the whole group M.

Proposition 6.6. Let F = G/P = K/M be the mazimal flag manifold associated to the real
form g of the complex simple Lie algebra gc. Then the center 3(m) of the Lie algebra m of M is
non-trivial if g is of the type AIlly, Allly, DIy or EIL. In these cases M centralizes 3(m).

Proof. It remains to check only the last statement. For the realization F = G/P we can
take any connected Lie group G with Lie algebra g. If G is complexifiable then any connected
component of M has an element of the form e'” with H € a (see Knapp [4, Section VIL.5] for
the precise statement of this result and the notion of complexifiable group). If X € 3(m) then
Ad (e)X = X because 3(m) is contained by that commutes with a. So that M fixes 3(m).
In general, we can take the adjoint representation and find elements in the several connected
components of M that have the form e 2 with 2 in the center of G. Hence the result follows
as well. |

To conclude this section we describe subalgebras of the real forms that are associated to
rank 2 roots and are isomorphic to sl(2,C). The following lemma can be checked by looking at
the table of Satake diagrams.

Lemma 6.7. Let o and 3 be simple roots in a Satake diagram that are linked by a double arrow.
Then (o, ) = 0.

If v is a root of a complex simple Lie algebra gc then the subalgebra ge(a) generated by the
root spaces (gc)+a is isomorphic to s[(2,C). We prove next that the same happens to certain
rank 2 roots of a real form.

Proposition 6.8. Let v and § be simple roots in the Satake diagram of real form g. Suppose
that v and § are linked by a double arrow and not linked to imaginary roots, that is, v,5 € Sk

C,arr*
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If « denotes their common restrictions to a then ranka = 2. Let g(a) be the subalgebra of g
generated by the root spaces g+o. Then g(«) is isomorphic to the realification sI(2,C)g of sl(2,C).
The subspace b, spanned over R by Hy € a and iH,_5 € by, is a Cartan subalgebra of g(cv).

Proof. We have g, = ((gc)- + (8c)s) N g and the same for —a. By assumption v and 0 are the

only roots restricting to a hence g(«) = gc (7, 0)Ng where ge (7, 9) is the Lie algebra generated by

(gc)+~ and (gc)+s. By the previous lemma (7, §) = 0 which implies that gc (v, ) = ge(7)®ge(9)

with [gc(7), gc(6)] = 0 so that ge(y,d) is isomorphic to the direct sum s((2,C) & sl(2, C). Hence

g(a) = (gc(v) @ gc(0))Ng and ge(y) @ gc(d) is the complexification of g(«). It follows that g(«)

is isomorphic to s[(2,C) g because this is the only non-compact real form of sl(2,C) & sl(2,C).
The subspace h, 5 = spanc{H,, Hs} is a Cartan subalgebra of gc(y) @ gc(d). Hence

ba =by5N0g=bysN (b @ a)

is a Cartan subalgebra of g(«). [

7 Characteristic forms

In this section we apply the Weil homomorphism to get representatives of the de Rham cohomo-
logy of the flag manifolds of the Lie algebras AIIl;, Allly, DIs and EII appearing in Theorem 5.1.

Connections in the principal bundles K — Fg = K/Kg will be obtained from the following
general standard construction.

Proposition 7.1. Let Q) be a Lie group and L C Q a closed subgroup with Lie algebras q and |
respectively. Suppose there exists a subspace p C q with q = 1@ p and Ad(g)p =p for all g € L.
Then

1. The left translations Hor(q) = Lq«(p), ¢ € Q, are horizontal spaces for a connection in the
principal bundle m: Q — Q/L.

2. The connection form w is given by wy (Xl(q)) = PX € | where X' is the left invariant
vector field defined by X € q and P: q — | is the projection against the decomposition
q=1[Dp.

3. The curvature form Q) is completely determined by its restriction to p (at the origin) which
is given by Q(X',Y') = P[X,Y].

The horizontal distribution Hor as well as w and 0 are invariant by left translations (Lg. Hor
= Hor, Lyw = w and L;Q = Q).

Left invariant connections on the bundles K — Fg = K/Kg given by this proposition will
be used to get characteristic forms on the flag manifolds Fg.
We work out first the maximal flag manifolds F = K/M. Take the root space decomposition

g=mdad» ga
a€ll

and for a positive restricted root o € It write €, = (Do +D—_o) Nt where Dy = g4/ + 8o + 92a-

We have t =m @ ) ¢, so that
acllt

p= 2: o
a€ellt

complements m in €. For any m € M there is the invariance Ad(m)p = p because Ad(m)gs = go
for every root . Hence p defines a left invariant connection in the bundle K — K/M. Its
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curvature form {2 is defined at the identity by the projection into m of the bracket. Since
[8a, 98] C gatp it follows that Q(X,Y) = 0if X € go, Y € gg with a # 5. Hence Q (at the
origin) is the direct sum of 2-forms Q% on the spaces ,:

0= ) 0

a€ellt

where Q¢ is the projection into m of the bracket in &,.

If Z € 3(m) then by the Weil homomorphism theorem the left invariant 2-form (Z,(-,-))
in K is the pull back of a closed differential form in F = K/M that we denote by fz. The
tangent space at the origin identifies with p where fz is given by

f2(X,Y)= > (Z,0%X,Y)).

acllt

We write fz(S;,) for the value of fz in the Schubert cell S, given by the duality between
H?(F,R) and Hs(F,R).

The following example of CP! ~ S? will be used to compute the values of characteristic forms
in the Schubert 2-cells.

Example 7.2. Let us look at the characteristic forms at the complex projective line CP! ~ 52
obtained by the action of SU(2) so that S = SU(2)/T where T is the group of diagonal matrices
diag {eit, e_it}, t € R. The Lie algebra of T is t = { H; = diag{it, —it}: t € R} and the subspace

p={x.= (2 §):zec)

complements t in su(2). The bracket in p is given by

—2W + Zw 0 —ilm zw 0
Xz, Xo] = < 0 zwzw> _2< 0 iImzw> '

Hence by taking the appropriate inner product in t we have that fz, is the only invariant 2-
form in S? that in the origin satisfies fz, (X1, X;) = 1. Thus fg, is the unique (up to scale)
SU(2)-invariant volume form in S2?. We can normalize the inner product in t so that the integral
of fy, over S? equals to 1.

Now we can compute the basis of H?(F,R) dual to the Schubert cells spanning Hy(F,R)
when F is the maximal flag manifold of one of the Lie algebras AIIl;, Allls, DI, and EII. Recall
that by Proposition 6.4 for these Lie algebras 3(m) = hi- # {0} On the other hand, Ha(F,R)
is spanned by the 2-cells S,, ~ S? with a running through Zarr as in Proposition 6.8.

To get a basis of H2(F,R) dual to the basis of homology given by the Schubert cells we
define the Weil map 3(m) — H?(F,R) by means of a suitable normalization (-,-). = ¢(-,-) of
an invariant inner product in €. The normalizing constant c is chosen so that fig, _;(S:,) =1
for every simple root o € Earr where ~,6 € E(C oy are such that a = Ve = 5|a The choice of ¢
is possible because the Satake diagrams AHIl, Allls, DIy and EII have only simple links and
hence the roots are all of the same length.

To state the next theorem we take the basis B of b given by

B={iHY 5, ... iHN s Yo {iHN U iE), . iH]) )

where for Z € by, ZN = Z/(Z,Z). and we are using the following notation:

1. {p1,..., s} are the imaginary simple roots so that {iH,,,...,iH,,} is a basis of hyy.
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2. v, 05, j = 1,...,k are the pairs of roots in Zé arps hat is, y; is linked to 6; by a double
arrow and both are not linked to imaginary roots.

3. v, 0 is the only pair of roots in X¢ 4y that are linked to imaginary roots (which occurs
only in AIITy).

Now let Bt be the dual basis of B (with respect to the normalized form (-,-).) and denote
by {Z1,..., 2y} the first k elements of B+ that correspond to the roots in ¥

arr-

Theorem 7.3. Let {Z1,...,Z} be as above. Then {fz,,...,fz,} is the basis of H*(F,R) dual
to the basis {S,,: a € X5} of Hy(F,R).

Proof. Take o € ¥, and let 7,8 € ¥&,  be such that a = Yja = 0ja- By Proposition 6.8 we

C,arr
have g(a) ~ s((2,C). Put G(a) = (exp g(e)), t(a) = g(a)Ntand K (a) = (expt(a)) = G(a)NK.
We have S,, = G(a)zg = K (a)zg where xg is the origin of the flag manifold F (see [8, Proposition
1.3]). Let ¢ : su(2) — £(a) be an isomorphism assured by Proposition 6.8 and put

wea(f ) ()

We have

0

i .
[Xo,Ya] = 260 <o _i> — 2iH,_;

so that Q(X,,Y,) = 2iH,_s. Now take iH € spang B. Then
fiH(Xon Ya) = (1H7 Q(Xa) Yoz))c = (1H7 21ny—§)c~
In particular fig _,(Xa,Ya) = 2(iHy_s,iH,_5). so that

(iH,iHy_s)c

i XOUYOé = 7 p
fH( ) (lHy—ﬁalH'y—&)c

firt,_s(Xa,Ya) = (iH,iHY 5) fin,_s(Xa,Ya).
Hence the restriction to S, yields

firr(Spy) = (\HAH] 5) firr,_s(Sr) = (iH,iHD ;) .
Since {Z1,...,Zy} is the basis dual to the basis {iHé\lf_(;l, .. ,inY\i_ék} with respect to (-, ). it
follows that fz;(Sy,, ) = 1if j = k and 0 otherwise so that {fz,,..., fz,} is the basis dual to
{S,,: a €L

arr

}, concluding the proof. [ |

This result holds also for a partial flag manifold Fo = K/Kg by taking roots in ¥y = ¥
that are outside ©. By Theorem 4.1 the 2-homology Hsz(Fg,R) is generated by the Schubert
cells S© with a € £, \ ©. On the other hand, let {Z1,..., Z} be the dual basis as in the
statement of the above theorem and take an index j such that both roots v; and J; restrict
to a; € ¥+, \ ©. To prove that forms Jz,; corresponding to these indices form a dual basis
in H?(Fe,R) it remains to check that Z; belong to the center 3(tg) so that the forms fz, are

well defined in Fg.

Lemma 7.4. Let Z;, j = 1,...,k be as in the above theorem the elements of the dual basis and
take an index j that corresponds to o; € 5.\ ©. Then Z; € 3(ko).

Proof. By Proposition 6.3 we have Z; € 3(m) C m C g. Denote by ©¢ C X¢ the set of roots of
the Satake diagram whose restrictions to a belong to © U{0}. Take v € O¢ and let o € © U {0}
be its restriction. We claim that v(Z;) = 0. There are the possibilities:
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1. a =0, that is, v is imaginary. Then v(Z;) = 0 because Z; is orthogonal to iH.,.

2. « has multiplicity 1 so that v = « is not imaginary and not linked to another root of ¢
by a double arrow. Then H., € a and since iZ; € at we have v(Z;) = 0.

3. 7 is linked to 6 by a double arrow. By definition of the dual basis B+ we have that Z;
is orthogonal to iH,_s. On the other hand, H ;5 € a since a = (y + 0)/2. Hence
(Hy4s,Z;) = 0 so that y(Z;) = 0 as claimed.

It follows that Z; centralizes the Lie algebra gc(Oc¢) generated by (gc)y, ¥ € O¢. Hence Z;
centralizes tg = gc(©¢) N ¢ as well, concluding the proof. |

The 2-forms {fz,,..., fz.} are zero on any #(c«) with a not of rank 2. Therefore, if there is
a closed form on H?(Fg,R) which is non-degenerate on Fg then II\O C X . This implies that
IT\© consists of roots with double arrows in the Satake diagram. In this case, Fg is a product

of complex flag manifolds of the form SU(n)/T.

8 su(p,q)

In this section we present concrete realizations of the flag manifolds of the Lie algebras of types
ATIIl; and AIII,. These correspond to su(p,q) with p < ¢ which are non-compact real forms of
sl(p+¢q,C).

The Lie algebras su(p,q), p < ¢ are constituted by zero trace matrices which are skew-
hermitian with respect to the hermitian form in CP*¢ with matrix

0 Ipxp 0
Jpg=|1pxp O 0
0 0 14-px14p

That is, su(p, q) = {Z € Mp14(C): ZJp g+ JpqZ* =0, tr Z = 0} where Z* denotes the transpose
conjugate. Therefore, su(p, q) is the Lie algebra of (p + ¢) x (p + ¢) matrices of the following
form

o O ) Acdmo). BCeun), o)
Y v 7 ’ Z € u(q—p), tr(2ImA+ Z) = 0. '

The Lie algebra su(p, q) can also be realized as the set of skew-hermitian matrices with respect
to the bilinear form with matrix

— 1P><P 0
b= (57 )

By using either realization one can see that the complexified Lie algebra su(p, ¢)c is sl(p+ g, C).
From the second realization it is clear that in the Cartan decomposition g = £@®s,  is isomorphic
to (u(p)®u(q))/ tr, that is, zero trace matrices given by diagonal block matrices with two diagonal
elements in u(p) e u(q), respectively. In the first realization (8.1), ¢ is described as follows

A B —-X*
t= B A -Y*|:ABeulp), Zculg—p), tr2ImA+2) =0
XY Z

The matrices in s are hermitian, that is,
A —-B 0
§ = B —A 0|:A=A" Beu(p)
0 0 O
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Under these choices for the Cartan decomposition, the maximal abelian subalgebra a of s is the
subspace of diagonal matrices in s, so one has

A 0 O
a= 0 —A 0| :A=diag{a1,...,ap}, a; €R
0 0 O

Here one sees that the real rank of su(p,q) is p if p < ¢. A Cartan subalgebra b containing a is
given by diagonal matrices of the form

D 0 0
0 -D 0],
0 0 iT

where D has complex entries while 7" has real entries so that i7" has pure imaginary entries. The
zero trace condition reads as tr(2Im D + T') = 0, so the real part of D is arbitrary. The Cartan
subalgebra h decomposes as h = b ® a where by is the set of diagonal matrices in &, that is,

iA 0 O
0 iA O
0 0 iT

with A and T" are diagonal matrices such that tr(2A+7") = 0. Therefore, dim b, = p+(¢—p)—1 =
g — 1 is the rank of su(p, ¢q) and dim a+ dim b = p+ ¢ — 1, which is the rank of sl(p+ ¢, C). The
Cartan subalgebra h¢ is the Lie algebra of complex diagonal matrices in sl(n,C), n = p + q.

In order to give a basis {Z1,...,Z,-1} as in Theorem 7.3, we need first a basis B of by
determined by the roots in Eéarr, Yc,arr and Ypy. So we proceed with the description of the
root system.

The roots of h¢ are the linear functionals given by the differences of the diagonal coordinate
functionals in hc. To simplify notations, for H = diag{ai,...,a,} € bc write p;(H) = a; if
1<j<2pand §;(H)=ag; if 1 <j<qg-—p.

As usual in sl(n,C), br is the subspace of real diagonal matrices. The imaginary roots
(annihilating on a) are §; — . In particular, there are no imaginary roots if p = q.

The Satake diagram is given by a simple system 3¢ of hc such that the imaginary roots
in ¢ span the set of all imaginary roots. Simple systems ¢ are written differently in the cases
p < qand p=gq. If p<q then

Ye={m —p2, - pip—1— pp}t U{pp — b1}
U{01r =02, .00 p1 = Ogp} U{0g—p — piop} U{pzp — piap—1,- - fipr2 — pipr1}

while for p = g we have
Yo ={m —p2,- s pip—1 = pp} U{pp — pop} U{pop — pop—1,- -+, pt2 — fipt1}

It can be checked that these sets are in fact simple systems of roots with Dynkin diagram A;.
To write the restricted system determined by a we consider the parametrization by real

matrices A = diag{a,...,a,} in a way that a is constituted by the following matrices
A 0 O
0 —-A O
0 0 0

Denote A\j(A) = a;.
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1. The simple roots ; — 6,11 are imaginary.

2. For j =1,...,p—1, the restrictions to a given by the simple roots p; — 141 and g1 j41 —
Hptj are equal to Aj — Ajiq.

3. If p < q the roots p, — 61 are 6, — g, restrict to A,.

4. If p = q the root p, — pg, restricts to 2X,,.

The simple system 3 obtained by restriction of ¥¢ is

E={ A=A 1 — A A} for p<gq, and
E={A— Ao  m1 — A, 20, ) for p=gq.

The Satake diagram of ¥¢ and the Dynkin diagram of 3 in the case p < ¢q are

Al

B, o—O0— -+ —O%O

The corresponding diagrams of ¢ and Y in the case p = g are
o—O0—

an LD e

The first elements in the basis B correspond to a basis of b,, and more precisely of haer if
p < q. We shall describe X¢ oy and Eéarr.

The roots in the Satake diagram of ¢ linked by double arrows are given by the following
pairs: if p < ¢

Ycarr = {11 — 12, fp+2 — fpr1} U {2 — p13, fpys — fipr2t U -+
U pp—1 — s piap — prop—1 YU {pp — 01,04 — piop},
while for p = ¢,

Ycarr = {11 — 2, pr2 — ppy1} U {2 — 3, fpr3 — ppr2} U U {pip—1— Hp, pap — H2p—1}-

When p < g, the set of imaginary roots is Xy = {61 — 02, ...,04—p—1 — 04—p}, so the subset of
pairs of roots which are orthogonal to Yy is Zéarr = Ycarr \ {ttp — 01,0q—p — p2p}. f p=1g¢
then Xc¢ arr = Eé’m since there are no imaginary roots. We give a basis of b2, to fill B which
is valid in both cases.

Up to normalization, Hy;—p; .,
—1 in positions j and j+1 respectively, j = 1,...,2p—1. Given the pair of roots v; = pj — 11,
0j = Pptjt1 — Hptj in Zé,arr’ the elements spanning bz, are iHs o =1H,
Wy —pjer T 1Hpy - pupys0- That s, for p < g,

is given by the diagonal matrix A with non-zero entries 1 and

G—tj+1—(ptit1—Hp+j)

iD 0 0
b, = 0 iD 0|:trD=0}. (8.2)
0 0 0

The first p — 1 elements in the basis B are multiples of
iDj,j_;,_l 0 0

VH i a ity =t in = 0 iDjj+1 0
0 0 0
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with Dj 11 = diag{0,...,1;,—1j41,...,0}. In the case p = ¢ these elements are enough to
complete B since there are no imaginary roots.

Suppose that p < ¢, that is, we are in the AIIl; case. The last elements of B constitute
a basis of hiy,. We have Xy = {61 — 62,...,04—p—1 — 04—p}, therefore

0 0 O
b = 0 0 O Z esu(q—rp) p,
0 0 Z
0 0 O
Him = 00 O tr7'=0,,
0 0 iT

with 7" diagonal with real entries. Up to normalization iHp, g, , € b is given by a matrix as
above with T diagonal with 1 in position j and —1 in position j + 1, for j=1,...,g—p— 1.
The center 3(m) is b7 , the orthogonal of by, in by (see Proposition 6.4), so we have

iD 0 0
by, = 0 iD 0 |:2trD+(¢g—p)la=0
0 0 iald

One last element in B is missing since the inclusion b, C i is strict and of codimension one.
The remaining element is a non zero multiple of iH,, g, (5, ,u,,) Since {pp —01,04—p — piop} is
the only pair of complex roots in ¢ 4 linked to imaginary roots. The matrices corresponding
to Hy,—¢, and Hg,_,—,,, are diagonal matrices with non zero entries being 1 and —1 in positions
p, 2p+ 1 and p + g, 2p, respectively. Then iH, g (9, ,—psp) = {(Hp,—0, — Hoy - pay,)-

The computations above account to

_ [:gN p—1 <N <N q—p—1
B= {lHuj—#j+1+Mp+j—#p+j+1 j=1 1 {lHup—91+u2p—9qu} Y {1H0j_9j+1 j=1

Let B+ be the dual basis of B with respect to the Cartan-Killing form in sl(p 4+ ¢, C). The
first p — 1 elements of B are the elements Z1, ..., Zy—1 appearing in Theorem 7.3. These are,
up to normalization,

iE;, 0 0
Zi=|0 i, 0 |, j=1,...p—1,
0 0 —iald
where F; = diag{b,...,b,—a,...,—a}, the last b is in position j, and a,b € R verify 25 — a(p +

q) =0and b+a =1, that is, a = 25/(p+q), b = (p+q— 27)/(p + q). Through the Weil
construction, {fz,,..., fz,_,} is a basis of H*(F,R).

For a partial flag manifold Fg with © C X the 2-homology H3(Fg,R) is spanned by the
Schubert cells S;, with a running through the rank 2 simple roots in ¥ outside ©. Hence as in
the case of the maximal flag manifold we get a basis of H?(Fg,R) of the form { fzj000s fz;.}
where ji, ..., js are the indices corresponding to the rank 2 roots in ¥\ © (long roots if p < ¢
and short roots if p = ¢). This basis is dual to the Schubert cells.
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