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Abstract. Painlevé metrics are a class of Riemannian metrics which generalize the well-
known separable metrics of Stéackel to the case in which the additive separation of variables
for the Hamilton—Jacobi equation is achieved in terms of groups of independent variables
rather than the complete orthogonal separation into ordinary differential equations which
characterizes the Stéckel case. Painlevé metrics in dimension n thus admit in general only
r < n linearly independent Poisson-commuting quadratic first integrals of the geodesic flow,
where r denotes the number of groups of variables. Our goal in this paper is to carry out for
Painlevé metrics the generalization of the analysis, which has been extensively performed in
the Stéckel case, of the relation between separation of variables for the Hamilton—Jacobi and
Helmholtz equations, and of the connections between quadratic first integrals of the geodesic
flow and symmetry operators for the Laplace—Beltrami operator. We thus obtain the gen-
eralization for Painlevé metrics of the Robertson separability conditions for the Helmholtz
equation which are familiar from the Stéckel case, and a formulation thereof in terms of the
vanishing of the off-block diagonal components of the Ricci tensor, which generalizes the one
obtained by Eisenhart for Stackel metrics. We also show that when the generalized Robert-
son conditions are satisfied, there exist r < n linearly independent second-order differential
operators which commute with the Laplace—Beltrami operator and which are mutually com-
muting. These operators admit the block-separable solutions of the Helmholtz equation
as formal eigenfunctions, with the separation constants as eigenvalues. Finally, we study
conformal deformations which are compatible with the separation into blocks of variables of
the Helmholtz equation for Painlevé metrics, leading to solutions which are R-separable in
blocks. The paper concludes with a set of open questions and perspectives.

Key words: Painlevé metrics; Killing tensors; Helmholtz equation; R-separability; symmetry
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1 Introduction and statement of results

Painlevé metrics [37, 38] are a class of Riemannian metrics that provide a broad generalization
of the well-known separable metrics of Stéckel [18, 41] to the case in which the Hamilton-Jacobi
equation for the geodesic flow can be additively separated into partial differential equations
depending on groups of independent variables rather ordinary differential equations resulting
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from a complete orthogonal separation. In particular, while Stickel metrics in dimension n
admit n linearly independent Poisson-commuting quadratic first integrals of the geodesic flow,
Painlevé metrics in dimension n will admit only r < n such integrals in general, where r denotes
the number of groups of variables.

Our goal in this paper is to carry out the extension to Painlevé metrics of the well-known
results [1, 2, 3, 18, 25, 26, 27] which relate in the Stéckel case the additive separation of variables
for the Hamilton—Jacobi equation to the multiplicative separation of variables for the Helmholtz
equation, and the existence of quadratic first integrals of the geodesic flow to that of symmetry
operators for the Laplace—Beltrami operator. We shall thus obtain the generalization to Painlevé
metrics of the Robertson separability conditions [39] for the Helmholtz equation for Stéckel met-
rics, and a formulation of these generalized Robertson conditions in terms of the vanishing of the
off-block diagonal components of the Ricci tensor, thereby extending the classical result proved
by Eisenhart [18] for Stéckel metrics. We shall also show that when the generalized Robertson
conditions are satisfied, there exist » < n linearly independent second-order differential operators
which commute between themselves and with the Laplace—Beltrami operator. These operators
will be shown to admit the block-separable solutions of the Helmholtz equation as formal eigen-
functions, with the separation constants arising from the separation into groups variables as
eigenvalues. Finally, we shall also discuss conformal deformations of Painlevé metrics satisfying
a further generalization of the Robertson conditions, which is compatible with the separation
into blocks of variables of the Helmholtz equation, leading to solutions which are R-separable
in blocks.

Before describing our results in further detail, we should remark that independently of the
interest of Painlevé metrics from the point of view of separation of variables, a key motivation
for our study lies in the goal of constructing geometric models of manifolds with boundary
endowed with Painlevé metrics, with the goal of investigating the anisotropic Calderén problem
in this class of geometries. Recall that the anisotropic Calderén problem consists in recovering
the metric of a Riemannian manifold with boundary from the knowledge of the Dirichlet-to-
Neumann map defined by the Laplace-Beltrami operator. The anisotropic Calderén problem
is at the center of a great amount of current research activity. We refer to [12, 15, 22, 28,
29, 32, 33, 40, 46, 47] and the references therein for surveys of recent results on this problem.
We have recently investigated the anisotropic Calderén problem at fixed energy for geometric
models consisting of classes of Stackel manifolds with boundary, where the separation of variables
for the Helmholtz equation allows the decomposition of the Dirichlet-to-Neumann map onto
a basis of joint eigenfunctions of the symmetry operators resulting from the complete separation
of variables, enabling us to obtain a series of uniqueness and non-uniqueness results for the
Calderén problem, with no a-priori assumptions of analyticity, or on the existence of isometries
[11, 12, 13, 14, 16, 21]. In the case of Painlevé metrics, the separation of the Helmholtz into
groups of variables and the concomitant families of commuting symmetry operators admitted
by these metrics will serve as an effective starting point for the investigation of the anisotropic
Calderén problem in this more general setting.

In order to put the results of the present paper in context, we first briefly recall some well-
known definitions and results pertaining to Stédckel metrics and their separability properties.
Throughout the paper, we shall assume for simplicity that the manifolds, metrics and maps
being considered are smooth, although many of the results that we quote or obtain can be
shown to hold under weaker differentiability properties. Recall [2, 18, 25, 41] that a Stdckel
metric on an n-dimensional manifold M is a Riemannian metric g for which there exist local

coordinates (1‘1, e ,w") in which the metric has the expression
S det S 2 det S 2
ds? = g;jda'da’ = T (dz')” + - (d2")7 (1.1)
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where S is a Stdckel matriz, that is a non-singular n x n matrix S = (s;;) of the form

su(@) ... s

S= ’ (1'2)
Snil (:n”) ... Snn (:E”)

and s% denotes the cofactor of the component si; of the matrix S. Stéckel matrices thus have the
property that for each 1 < i < n, their i-th row depends only on the i-th local coordinate z*, and
that the cofactor s¥ is independent of the i-th local coordinate z*. Furthermore, the diagonal
components of the Stéckel metric (1.1) are given by the inverses of the entries of the first row
of the inverse Stiickel matrix A = S,

The importance of Stackel metrics stems from the fact that they constitute the most general
class of Riemannian metrics admitting orthogonal coordinates for which the Hamilton—Jacobi
equation

gIOWo,W = E, (1.3)

for the geodesic flow of (M, g), where E denotes a positive real constant, admits a complete
integral obtained by additive separation of variables into ordinary differential equations. It is
useful at this stage to recall that a complete integral of (1.3) is defined as a parametrized family
of solutions

W:W(ml,...,x";al,...,an), a1 :=F, (1.4)
defined over the domain U C M of the local coordinates (3:1, . ,:U”) and depending smoothly
on n parameters (ay,...,ay) defined on an open subset A C R™, such that the rank condition

0*wW

det . 0

¢ <83328aj) 70,

is satisfied throughout the open set U x A.
It is easily verified that the Hamilton—Jacobi equation (1.3) will admit an additively separable
complete integral W(xl, oxhar,. .. an) of the form

W:Wl(xl;al,...,an) +---+Wn(x";a1,...,an),

if and only if the summands W, satisfy the set of separated ordinary differential equations given
by

<dxz> ZS”

The n parameters (aq, ..., a,) appearing in the expression of the additively separable complete
integral (1.4) thus correspond to the separation constants arising from the complete separation
of variables of the Hamilton—Jacobi equation into ordinary differential equations. One of the
key consequences of this complete separation of variables property is that the geodesic flow of
an n-dimensional Stackel metric admits a linearly independent set of n — 1 mutually Poisson-
commuting quadratic first integrals, given by

K(l) pzp] Zal]p]; 2<1<n (1.5)
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with
{K(lyK(m)} =0, for 1<I,m<n,

where A = (a;;) denotes as above the inverse of the Stéckel matrix S given by (1.2). Note that
with the notations of (1.5), we have K1) = H, where

H = g"p;pj,

denotes the Hamiltonian for the geodesic flow.
A question closely related to the additive separation of the Hamilton—Jacobi equation is that
of the complete multiplicative separation of the Helmholtz equation

—Agu = A, (1.6)
where
1 y
Ag= \/Wal( |g|gjaj)v 9| = det(gs),

denotes the Laplace—Beltrami operator on (M, g) and A\ denotes a non vanishing real constant,
into ordinary differential equations. By complete multiplicative separation, we mean, follo-
wing [2], the existence of a parametrized family of solutions u defined on a domain U C M with
local coordinates (xl, . ,x”) of the form

n
u(xl,...,x";al, e ,agn) = Hui(ml, ooxhar, ... ,agn),
i=1
depending smoothly on 2n parameters (a1, ..., as,) defined on open subset A C R?", satisfying
the rank condition
91 v
80,1 o 8a2n
ovy, ovy,
8(11 o 8a2n
det 8w1 awl 7é O)
8@1 o 8a2n
owy, Oown,
8a1 o 8a2n

at every point of U x A, where

u (4
Vi = — W; = —.
U; U;

RN

This separation requires that additional conditions, known as the Robertson conditions, and
given by

o;l'y =0, 1<i#j<n,

where
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be satisfied. We refer to [2, 3, 18, 25, 26, 39] for detailed proofs of the fact that the Robertson
conditions are necessary and sufficient for complete multiplicative separation of the Helmholtz
equation. The Robertson conditions were interpreted by Eisenhart [18] in terms of the vanishing
of the off-diagonal components of the Ricci tensor of the underlying Stackel metric, that is

Ri; =0 for 1<i#j<n. (1.7)

When the Robertson conditions are satisfied, the Poisson-commuting quadratic first integrals
of the geodesic flow give rise to n — 1 linearly independent second-order differential operators
which commute with the Laplace—Beltrami operator and also commute pairwise. Rewriting the
quadratic first integrals K ;) defined by (1.5) in the form

Ky = K{jpipj,
these commuting operators, denoted by A K, are of the form

Ak, = Vi (Kgg)vj), 2<1<n,
where V; denotes the Levi-Civita connection on (M, g). These operators, which are often referred
to as symmetry operators, admit the separable solutions of the Helmholtz equation as (formal)
eigenfunctions. We will not give any further details on symmetry operators at this stage, nor
shall we say anything about the proofs of the results we have just recalled since we shall shortly
state and prove generalizations of these to the case of Painlevé metrics, which admit all Stackel
metrics as a special case.

We conclude these preliminaries by remarking that the above setting may be expanded sig-
nificantly by considering conformal deformations of Stéckel metrics which are compatible with
the complete separation of the Helmholtz equation into ordinary differential equations, thus
giving rise to the more general notion of R-separability for the Helmholtz equation. Again, we
shall not give any additional details on these topics at this stage since conformal deformations
and R-separability will be studied in the remainder of this paper in the more general setting of
Painlevé metrics. We refer to [2, 3, 4, 8, 9, 25, 26, 27| for lucid accounts of the key results on the
separability and R-separability properties of Stéckel metrics, their connection to Killing tensors,
quadratic first integrals of the geodesic flow and symmetry operators for the Laplace—Beltrami
operator. We also refer to [1, 36] for recent surveys on separability on Riemannian manifolds
and to [7] for a penetrating analysis of the relations between quadratic first integrals of the
geodesic flow, symmetry operators and conserved currents, in the general setting of Riemannian
or pseudo-Riemannian manifolds.

With these preliminaries at hand, we are now ready to introduce the class of Painlevé met-
rics [37, 38]. As stated above, Painlevé metrics arise as a natural generalization of Stéckel metrics
to the case in which one no longer seeks complete separation of the Hamilton—Jacobi equation
into ordinary differential equations, but rather separation into partial differential equations
involving groups of variables. The separable coordinates admitted by Painlevé metrics are thus
generally not orthogonal, although they are orthogonal with respect to groups of variables. Let
us recall that our goal in this paper is to carry out for Painlevé metrics the analogue of the
separability and R-separability analyses of the Helmholtz equation which has been extensively
worked out for Stackel metrics in [2, 3, 8, 25, 26, 27], and to show that the separability into
groups of variables gives rise to vector spaces of mutually commuting symmetry operators for
the Laplace—Beltrami operator, the dimension of which is determined by the number of groups
of variables. In particular, we will generalize to the case of Painlevé metrics the Robertson
conditions and the characterization thereof in terms of the Ricci tensor. We now proceed to
define the class of Painlevé metrics along lines similar to the ones used above for Stackel metrics.
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Let (M, g) be an n-dimensional Riemannian manifold and let x = (xl, o ,a:") denote a set of

local coordinates on M. We shall consider partitions of x into 7 > 2 groups of local coordinates,
X = (xl,...,xr),

where
] '
x* = (z'), lo <ig <lq, and ZHlaH:n,
a=1

where ||l,|| denotes the number of local coordinates in the group of label a. Latin indices
1 <4,7,... < n will be used to label the local coordinates on M, greek indices «,f,... to
label the r groups of local coordinates, and hybrid indices i, 14 < iq < I, to denote the local
coordinates within the group x®. Unless there is an ambiguity in the notation being used,
in which case we will write out the summation signs explicitly, we shall apply the summation
convention with the above range of indices. A generalized Stickel matriz is a non-singular r X r
matrix-valued function S on M of the form

S11 (Xl) e S1r (Xl)
S= ) (1.8)

Sr1 (X’”) T (XT)
where for each 1 < a < r,
x* = (2), 1o <ig <lo.

Let s*% denote the cofactor of the component sq3 of S. We note that the cofactor sP7 will not
depend on the group of variables x? = (xiﬁ), 1g <ig < lg. Moreover we shall assume that

det S

— >0, Vi<a<mr, (1.9)

SO[
in order to work with Riemannian Painlevé metrics.

Definition 1.1. Let S be a generalized Stackel matrix satisfying (1.9). A Painlevé metric is

a Riemannian metric g for which there exist local coordinates x = (xl, . ,XT) such that
- . detS det S
ds? = gjjda'ds! = Sl G+ + ?GT, (1.10)

where each of the quadratic differential forms

lo la
Go = Go(x%) = Z Z G, (Xa)iajad:ci“da:ja, 1<a<m, (1.11)

iazla jazla
is positive-definite in its arguments and depends only on the group of variables x.
We may thus write the metric (1.10) in block-diagonal form as

la la

r la la r
A =3T3T Y @ = 32T 3 D (Gt

a=1lia=lu ja=la a=1 ia=la ja=la

It is important to note that even though Painlevé metrics (1.10) are block-diagonal, and each
quadratic differential form (1.11) defines a Riemannian metric on the submanifolds defined by
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the level sets x° = ¢, 8 # «, a Painlevé metric is generally not a direct sum of Riemannian
metrics, nor a warped product, except for special non-generic cases. We also note that Painlevé
metrics of semi-Riemannian (and in particular Lorentzian) signature can readily be defined by
modifying the requirement that each of the quadratic differential forms G, given by (1.11) be
positive-definite to one in which G, is assumed to be of signature (pa,¢a) With po + ga = la.
Finally we also remark that the Painlevé form (1.10) is obviously invariant under smooth and
invertible changes of coordinates of the form x* = f*(x®), where 1 < a < 7.

Let us call block orthogonal coordinates a system of coordinates (x%) such that the metric g
has the form

T T la loe

g= Z caGa = Z Ca Z Z (Ga)igjoda’dale,

a=1 a=1 ta=la ja=la

where ¢, are non-vanishing scalar functions on M and the metrics G, are given by (1.11). In
analogy with the Stéckel case, we have

Proposition 1.2. A metric g is of the Painlevé form (1.10) if and only if there exist block
orthogonal coordinates such that the Hamilton—Jacobi equation

giOWo;W = E,

admits a parametrized family of solutions which is sum-separable into groups of variables, of the
form

W = Wl(xl;al,...,ar) +-"+Wr(xr;a1,...,aT), (1.12)

depending smoothly on r arbitrary real constants (a1 := E, ag,...,a,) defined on an open subset
A CR", and satisfying the rank condition

l l
= = onviaja [ OWa *W,,
det | Y > (G ( oo ) \ Gusowr #0, (1.13)

iazla jazla

where
G% = (Ga)_l.

This Proposition will be proved in Section 4 as well as other (intrinsic) characterizations of
Painlevé metrics.

In further analogy with the Stéckel case, we now recall that Painlevé metrics admit r linearly
independent quadratic first integrals of the geodesic flow which are Poisson commuting. Indeed,
the summands W, appearing in (1.12) satisfy the following set of first-order PDEs [38]

F1 <x1, ?j?) = a1811(X1) + 4 arse (Xl),

Fr (Xr, %Zr> = Q15,1 (XT) 4+ a8y (XT), (1.14)

where

Fo=(G*)" (x)piupjar  1<a<m, (1.15)
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and where the (a,) are arbitrary real separation constants. It follows now directly from the
separated equations (1.14) and from the fact that the generalized Stéckel matrix S is non-singular
that one obtains r linearly independent Poisson-commuting quadratic first integrals K, of the
geodesic flow by solving for the r separation constants (as) from the separated equations (1.14).
These are explicitly given by (see [38])

r

Ko=) (5"),Fs 1<B<m
=1

or equivalently
K = Kfi)pipj,

where for each 1 < a <7, (K Zgé )) is a symmetric block-diagonal tensor defined by

. Ba o
K\ = dse = (GO)¥, KM =0  forall 1<f#y<r (1.16)

These quadratic first integrals satisfy
{K(a),K(ﬁ)} = 0, 1 S Oz,ﬁ S r, where K(l) = H. (1.17)
The condition {K (), H} = 0 is equivalent to (KZi)) being a symmetric Killing tensor, that is
Vil (a)jr + Vilami + Vikay; =0

The commutation relations (1.17) are thus equivalent to the vanishing of the Schouten brackets
of the pairs of Killing tensors (K (q4);), (K (g)ij)-

There exist a few classical examples of Painlevé metrics in the litterature. They include for
instance the di Pirro metrics [17, 38], for which the Hamiltonian of the geodesic flow is of the
form

H = gpip; = (c12(2",22) + c3(2%)) " ar (a1, 22 + az (2!, 22)p3 + a3 («*)p3].  (1.18)

It may indeed be verified directly that the function

K= (612(£B x ) + c3(x 3))71[03(.%3)(&1(:61,1' )p1 +a2(:v x )pQ) —clg(xl,:vz)ag(xg)pg].

Poisson-commutes with H, and thus defines a Killing tensor, which together with the metric
tensor generates a maximal linearly independent set of Killing tensors for generic choices of
the metric functions c19, a1, ag, as, ¢z in (1.18). Painlevé metrics also appear in the context of
geodesically equivalent metrics as metrics admitting projective symmetries, see [43, 44], and also
as instances of 4-dimensional Lorentzian metrics admitting a Killing tensor [23] (see Section 7
for further remarks on the latter point). Finally, we mention the recent paper by Chanu and
Rastelli [10] that provides a classification of Painlevé metrics with vanishing Riemann tensor
in dimension 3, i.e., in E3. We will give some examples of Painlevé metrics in all dimensions
satisfying the generalized Robertson conditions (see below) as well as a catalogue of such metrics
in dimensions 2, 3, 4 in Section 2.

As we stated above, our main goal in this paper is to investigate for the class of Painlevé
metrics the closely related question of product separability for the Helmholtz equation (1.6), and
the relationship between quadratic first integrals of the geodesic flow and symmetry operators
for the Laplace—Beltrami equation. The Laplace—Beltrami operator for a Painlevé metric g given
by (1.10) can be expressed in terms of the generalized Stéckel matrix S and the Laplace-Beltrami
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operators for the r Riemannian metrics Gg, 1 < 8 < r, defined by (1.11), corresponding to the
blocks of variables x? , 1 < B <r. We have

r $B1
AQUZZ <det5> A6,u

B=

ls n_1_B1
i (det §)2~1s?
+ ) E (@)% 8, | log - =1 9up] (1.19)

ip=1p jp=1p (511)7 .. (87‘1) 2

where Ag, denotes the Laplace-Beltrami operator for the Riemannian metric Gg, that is

ZZ m%W@(Gﬁ)wﬁaﬁﬁ), (Gl = det((Ga)igy)-

ig=1j5=1

We now state our main results, the proofs of which will be given in Section 6. We first define
the generalized Robertson conditions, in analogy with the classical Robertson conditions (1.7)
for Stackel metrics.

Definition 1.3. A Painlevé metric g is said to satisfy the generalized Robertson conditions if
and only if the differential conditions

0ja%is =0, forall 1<a#pB<r 14 <iq<la 1lg=<ig<lp, (1.20)

where

(det §)2 1P

(311)%1 e (8r1)7

Yig = —0iy |log

are satisfied.

The generalized Robertson conditions (1.20) imply that

;.78 =0, forall 1<a#pB<r, (1.21)
lﬁ . .
¥ =Y (GP) Py, (1.22)
ig=1g

We shall be working with both the forms (1.20) and (1.21) of these conditions. Note that if
the Robertson conditions hold, then the positive Laplace—Beltrami operator can be written in
a synthetic form as

!
T/ §B B T/ P
_ = _ 389, —
Agu 62_:1 (detS> Agyu+ Z V8 0j,u Bz_:l (detS) Bgu,

Js=lp

ls
where the operators Bg = —Ag, + > 7/?0;, only depend on the group of variables x5,
Jg=lg
As will be seen in Section 5, the generalization of the notion of complete multiplicative
separation for the Helmholtz equation to the case of separation in terms of groups of variables
is given by considering a parametrized family of product-separable solutions of the form

'
u:Hu5(Xﬁ;a1,...,aT), (1.23)
p=1
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satisfying the rank condition

det <8aa <Bﬁu5>> £0, (1.24)
ug

where we assume that ug # 0.
Our first result states the separability conditions for the Helmholtz equation, and gives their
interpretation in terms of the vanishing of the off-block diagonal components of the Ricci tensor:

Theorem 1.4.

1) Given a Painlevé metric g of the form (1.10) satisfying the Robertson conditions (1.20),
the Helmholtz equation

—Agu = Au, (1.25)
where Ay denotes the Laplace—Beltrami operator (1.19) admits a solution that is product-
separable in the r groups of variables (xl, - ,X’"),

IS
u= HUB(XB;al = )\,ag,...,ar), (1.26)
B=1

and satisfies the rank condition (1.24).

2) The conditions (1.20) may be written equivalently in terms of the Ricci tensor of the
Painlevé metric (1.10) as

Rjks =0, forall 1<a#B<r, and 1o <jo<la, 1lg<ksg<lgs. (1.27)

Our next result shows that the Laplace-Beltrami operator for a Painlevé metric satisfying the
generalized Robertson conditions admits r linearly independent mutually commuting symmetry
operators:

Theorem 1.5. Consider a Painlevé metric (1.10) for which the generalized Robertson condi-
tions (1.20), which imply the separability of the Helmholtz equation, are satisfied. Then the
operators Ak, defined for2 < o <r by

r L

Ak = VilKG V) =D > > Vi (KQVi,), (1.28)

y=Liy=1y jy=1y

where K o) is defined by (1.16), commute with the Laplace—Beltrami operator A, and pairwise
commute

[AK(a)’Ag] =0, [AK(QVAK(/&)] =0, 2<a,8<, (1.29)

and admit the separable solutions (1.26) as formal eigenfunctions with the separation cons-
tants an arising from the separation of variables as eigenvalues,

AK<a)u:aau, 2<a<r.

Our final result shows that the above framework can be expanded just as in the Stackel
case by considering conformal deformations of the Painlevé metrics (1.10) which are compatible
with the separation of the Helmholtz equation into groups of variables. This corresponds to
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a generalization of the important notion of R-separability [4, 8, 27] to the context of Painlevé
metrics.
Let us first recall that upon a conformal rescaling of the metric given by

g c4g, (1.30)

where ¢ denotes a smooth positive function, the Laplace-Beltrami operator A, obeys the trans-
formation law

Aetg = ¢ (Ag = geg) P, (1.31)
where

Geg = ¢ "THAG TR, (1.32)
Thus, letting

v=c"2u (1.33)

and using the expression (1.19) of the Laplace-Beltrami operator for a Painlevé metric g, the
Helmholtz equation

—Augu = du, (1.34)
takes the form
1 b .y
25 | e+ > V004, | 4 geg — At v =0. (1.35)
B=1 Jp=14

We have

Theorem 1.6. Let g be a Painlevé metric. Suppose furthermore that g is conformally rescaled
by a factor ¢* as in (1.30), where ¢ is chosen so as to satisfy the non-linear PDE

r B1
n—2 n—+2 S n—2 __
Agc — A — | a1 +BE_1 detS(Pg—gbﬁ) c =0, (1.36)
where
P L1y s 1 989, log |G |+1(G Yinjay B0
B = 2 ]57 47 78 g |Gg 4 B8 ’LB]/B’Y Y,

and where a1 is a constant and ¢g = ¢g (Xﬁ) are arbitrary smooth functions. Then the Helmholtz

equation (1.34) for the conformally rescaled metric c*g is R-separable in the r groups of variables

(xl, . ,x”). More precisely, if u is given by

u=c""2Ruw,

with R defined by

h r
4

po BT ()Y (1.37)
(det S)"T°
Then w satisfies
‘s 851
Z (detS> [—Aq, + ¢s]w = ayw, (1.38)
B=1

which is separable in the v groups of variables (x',...,x") in the sense of (1.23)~(1.24) with
the operators Bg replaced by the operators Ag = —Ag, + ¢p.
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We remark that the PDE of Yamabe type given by (1.31) satisfied by the conformal fac-
tors ¢(x) can be viewed as an extension of the generalized Robertson conditions to the setting of
metrics that are conformally Painlevé. Moreover, the existence of such conformal factors will be
addressed in Section 2 through Proposition 2.4. In particular, it will be shown there that such
metrics enlarge considerably the class of Painlevé metrics satisfying the generalized Robertson
conditions (1.20).

We conclude this section by referring to the interesting recent paper by Chanu and Rastelli [10]
that was published during the elaboration of the present paper. It turns out that Chanu and
Rastelli define the Painlevé form of metrics like our Definition 1.1 in connection with the notion
of separability of the Hamilton—Jacobi equations in groups of variables. They provide several
intrinsic characterizations of Painlevé metrics extending the ones stated in our Section 5. We
refer for instance to the beautiful invariant characterization of Painlevé metrics given in their
Proposition 5.8 that allow them to classify all Painlevé metrics in Es.

2 Examples of Painlevé metrics satisfying
the generalized Robertson conditions

In this section, we provide several examples of Painlevé metrics satisfying the generalized Robert-
son conditions (1.20) in all dimensions. Then we try to give a catalogue — as complete as possi-
ble — of such Painlevé metrics in dimensions 2, 3 and 4. All our examples are local in the sense
that they are defined in a single coordinate chart. Obtaining global examples of Riemannian
or semi-Riemannian manifolds admitting an atlas of coordinate charts in which the metric is in
Painlevé form appears to be a challenging task, well worthy of further investigation. This point
will be discussed as one of the perspectives listed in Section 7. From the notations used in defini-
tion (1.1), recall that a Painlevé metric is given in local coordinates (xl, e x”) = (Xl, e ,xr)
where x® denotes group of variables indexed by 1 < o < r by

det S det S
Gt
s s

g = gijda‘ds! = G,

for quadratic differential forms
la o ‘ ‘
Go = Ga(xa) = Z Z Ga(xa)i i da'eda’e, 1<a<r, (2.1)
ia=la ja=la

and a generalized Stéackel matrix S of the form

sll(xl) slT(xl)
S — . .

Sr1 (x") e Spp (xr)
From (1.20), recall also that the Robertson conditions read
Bjuiy =0, 1<a#B8<r, 14<ian<ls, 13<ig<lg,
where

(det §)2 1501

(311)% co (s

Yig = —0i; |log

23
2
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Since s”! does not depend on the group of variables x?, these conditions can be equivalently
formulated as the algebraic-differential condition

(det S)™ H fa ’ (2.9)

(811)11,,, sm1) br

where f, = fa (XO‘) are arbitrary functions of the indicated group of variables. We will use this
last expression of the Robertson conditions to find different examples of Painlevé metrics in all
dimensions that satisfy them. Our main examples are:

Example 2.1. If »r = 2 and n = 2, then any Stéckel matrix
S = (811 (1’1) 512 (xl))
S21 (1‘2) 5929 (1}2) ’
satisfies automatically the usual Robertson conditions (2.2). The corresponding Stéckel metrics
in 2D can be given the following normal form

9= (f(a") + f2(a%) ((da')” + (da?)),
where f,, @ = 1,2 are arbitrary functions of x% such that f; + fo > 0. Thus we recover the

classical Liouville metrics.
If r =2 and n > 3, then any generalized Stackel matrix

)]

0 sp(x?)

satisfy the generalized Robertson conditions (2.2). The corresponding Painlevé metrics can be
given the following normal form

g=G1+ f1(x")Ga,

where G, G5 are Riemannian metrics as in (2.1) and f; = f; (Xl) is any positive function. Note
that the metrics are classical warped products.

Example 2.2. Consider a generalized Stickel matrix of the form

S11 (Xl) NN S1r (Xl)
asy e a9y
S = :
[075] e (0799

where the entries aqg, 2 < o <7, 1 < 3 < r, are real constants chosen such that (1.9) is satisfied.
Then it is immediate that

det §)"—2
(sn()ht. : .)(Srl)lr = fi(x),

for some function f; depending only on x'. Hence the Robertson conditions (2.2) are trivially
satisfied. The corresponding Painlevé metrics are of the general form of multiply warped products

9= fa(x')Ga, (2.3)
a=1

where f,, are arbitrary positive functions of x! and G, are given by (2.1). We note that the
inverse anisotropic Calderén problem on a class of singular metrics of the form (2.3) is studied
n [14].
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Example 2.3. Our final class of examples is the most interesting one and comes from the theory
of geodesically (or projectively) equivalent metrics (see for instance [6, 34, 43, 44, 45]) and its
link to particular Stéckel systems called Benenti systems [1, 5]. Note that it only applies to
Stackel metrics satisfying the usual Robertson conditions, i.e., we assume that r = n in the
following. Note also that in the context of geodesically equivalent metrics, the commutation
relations of Theorem 1.5 were already established by direct computation in [35], and can also
be seen to follow from the commutation of the corresponding Killing tensors with the Ricci
tensor [30]. Consider a Stéckel matrix S of Vandermonde type (see [1, Theorem 8.5])

S = ((_1)n+a75+1f276)1§a76§n’

where the functions f, = fo(2z®) only depend on the variable z® and satisfy

fl(xl) < fg(xQ) << fr(:z;’"), V¢, 1<a<n.

An easy calculation shows that

det(S): H ’fa_fﬁ’7 871: H ‘fa_fﬁ‘a V1S7§7’L,
1<a<fB<n 1<a<pB<n
a,B#y

from which we deduce that the Robertson conditions (2.2) are satisfied. The corresponding
Stéackel metrics are given by

[T15a = Al) (o) + | T 1fa— fol | (d2?)+ -+ [ T] 1fa = ful | (d2™)*
a#l a#2 aF#En

Let us now use the above classes of examples to give as exhaustively as possible a list of
Painlevé metrics satisfying the generalized Robertson conditions in dimensions n = 2, 3,4. Note
that the list of Painlevé metrics given below is only exhaustive as far as generic cases are
concerned, and thus does not cover all the examples of Painlevé metrics satisfying the Robertson
conditions, such as metrics of constant sectional curvature. Recall also that we always assume
that 2 <r <n.

2D Painlevé metrics. Let n = 2 and » = 2. Then according to Example 2.1, the only
Painlevé metrics are Stackel metrics given by

9= (A=) + L) ()" + (22)),

for some functions fi; and fo such that f; + fo > 0. Hence Painlevé metrics satisfying the
Robertson conditions in 2D are Liouville metrics.
3D Painlevé metrics. Let n = 3.

e If r =2 and say l; = 1, Iz = 2, then according to Example 2.1, Painlevé metrics satisfying
the generalized Robertson conditions are classical warped products; more precisely

(@) 4 NG o g = fa(x)(de!) 4+ G

for some positive functions fi; and fo depending only on the indicated groups of variables
and any Riemannian metric

G2 = (Ga)ij (x2, x?’)dxidxj, 1,7 =2,3.
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e If r = 3, then 3D Painlevé metrics are in fact Stéckel metrics. According to Examples 2.2
and 2.3, we have the following possible expressions for Stéckel metrics g satisfying the
Robertson conditions (see also [21]):

g = f1(dz?)? + by (dz?)” + k1 (d2®)?,
or

9= (5= f)(f2— f) () + (fs — o) (fo — F1)(da?)* + (fs — fi) (fs — fo) (da®)?,

where fi, hi, ki are functions of the variable x! only and fo, f3 are functions of the
variables 22 and z3 respectively such that f; < fo < f3. We add a last example to this
list found by inspection of the Robertson conditions (2.2). Consider the Stéckel matrix

1 S12 G813
S=10 s22 823 |,
0 s32  s33

where a is a real constant and the s;; = s;; (l’Z) are arbitrary functions of the indicated
variables for which det S # 0. Then we can check directly that the Robertson conditions
are satisfied and we obtain the following expression for the corresponding Stackel metrics

g=(da')? + <1> [(822833 — 593532) ( (d2)° + (d)° )] . (2.4)

512 5§32 — AS33 5§23 — G822

Note in particular that such metrics are warped products and thus admit a conformal
Killing vector field.

4D Painlevé metrics. Let n = 4.

e If r =2 and [y + ls = 4, then according to Example 2.1, Painlevé metrics that satisfy the
generalized Robertson conditions are warped products of the type

g=G1+ fi(x")Go, or  g= fo(x*)G1 + Ga,

for some positive functions f; and fo depending only on the indicated variables and any
Riemannian metrics G, Go of the type (2.1).

e If r=3and ] =2, 1o =13 =1 (the other cases are treated similarly), then according to
Example 2.2, we obtain the following Painlevé metrics

g =hG1 + k(da?)” +1(de?)?,
where h, k, | are positive functions of the variables x!, 2 only and
G1 = (G1)ij (2", 2%)da'da’, iji=1,2

is any Riemannian metric. Following the same procedure as in example (2.4), we also
obtain the following class of Painlevé metrics

1 dz? 2 dzt 2
g==G1+ <> [(822533 — 523532) < (dz”) + (d=) )
512 532 — aS33 523 — G522

where S12 = S12 (xl,xQ), 822 = S92 ($3), 593 = 823(.1?3), 839 — 832(1‘4), §33 — 833 ($4) and
G1 = (G1)4j (:Ul,:L‘Q)dx’d:UJ, 1,7 = 1,2. Note in particular that such metrics are warped
products that admit a conformal Killing vector field.
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e If r = 4, the Painlevé metrics are Stéckel metrics. According to Examples 2.2 and 2.3,
possible expressions for Painlevé metrics satisfying the Robertson conditions are

9= (@) b (@) 4 k(40 4 ()
or

9= (fa= FOUs = )2 = F) (") + (fa = f2) (fs = fo) (fo — /1) (da?)?
+ (fa = f3)(fs = F)(Fs = f2)(d2®) + (fa = f)(fa — fo) (fa — f5)(da")?,

where f1, h1, k1, [1 are functions of the variable xt only and fo, f3, f4 are functions of the
variables 22, 23 and z* respectively such that f; < fo < f3 < f1. We add a last example
to this list found by inspection of the Robertson conditions (2.2). Consider the Stéckel

matrix
1 519 asi2 si12
0 1 s23 so3
S = ,
0 0 533 534
0 0 543 sua

where s;; = s;; (ac’) arbitrary functions of the indicated variables. Then we can check
directly that the generalized Robertson conditions are satisfied and we obtain the following
expression for the corresponding Stackel metrics

o= fasf (1) [fasy

S12

1 dz? 2 dz? 2
+ ( ) ((533844 — 534543) ( () + (=) :
So3 — 1 S44 — 843 833 — S34

Note that such metrics are warped products and that the metrics between square brackets
are also warped products.

We end this section by giving some existence results for the conformal factor ¢(x) appearing
in Theorem 1.6, in the case in which M is a smooth compact manifold of dimension n > 3, with
smooth boundary M. We recall from Theorem 1.6 that the conformal factor ¢(x) must satisfy
a non-linear PDE of Yamabe type, given by

Ayc™ 2+ f(x)c" 2 = A" =0,
where

851

f(x) =
et det S

(b — Pg) | — a1,

2

and where ¢3 = ¢ (xﬁ ) are arbitrary smooth functions. Setting w = ¢" %, we are thus interested

in solutions w = ¢"~2 of the non-linear elliptic PDE:

n+2

Agw + f(x)w — dwn=2 =0, on M,
w=m, on OM, (2.5)
where 7 is any suitable smooth positive function on M. We can solve (2.5) by using the

well-known technique of lower and upper solutions which we briefly recall here. Setting

n+2

fxw) = f(x)w = dwn=z,
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we recall that an upper solution w is a function in C2(M) N C°(M) satisfying
Agw+ f(x,w) <0 on M, and Wan = 1-

Similarly, a lower solution w is a function in C%(M) N C°(M) satisfying
Agw + f(x,w) >0 on M, and Wigm <0

It is well-known that if we can find a lower solution w and an upper solution w satisfying
w < w on M, then there exists a solution w € C*°(M) of (2.5) such that w < w < w on M.
Now, we can prove the following result:

Proposition 2.4.

1. If A\ > 0 and f(x) > 0 on M, then for each positive function n on OM, there exists
a smooth positive solution w of (2.5).

2. If X <0 and f(x) < XA on M, then for each for each positive function n on OM such that
n < 1, there ezists a smooth positive solution w of (2.5).

Remark 2.5. Since % > 0 by the hypothesis (1.9), we see that the assumption f(x) > 0

on M (resp. f(x) < A on M) is satisfied if the ¢3’s are chosen sufficiently large (resp. —¢g are
sufficiently large).

Proof. 1. We use the technique of lower and upper solutions. We define w = € where ¢ > 0 is
small enough. Thus, w <7 on M and we have

Agw + f(x,w) = e(f(x) — )\e%_l) > 0,

so w is a lower solution. In the same way, we define W = C' where C is sufficiently large. Thus
w > n and we have

AT+ f(x, W) = C(f(x) — ACn2 1) < 0.

It follows that w is an upper solution and clearly w < w. Thus, there exist a smooth positive
solution w of (2.5) satistying e < w < C.

2. In the case A <0, f(x) < Aon M and n <1 on OM, we define w as the unique solution
of the Dirichlet problem

Agﬂ"‘ f(X)w =0, on M,
w=m, on OM.

The strong maximum principle implies that 0 < w < maxn on M. Moreover, Ajw + f(x,w) =

—)\(Q)% > 0. Hence w is a lower solution of (2.5).
Now, we define w as the unique solution of the Dirichlet problem

n+2

Agw + f(x)w = f(x)(maxn)»=2,  on M,
w=m, on OM.

According to the maximum principle, we also have w > 0 on M. Setting v = W — max€, we see
that

n+2

Agv + f(x)v = f(x)(maxn»—2 — maxn) >0,

since 7 < 1. Hence, the maximum principle implies that v < 0 on M, or equivalently w < max.
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We deduce that

n+2 n+2 n+2

Agw + f(x,W) = f(x)(maxnn—2 —wn-2) + (f(x) = N)w 2 <0,

since f(x) < A. Thus, w is an upper solution of (2.5). Finally, w — w satisfies

n+2

Ag(W —w) + f(x)(W — w) = f(x)(maxn)»—2 <0, on M,
w—w =0, on OM.

Then, the maximum principle implies again w > w. Then according to the lower and upper
solutions technique, there exists a smooth positive solution w of (2.5). |

We conclude by remarking that there exist important classes of n-dimensional metrics of
physical interest for which the geodesic flow admits [n/2] — 1 Poisson-commuting quadratic first
integrals arising from the presence of a principal Killing—Yano tensor with torsion. We refer
to [19, 24] for results on their local classification and normal forms.

3 Generalized Killing—Eisenhart and Levi-Civita conditions

The proofs of the main results of our paper, that is Theorems 1.4, 1.5 and 1.6, make use of
generalizations to Painlevé metrics of the classical Killing—FEisenhart equations and Levi-Civita
separability conditions which hold for Stéckel metrics (see for example [2, 3, 18, 25, 26, 38]).
We present these generalizations in the form of the following two lemmas, beginning with the
Killing-Eisenhart equations. Thus in analogy with the Stéckel case, we introduce the quantities

1B

PBY = 1 (3.1)

Note that by the assumption (1.9), we have s7' # 0. The following lemma gives the generaliza-
tion to the case of Painlevé metrics of the Killing—Eisenhart equations given in [2, 3, 18, 25, 26]
for Stackel metrics:

Lemma 3.1. We have, for all 1 < 8,9,v < r, the identities

61
5
03 935) = (o, = p35) (03,102 5 ) (32)
We will refer to (3.2) as the generalized Killing—Fisenhart equations.

Proof. The Poisson bracket relations (1.17) imply

l‘/
> (0 KGR = (09 KK ) =0, (33
py=1

where 1 < is,js <5, 1 < ky <lyand 1 <4,y < r. Using the expressions (1.16) of the Killing

tensors (K(lg])‘s), the fact that 0;, (G/B)iﬁjﬁ = 0 for B # v, and the fact that each of the [, x [

matrices ((Gv)ivj W), is invertible, we obtain that the relations (3.3) are equivalent to

5 g1 1B 5 598 $71 \
[pv (ms)]dts‘[ (dtS)]dtSO (3-4)
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where 1 < 0,7 <r, 1, < py <l,. In particular, the relations (3.3) are independent of the block
metrics (1.11). Setting 6 =« in (3.4), we obtain

7P
I, <S,y1> =0,

for 1, < py <1, so that using the definition (3.1) of the quantities pg., the relations (3.4) take
the form

851 g1 861 g
Oy, (5 ) e = (0, (22 ) ) iy —e
P\ det S ) det S Pr\ det S Tdet S’
which in turn reduces to (3.2), thus proving our claim. |

In order to state the generalization to Painlevé metrics of the classical Levi-Civita conditions
which hold for Stackel metrics, we make the hypothesis

P35 7 PBes V1i<p<r, VI<di#e<r (3.5)

The generalization of the Levi-Civita conditions to the Painlevé case is now given by the
following;:

Lemma 3.2. A generalized Stickel matriz (1.8) corresponding to a Painlevé metric (1.10) for
which the genericity hypothesis (3.5) holds true satisfies, for all 1 < B,y <, the identities

Sfyl Sal 861 S'yl
(00100 (s ) ) (0010 (s ) ) + (2100 (i) ) (9w (i)

det S st
- STajaakﬁ ((M) - O (36)
In particular, we have the identities
o 0 det S
Qe Juhs (salsm) =0, (3.7)

foralll <a,B<r.
We will likewise refer to the identities (3.6) as the generalized Levi-Clivita conditions.
Remark 3.3.

1) In the case of Stéckel metrics, that is when r = n, the conditions (3.6) reduce to the
classical Levi-Civita conditions, given by

il 5il gkl il
(o108 (s ) ) (21102 (s )) + (2 (s ) ) (010 (i)

det S i
- ajak( > >—o.

det S

2) We shall show at the end of the next Section 4 that the generalized Levi-Civita condi-
tions (3.6) hold in fact for all Painlevé metrics (1.10) without assuming our genericity
hypothesis (3.5). Nevertheless, it is easier to obtain them from the Killing-Eisenhart
equations under the assumption (3.5) as we do below.
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Proof. The general idea behind the proof is similar to the one that is used in the classical
Stackel case, and is based on expressing the integrability conditions for the generalized Killing—
Eisenhart (3.2), with additional twist resulting from the fact that the separation is in groups of
variables only. We let 1 < a # 8 < r denote fixed indices and introduce the simplified notation

598
Ps = Pps = ik

so as to make the expressions a bit more compact. The generalized Killing—Eisenhart equa-
tions (3.2) thus take the form

51
Op,ps = (py — ps) <3py (l 0g = tS>>

where 1 < 4,y < r. The integrability conditions

Ok, (Op,ps) = Op, (Ok.ps) (3.8)

are now easily obtained. We have

el $01 $01
Ok (Op, ps) = [(pe — pvy) Ok, log (det5> — (pe — ps) O, log <det S)] Op., log 10t S

851
+ (py — p5)Ok Oy, log <detS> ;

so that (3.8) becomes

(o () e ()
(o8 (i) ) (00 (qies))
() o)) an() e o

where 1 < e # v <rand 1< <r. Using the rank hypothesis (3.5), expanding the logarithmic
second derivative in (3.9) using the identity

Ony o8 | = 0.0, = (0,108 1)(0, 1081) (3.10)

and relabeling the indices, we obtain

9, log [ o log 5 9 108 (= (100 (=
(5108 (s ) ) (208 (s ) ) + (20108 (s ) ) (20010 (i)
det S 1t
L Dia ks (detS) =0

which is precisely (3.6). Finally, the relations (3.7) are obtained by setting § = € in the integra-
bility condition (3.9), using the identity (3.10), and the fact that the cofactors s7* and s are
independent of the groups of variables x7 and x¢ respectively. |
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4 Different characterizations of Painlevé metrics

Let us start with the characterization of Painlevé metrics in terms of complete additive separa-
bility of the Hamilton—Jacobi equations stated in Proposition 1.2.

Proof of Proposition 1.2. In block orthogonal coordinates (x®) associated to the metric

T
g = Z COZGOM
a=1

the Hamilton—Jacobi equation (1.3) reads

ii 0 0
z 33 (@) e o —B=m, (4.1

ta=1la ja=1la

where ¢® = (c,)~!. Assume that there exists a solution W in the block-separable form (1.12)
satisfying the completeness condition (1.13). Then (4.1) can be written as

L g OWa OW,
Yy Y @) % aZV —E—a. (4.2)

Differentiating (4.2) with respect to ag, we get

yio L OW, 0°W,
Z Z Z " e Bagn 0 (43)

a=1 ia=la ja=1la

From (1.12) and (1.13), it follows that the family of matrices

iaja 8WOL 82 WOL

S(a1,...,ar) = (Sap)(ar, ..., ar) == 2(G*) dzie dagdrio

are non-singular stéckel matrices of rank r for all (aj,...,a,) € U. Using the invertibility
of S(ay,...,a,) which is equivalent to the completeness condition (1.13), we get immediately
from (4.3) that

al
o S

~ detS’
which proves that g is a Painlevé metric.

Conversely, assume that g is a Painlevé metric of the form (1.10). Then the Hamilton—Jacobi
equation (1.3) takes the form

T

za L, OW oW
Z (det S) Z Z ’ i Yyl =E=a. (4.4)

ta=1la Ja=1a

Now, since

S Y s =
— \det S of = %16

we may rewrite (4.4) as

aviajo OW OW -
detS Z Z G ’ Oxie Opio ;Saﬁaﬁ =0, (4.5)

ta=la ja=1la
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for any (a1,...,a,) € U C R". Choosing W in the block-separable form (1.12), we see that any
solution of the reduced Hamilton—Jacobi equations

inja Wa OWa
Z Z (G e ﬁzsw% (4.6)
=1

ta=la ja=1la

will provide a solution of (4.5). But the latter equation always admit locally solutions W, (x“
ai,...,a,) by standard PDE results [42]. Differentiating (4.6) with respect to ag, we obtain

Ll i (W [ O*W,
22 Z Z (Ga) ’ <8azia> <8a58$ja> = Sar:

a=1lig=1a jazla

Since the generalized Stéckel matrix (1.8) is to be non-singular, it follows that the rank condition
that must be satisfied by our block-separable parametrized family of solutions of the Hamilton—
Jacobi equation is precisely (1.13), thus proving that metrics of the Painlevé form (1.10) are
indeed characterized by the existence of a parametrized family of solutions of the Hamilton—
Jacobi equation satisfying a suitable completeness condition. |

Let us now give another proof of Proposition 1.2 that will allow us to characterize Painlevé
metrics in terms of the generalized Levi-Civita conditions (3.6). Working in block-orthogonal
coordinates or directly with a Painlevé metric with the identification

det S

(6 N,
- gal

(4.7)

Cc

the Hamilton-Jacobi equation (1.3) takes the form

iajo OW O
zc 33 (oo e O — B =a (48)

ta=1la ]a—la

We recall that we seek a solution W of (4.8) which is additively separable into groups of variables,
that is

W = zr: W, (xo‘
a=1

and let

i OWa OW,
Z Z G ! :L'la 6$3a

ta=la ja=1la

in which case the Hamilton—Jacobi equation (4.8) takes the form

T

Z Cull) = ay.

a=1

Differentiating the latter equation with respect to x*3, we obtain the first order differential
system in normal form
1 i (8 ) (1) _ 6
dpuld = T 2 Fr)ua’ =5,
fchal a=1

0 Y # B

(4.9)
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Introducing the first-order differential operators

0 1 o 0
- _ = ), (1)
Dy i= o5 = 5 > (Okyc®)ul] PO (4.10)
a=1 uﬁ
the differential system (4.9) will admit a family of solutions u((ll) = u&l)(:nl, conxan, ... ,ar)
defined on an open subset U € M and depending smoothly on r constants (ai,...,a,) defined

in an open subset A C R", satisfying the rank condition

0
det (a“a ) £ 0, (4.11)

Jag
if and only if the operators (4.10) pairwise commute, that is
[Dys, Dj, | =0 (4.12)

forall 1 <a,8 <7, 14 < jo < la, 15 < kg < lg. We refer to [2, Theorem 2.1] for this result.
Note that if (4.12) hold, then the Hamilton—Jacobi equation admits locally a solution which is
additively separable into groups of variables and satisfies the completeness condition (1.13) as
a consequence of the completeness condition (4.11). In consequence, such metrics are of the
Painlevé form (1.10).

We now prove that the commutation relations (4.12) are equivalent to the generalized Levi-
Civita conditions (3.6). Note that this is a natural generalization of the link between the
complete separation of variables which is familiar from the Stéckel case and the classical Levi-
Civita separability conditions, as reviewed in [2, 27]. Indeed, we have

Lemma 4.1. The pairwise commutation relations (4.12) for the derivations Dy, are equivalent
to the generalized Levi-Civita conditions (3.6).

Proof. Substituting the expression (4.10) of the differential operators Dy, into the commutation
relations (4.12), we obtain

1 < 1< N o)
o (AR 0]+ i S 0.2 | S

1 " 1 o 8
e (FE O ) ¢ iy X 000 =0

a=1

+

For 1 <~ # 8 < r, the above identity is equivalent to
1
(8k6 log c”) (8;,W log ca) + (6;% log co‘) (8,,7 log cﬁ) — C—a@kﬂﬁpwca =0, (4.13)

which are precisely the generalized Levi-Civita conditions (3.6) after relabeling of indices. Note
that for 1 <~y = g < r, the above identity is always satisfied by a straightforward calculation. W

At this stage, we thus have proved another characterization of Painlevé metrics which appears
in [10, p. 12].

Proposition 4.2. A metric g is of Painlevé type if and only if there exist block orthogonal
coordinates (:Ea) such that the generalized Levi-Civita conditions (4.13) hold.
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We finish this section giving still another characterization of Painlevé metrics of a more
intrinsic nature. The starting point is the observation that the generalized Killing—Eisenhart
equations are related to the existence of quadratic first integrals (or symmetries) K(g) by the
following result proved in [10, Proposition 5.3] (see also Lemma 3.1 for an implicit proof of this
proposition)

Proposition 4.3. In block orthogonal coordinates, we have that

(H. K} =0
if and only if the Killing—Fisenhart equations

9;,(pss) = (psy — pps) (9, log &), (4.14)
hold for all 1 < ~,6 <.

The second observation is the fact that the integrability conditions for the Killing—Eisenhart
equations (4.14) are given by

(psy — pas) | (05, log c‘s) (Oky log &) + (9, log ¢*) (0%, log 05) - C%akaajwc‘s =0,
for all 1 < a, 8,7, < r. Clearly, these integrability conditions can be shortened as
(pgy — pps) - [Levi-Civita conditions| = 0. (4.15)
Using these two observations, Chanu ad Rastelli proved in [10, Proposition 5.5] the following
characterization of Painlevé metrics.
Proposition 4.4. (M, g) is a Painlevé manifold if and only if

1) there exist r independent quadratic first integral Ky, 8 =1,...,7 such that K;) = H
and {H, K} = 0.

2) The associated Killing two tensors KZZ?) are simultaneously block-diagonalized and have
common normally integrable eigenspaces.

Proof. If g is a Painlevé metric, then the above assertions were already proved.

Assume now that there exist r linearly independent Killing tensors simultaneously in block
diagonal form. Then the generalized Killing—Eisenhart equations (4.14) will admit an r-dimen-
sional vector space of solutions. The latter is equivalent to the invertibility of the fundamental
matrix A defined by

pir ... Pir
A=1| :

Pr1 -+ Prr
Hence any solution (p1,. .., pr) of (4.14) is given by

P1 ai
o -y 7
Pr ar
for some constants (ay,...,a,) € A. It is clear then that the Killing—Eisenhart equations are com-

pletely integrable and thus satisfy the integrability conditions (4.15). Moreover, from the invert-
ibility of A, we can always choose the constants (a1,...,a,) such that p, # pg, V1< a#p3<r
at a point p € M and therefore in an neighbourhood of p, by continuity. Hence, the integrabi-
lity conditions (4.15) reduces to the generalized Levi-Civita separability conditions (4.13). We
conclude that ¢ is a Painlevé metric from Proposition 4.2. |
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As a concluding remark for this section, we emphasize that the hypotheses (3.5) that we make
to deduce the Levi-Civita conditions from the Killing-Eisenhart equations aren’t in fact neces-
sary. Indeed, it follows from Proposition 4.2 or Proposition 4.4 that the Levi-Civita conditions
always hold whenever g is a Painlevé metric, that is a metric of the form (1.10).

5 The generalized Robertson conditions and the separability
of the Helmholtz equation

Assume that the manifold (M, g) admits locally block-orthogonal coordinates (xo‘) such that
T
g = > cgGpa. Then using the same calculation that led to the expression (1.19) of the Laplace-
B=1
Beltrami operator, the Helmholtz equation (1.25) for such a metric reads

r lB
Zcﬁ —Ag, + Z V80, | u = ayu, (5.1)
p=1 is=l1p
where ¢ = (cg)~! and
s oG
s 5 7‘,3.],3 ' Cl cee
o= 3 (@) [l
ig=1g

,
We shall say that a block diagonal metric g = ) c3Gg satisfies the generalized Robertson
=1
conditions if and only if the differential equations

8¢a’yjﬁ =0, Vi<a#p<r, (5.2)

hold.
Note that under the assumption (5.2), we may write the Helmholtz equation (5.1) as

-
Z cﬁBgu = aiu,
B=1

where the partial differential operators Bg, 1 < 3 < r, defined by

lg
Bg:=—Ag, + Y 770,
js=1gs
now depend on the group of variables x? only.

In this section, we want to prove

Proposition 5.1. Assume that the manifold (M, g) admits locally block-orthogonal coordinates
and satisfies the Robertson conditions (5.2). Then g is a Painlevé metric if and only if there
exists a parametrized family of solutions u of the Helmholtz equation (5.1) which is product-
separable into groups of variables, of the form

quuB(xﬁ;al,...,ar), (5.3)
B=1

and satisfies the completeness condition

det (aaa (BZZB» £0. (5.4)




26 T. Daudé, N. Kamran and F. Nicoleau

Proof. Assume that g is a Painlevé metric. This means that cz = dse;ls . Then the Helmholtz
equation (5.1) may equivalently be written in terms of the generalized Stéckel matrix S = (sq3)
and a set of arbitrary real parameters (a; := A, ag,...,a,) defined on an open subset of A of R"

as

T T
Z ¢’ | Bg — Z 35aaa] u=0. (5.5)
p=1 a=1
We now consider a parametrized family of solutions u of the Helmholtz equation (5.5) which
is product-separable into groups of variables, of the form (5.3) where for each 1 < g < r, the

factor ug is required to satisfy the partial differential equation in the group of variables x? given
by

T
Bﬁu/g = (Z Sﬁaaa> ug-. (56)
a=1
We note that for Painlevé metrics of Riemannian signature on a compact manifold, it follows
by [20, Theorem 8.3] that the elliptic partial differential equation (5.6) admits a unique solution
if the parameters (a1 := A, ag,...,a,) are chosen so that the non-positivity condition

r
Z Spala < 07
a=1

is satisfied (at least locally).

The form of the separated equations (5.6) and the assumption that the generalized Stéckel ma-
trix is invertible imply that our parametrized family of block-separable solutions of the Helmholtz
equation must satisfy the rank condition (5.4), i.e.,

det <aaa <BB“5>> £ 0.
ug

We now prove the converse statement, namely that the existence of a parametrized family of
block-separable solutions (5.3) of the Helmholtz equation satisfying partial differential equations
of the form

T
Z ¢’ Bgu = ayu, (5.7)
A=1

and the rank condition (5.4) implies that the underlying metric must be of Painlevé form.
Substituting u of the form (5.3) into (5.7) gives

T

Bsu
Zcﬁiﬁ A =ai.
=1 P

Differentiating the latter equation with respect to a,, we obtain

S (%) -

=1 e
Letting
Bsu
SBa :aa"‘ ( o 6)7
ug

we obtain the expression of ¢ for a Painlevé metric as given in (4.7). [



Separability and Symmetry Operators for Painlevé Metrics 27

Remark 5.2. From (5.6) and the fact that the Stéckel matrix S is invertible, we conclude that
the product separable solutions (1.26) satisfy eigenvalue equations of the form

Tou = ayu, 1<a<r, (5.8)
where the T, are the linear second order differential operators given by
T Sﬁa

ZdetS A

They will be shown in Theorem 1.5 to be identical to the operators A, defined by (1.28).
Hence the separation constants ai,...,a, can be understood as the natural eigenvalues of the
operators AK(Q).

6 Proofs of the main theorems

6.1 Proof of Theorem 1.4

The fact that the generalized Robertson conditions (1.20) are sufficient conditions for the product
separability of the Helmholtz equation (1.25) in the groups of variables associated to a Painlevé
metric follows from Proposition 5.1.

What remains to be done in order to prove Theorem 1.4 and what constitutes our main
task is therefore to show that the generalized Robertson conditions are equivalent to the condi-
tions (1.27) on the Ricci tensor, thus generalizing the classical result of Eisenhart [18] to Painlevé
metrics. In order to do this, we will show that

3 (det S)"—2 1
Bjaks = Zajaakﬁ o [(sll)ll . (srl)lT - ZTJQkB’ (6:1)
where
solgfl det S
T]akg (l + lﬁ — 2) dot S 0 aakﬁ (50‘1551>
71 Sal
+ Z [( i logd S) (8’% IOgdetS)
v#ao,f=1
sP1 s det S sM
<8ja log T tS) <8kﬁ log detS> A 0joOks (detS)] . (6.2)

We note that the expression (6.1) of the off block-diagonal components of the Ricci tensor R;_x,
is independent of the r Riemannian block metrics Gg, 1 < 8 < r defined by (1.11). We also
remark that the first term in the expression (6.2) of Tj,,, involving second derivatives, vanishes
identically in the special case of Stackel metrics since the pre-factor I, + g — 2 is zero in that
case.

Once we will have established (6.1), it will then follow from Lemma 3.2 and more precisely
from the generalized Levi-Civita conditions (3.6) and (3.7) that the generalized Robertson con-
ditions (1.20) are indeed equivalent to the vanishing conditions (1.27) on the non-block diagonal
components of the Ricci tensor. We therefore proceed to establish the form (6.1) of the Ricci
tensor for a Painlevé metric.

The expression of the Ricci tensor in terms of the Christoffel symbols is given by

Rjakﬁ = Rlljakﬁ = all“ljakﬁ - 8jaFllkB + ijakﬁrllm — lekﬁrljam, (6.3)
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where the summation convention is applied with 1 < [,m < n = dim M. In order to compute
the right-hand side of (6.3), we will need expressions for the Christoffel symbols of a Painlevé
metric (1.10). Using the standard formulas

Thii = ~(0 0 0 Iy = g'*T

hji = 5( hgji + 0jgin — Oignj), hi = 9 L hjk;
and writing the Painlevé metric (1.10) in block-diagonal form as
r la la ' '
ds? =3 > D Gadisoda’oda’,
a=lig=1lg ja=1la

we obtain for fixed indices 1 < o, 8 < 71,

la

) ]' 'a 1%
I kg = 2 Z (9%)""* 035 (90) kapa
pazla
1 & ;
F]’Biaka = ) Z (gﬁ)mpﬂapg (ga)iaka for o #p, (6'4)
pp=lg
and
1 &
L ke = 2 kz; 9" (OhaGjaka + OjaIhaka — OkaThaje)- (6.5)

In view of the expressions (6.4) of the Christoffel symbols, it is convenient to split the sum over {
appearing in (6.3) into three sums, the first sum corresponding to the values of the summation
index [ lying in groups of indices different from the groups corresponding to « and 3, and
the remaining two to the values of I belonging to the groups of indices labelled by « and [
respectively. Thus we write

Rijoks = ZRllJak/s Z Z pwakaJr Z Rpaj k,e+ Z PBJ kg (6.6)

v#a, B=1py=1, Pa=la pg=lg

Let us begin with the first term. We have, for v # «, 3,

by
m&.
2 Ry = Y At XY P
py=1y py=1y Py=1y ma=la
ly lg
+ g E I Ejakﬁrpwpvmﬁi r p " jamey (6.7)
py=lymg=lg Py=ly my=1y

where the summations have been written out explicitly to avoid notational ambiguities. We begin
with evaluating the first-derivative term on the right-hand side of (6.7) using the expressions (6.4)
for the Christoffel symbols, thus obtaining, for v # «, 3,

by by by
1 n 1
Z aja]‘—‘p’yp'ykﬁ _ 5 Z Z a.a ((gw)Pv ’78]%((9’7)11«,%7)) = §8jaak5 10g(|g’Y|)7 (68)

Py=1ly py=ly ny=ly
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where |g,| := det(g;,;, ). It follows that

T T

l"f
Z Z 05 TP p kg = %ajaakﬂ H log(|g!)

Y#a, f=1py=1, y#a, =1
From the Painlevé form (1.10), we have

det S

Giviy = ST(G’Y)HJM (6.9)
so that
(det S)!
|97’ = ’ 7‘-

Using the fact that |G| is a function of the variables x” only, we obtain

r Iy r
1 det S
Z Z TP iy = 5 Z 140j,Oks <log ( = >> .

v#a, B=1py=1y Y#a, =1

We notice that the above expression is independent of the quadratic differential forms G,, defined
by (1.11).

Next we evaluate the terms quadratic in the Christoffel symbols in the right-hand side of (6.7).
Again, we use the fact that v # «, 8 and the fact that in the Painlevé form (1.10), each of the
quadratic differential forms G, defined by (1.11) depends on the group of variables x* only. We
have

la

l"/
E E Me P
F Qja kﬁ F ’Yp’ymoz

ma=1la py=14

la ly la
Z Z Z (ga)munagkg((ga)jana)gpvhvama((gw)pyhy)

Mma=1a py=1y na=1q

|

la la
= - Z Z (ga)manaak‘ﬁ((ga)jana)ama 10g(|g’YD

Mma=1a Na=1la

A=

al

l l
= = o\ MaNa det S
> Y g6 (5 Godien. ) O o)

Ma=1la Na=1la

FN

la

l
~ det S (det S)-
> 2 omantos (5 ) owe s (50 )

Mma=1la na=1la

_! <ak5 log (d‘jls» (aja log (&2;)) . (6.10)

We notice that the above expression is again independent of the quadratic differential forms G,
defined by (1.11). Likewise, we obtain for the next quadratic term in the Christoffel symbols
that appears in the right-hand side of (6.7),

lg Ly 1 851 (S'yl)l’v
Z Z Fmﬂjakﬁlﬂpvmmﬁ =1 <8ja log (detS)) Ok log W . (6.11)

mp=1lg py=1ly

=

W
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For the third and final quadratic term, we have
by by 1 1
m 1 m s7 s7
D D D (W (dets)) 7o (00008 (5
my=1y

my=1y
1 s'yl s

which is likewise independent of the quadratic differential forms G, defined by (1.11). Putting
together the expressions (6.8), (6.10), (6.11) and (6.12) we obtain

r

R = Lo, o t0s (5
Z Pyjaks Z v | g% ks 8 det S

1<y#a,B<r vy#a, B=1

() (e ()
o ne () (e ()
Sl (i) o

We still need to evaluate the curvature components R"® pejoks and szf; Jaks? which will require
a separate calculation. We have
la la
. TP
Z pa]akﬂ Z Op, I Jakg ™ Z 9;,I' “paks
Pa=la pPa=la Pa=1la
la la la
m,
+ § E : r ajakﬁ pama + E : E : F pamﬁ
Pa=1la ma=lq Pa=1la mg= 1[.;
la la la lg
_ 5 E I‘mapakﬁrpcxjama _ E E Fmﬁlakﬁrpajam57 (614)
pazla ma=1la pa:1a mgzlﬁ

where again we have written out the summation signs explicitly to avoid notational ambiguities.
We have, using (6.4),

1 det S
Fpajakﬁ = 56 ]aakﬁ <10g< >> ) (615)

al

so using the fact that the cofactor s** is independent of x%, we obtain

= 1
D TPy = §0ja8k5(log(det 9)), (6.16)

Pa=la

and a similar calculation gives

l
> 9Pk = 5ajaakﬁ(mg ((det S)=)). (6.17)
Pa=la
We now evaluate the quadratic terms in the Christoffel symbols that appear in the curvature
component (6.14). In order to do so, we substitute into the expression (6.5) of the Christoffel
symbols the expressions

det S
(ga)z‘aja = ?Ga,
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which result from the Painlevé form (1.10). We obtain the following expressions for the Christof-
fel symbols,

- Za (G*) " (G o) hoju Ok (l0g (det 9)) |, (6.18)

where the e hejo denote the Christoffel symbols of the block metric G, given by (1.11). It then
follows from (6.18) and (6.15) that

la lo
Ma Pa
2 2 D™k e

Pa=la ma=1q

det S Lo 1
8;% (log < >> Z VP e §la8ma(log (det 9)) | - (6.19)

Pa=la
Similarly, using (6.15) and (6.18), we obtain

la la
m,
Z E : I apakﬁrpajama

Pa=la ma=1a

det S o 1
81% <log < >> Z Y pa T §la8ma(log (det 9)) | (6.20)

Pa=1la
It follows therefore from (6.19) and (6.20) that
la la
3N = Y Y I, <0
Pa=la Mma=1q Pa=la Mma=1q

We now evaluate the remaining difference of two double sums in the expression (6.14) of the
curvature, using the expressions

" 1., det § m 1 (det S)le
o ((52) o= (2525))

for the Christoffel symbols, to obtain

la la la ls
Mo . Pa _ m Po .
Z Z I Gakg I pama Z Z L1 eg T jamg

Pa=la ma=1la Pa=la mg=1g

= (o~ 15, (log (‘Eﬁf)) O, <log <det5>) . (6.21)

Substituting the expressions (6.16), (6.17), (6.19), (6.20) and (6.21) into (6.14), we obtain

l
Z Rp;oz]akﬁ 9 8jaak5 (log(det S))

Pa=1la
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oo (5o (). o

and similarly

l
e 1 . l
P B
Z R;ﬁjakﬁ - Tajaakﬁ(log(det S))

pp=lg
1 det S det S
+ Z(lﬁ - 1)8]a (log <S‘ﬂ>> 8kﬁ <10g ( >> . (623)

We now substitute the expressions (6.13), (6.22) and (6.1) into the decomposition (6.6) of the
off-block diagonal Ricci curvature components R;,x, to obtain, for a # j3,

det S
Rjakﬂ Zl ajcﬁkﬂ <log< ¢ )) +8jaakﬁ(1og(det S))

'y 1

1 det S det S
+ Z(la + lﬁ — Q)aja <10g (S,Bl)> akﬁ (log < >>
1 [akﬁ (log <det5’>)a (log <det5’>)
v#a B=1 s

o (42 (45)
o (352 (e (45)]

We observe that since the cofactors s*! and s°! are independent of the groups of variables x®

.
and x? respectively and since 3 I, = n, we have
a=1

Zz 0;. O (log <det 5 >) + 0}, Ok, (log(det 5))

1. (det S)"—2
_23]a8kﬁ log [(sll)h - (Srl)lr .
We write
I (det )2
_iajaakﬁ log [(Sll)ll o (Srl)lT]

(det )2
(511)11,,_ (Srl)lr

and compute the second term in (6.25) as follows

(det )2

(Sll)ll...(srl)lr] ’

(6.25)

3 1
_Z8jaakﬁ log [ + 18ja8kﬁ log [

(det S)"—2

(s1)" - (S“)l’”]
1 (det S)™ (det S)latls—2
iajaakﬁ Z log ( > + log < galghl

1<y#a,B<r (571) h

1
Zajaakﬂ 10g [
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Evaluating the derivatives an using the fact that the cofactors s*! and s°! are independent of the
groups of variables x* and x®, we conclude that the expression (6.24) of the off-block diagonal

Ricci curvature can be written as
(det )2 1 51501 det S
(o +1g — 0;.0, _—
+4( T8 )dtS Jo ks \ galgBl

(511)11 . (Sm)lv-

')/1 Sal 8'81 571
* Z ( dtS> (8 o8 fer s tS) (aj&logdets) <%lgd tS)

y#ao,f=1
det S st
sl DiaOhs (detS)'

This completes the proof of Theorem 1.4.

3
RjQ]% = —Zajaakﬁ log [

6.2 Proof of Theorem 1.5

Our proof follows the structure of the one given in [3] for the special case of Theorem 1.5
corresponding to Stéckel metrics satisfying the classical Robertson conditions (1.7). We shall
begin from the general expression for the commutator of two operators of the form

r l
My =SS S0 Ao, 430 S Ba,

Y=liy=1y jy=1y y=1jy=1y

and analyze this expression for the case where A K(a, is given by

AR = KU Vi) Z Z Z Vi, (K zmv 2)s

Y=Lliy=1y jy=1y

where the ( (a )) are the Killing tensors defined by (1.16). We shall then prove that the commu-
tator is identically zero for all Painlevé metrics satisfying the generalized Robertson conditions.
We shall see that the generalized Killing-Eisenhart equations (3.2) established in Lemma 3.1
play a key role in the analysis of the commutator.

We have

l'y 6 6 . .
[Asy Brcn] = Z Z D3 D (24 0 A — A0 AL )95, 00.0p,

Y,6=1iy=1y jy=1y ke=1c pe=1c

(2] . . kepe _ (2] . . kepe ],8 . kepe
(A 0003 Ay = AG) 00,01, ACT + Biay 03, Ay

- B {g)aﬁAl(z})%)a’% Op. + 2(43@” 0, B — Aéﬂ)‘”a BP<)0;, 0p,

 (A10,03 Bl = 00,0, B, + B0, B

Jy Pe
~ B0, BL:)) 0y, }- (6.26)

We will now evaluate the coefficients of the third, second and first derivatives in the expres-
sion (6.26) of the commutator for Painlevé metrics satisfying the generalized Robertson condi-
tions, and show that must vanish identically.

Over the course of the calculations, it will be useful to rewrite the expressions (1.16) of the
block components of the Killing tensors (K Zi )) in the form

. v1
KZ’Y]”I —_ s

(@ = Porggg (Gv)im = Pary (gv)im’ (6.27)
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where the quantities p,. are defined by
s
Pay = "ST7 (6.28)

in which case we obtain

871

iyJy _ gvdy YYivIv _ ¥\ Evdv
By = ~pay Z Wriv, (6.29)

iy=1~

where

rkez——akelog lg]) — Z Z (96)kup. On, () rePe.

pe—l h =1,
Note that a standard calculation shows the important result:

Lemma 6.1. The generalized Robertson conditions (1.20) are equivalent to

05, Tky =0, Vi<a#pg<r.

We will compute the expressions of the derivatives of the coefficients Al(”a])7 and B?;) when
needed during the calculations, making use of the generalized Killing—Eisenhart equations (3.2).

We begin with the coefficients of the third derivatives in (6.26), whose vanishing is equivalent
to the condition

Ly

Z (Al(ZMJ)WaZVAI(%Z;e _ szﬁ)wa A’;;I))e) —0. (6.30)

iy=1y

We shall see shortly that in analogy with the Stéckel case, the vanishing of these coefficients
does not require the generalized Robertson conditions and holds true for all Painlevé metrics.
When the expression (1.16) of the Killing tensors (K, E(jl )) is substituted into the condition (6.30),
the latter reduces to

Z p GHIv [ §; p st (Ge)kepe+ s ) (Ge)kepe
‘”detS o\ det 5 Phedet 5
iy=1y

= E P G (o, (p s (Ge)kepe_i_ il ; (Ge)k& (6.31)
57det5 o\ det S Pac et 5 7 ' '
iy=1,

We now distinguish between the cases v = € and  # € when analyzing (6.31). If v = ¢, then
the derivatives of G¢ cancel out in (6.31) and using (6.28), the condition (6.31) reduces to

Iy o o Y8 B e
Y\ erdv () Rvpy 8" . 5 _ 5 ; > =
Z (G ) (G ) (detsaM (detS) detSaM (detS)) 0

iy=1y

But the latter is an identity on account of the generalized Killing—Eisenhart equations expressed
in the form (3.4). Likewise, if v # ¢, then using the fact that we have then 0;, (Ge)ksps =0, the
condition (6.31) becomes

by o Yo B B ca
Y\ vJy (e KePe § . 5 _° ; 5 =
> (@) (e) (detSa” (detS) det 5 (de)) "

iy=1y
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which is again an identity by virtue of the generalized Killing—FEisenhart equations expressed in
the form (3.4).

We now proceed with the coefficients of the second derivatives in (6.26), whose vanishing is
equivalent to the conditions

2l R . . . .
2 D (AT 005, (AGY) = Ay 06,05, (AGT) + Bioy 01, (AGF") = B3y 01, (A))

iy=ly jy=1y

ZE kg Ze ke €
+2 Z 0. (Bl5) — Alyy o1 (Bl)) =0, (6.32)
and
l"{ . . . .
Z (A 0i, (Bls) — AR 01, (BL)) =0, (6.33)
1y =1y

where the round brackets denote symmetrization of indices.
We begin with the condition (6.32), for which we will need expressions for the first and second

derivatives of A(”])"’ and Bg )~ Using (6.27) and (6.29), we obtain

1

iy _ § st v\ivd s Y\ I 57
616614(;/4)7 - <ake(pa'7)d tS +p0¢’Yake <det S>) (G ) s +pa7m8k€((G ) ! 7)5 €

Using the generalized Killing—Eisenhart equations (3.2), the preceding equation reduces to

ia 71 -
O A = pacd (dit S) (@) + b dst gk ((GM) 787 = pacdhe (7)) (6.34)

Likewise, we obtain the following expressions for the second derivatives of the coefficients AZ&])‘”

by using again the generalized Killing-Eisenhart equations (3.2)

Ok, Op ALY = pacOk.Op, ((97)77). (6.35)

This implies immediately that the first two terms in (6.32) cancel each other out, that is

Z Z (AL 03,05, (Ah) — A 03,05, (A(E))

iy=ly jy= 1'v
Z Z P (97)"7 30,03, (957 = Py (97) 7 P02, 05, (9°)F7] = 0. (6.36)
iy=ly jy=

By making use of the preceding remark, by observing that

B“ = Z A“’“FH, (6.37)

iy=1y

and by using the expressions (6.34) and (6.35) for the first and second derivatives of the coeffi-
cients A(“)”, the condition (3.7) becomes

- - iekg hepe iepg hgke _ hepe ieke _ heke iepe .
E_; hE_:l (A AG Ay A" — A Ay — A 4Gy ) 0ilh
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+Z Z (Afcheon (A{she) + ALEean, (Alsye) — Aleear (ALh

iePe 5. heke _
@ A3 0i(A(5y))Th, = 0.
te=1le he=1¢

@)~ Ap)

It is now easily verified that the second double sum in the preceding expression vanishes identi-
cally as a consequence of (6.36), and that the ﬁrsfc double sum is identically zero upon substitution
of the expressions (6.29) of the coefficients Aa])”.

Next we turn our attention to the condition (6.33), which we may rewrite, using (6.37), as

Z Z WvAhepe A?G?GA?J;) (8:,Th, — 0. T:)) = 0.

ty=1y he=1¢
We have
61 S’yl
@'the — 8heri7 = *8@8}16 (10g ot S) +8h58i4, (log det5> =0, (6.38)

since the factors of det S cancel out in the logarithmic derivatives, and since s (resp. s7!) is

independent of the groups of variables x¢ (resp. x7). Finally, we must show that the coefficients
of the first derivatives in (6.26) are identically zero. We shall see that the analysis of these
coefficients is slightly more involved than that of the second and third derivatives, and that the
argument needed to prove their vanishing makes use of the generalized Robertson conditions.

Using (6.37) the vanishing of the coefficients of the first derivatives in (6.26) is seen to be
equivalent to

Z Z Z Mh Akepe A’(fefl)’e A%V)a 0, Tk,

Ty=1, j«,:ly ke=1e

F5 S (A0 A A0, A

iy=1y jy=1y ke=1¢

(A ]{25 € 2 ke €
+2[A(“;a A(f)” A(ﬂ;a ALE)) 05, Tk,

- Z Z Z Z ’an A'{E)Tk{) AE’;)JWM(A’(“;’;T;%)):O. (6.39)
iy =1y jy=1y ke=1c my=1,

The second triple sum in (6.39) vanishes identically on account of (6.30) and (6.36). Likewise,
using again (6.30) and the expressions (6.29) for Al&])”, the condition (6.39) reduces to

ly by le
Z Z Z (Payppe — ,anpﬁ'y)(g ) 7]7( ) pe (8 ajwl—‘ke -1, (ajWer)) = 0. (6.40)

iy =1oy jiy =1y k=1,
In analogy with the notation used in [3], we introduce the tensor (C’ij) defined by

C% = Y (paryppe — Pacppy)(97) "9 T, (6.41)

Jy=1y

The final steps in the proof will be to show that (6.40) is satisfied if an only if the tensor (Cij)
has zero divergence, that is

r l
Z i vivciwke =0,

y=1liy=1,
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and that the generalized Robertson conditions are equivalent to C*; = 0. These are the
analogues for Painlevé metrics of the steps followed in [3] for the proof of the corresponding
result for the special case of Stdckel metrics satisfying the classical Robertson conditions.

We have

ro roly ro s
Z Z Vi-yci’yke = Z Z a’iqci’ykg +Z Z Fiﬂ{j’yhéchéke

v=1i,=1, y=1liy=1, §=1hs=15
r ls
h
—Z Z IRCFNATCLL TN I (6.42)
0=1ps=ls

Substituting into the expression (6.42) of the divergence the definition (6.41) of the tensor (C")
and the expressions (6.4) and (6.5) that were computed above for the Christoffel symbols of
Painlevé metrics, we obtain

r Iy r ly Iy .
D2 Vil =) Y D (Pavypse — Pachsy) [(@‘V (97)""")8p, T,

v=1liy=1, vy=11iy=1, py=14

i i s
+ (9’7) ’Yp’yai»yap’yljke — (gfy) Py (8p’YFk€) <8M log (M>

L ‘
— (O Th) | D (gv)h”p Ty, + 05, (7))
ho=1,
1 le le .
+3 > (VO gken) (97) (05, Ty, + aperj,y)] . (6.43)
hezle kezle

Substituting into (6.43) the expression (6.9) of the block components of the metric, we get

T l’y r l-y l,y
Z Z vi’}’ciwkf = Z Z Z (Powp,ee - powaV)(g’y)MpW [(aivapvrks - Fivap'yrke)
T=liy=1y y=liy=1ly py=1y
41 <a. <log o )) (0k.T, — 0,7 )] (6.44)
2\ det S <P Pyt ke) | '

We now remark that the first derivative terms O I'y, — 0p, 'k, in (6.44) vanish identically on
account of the identities (6.38), so that we finally obtain

T l’y r l»y l,y ]
Z Z VZ.WCM]% = Z Z Z (pom/pﬂe - pocspﬁ"y)(g’y)%ﬂhY
y=1iy=1, Y=1iy=1y py=14
x [(03,0p, T, — Ti,0p. k)] (6.45)

It therefore follows from (6.45) that (6.40) will hold if and only if the tensor C*vy,_ is divergence-
free. Recapitulating our steps, we have shown that the vanishing of the commutator [A K(a),A K B>]
is equivalent to the vanishing of the Poisson bracket {K(,), K(g)} and that of the divergence
of C*g,, that is,

' lv
(MK, Ak =0 <= {K@), K@} =0 and Z Z Vi, Cg, = 0.

y=liy=1,
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The proof of the commutation relations (1.29) is concluded by observing that the generalized
Robertson conditions (1.20) are equivalent to (Ci j) = 0 thanks to Lemma 6.1. Finally, it is easily
shown that the operators Ti,, 1 < o < r defined by (5.8) are identical to the operators A K(a)

defined by (1.28) by observing that the Killing tensor (K (Ii )) is block-diagonal, with components
given by

L. Ba L. .
igjs _ S B\isis igdy _
K(a) = detS(G ) ) K(a) =0 for S #~.

6.3 Proof of Theorem 1.6

We start from the expression (1.35) of the Laplace-Beltrami operator for the conformally rescaled
Painlevé metrics. We now rescale v defined by (1.33) according to

v = Ruw. (6.46)

So that the Helmholtz equation (1.35) when expressed in terms of w becomes

r $B1 s s g -
Z <det S) —AG + Z 177055 — 2 Z Z (GP)"%(0;,1og R)9;, | w
p=1 is=1p ig=1g jp=1g
AyR
i (qg’c St Jg%> w=0. (6.47)

The idea behind R-separability is that one choose the conformal factor ¢ appearing in the con-
formal rescaling (1.30) and the scaling factor R appearing in 6.46) in such a way that the
Helmholtz equation, when expressed in terms of w, becomes separable in the groups of vari-
ables x?, 1 < 8 < r under a certain condition on the conformal factor ¢. This is achieved in two
steps, the first one being to choose the scaling factor R so as to eliminate the first derivative
terms ~7# dj,w in (6.47). This is equivalent to R solving the overdetermined system of PDEs
given by

lg
2 ) (G)P(dilog R) =178,  15<js<lp. (6.48)
ig=lg

Using the expression (1.22) of the coefficients 775, we see that the system (6.48) admits a solu-
tion R given by

CORCOR

(det S)nT_2

50
4

which is precisely the scaling factor R given by (1.37), and which we shall work with from now on.
We may now compute the expression of R~'A, R appearing in (6.47), using the expression (1.19)
of the Laplace-Beltrami operator for Painlevé metrics and the fact that R solves (6.48). We
obtain after some calculations

l
AR (") |AqR | K, 05R
= [t
=2 <det s) rot 27
ﬁil jﬁilﬁ

T 851 1 lg ) 1 lp lg ) )
- Z detS |2 Z 0jgy’? = 4 Z Z (GB)isis7'?7"?
ps=1

Jg=lg ig=1g jp=l1g
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ls
1 .
+ 2 dj, (log |Galy?) | - (6.49)
Ip=1p

When the expression (6.49) of R™1A, R is substituted into the Helmholtz equation (6.47) satisfied
by w, the equation becomes

r 51 lg
Bz—:l<dizt5> R DIEEE DY Z (Ga)ings "7

JB 1 ig=lg jg=1g

lg
1 .
+ 1 Z 9j; (log|Galv?) | w+ (gg.c — A w = 0. (6.50)
js=1gp
To second step towards R-separability is to choose the conformal factor ¢ in such a way that the

equation (6.50) for w becomes manifestly separable in the groups of variables x%, 1 < a < r,
which is achieved by requiring that c satisfy the scalar nonlinear PDE

B1 s
Qg,c — =—a; + Z (dZtS) Z ajﬂm +7 Z Z (GB)igis 7

J =lg ’/3 1gip=1g

lﬂ
1 )
=7 > 95, (log|Galy’?) + s | (6.51)
Jg=1p

where a7 is a constant and the ¢g = ¢g (XB), 1 < 8 < r, are arbitrary smooth functions of
the group of variables x°. Using the definition (1.32) of g, ., we see that the PDE (6.51) may
indeed be rewritten in the form (1.36). Note that the equation (6.50) takes the form (1.38).
This concludes the proof of Theorem 1.6.

7 Perspectives and open problems

While the main results of our paper provide a convenient starting point from which to initiate the
study of the anisotropic Calderén problem in manifolds with boundary endowed with Painlevé
metrics, there are a number of questions that are left open in the above analysis and that call
for further investigation, not just from a separation of variables point of view, but also in a more
general differential geometric context. In particular, we would like to mention the following:

e It would be worthwhile to obtain more examples in closed form of Painlevé metrics which
are not of Stéckel type and for which the generalized Robertson conditions (1.20) are
satisfied. Given that the notion of a Painlevé metric can readily be formulated in an
arbitrary signature and in particular in Lorentzian signature, it would be of particular
interest to construct examples that would be solutions of the Einstein vacuum equations
in four or higher dimensions.

e One should be able to obtain an intrinsic characterization of the separable conformal defor-
mations and R-separability of the Painlevé metrics, considered in Theorem 1.6. Conformal
Killing tensors should be a key component of such a characterization [8, 27].

e While Painlevé metrics are a generalization of Stdckel metrics, which admit orthogonal
local coordinates by definition, the Stackel form admits an extension to non-orthogonal
coordinates [26], an important Lorentzian example of which is given by the Kerr metric
in General Relativity. It would be of interest to similarly extend the notion of a Painlevé
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metric to a non-orthogonal setting, where the expression of the metric (1.10) defining the
Painlevé form would be generalized to allow for the presence of cross terms between pairs
groups of coordinates x® and x” for av # 3. Again, some partial results in this direction,
which apply to the 4-dimensional Lorentzian case, appear in [23], and suggest that non-
orthogonal separability in this generalized sense would imply the existence of commuting
Killing vectors, as is the case with the Stéckel form [26, 48].

e The considerations of the present paper are all local, but there exist global classification
results for manifolds admitting Stéckel metrics (see [31] and the references therein). For
example, it is shown that in dimension two, a compact manifold which admits a sufficiently
generic Stéckel metric must be diffeomorphic to the 2-sphere, the real projective plane,
the 2-torus or the Klein bottle. It would be of interest to obtain analogues of these results
for Painlevé metrics which are not Stéckel.

e It would be of interest to characterize in analogy with the Stéckel case the scalar or
vector potentials which are compatible with the separation into groups of variables of the
Helmholtz equation in the class of Painlevé metrics.

Some of the above questions appear to be challenging, but progress on them would help to
improve our understanding of the geometries in which separation of variables can be achieved in
a broader and less restrictive sense than complete separation into ordinary differential equations.
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