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Abstract. We introduce a new class of friezes which is related to symplectic geometry.
On the algebraic and combinatrics sides, this variant of friezes is related to the cluster
algebras involving the Dynkin diagrams of type C2 and Am. On the geometric side, they
are related to the moduli space of Lagrangian configurations of points in the 4-dimensional
symplectic space introduced in [Conley C.H., Ovsienko V., Math. Ann. 375 (2019), 1105–
1145]. Symplectic friezes share similar combinatorial properties to those of Coxeter friezes
and SL-friezes.

Key words: frieze; cluster algebra; moduli space; difference equation; Lagrangian configura-
tion

2010 Mathematics Subject Classification: 13F60; 05E10; 14N20; 53D30

To Dmitry Borisovich Fuchs on his 80th birthday

1 Introduction

The notion of friezes goes back to Coxeter in the early 70’s [9]. Friezes are arrays of numbers
where neighboring values are related by a local arithmetic rule modeled on the group SL2. Cox-
eter’s friezes are surprisingly connected to many classical areas of mathematics such as projective
geometry, number theory, enumerative combinatorics [7, 9]. Many variants of friezes have been
recently studied in connection with more fields: cluster algebras, quiver representations, moduli
spaces, integrable systems, algebraic combinatorics, see, e.g., [1, 2, 3, 5, 24, 25].

In [24], we establish a property called the “triality” that identifies three different objects:
SLk-friezes, configurations of points in the projective spaces and periodic difference equations.
A main application of the triality is that the combinatorics related to friezes allows to describe
nice coordinate systems on the configurations spaces and in particular to exhibit a structure of
cluster variety.

In [6], Lagrangian configurations of lines in the symplectic spaces are identified with symmet-
ric periodic linear difference equations. Valentin Ovsienko suggested to complete the triality in
the case of Lagrangian configurations with a combinatorial notion of “symplectic friezes”. This
is what we do in the present paper in the case of 4-dimensional symplectic spaces by introducing
a new family of friezes that we call “symplectic 2-friezes”.

Lagrangian configurations in dimension 4 are interpreted as a discrete version of Legendrian
knots. Symplectic 2-friezes are a combinatorial interpretation of the space of Lagrangian con-
figurations modulo Sp4-transformations. In particular they give special coordinate systems that
provide a cluster variety structure on the moduli space of Lagrangian configurations.

The symplectic Lie group Sp4 appears in two ways. From an algebraic point of view, the local
rule for the symplectic 2-friezes is interpreted as cluster mutations involving the Dynkin diagram
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of type C2 associated to the Lie group Sp4. From a geometric point of view, the symplectic
2-friezes parametrize particular configurations of lines in the 4-dimensional symplectic space
modulo the action of the Lie group Sp4.

Another particularity of the 4-dimensional case is that the “local frieze rule” used to define
the symplectic 2-friezes involves (2× 2)-determinants instead of 4× 4 expected ones. This rule
mixes the rule of the 2-friezes of [25] and the rule of wall numbers [8].

Symplectic 2-friezes enjoy nice properties which are very similar to those of the classical Cox-
eter friezes. In particular, they are invariant under the glide symmetry and therefore periodic.
The periodicity of the friezes is a case of Zamolodchikov periodicity, see, e.g., [20].

In Section 2 we expose the main results of the paper: the combinatorial properties of the
symplectic 2-friezes and the links with difference equations, symplectic geometry and cluster
algebras. Section 3 contains examples illustrating the main results.

In Section 4 we study the combinatorial structure of the symplectic 2-friezes and characterize
them in terms of SL-friezes. We explain the correspondence between symplectic 2-friezes and
symmetric difference equations. We also give explicit determinantal formulas for the entries in
the friezes.

In Section 5 we explain the link between the 2-friezes and symplectic geometry. The results
in this section are mainly based on [6]. We identify the symplectic 2-friezes with Legendrian
configurations in CP3 and discuss the relationship with symplectic forms.

Section 6 makes the link between symplectic 2-friezes and cluster algebras. The corresponding
cluster algebras are generated from a product of Dynkin diagrams of type C2 and Aw.

In Section 7, we discuss open questions about the combinatorics of symplectic 2-friezes with
positive integer entries and about variants and more general symplectic friezes.

Appendixes A and B recollect important formulas and results on classical SL-friezes from [4]
and [24] which are extensively used throughout the paper.

2 Main results

2.1 Combinatorial description and characterizations
of the symplectic 2-friezes

Roughly speaking, friezes may be defined as arrangements of numbers in a planar strip such that
neighboring entries forming a given pattern always satisfy the same arithmetic relationship. For
instance, the original Coxeter’s friezes satisfy that every four adjacent entries a, b, c, d forming
a square are related by ad− bc = 1, see [9]. Changing the arithmetic relation leads to different
variants of friezes, see [23] for a survey on the subject.

We introduce a new family of friezes. We call symplectic 2-frieze an array of complex numbers
(or polynomials, rational functions, etc.) in the plane satisfying the following conditions:

• the array has finitely many infinite rows, bounded top and bottom by a row of 1’s;

• the entries are alternatingly colored in black and white;

• the colored entries are subject to the local rules

– every white entry is equal to the (2 × 2)-determinant of the matrix formed by the
four adjacent black entries;

– every square of a black entry is equal to the (2×2)-determinant of the matrix formed
by the four adjacent white entries.



Symplectic Frieze Patterns 3

Symplectic 2-friezes are represented as follows

· · · 1 1 1 1 1 1 1 1 1 1 · · ·
...

...
...

...
...

· · · • ◦ • ◦ B f • ◦ • ◦ · · ·
◦ • ◦ A e D h • ◦ •

· · · • ◦ • ◦ C g • ◦ • ◦ · · ·
...

...
...

...
...

· · · 1 1 1 1 1 1 1 1 1 1 · · ·

(2.1)

in which the local rules read

AD −BC = e, eh− fg = D2, . . . .

The width of the frieze is the number of rows strictly between the top and bottom rows of 1’s.
It is sometimes convenient to extend the array with additional rows of 0’s above and below

the bounding rows of 1’s.
We will consider “tame” friezes which are friezes satisfying an extra condition of genericity

(see Definition 4.2 for the details). For instance, friezes with no zero entries are all tame.
Symplectic 2-friezes can be compared to the 2-friezes of [25]. Recall that the latter are arrays

as (2.1) with no color and in which the local rule reads with no squared values, i.e., for an
ordinary 2-frieze the rule would be the same everywhere AD − BC = e, eh − fg = D, . . . .
Symplectic 2-friezes can also be compared to the so called “number walls” for which the local
rule in the array (2.1) with no color would be AD + BC = e2, eh + fg = D2, see [8] and
J. Propp’s webpage for discussions on the subject.

The tame symplectic 2-friezes share the same properties of symmetry as Coxeter friezes [9]
and as the 2-friezes of [25].

Theorem 2.1. All tame symplectic 2-friezes of width w are 2(w + 5)-periodic. Moreover, the
arrays are all invariant under a glide reflection with respect to the median line.

It turns out that the subarray consisting of the black entries of a tame symplectic 2-frieze
form a classical SL4-frieze. This allows the following characterization in terms of SLk-friezes.

Theorem 2.2. The set of tame symplectic 2-friezes of width w is in one-to-one correspondence
with each of the following sets:

1) the tame SL4-friezes of width w in which every adjacent (3× 3)-minors are equal to their
central elements,

2) the tame SL4-friezes of width w that are invariant under a glide reflection with respect to
the median line,

3) the tame SLw+1-friezes of width 3 that are symmetric with respect to the middle row.

Theorems 2.1 and 2.2 are proved in Section 4.5.

2.2 Symplectic 2-friezes and difference equations

Consider the system of linear difference equations of the form

Vi = aiVi−1 − biVi−2 + ai−1Vi−3 − Vi−4, (2.2)

for i ∈ Z, where ai, bi ∈ C are given coefficients, and (Vi)i is a sequence of indeterminates or
a “solution”.

Following [21, 24], we call such difference equation n-superperiodic if
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• all the coefficients are n-periodic, i.e., ai+n = ai, bi+n = bi, for all i ∈ Z,

• all solutions (Vi)i∈Z of the system are n-antiperiodic, i.e., Vi+n = −Vi for all i ∈ Z.

Theorem 2.3. There is a one-to-one correspondence between the set of tame symplectic 2-friezes
of width w = n− 5 and the set of n-superperiodic difference equations of the form (2.2).

The correspondence is given explicitly: the entries in the first row of the tame symplectic
2-frieze give the coefficients of the superperiodic equation and vice versa, see Proposition 4.7
from which Theorem 2.3 is a direct consequence.

2.3 The algebraic variety of symplectic 2-friezes

One can give explicit algebraic conditions on the coefficients ai and bi of the difference equa-
tion (2.2) in order to have the superperiodicity property. This has been done in [24] for general
linear difference equations, and in [6] for the particular case of equations with symmetric coef-
ficients. The conditions comes from the equation M = −Id where M is a monodromy matrix
associated to the difference equations.

In our situation, M is a matrix of Sp4(C) and its entries can be expressed with the help of
the following determinants

∆i,j =

∣∣∣∣∣∣∣∣∣∣∣∣∣

ai bi+1 ai+1 1
1 ai+1 bi+2 ai+2 1

. . .
. . .

. . .
. . .

. . .

1 aj−2 bj−1 aj−1

1 aj−1 bj
1 aj

∣∣∣∣∣∣∣∣∣∣∣∣∣

.

This allows us to obtain a complete system of polynomial equations for the set of tame
symplectic 2-friezes of width w over the complex numbers as an algebraic subvariety of C2n,
where n = w + 5.

Proposition 2.4. Let (ai, bi)1≤i≤n be coordinates on C2n. The set of tame symplectic 2-friezes
of width w = n− 5 is the algebraic subvariety of C2n of dimension 2w given by the system of 10
equations (with the convention a0 = an)





∆3,n−3 = an,

∆k+2,n−3+k = 1, k = 0, 1,

∆k+1,n−3+k = 0, k = 0, 1, 2,

∆k,n−3+k = 0, k = 0, 1, 2, 3.

(2.3)

The proof is given in Section 5.4.

2.4 The cluster structure of the variety of tame symplectic 2-friezes

Two consecutive columns in a 2-frieze give a system of 2w coordinates on the variety of symplectic
2-friezes. The transition maps between the different systems of coordinates are interpreted as
sequences of cluster mutations inside a cluster algebra. More precisely one has the following
result.

Theorem 2.5. The variety of tame symplectic 2-friezes of width w = n−5 contains as an open
dense subset the cluster variety associated to an orientation of the product of Dynkin diagrams
C2 ×Aw.

This result is reformulated more precisely as Propositions 6.6 and 6.11 which are proved in
Sections 6.2 and 6.4.
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2.5 Link with symplectic geometry

In [6] the variety of n-superperiodic linear difference equations of order 2k, with symmetric
coefficients, has been identified with the moduli space L2k,n of Lagrangian configurations of n
lines in C2k. Applying the results and ideas of [6] in the case k = 2 gives a nice geometric
interpretation of the symplectic 2-friezes in a symplectic space.

We present this geometric interpretation in more naive terms where we prefer the projective
version of the Lagrangian configurations.

Definition 2.6 ([6], Lagrangian configurations of lines). Consider the projective space CP3

equipped with a contact structure given by the data of hyperplanes (Hv)v∈CP3 attached to each
point of the space. We call a Legendrian configuration or Legendrian n-gon, every sequence
(vi)i∈Z of points in CP3 such that:

• vi+n = vi, for all i ∈ Z,

• vi−1 and vi+1 belong to Hvi for all i ∈ Z.

Legendrian n-gons are discrete analogues of Legendrian knots.
Generically, the vertex vi+2 of a Legendrian n-gon does not belong to Hvi . We will consider

the moduli space of generic Legendrian configurations modulo PSp4-equivalence.

Theorem 2.7. For odd n ≥ 5, the space of tame symplectic 2-friezes of width w = n − 5 over
the complex numbers is isomorphic to the moduli space of generic Legendrian n-gons in CP3.

The correspondence is given in details in Section 5.

3 Examples

In this section we work out examples to illustrate the results presented in the previous section.
We start by giving examples of symplectic 2-friezes as described in Section 2.1.

Example 3.1. (a) Tame symplectic 2-friezes of width 1 with integer entries

· · · 1 1 1 1 1 1 1 1 1 1 1 1 · · ·
· · · 0 −1 1 −2 −1 −1 0 −1 1 −2 −1 −1 · · ·
· · · 1 1 1 1 1 1 1 1 1 1 1 1 · · ·

(3.1)

· · · 1 1 1 1 1 1 1 1 1 1 1 1 · · ·
· · · 1 2 3 5 2 1 1 2 3 5 2 1 · · ·
· · · 1 1 1 1 1 1 1 1 1 1 1 1 · · ·

(3.2)

(b) Tame symplectic 2-friezes of width 1 with positive real entries and with complex entries

· · · 1 1 1 1 1 1 1 1 1 1 1 1 · · ·
· · · 2

√
2 3

√
2 1

√
2 3 2

√
2 3

√
2 1

√
2 3 · · ·

· · · 1 1 1 1 1 1 1 1 1 1 1 1 · · ·
· · · 1 1 1 1 1 1 1 1 1 1 1 1 · · ·
· · · i 1 −2i −3 −i 0 i 1 −2i −3 −i 0 · · ·
· · · 1 1 1 1 1 1 1 1 1 1 1 1 · · ·

(c) Tame symplectic 2-friezes of width 2 and 3 with positive integer entries

· · · 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 · · ·
· · · 6 14 3 1 1 2 3 6 4 5 2 1 1 3 6 · · ·
· · · 6 4 5 2 1 1 3 6 14 3 1 1 2 3 6 · · ·
· · · 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 · · ·

(3.3)
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· · · 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 · · ·
· · · 1 2 5 4 6 4 6 3 2 1 1 4 30 10 4 1 1 2 · · ·
· · · 1 1 3 14 10 20 6 3 1 1 3 14 10 20 6 3 1 1 · · ·
· · · 2 1 1 4 30 10 4 1 1 2 5 4 6 4 6 3 2 1 · · ·
· · · 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 · · ·

(3.4)

Example 3.2 (glide reflection). Recall that a glide reflection is the composition of a reflection
about a line and a translation along that line. The invariance mentioned in Theorem 2.1 can be
easily observed in the above examples. For instance, we can display a fundamental domain in
the array (3.4) that repeats under a glide reflection. Note that the glide symmetry implies the
periodicity of the arrays.

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 2 5 4 6 4 6 3 2 1 1 4 30 10 4 1 1 2

1 1 3 14 10 20 6 3 1 1 3 14 10 20 6 3 1 1

2 1 1 4 30 10 4 1 1 2 5 4 6 4 6 3 2 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
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@
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1 1 1

1 1 1

5 4 6

3 14 10

1 4 30

Figure 1. Glide symmetry in the frieze (3.4).

Example 3.3 (corresponding SL-friezes). We illustrate Theorem 2.2. The SL4-frieze corre-
sponding to a symplectic 2-frieze is simply given by the subarray of black entries. Applying the
combinatorial Gale duality (see Appendix B.5) one obtains the corresponding SLw+1-frieze of
width 3.
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V =W =

Figure 2. The SL3-frieze of width 3 (left) and the SL4-frieze of width 2 (right) corresponding to the

symplectic 2-frieze (3.3).

The SL-friezes corresponding to the symplectic 2-frieze (3.3) are given in Fig. 2. The friezes
are related by Gale duality. One can check that WD

(
tV
)

= 0 where W and V are respectively
the 3× 7 and 4× 7 matrices defined on Fig. 2, and D the 7× 7 diagonal matrix with diagonal
coefficients (1,−1, 1,−1, 1,−1, 1).

Example 3.4 (corresponding difference equation). We illustrate Theorem 2.3. The array (3.3)
provides the following 7-periodic sequences of coefficients:

(. . . , a0, a1, . . . , a6, . . .) = (. . . , 6, 3, 1, 3, 4, 2, 1, . . .),

(. . . , b0, b1, . . . , b6, . . .) = (. . . , 3, 14, 1, 2, 6, 5, 1, . . .).
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Let us check that the associated recurrence (2.2) is indeed 7-antiperiodic. Choose the initial
values (V−3, V−2, V−1, V0) = (x, y, z, t) and compute

V1 = 3V0 − 14V−1 + 6V−2 − V−3 = 3t− 14z + 6y − x,
V2 = V1 − V0 + 3V−1 − V−2 = 2t− 11z + 5y − x,
V3 = 3V2 − 2V1 + V0 − V−1 = t− 6z + 3y − x,
V4 = 4V3 − 6V2 + 3V1 − V0 = −x = −V−3,

V5 = 2V4 − 5V3 + 4V2 − V1 = −y = −V−2,

V6 = V5 − V4 + 2V3 − V2 = −z = −V−1,

V7 = 6V6 − 3V5 + V4 − V3 = −t = −V0.

Example 3.5 (equations of the variety). For w = 1 the system of equations (2.3) is

a3 = a6, (1) a1 − a3b2 + a2 = 0, (4) b1 − a1a3 + 1 = 0, (7)

a3a2 − b3 = 1, (2) a2 − a4b3 + a3 = 0, (5) b2 − a2a4 + 1 = 0, (8)

a4a3 − b4 = 1, (3) a5 − a3b5 + a4 = 0, (6) b5 − a4a2 + 1 = 0, (9)

b6 − a5a3 + 1 = 0. (10)

Note that using the first row expansion or last column expansion in ∆i,j the subsets of equations
in the rows of the system (2.3) can be immediately simplified using the previous subsets, in order
to decrease the degrees of the equations.

The dimension of the variety is 2. The above system can be solved generically using two
parameters (a, b) 6= (0, 0). E.g., choosing (a, b) = (a3, b3) we deduce b4 from b3b4 using a combi-
nation of equations number 3, 5 and 2:

b3b4 = b3(a4a3 − 1) = b3a4a3 − b3 = (a2 + a3)a3 − b3 = a2
3 + (a2a3 − b3) = a2

3 + 1.

So that b4 =
1+a23
b3

. Then all the variables are deduced one after each other using only one
equation of the system, in the following order

a2 =
1 + b3
a3

, a4 =
1 + b4
a3

,

b2 = a2a4 − 1, a1 = a3b2 − a2, b1 = a1a3 − 1,

b5 = a2a4 − 1, a5 = a3b5 − a4, b6 = a5a3 − 1,

a6 = a3.

Expressing everything in terms of (a, b) = (a3, b3), one gets

b1 = b4 =
1 + a2

b
, a1 = a4 =

1 + b+ a2

ab
,

b2 = b5 =
(1 + b)2 + a2

a2b
, a2 = a5 =

1 + b

a
,

b3 = b6 = b, a3 = a6 = a.

Example 3.6 (corresponding Legendrian n-gon). We illustrate Theorem 2.7. We can associate
a Legendrian heptagon to the 2-frieze of width 2 given in (3.3). We choose a 4× 7-subarray of
black entries in the frieze, e.g., the block displayed in Fig. 2, and denote by Vi its columns, so
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that

V1 V2 V3 V4 V5 V6 V7





1 4 3 1 0 0 0

0 1 2 1 1 0 0

0 0 1 1 3 1 0

0 0 0 1 6 4 1

We extend the sequence by periodicity Vi+7 = Vi.
Consider the symplectic form on C4 given by

ω =




0 0 1 0
0 0 −4 1
−1 4 0 0

0 −1 0 0


 .

Attach to each Vi the hyperplane Hi := {Vi}⊥ω formed by the orthogonal vectors. One can
easily check that Vi−1, Vi+1 belong to Hi for all i. The 7-periodic sequence v = (CVi)i forms
a Legendrian heptagon in CP3.

From the Legendrian n-gon, one can compute the entries in the corresponding frieze using
the values of

ω(Vi, Vj).

E.g., in this example the black entries of the first row (which is the same as the second row by
glide symmetry) of (3.3) is ω(V2, V5), ω(V3, V6), ω(V4, V7), . . ..

If we move the initial (4 × 7)-subarray along the north-east diagonal, the sequence changes
by a shift of indices. If we move the initial (4× 7)-subarray along the north-west diagonal, the
sequence changes under the action of Sp4. Therefore any choice of (4 × 7)-subarrays leads to
the same Legendrian n-gon, modulo a shift of indices of the vertices and modulo Sp4-action.

Example 3.7 (cluster variables in the frieze). Every symplectic 2-frieze is generically determined
by the entries in 2 consecutive columns. All the other entries can be expressed as rational
fractions of the initial entries using the frieze rule. These expressions can be recognized as
cluster variables of type C2 × Aw, where w is the width of the frieze. For instance, a frieze of
width w = 1 will produce the 6 cluster variables of type C2:

· · · 1 1 1 1 1 1 1 1 · · ·
· · · x1 x2

1+x22
x1

1+x1+x2
2

x1x2

(1+x1)2+x22
x1x22

1+x1
x2

x1 x2 · · ·
· · · 1 1 1 1 1 1 1 1 · · ·

(3.5)

4 Symplectic 2-friezes, SL-friezes and difference equations

4.1 Notation for the symplectic 2-friezes

We complete the description of the 2-friezes given in Section 2.1 by introducing a labelling of
the entries and more convention.

The entries in a symplectic 2-frieze of width w are denoted by (di,j), i, j ∈ Z for the “black
entries” and

(
di+ 1

2
,j+ 1

2

)
, i, j ∈ Z for the “white entries”. The local rules around a white entry is

di+ 1
2
,j+ 1

2
= di,jdi+1,j+1 − di+1,jdi,j+1,
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di− 3
2
,j+ 3

2

. . . di− 3
2
,j+ 1

2
di−1,j+1 di− 1

2
,j+ 3

2

di− 3
2
,j− 1

2
di−1,j di− 1

2
,j+ 1

2
di,j+1 · · ·

di−1,j−1 di− 1
2
,j− 1

2
di,j di+ 1

2
,j+ 1

2
di+1,j+1

di,j−1 di+ 1
2
,j− 1

2
di+1,j

di+1,j−1

Figure 3. Coordinate labelling in a symplectic 2-frieze. Black entries are connected with plain lines and

the white entries with dashed lines.

and the local rule around a black entry is

d2
i,j = di− 1

2
,j− 1

2
di+ 1

2
,j+ 1

2
− di+ 1

2
,j− 1

2
di− 1

2
,j+ 1

2
.

The boundary conditions are

• di,i−1 = di+ 1
2
,i−1+ 1

2
= 1,

• di,i+w = di+ 1
2
,i+w+ 1

2
= 1.

Note that the index set for the entries is

{(i, j) | i ∈ Z, i− 1 ≤ j ≤ i+ w}.

However, we will often consider the 2-friezes as infinite arrays by adding the extra conventional
conditions:

• di,i−` = di+ 1
2
,i−`+ 1

2
= 0, for ` = 2, 3, 4,

• di,j+w+5 = −di,j for all i, j,

which means that we add three rows of zeros at the top and the bottom of the frieze and extend
it to an antiperiodic infinite array.

Fig. 3 shows how the entries are organized in the plane. Note that a row in the frieze consists
in the entries di,j where j − i is a fixed constant whereas i fixed or j fixed form the diagonals of
the frieze.

4.2 The tameness condition

We define the notion of “tame” 2-friezes. This notion is an analog of the tameness condition for
the classical SL-friezes, see Appendix B.1. It is understood as a genericity condition extending
the properties satisfied by the friezes with no zero entries, see Proposition 4.1 and Remark 4.3.
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Proposition 4.1. A symplectic 2-frieze containing no zero entries satisfies the following pro-
perties.

(i) All (3× 3)-minors of adjacent black entries are equal to their central elements, i.e., for all
i, j ∈ Z

∣∣∣∣∣∣

di−1,j−1 di−1,j di−1,j+1

di,j−1 di,j di,j+1

di+1,j−1 di+1,j di+1,j+1

∣∣∣∣∣∣
= di,j . (4.1)

(ii) All (4× 4)-minors of adjacent black entries are equal to 1, i.e., for all i, j ∈ Z
∣∣∣∣∣∣∣∣

di−1,j−1 di−1,j di−1,j+1 di−1,j+2

di,j−1 di,j di,j+1 di,j+2

di+1,j−1 di+1,j di+1,j+1 di+1,j+2

di+2,j−1 di+2,j di+2,j+1 di+2,j+2

∣∣∣∣∣∣∣∣
= 1. (4.2)

(iii) All (5× 5)-minors of adjacent black entries are equal to 0, i.e., for all i, j ∈ Z
∣∣∣∣∣∣∣∣∣∣

di−1,j−1 di−1,j . . . di−1,j+3

di,j−1 di,j . . .
...

...
...

. . .
...

di+3,j−1 . . . . . . di+3,j+3

∣∣∣∣∣∣∣∣∣∣

= 0. (4.3)

Proof. The key formula is the Desnanot–Jacobi determinantal identity, see Appendix A. Con-
sider the following piece of symplectic 2-frieze, where the upper case (resp. lower case) entries
are considered black entries (resp. white entries):

D

C c H

B b G f L

A a F e K i P

E d J h O

I g N

M

By Desnanot–Jacobi identity one has the following relation between the minors
∣∣∣∣∣∣

A B C
E F G
I J K

∣∣∣∣∣∣
F =

∣∣∣∣
A B
E F

∣∣∣∣
∣∣∣∣
F G
J K

∣∣∣∣−
∣∣∣∣
E F
I J

∣∣∣∣
∣∣∣∣
B C
F G

∣∣∣∣ . (4.4)

Using the frieze rule in the above equation one obtains the relation
∣∣∣∣∣∣

A B C
E F G
I J K

∣∣∣∣∣∣
F = ae− bd = F 2,

from which we deduce (4.1) by cancelling out F 6= 0:
∣∣∣∣∣∣

A B C
E F G
I J K

∣∣∣∣∣∣
= F.
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Using again Desnanot–Jacobi identity, and then (4.1) one obtains
∣∣∣∣∣∣∣∣

A B C D
E F G H
I J K L
M N O P

∣∣∣∣∣∣∣∣
·
∣∣∣∣
F G
J K

∣∣∣∣ =

∣∣∣∣∣∣

A B C
E F G
I J K

∣∣∣∣∣∣
·

∣∣∣∣∣∣

F G H
J K L
N O P

∣∣∣∣∣∣

−

∣∣∣∣∣∣

E F G
I J K
M N O

∣∣∣∣∣∣
·

∣∣∣∣∣∣

B C D
F G H
J K L

∣∣∣∣∣∣
= FK − JG,

from which we deduce (4.2) by cancelling out FK − JG = e 6= 0:
∣∣∣∣∣∣∣∣

A B C D
E F G H
I J K L
M N O P

∣∣∣∣∣∣∣∣
= 1.

Applying again Desnanot–Jacobi identity to compute the (5×5)-minors and using (4.1) and (4.2)
already established one gets that all (5× 5)-minors vanish. Hence (4.3) holds. �

Definition 4.2. A symplectic 2-frieze is called tame if the three conditions (4.1), (4.2) and (4.3)
are all satisfied.

By Proposition 4.1 the symplectic 2-friezes containing no zero entries are all tame. However
the conditions of tame friezes allow to have zero entries, see Examples 4.4 and 4.5 below.

Remark 4.3. Note that generically the three conditions for the tameness property of a sym-
plectic 2-frieze are automatically satisfied according to the arguments given in the proof of
Proposition 4.1. More precisely,

– (4.1) is satisfied for a given (i, j) whenever di,j 6= 0;

– when (4.1) is satisfied, then (4.2) is automatically satisfied for a given (i, j) whenever
di+ 1

2
,j+ 1

2
6= 0;

– when (4.1) and (4.2) are satisfied, then (4.3) is automatically satisfied for a given (i, j)
whenever di+1,j+1 6= 0.

Example 4.4. (a) In the following array of width one, containing a black zero entry, the frieze
rule is satisfied for any values of x:
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Using the frieze rule in the above equation one obtains the relation

∣∣∣∣∣∣

A B C
E F G
I J K

∣∣∣∣∣∣
F = ae− bd = F 2,

from which we deduce (3.1) by cancelling out F 6= 0:

∣∣∣∣∣∣

A B C
E F G
I J K

∣∣∣∣∣∣
= F.

Using again Desnanot-Jacobi identity, and then (3.1) one obtains:
∣∣∣∣∣∣∣∣

A B C D
E F G H
I J K L
M N O P

∣∣∣∣∣∣∣∣
·
∣∣∣∣
F G
J K

∣∣∣∣ =

∣∣∣∣∣∣

A B C
E F G
I J K

∣∣∣∣∣∣
·

∣∣∣∣∣∣

F G H
J K L
N O P

∣∣∣∣∣∣
−

∣∣∣∣∣∣

E F G
I J K
M N O

∣∣∣∣∣∣
·

∣∣∣∣∣∣

B C D
F G H
J K L

∣∣∣∣∣∣

= FK − JG,
from which we deduce (3.2) by cancelling out FK − JG = e 6= 0:

∣∣∣∣∣∣∣∣

A B C D
E F G H
I J K L
M N O P

∣∣∣∣∣∣∣∣
= 1.

Applying again Desnanot-Jacobi identity to compute the 5× 5-minors and using (3.1) and (3.2)
already established one gets that all 5× 5-minors vanish. Hence (3.3) holds. �

Definition 3.2. A symplectic 2-frieze is called tame if the three conditions (3.1), (3.2) and (3.3)
are all satisfied.

By Proposition 3.1 the symplectic 2-friezes containing no zero entries are all tame. However
the conditions of tame friezes allow to have zero entries, see Examples 3.4 and 3.5 below.

Remark 3.3. Note that generically the three conditions for the tameness property of a sym-
plectic 2-frieze are automatically satisfied according to the arguments given in the proof of
Proposition 3.1. More precisely,

– (3.1) is satisfied for a given (i, j) whenever di,j 6= 0;
– when (3.1) is satisfied, then (3.2) is automatically satisfied for a given (i, j) whenever

di+ 1
2
,j+ 1

2
6= 0;

– when (3.1) and (3.2) are satisfied, then (3.3) is automatically satisfied for a given (i, j)
whenever di+1,j+1 6= 0.

Example 3.4. (a) In the following array of width one, containing a black zero entry, the frieze
rule is satisfied for any values of x.

· · · 0 0 0 0 0 0 0 0 0 · · ·

· · · 1 1 1 1 1 1 1 1 1 · · ·

· · · −1 1 −2 −1 −1 0 −1 x −1− x
2

· · ·

· · · 1 1 1 1 1 1 1 1 1 · · ·

· · · 0 0 0 0 0 0 0 0 0 · · ·

The next two entries on the right can be computed uniquely whenever x
(
1 + x2

)
6= 0. But if

we want the array to be tame, the condition (4.1) centered at the black 0 imposes
∣∣∣∣∣∣

−1 1 0
1 0 1
0 1 x

∣∣∣∣∣∣
= 0,

so that it determines x = 1. This will lead to the (6-periodic) tame frieze (3.1).
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(b) In the following array, containing a white zero entry, the frieze rule is satisfied for any
values of x (that will then uniquely determine y and z):

· · · 1 1 1 1 1 1 1 · · ·
· · ·

√
2 1

√
2 0 −

√
2 + 1 x y · · ·

· · · −1 1 −2 −2 +
√

2 −3 + 2
√

2 1 z · · ·
· · · 1 1 1 1 1 1 1 · · ·

The tameness condition (4.1) is also satisfied for any values of x, since there are no black
zeroes. Condition (4.2), centered at the white 0, imposes

∣∣∣∣∣∣∣∣

√
2 1 0 0

1
√

2 1 0

1 −2 +
√

2 −
√

2 + 1 1
0 1 1 y

∣∣∣∣∣∣∣∣
= 1,

so that one solves y =
√

2 − 1, and then x = −4 + 2
√

2, z = 1. Then there is a unique way to
extend the array to get a tame symplectic 2-frieze, which will be 7-periodic.

Example 4.5. (a) The following symplectic 2-frieze

· · · 1 1 1 1 1 1 1 1 1 1 1 · · ·
· · · 0 0 0 0 0 0 0 0 0 0 0 · · ·
· · · 0 0 0 0 0 0 0 0 0 0 0 · · ·
· · · 1 1 1 1 1 1 1 1 1 1 1 · · ·

is not tame because condition (4.1), centered at a black 0 of the second row, fails
∣∣∣∣∣∣

0 0 1
1 0 0
0 1 0

∣∣∣∣∣∣
6= 0.

(b) The following symplectic 2-frieze

· · · 1 1 1 1 1 1 1 1 1 1 1 · · ·
· · · 0 0 0 0 0 0 0 0 0 0 0 · · ·
· · · 0 0 0 0 0 0 0 0 0 0 0 · · ·
· · · 0 0 0 0 0 0 0 0 0 0 0 · · ·
· · · 1 1 1 1 1 1 1 1 1 1 1 · · ·

is not tame because condition (4.2), centered at a white 0 of the third row, fails
∣∣∣∣∣∣∣∣

0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0

∣∣∣∣∣∣∣∣
6= 1.

(c) There is only one tame symplectic 2-frieze with constant first row equal to 0. It is the
following frieze of width 7:

· · · 1 1 1 1 1 1 1 1 1 1 · · ·
· · · 0 0 0 0 0 0 0 0 0 0 · · ·
· · · 0 0 0 0 0 0 0 0 0 0 · · ·
· · · 0 0 0 0 0 0 0 0 0 0 · · ·
· · · 1 −1 1 −1 1 −1 1 −1 1 −1 · · ·
· · · 0 0 0 0 0 0 0 0 0 0 · · ·
· · · 0 0 0 0 0 0 0 0 0 0 · · ·
· · · 0 0 0 0 0 0 0 0 0 0 · · ·
· · · 1 1 1 1 1 1 1 1 1 1 · · ·

(4.5)
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Remark 4.6. The conventional choice to extend the array of a symplectic 2-frieze with three
rows of zeros at the top and bottom and then by antiperiodicty di+w+5,j = di,j+w+5 = −di,j
(cf. Section 4.1) is justified as the only choice that extends a 2-frieze with no zero entry to an
infinite tame array.

4.3 SL-friezes and difference equations

By definition, the tameness of the symplectic frieze forces the subarray of the black entries
to form a tame SL4-frieze. Hence, many properties of the symplectic friezes are immediate
consequences of known results on SL-friezes, see Appendix B.

Proposition 4.7. Let w be the width of the friezes.

(i) The subarray of the black entries in a tame symplectic 2-frieze forms a tame SL4-frieze in
which the ajacent (3× 3)-minors are equal to the central element. Conversely, every such
SL4-frieze determines a unique tame symplectic 2-frieze.

(ii) The subarray of the black entries in a tame symplectic 2-frieze forms a tame SL4-frieze
invariant under the glide reflection along the median line:

dj−w−2,i−3 = di,j = dj+3,i+w+2, i ≤ j ≤ i+ w − 1.

Conversely, every such SL4-frieze determines a unique tame symplectic 2-frieze.

(iii) In a tame symplectic 2-frieze the entries ai := di,i, bi := di− 1
2
,i− 1

2
define the coefficients of

a (w+5)-superperiodic equation of the form (2.2). Moreover, the sequences on the diagonals
(di0,i)i∈Z, for every fixed i0 ∈ Z, are solutions of the equation (2.2), i.e., for all i0 ∈ Z

di0,i = aidi0,i−1 − bidi0,i−2 + ai−1di0,i−3 − di0,i−4, for all i ∈ Z.

Conversely, every n-superperiodic equation of the form (2.2) determines a unique tame
symplectic 2-frieze.

Proof. In a tame symplectic 2-frieze, the subarray of the black entries forms a tame SL4-
frieze according to conditions (4.2) and (4.3) required in Definition 4.2 for the tame symplectic
friezes. From [24], we already know that this SL4-frieze corresponds to a superperiodic difference
equation of order 4, see Proposition B.1 for k = 3. Let us simply denote by

Vi = aiVi−1 − biVi−2 + ciVi−3 − Vi−4, (4.6)

the corresponding superperiodic equation, where we use the simpler notation ai, bi, ci for the
constant coefficients a1

i , a
2
i , a

3
i of (B.2). These coefficients can be explicitly computed from the

entries of the frieze, see (B.3).

In general SLk-friezes are not invariant under a glide reflection for k ≥ 3, unlike Coxeter’s
friezes (i.e., SL2-friezes). We first show the following lemma giving equivalent conditions to the
invariance under a glide reflection in the case of SL4-friezes.

Lemma 4.8. Given a tame SL4-frieze, the following properties are equivalent:

(1) all (3× 3)-minors of adjacent entries are equal to their central elements,

(2) the array is invariant under a glide reflection along the median line,

(3) the corresponding superperiodic equation is of the form (2.2).
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Proof. We use the formulas given in Appendix B (in our case k = 3). Formula (B.7) gives

di,j =

∣∣∣∣∣∣

dj−w−3,i−4 dj−w−3,i−3 dj−w−3,i−2

dj−w−2,i−4 dj−w−2,i−3 dj−w−2,i−2

dj−w−1,i−4 dj−w−1,i−3 dj−w−1,i−2

∣∣∣∣∣∣
.

The glide symmetry of item (2) in the above lemma can be expressed by di,j = dj−w−2,i−3 for
all i, j. Hence we see that (1) is equivalent to (2).

Now we compute the coefficients of (4.6) with formula (B.3) for k = 3. We obtain ci = a3
i as

a (1× 1)-minor and ai = a1
i as a (3× 3)-minor, namely

ci = di+2,i+w+1, and ai−1 =

∣∣∣∣∣∣

di+1,i+w 1 0
di+2,i+w di+2,i+w+1 1
di+3,i+w di+3,i+w+1 di+j+1,i+w+2

∣∣∣∣∣∣
.

The property in item (3) can be expressed by ci = ai−1 for all i. Hence, we see that (1) implies (3).
Finally, if (3) is satisfied, i.e., ci = ai−1 for all i, formulas (B.4) and (B.5) respectively give

di,j =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ai 1
bi+1 ai+1 1

ai+1
. . .

. . .
. . .

1
. . .

. . .

. . .
. . . aj 1
1 aj−1 bj aj

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

dj+3,i+w+2 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ai bi+1 ai+1 1
1 ai+1 bi+2 ai+2 1

1
. . .

. . . 1
. . .

. . . aj−1

1 aj−1 bj
1 aj

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

From which we deduce the glide symmetry of item (2). Hence (3) implies (2). The lemma is
proved. �

In a tame symplectic 2-frieze, the tame SL4-frieze formed by the subarray of the black entries
satisfies item (1) of the above lemma according to condition (4.1) required in Definiton 4.2 for the
tame symplectic friezes. Therefore, the direct statements in items (i), (ii), (iii) of Proposition 4.7
are immediate consequences of the above lemma.

Conversely, starting from a tame SL4-friezes (di,j)i,j∈Z one can complete the array by com-
puting all the (2×2)-minors di− 1

2
,j− 1

2
:= di,jdi−1,j−1−di−1,jdi,j−1. If the initial SL4-frieze has all

its 3× 3-minors equal to their central elements then the completed array will satisfy the 2-frieze
rule thank to the relation (4.4). This establishes all the converse statements in (i), (ii), (iii) of
Proposition 4.7. �

4.4 Determinantal formulas for the entries in a symplectic 2-frieze

The entries of a tame symplectic 2-frieze are given by multi-diagonals determinants.
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Proposition 4.9. Consider a tame symplectic 2-frieze, and let ai := di,i, bi := di− 1
2
,i− 1

2
be the

entries in the non trivial bottom row. The entries of the frieze are given by

di,j =

∣∣∣∣∣∣∣∣∣∣∣∣∣

ai bi+1 ai+1 1
1 ai+1 bi+2 ai+2 1

. . .
. . .

. . .
. . .

. . .

1 aj−2 bj−1 aj−1

1 aj−1 bj
1 aj

∣∣∣∣∣∣∣∣∣∣∣∣∣

,

di− 1
2
,j− 1

2
=

∣∣∣∣∣∣∣∣∣∣∣∣∣

bi ai 1
ai bi+1 ai+1 1
1 ai+1 bi+2 ai+2 1

. . .
. . .

. . .
. . .

. . .

1 aij−2 bj−1 aj−1

1 aj−1 bj

∣∣∣∣∣∣∣∣∣∣∣∣∣

,

for all i, j ∈ Z.

Proof. We know by Proposition 4.7(iii) that (ai, bi) give the coefficients of the superperiodic
equation associated with the SL4-frieze formed by the black entries of the symplectic frieze.
Hence, the formula for di,j is given by (B.4). Using the frieze rule di− 1

2
,j− 1

2
= di,jdi−1,j−1 −

di−1,jdi,j−1 and Desnanot–Jacobi identity in the determinant of di−1,j one deduces the above
formula for di− 1

2
,j− 1

2
. �

4.5 Proofs of Theorems 2.1, 2.2 and 2.3

The theorems are mainly consequences and reformulations of Proposition 4.7. Theorem 2.1 is
an immediate consequence of Proposition 4.7(ii). Theorem 2.2(1) and (2) are also immediate
consequences of Proposition 4.7(i) and (ii). Theorem 2.2(3) is obtained by applying the Gale
duality, see Appendix B.5. More precisely, if ai, bi are the coefficients of the associated difference
equation (i.e., the entries in the first row of the symplectic frieze) then the corresponding SLw+1-
frieze of width 3 is given as the following array

1 1 1 1 1
· · · a0 a1 a2 a3 · · ·

b0 b1 b2 b3 · · ·
· · · a0 a1 a2 a3 · · ·

1 1 1 1 1

Theorem 2.3 is an immediate consequence of Proposition 4.7(iii).

5 Moduli space of Legendrian configurations

5.1 Lift of the projective n-gons in C4

Consider the symplectic space
(
C4, ω0

)
where ω0 is the symplectic form given by the matrix

Ω0 =




0 0 1 0
0 0 0 1
−1 0 0 0

0 −1 0 0


 .
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This naturally equips the projective space CP3 with a standard contact structure (Hv)v∈CP3 ,
where Hv is the projectivization of the hyperplane v⊥ orthogonal to the line v in

(
C4, ω0

)
.

A Legendrian n-gon in CP3, see Definition 2.6, can be lifted to
(
C4, ω0

)
in a unique way

(up to a sign) by imposing some normalization conditions. The normalized lift provides us with
a system of 2n parameters for the Legendrian n-gons. The general statement in higher dimension
can be found in [6]. We specify the construction in the particular case of dimension 4 and sketch
the proof in this case.

Proposition 5.1 ([6]). Let n be an odd integer. Let v = (vi)i∈Z be a generic Legendrian n-gon
in
(
CP3, ω0

)
.

1. There exists a lift V = (Vi)i∈Z in C4 of v satisfying the following “normalization condi-
tions”

(a) Vi+n = −Vi, for all i,

(b) ω0(Vi, Vi+1) = 0 for all i,

(c) ω0(Vi, Vi+2) = 1 for all i.

2. The sequences V and −V are the unique lifts of v satisfying the above conditions.

3. The sequence V satisfies

Vi = aiVi−1 − biVi−2 + ai−1Vi−3 − Vi−4, (5.1)

for all i ∈ Z for some unique n-periodic sequences of complex numbers a(v) = (ai)i∈Z and
b(v) = (bi)i∈Z.

4. A Legendrian n-gon v′ satisfies a(v′) = a(v) and b(v′) = b(v) if and only if v′ and v are
PSp4-equivalent.

Proof. We start with an arbitrary lift (V1, . . . , Vn) of (v1, . . . , vn). The sequence automatically
satisfies ω0(Vi, Vi+1) = 0 since by definition the Legendrian n-gons satisfy vi+1 ∈ Hvi .

Generically vi+2 6∈ Hvi so we get n non zero constants γi := ω0(Vi, Vi+2), 1 ≤ i ≤ n − 2,
γn−1 := ω0(Vn−1, V1), γn := ω0(Vn, V2). When n is odd, the following system of n equations

ω0(λ1V1, λ3V3) = λ1λ3γ1 = 1,

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
ω0(λn−2Vn−2, λnVn) = λn−2λnγn−2 = 1,

ω0(λn−1Vn−1, λ1V1) = λn−1λ1γn−1 = −1,

ω0(λnVn, λ2V2) = λnλ2γn = −1 (5.2)

has exactly two opposite solutions ±(λ1, . . . , λn) in terms of γi, 1 ≤ i ≤ n. We rescale the Vi’s
to λiVi by using one of the solutions of the system. The rescaled sequence (Vi) satisfies the
condition (c). We extend the sequence by antiperiodicity, i.e., we set Vi+kn = (−1)kVi, for
all 1 ≤ i ≤ n, k ∈ Z. The sequence V and its opposite −V are the only ones satisfying the
conditions of (1) by unicity, up to a sign, of the solution of the system (5.2).

Items (1) and (2) are proved.

Every four consecutive points of the normalized sequence V form a basis of C4, so that there
is a unique sequence of coefficients (ai, bi, ci, di)i, which is n-periodic and satisfies

Vi = ai Vi−1 − bi Vi−2 + ciVi−3 − diVi−4, (5.3)

for all i ∈ Z.
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Applying ω0(Vi−2,−) in (5.3) and using the normalization conditions of (1), we get di = 1
for all i ∈ Z. Applying ω0(Vi−3,−) in (5.3), we obtain ai = ω0(Vi−3, Vi) for all i ∈ Z, that
gives by a shift ai−1 = ω0(Vi−4, Vi−1). And finally applying ω0(−, Vi−1) in (5.3), we obtain
ci = ω0(Vi−4, Vi−1) = ai−1. Item (3) is proved.

Let v and v′ be two Legendrian n-gons such that their normalized lifts V and V ′ satisfy the
same recurrence relation (5.1). Define T in GL4 such that TVi = V ′i for i = 1, 2, 3, 4. The
recurrence relation implies TVi = V ′i for all i. From the normalization conditions of (1) and the
fact that a4 = ω0(V1, V4) = ω0(V ′1 , V

′
4), one can see that the matrix T preserves ω0. Hence, T is

an element of Sp4 that transforms v to v′.

Conversely if v′ and v are PSp4-equivalent then there exists T ∈ Sp4 that transforms the
normalized lifts V to V ′. Therefore the sequences V and V ′ satisfy the same recurrence relation.
Item (4) is proved. �

Remark 5.2 (proof of Theorem 2.7). From Proposition 5.1 one can identify the Legendrian
n-gons, modulo PSp4-equivalence, with n-superperiodic equations of the form (5.1), provided n
is odd. Therefore Theorem 2.7 is an immediate consequence of Theorem 2.3.

5.2 Symplectic 2-friezes from Legendrian n-gons

One can obtain a tame symplectic 2-frieze from the lift of a Legendrian n-gon using the canonical
symplectic form ω0 on C4.

Proposition 5.3. Let v = (vi) be a Legendrian n-gon in CP3 and V = (Vi) be its normalized
lift in

(
C4, ω0

)
given by Proposition 5.1. The following assignment

di,j := ω0(Vi−3, Vj), for all i, j ∈ Z

defines the black array of a tame symplectic 2-frieze of width w = n− 5.

Proof. Using the normalization properties of V = (Vi) and the linearity of ω0 one deduces that
the sequences

di,• = (0, . . . , 0, 1, di,i, di,i+1, . . . , di,i+w−1, 1)

are solutions of the same (w + 5)-superperiodic equation of the form (5.1) with different initial
conditions

(Vi−4, . . . , Vi−1) = (0, . . . , 0, 1).

By Proposition B.1 this implies that (di,j) form a tame SL4-frieze. And since the coefficients of
the equation are symmetric it implies by Proposition 4.7 that this SL4-frieze is indeed the black
array of a tame symplectic 2-frieze. �

Remark 5.4. Alternatively, one can compute the symplectic 2-frieze using 4× 4-determinants
involving four vertices of the n-gon:

di,j = det(Vi−4, Vi−3, Vi−2, Vj), di− 1
2
,j− 1

2
= det(Vi−4, Vi−3, Vj−1, Vj).

This is obtained as a particular case of the general correspondence between n-gons and SLk-
friezes without considering the extra symplectic structure, see, e.g., formula (B.8).
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5.3 Symplectic forms and 2-friezes

Consider the following family of matrices of symplectic forms

Ωa =




0 0 1 a
0 0 0 1
−1 0 0 0
−a −1 0 0


 , Ω̌a =




0 0 1 0
0 0 −a 1
−1 a 0 0
0 −1 0 0


 = tΩ−1

a = −Ω−1
a ,

where a is a complex parameter.

Proposition 5.5. In a symplectic 2-frieze, every 4× 4 submatrices of black entries

Di,j :=




di,j−3 . . . di,j
...

...
di+3,j−3 . . . di+3,j+3


 (5.4)

satisfies

tDi,jΩ̌aiDi,j = Ωaj ,

where ai = di,i are the black entries in the first (and last) row of the 2-frieze.

Proof. It is easy to check that the property holds for the matrices Di,i since Di,i = Ωai . By
the recurrence relation in the frieze one has Di,j+1 = Di,jEj+1, where Ej+1 is the matrix

Ej+1 :=




0 0 0 −1
1 0 0 aj
0 1 0 −bj
0 0 1 aj


 . (5.5)

Hence, the property for all Di,j follows by easy induction on j. �

5.4 Proof of Proposition 2.4

Let M be a monodromy matrix associated to the equation (2.2). It can be defined as the
product M = E1E2 · · ·En, where Ei are the matrices (5.5). The condition of superperiodic-
ity of (2.2) translates as M = −Id. We want to prove that the algebraic conditions on the
coefficients (ai), (bi) given by M = −Id are equivalent to the one given in system (2.3).

We apply the matrix M on the 4× 4 black subarray of the symplectic 2-frieze written as the
matrix (5.4) for i = j = 0, i.e., on the matrix

D0,0 =




0 0 1 a0

0 0 0 1
−1 0 0 0
−a0 −1 0 0


 .

The recurrence relations in the frieze imply that D0,0M = D0,n. Hence, M = −Id is equivalent
to D0,n = −D0,0. This gives 16 equations when identifying the entries of the matrices. However,
since D0,n satisfies the relation tD0,nΩ̌a0D0,n = Ωa0 , according to Proposition 5.5, it is enough
to identify the ten entries in the triangular lower parts of the matrices, i.e.,




d0,n−3 · · ·
d1,n−3 d1,n−2 · ·
d2,n−3 d2,n−2 d2,n−1 ·
d3,n−3 d3,n−2 d3,n−2 d3,n


 =




0 · · ·
0 0 · ·
1 0 0 ·
a0 1 0 0


 ,

which lead to the system (2.3) when using the determinantal expressions for the entries di,j
given in Proposition 4.9.
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5.5 More correspondences

We explain different ways to obtain symplectic 2-friezes, Legendrian n-gons, and difference
equations one from another.

If one knows the (ai, bi)-parameters of the Legendrian n-gon as defined in Proposition 5.1,
or equivalently the (ai, bi)-coefficients of the associated difference equation (2.2), then the cor-
responding 2-frieze can be computed in two alternative easy ways.

1. One can write down the coefficients in the first non-trivial row (. . . , bi,ai, bi+1,ai+1, . . .) of
the array, and compute the rest of the entries by applying the frieze rule.

2. One can recursively compute the diagonals of the black entries of the 2-frieze using the
equations (2.2) and initial conditions (0, . . . , 0, 1) = (Vi−4, . . . , Vi−1) = (di,i−4, . . . , di,i−1).

The first procedure is limited to the case of generic elements, while the second one can be
applied in all cases.

Now, we describe the correspondence between symplectic 2-friezes and Legendrian n-gons
without using explicitly the coefficients of the recurrence relations. For the rest of the section,
we assume n is odd.

Starting from a Legendrian n-gon v = (vi)i∈Z, we first consider the normalized lift V = (Vi)
given by Proposition 5.1. We transform (Vi) to (Wi) where Wi = TVi for the matrix T of Sp4

defined by

T (V−3) =




0
0
−1
−a0


 , T (V−2) =




0
0
0
−1


 , T (V−1) =




1
0
0
0


 , T (V0) =




a0

1
0
0




with a0 = ω0(V−3, V0).
The sequence W will have the following form

W−3 W−2 W−1 W0 W1 W2 W3 · · · · · · Wn−3 Wn−2 Wn−1 Wn






0 0 1 a0 • · · · • 1 0 0 0 −1 −a0

0 0 0 1 a1 • · · · • 1 0 0 0 −1

−1 0 0 0 1 a2 • · · · • 1 0 0 0

−a0 −1 0 0 0 1 a3 • · · · • 1 0 0

(5.6)

and can uniquely be extended in a tame SL4-frieze. Adding the 2×2 minors inside the SL4-frieze
will lead to a symplectic 2-frieze.

Note that the sequence W does not satisfy the normalization given in Proposition 5.1(1)
for ω0 but for the form given by Ωa0 of Section 5.3

Conversely, if one cuts a 4× n block of the form (5.6) in the black subarray of a symplectic
2-frieze it gives n points in C4 satisfying the condition of Proposition 5.1(1) for some symplectic
form Ωa. After renormalizing the points they will project to a Legendrian n-gons in

(
CP3, ω0

)
.

5.6 The case when n is even

In the case when n is even the system of equations (5.2) splits into two subsystems: one for
the λi with i odd and one for the λi with i even. If n is a multiple of 4 the set of solutions
for the subsystems is in general empty, otherwise each subsystem has two opposite sets of
solutions ±(λ1, λ3, . . . , λn−1) and ±(λ2, λ4, . . . , λn). So that we get four sequences of lifted points
±(V1,±V2, . . . , V2i−1,±V2i, . . .) satisfying the normalisation conditions of Proposition 5.1, which
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define the same parameters (ai, bi) up to a sign for the coefficients ai. This will lead to two
distinct 2-friezes that differ under the action by conjugation of the matrix




−1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 1


 ,

on the black subarray.
For instance, the 2-frieze of width 3 given in (3.4) and the following one

· · · 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 · · ·
· · · −1 1 −2 5 −4 6 −4 6 −3 2 −1 1 −4 30 −10 4 −1 1 · · ·
· · · 3 1 1 3 14 10 20 6 3 1 1 3 14 10 20 6 3 1 · · ·
· · · −3 2 −1 1 −4 30 −10 4 −1 1 −2 5 −4 6 −4 6 −3 2 · · ·
· · · 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 · · ·

correspond to the same class of symplectic 8-gons.

5.7 Legendrian n-gons and self-dual polygons

Let v = (vi) be a Legendrian n-gon in CP3, for some odd integer n. The symmetry of the
coefficients in the corresponding difference equation (5.1) (or equivalently the symmetry in the
corresponding SL4-friezes) implies that the polygon v can be identified with its dual polygon v∗

in
(
CP3

)∗
. More precisely there is a projective map that sends vi to v∗i+n−2. The shift can be

computed in terms of SL4-frieze using the formula (B.7) and the glide symmetry.
Legendrian n-gons are (n−2)-self-dual polygons, in the terminology of [17]. The space of Leg-

endrian n-gons is of dimension 2(n− 5) and provides a 3-dimensional analog of the spaceMm,n

of [17].

6 Cluster algebras

6.1 Preliminaries

Cluster algebras are due to Fomin and Zelevinsky [13, 14]. They are commutative associative
algebras defined by generators and relations inside a field of fractions. The generators and
relations of a cluster algebra are not given from the beginning but are produced recursively.

A seed in a cluster algebra is a couple Σ = ((u1, . . . , um), B), where (u1, . . . , um) is a tran-
scendence basis of C(x1, . . . , xm) over C and B is a skew-symmetrizable matrix of integer entries
(alternatively the matrices can be replaced by quivers). The initial seed Σ0 = ((x1, . . . , xm), B0)
is the initial data needed to generate the entire cluster algebra. All seeds are created by a pro-
cess of mutation from Σ0. The variables created by mutations are called cluster variables, they
come grouped in a m-tuple called cluster. The complex cluster algebra AΣ0 is the subalgebra of
C(x1, . . . , xm) generated by all the cluster variables.

To fix notation and convention we recall briefly the main definitions related to cluster algebras
but refer to the original papers [13, 14] or the introductory texts [12, 19] for details. We also
use the approach of [11] and [20].

6.1.1 Mutations from skew-symmetrizable matrices

The mutation µk, 1 ≤ k ≤ m, of a seed Σ = ((u1, . . . , um), B) where B = (bi,j)1≤i,j≤m, is
a skew-symmetrizable matrix with integer entries, is a new seed Σ′ = µk(Σ) = ((u′1, . . . , u

′
m), B′)
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where the new variables are given by

u′k =
1

xk

( ∏

i : bik>0

ubiki +
∏

i : bik<0

u−biki

)
,

u′` = u`, ` 6= k,

and the new matrix µk(B) = B′ = (b′i,j)1≤i,j≤m given by

b′ij =





−bij if i = k or j = k,

bij + bikbkj if bik > 0 and bkj > 0,

bij − bikbkj if bik < 0 and bkj < 0,

bij otherwise.

6.1.2 Valued quivers

The valued quiver Qv(B) associated to a skew-symmetrizable matrix B = (bi,j)1≤i,j≤m with
integer entries, is defined as follows:

• {1, . . . ,m} is the set of vertices,

• each entry bi,j > 0 gives a weighted arrow i→ j of weight (|bi,j |, |bj,i|).

Recall that in a skew-symmetrizable matrix one has bi,j > 0 if and only if bj,i ≤ 0. When
there is a weighted arrow between the vertices i and j the weight |bi,j | is “attached” to the
vertex i and the weight |bj,i| “attached” to the vertex j. On the graph of a valued quiver we

write the weights on the top or bottom of the arrows The weighted arrow i
(a,b) // j can be also

represented by j oo
(b,a)

i .
In the case when (|bi,j |, |bj,i|) = (b, b), we replace the weighted arrow by b arrows. For

consistence of formulas it may be convenient to adopt the following convention: i
(0,0) // j means

no arrow between i and j, and i
(−a,−b)// j means i oo

(a,b)
j .

Our notation differs from that of [20].

Example 6.1. For example the matrix




0 1 0 −1
−2 0 −1 4

0 1 0 −2
1 −2 1 0




gives the following valued quiver

1
(1,2) // 2OO

4
(1,2)

//

OO

��

(2
,4

)

3

6.1.3 Mutations of valued quivers

The mutation at vertex k of a valued quiver Qv gives a valued quiver µk(Qv) defined by the
following transformations:
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1. For all paths i→ k → j in Q, change the weighted arrows

k

(c, d)

��
i

(e,f)
//

(a
, b

)

@@

j

to k

(c, d)

��
i

(e+ac, f+bd)
//

(a
, b

)

@@

j

and

k

(c, d)

��
i oo

(g,h)

(a
, b

)

@@

j

to k

(c, d)

��
i oo

(g−ac, h−bd)

(a
, b

)

@@

j

where a, b, c, d > 0 and e, f, g, h ≥ 0.

2. Reverse the weighted arrows incident with k, i.e., change all

i
(a,b) // k to i oo

(a,b)
j

and

k
(c,d) // j to k oo

(c,d)
j .

This rule gives the correspondence µk(Qv(B)) = Qv(µk(B)). Examples of mutations can be
found in Examples 6.2 and 6.3.

6.1.4 Product of valued quivers

From the skew-symmetrizable, resp. skew-symmetric, companion matrices corresponding to the
Dynkin type C2, resp. Aw, consider the corresponding valued quivers as follows

C2 : 1
(1,2) // 2 Aw : 1 // 2 // . . . // w − 1 // w.

Following [20], we define the square product of the valued quivers:

C2�Aw :=

w+1• // w+2◦ oo w+3• // · · · · · · oo 2w−1• // 2w◦

◦
1
oo

(1
,2

)

OO

•
2

//��

(1
,2

)

◦
3

(1
,2

)

OO

oo · · · · · · // ◦
w−1

(1
,2

)

OO

oo •
w

��

(1
,2

)

(6.1)

It is the valued quiver associated to the following 2w × 2w skew-symmetrizable matrix

BC2�Aw =




0 −1 0 0 · · · 1 0 0 0 · · ·
1 0 1 0 · · · 0 −1 0 0 · · ·
0 −1 0 −1 · · · 0 0 1 0 · · ·
...

...
...

...

−2 0 0 0 · · · 0 1 0 0 · · ·
0 2 0 0 · · · −1 0 −1 0 · · ·
0 0 −2 0 · · · 0 1 0 1 · · ·
...

...
...

...



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Example 6.2. (a) For w = 1, C2�A1 is just the valued quiver C2 : 1
(1,2) // 2 associated to the

matrix
(

0 1
−2 0

)
.

(b) For w = 2, one can show that C2�A2 is mutation equivalent to a valued quiver of Dynkin
type F4. Indeed,

3• // 4◦ µ1−→ 3• //
\\ (2, 1)

4◦ µ3−→ 3• oo

(2, 1)

��

4◦ µ1−→ 3• oo 4◦

◦
1
oo

(1
,2

)

OO

•
2

��
(1
,2

)

◦
1

//��

(1
,2

)

•
2

��

(1
,2

)

◦
1
oo

(1
,2

)

OO

•
2

◦
1

//��

(1
,2

)

•
2

Example 6.3. Let Σ = ((x1, x2, . . . , x2w),C2�Aw) be a seed. A mutation at vertex i for
1 ≤ i ≤ w in (6.1) locally changes the graph around the vertices i and w + i into

w + i− 1 // w + i oo

(2, 1)

��

w + i+ 1

i− 1 //

(1
,2

)

OO

��

(1
, 2

)

i oo

(1
,2

)

OO

i+ 1
��

(1
,2

)

if i is even (and a similar picture if i is odd but with reversed arrows), and changes the variable xi
to

x′i =
xi−1xi+1 + x2

w+i

xi
. (6.2)

A mutation at vertex w + i for 1 ≤ i ≤ w in (6.1) locally changes the graph around the
vertices i and w + i into

w + i− 1 oo

(2, 1)

��

w + i // w + i+ 1

i− 1 oo

(1
,2

)

OO

i //

(1
,2

)

OO

��

(1
, 2

)

i+ 1

(1
,2

)

OO

if i is even (and a similar picture if i is odd but with reversed arrows), and changes the variab-
le xw+i to

x′w+i =
xw+i−1xw+i+1 + xi

xw+i
. (6.3)

6.1.5 Bipartite belt

A bipartite quiver is such that the vertices can be colored in two colors so that vertices of the
same color are not connected by any arrow. For instance, the quiver (6.1) is bipartite.

Let Q be a bipartite quiver. Following Fomin–Zelevinsky [15], consider the iterated mutations

µ+ =
∏

white k

µk, µ− =
∏

black k

µk.

Note that the mutation µk’s with k of a fixed color commute with each other since the vertices
are not connected.
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The mutations µ+ and µ− on Q give the same quiver with reversed orientation:

µ+(Q) = Qop, µ−
(
Qop

)
= Q.

Let Σ0 = (x,Q) be an initial seed. The bipartite belt, see [15], of the cluster algebra AΣ0 is
the collection of seeds obtained from Σ0 by applying successively µ+ or µ−:

. . . , µ−µ+µ−(Σ0), µ+µ−(Σ0), µ−(Σ0), Σ0, µ+(Σ0), µ−µ+(Σ0), µ+µ−µ+(Σ0), . . . .

Remark 6.4. In general, the bipartite belt is infinite. It has been proved, see [19, 20], that
for a bipartite (valued) quiver constructed as a product of two Dynkin quivers ∆�∆′ the muta-
tion µ+µ− has finite order, more precisely

(µ+µ−)2(h+h′) = (µ−µ+)2(h+h′) = Id,

where h and h′ are the Coxeter numbers of the Dynkin quivers ∆, ∆′ respectively. This property
is known as Zamolodchikov periodicity.

6.2 Cluster variables in the symplectic 2-friezes

Let Fw be the tame symplectic 2-frieze of width w of rational fractions in the free variables
(x1, x2, . . . , x2w) computed with the frieze rule from two consecutive columns containing the
variables (x1, . . . , xw,xw+1, . . . ,x2w) in a zig-zag as follows.

Fw :

· · · 1 1 1 1 1 1 · · ·
x1 xw+1 x′1 x′w+1

xw+2 x2 x′w+2 x′2
x3 xw+3 x′3 x′w+3
...

...
...

...
x2w xw x′2w x′w

· · · 1 1 1 1 1 1 · · ·

(6.4)

The frieze (3.5) is exactly the frieze Fw for w = 1.

Remark 6.5. The frieze Fw is well defined. The operations used to compute the entries in the
symplectic 2-frieze in terms of the initial entries (x1, x2, . . . , x2w) are subtraction free. So that
the rational expressions that one computes for the next entries (x′1, x

′
2, . . . , x

′
2w) do not vanish.

This allows to compute recursively all the entries of the frieze as elements of C(x1, . . . , x2w).
Moreover, since the entries are non zero, the frieze Fw is tame by Proposition 4.1.

Proposition 6.6. Let A = AΣ0 be the cluster algebra generated from the initial seed Σ0 =
( (x1, x2, . . . , x2w),Q), where Q = C2�Aw is the valued quiver (6.1). Let Fw be the formal
frieze (6.4) containing the same initial variables (x1, x2, . . . , x2w).

(i) The entries of Fw are all cluster variables of A;

(ii) The pairs of consecutive columns of Fw give all the clusters of the bipartite belt of A.

Proof. (i) is a trivial consequence of (ii). Statement (ii) is established by direct computations.
Indeed, let (x′1, x

′
w+2, x

′
3, . . .) and (x′w+1, x

′
2, x
′
w+3, . . .) be the third and fourth column in Fw.

The entries are deduced using the frieze rule so that we have for i odd, 1 ≤ i ≤ w,

x′i =
xi−1xi+1 + x2

w+i

xi
,



Symplectic Frieze Patterns 25

and i even, 1 ≤ i ≤ w,

x′w+i =
xw+i−1xw+i+1 + xi

xw+i
.

Comparing with the result of the mutation µ+, see (6.2), (6.3), one immediately gets

(
x′1, x2, x

′
3, . . . , x

′
2w−1, x2w,Qop

)
= µ+Σ0,

(x′1, x
′
2, x
′
3, . . . , x

′
2w−1, x

′
2w,Q) = µ−µ+Σ0,

and so on. �

Remark 6.7. From the cluster algebra theory Theorem 2.1 becomes an easy consequence of
Proposition 6.6 and the Zamolodchikov periodicity, see Remark 6.4 (recall that the Coxeter
number for C2 is 4 and the one for Aw is w + 1). However, the periodicity of the 2-friezes
or the periodicity of the SL-friezes can be established with elementary arguments using the
identification with superperiodic difference equations, see [24].

6.3 More clusters in the 2-friezes

From Fw one can extract more clusters of A than the ones of the bipartite belt. These clusters
are given as “double zig-zags” in the array. We follow [25].

We call double zig-zag in the 2-frieze (6.4) a sequence ζ = (x̃1, . . . , x̃w, ỹ1, . . . , ỹw) where x̃i’s
are white entries and ỹi’s black entries that are locally in the following 6 configurations

x̃i ỹi x̃i ỹi x̃i ỹi

x̃i+1 ỹi+1 ỹi+1 x̃i+1 x̃i+1 ỹi+1

ỹi x̃i ỹi x̃i ỹi x̃i

ỹi+1 x̃i+1 x̃i+1 ỹi+1 ỹi+1 x̃i+1

(6.5)

Example 6.8. The following sequence forms a double zig-zag in a frieze of width 5:

· · · 1 1 1 1 1 1 · · ·
x̃1 ỹ1

x̃2 ỹ2

x̃3 ỹ3

ỹ4 x̃4

ỹ5 x̃5

· · · 1 1 1 1 1 1 · · ·

(6.6)

To every double zig-zag ζ one associates a valued quiver Qζ defined over the set of vertices
{1, 2, . . . , 2w} as follows. Each of the 6 configurations of (6.5) gives respectively the following
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set of weighted arrows:

w + i oo w + i+ 1 w + i // w + i+ 1 w + i oo

(2, 1)

��

w + i+ 1

i oo
��

(1
,2

)

(1
, 2

)

??

i+ 1
��

(1
,2

)

i oo

(1
,2

)

OO

i+ 1
��

(1
,2

)

i oo

(1
,2

)

OO

i+ 1

(1
,2

)

OO

w + i oo

(2, 1)

��

w + i+ 1 w + i oo w + i+ 1 w + i oo w + i+ 1

i oo

(1
,2

)

OO

i+ 1

(1
,2

)

OO

i //
��

(1
,2

)

i+ 1

(1
,2

)

OO

i oo

(1
,2

)

OO

(1
, 2

)

??

i+ 1
��

(1
,2

)

when i is odd, and same pictures with reversed arrows when i is even.

Example 6.9. The quiver associated to the double zig-zag of (6.6) is
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��
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3
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)

OO

oo 4 //
��

(1
,2

)

5
��

(1
,2

)

One can extend Proposition 6.6 with the following statement.

Proposition 6.10. For every double zig-zag ζ in Fw, the couple (ζ,Qζ) is a seed of AΣ0.

Proof. The statement follows from the mutation rule and the frieze rule. Every double zig-zag
can be redressed in two consecutive columns by elementary moves that correspond to muta-
tions. �

6.4 The cluster variety of tame symplectic 2-friezes

Let A = AΣ0 be the cluster algebra generated from the initial seed Σ0 = ((x1, x2, . . . , x2w),
C2 × Aw), and let χ = (u1, . . . , u2w) be an arbitrary cluster of A. We know from the cluster
algebra theory that all the cluster variables of A can be expressed as Laurent polynomials with
positive integer coefficients in the variables ui. Denote by Fw(u1, . . . , u2w) the frieze of Laurent
polynomials obtained by expressing all the entries of Fw in terms of ui. When specializing the
variables ui to non-zero complex numbers one gets a tame symplectic 2-frieze over complex
numbers. This construction can be summarized with the following statement.

Corollary 6.11. Every cluster χ = (u1, . . . , u2w) of A, defines an injective map

φχ : (z1, . . . , z2w) 7→ Fw(u1, . . . , u2w)|ui=zi

from (C∗)2w to the variety of tame symplectic 2-friezes.

Obviously the maps φχ are not surjective. A natural question is the following.

Open problem 6.12. Is the variety of tame symplectic 2-friezes of width w equal to the union
over all clusters of the images of the maps φχ?
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Let us mention that the similar question in the case of tame Coxeter’s friezes has been
addressed and answered by Cuntz and Holm [10] (in that case the answer is positive when the
width is not equal to 3 modulo 4, otherwise there exists an extra tame frieze).

Definition 6.13. A tame symplectic 2-frieze is called cluster-singular if it is not in any of the
images of the maps φχ, otherwise it is called cluster-regular

For w = 1, 2, one can give the following (partial) answers.

Proposition 6.14.

(i) There is only one cluster-singular symplectic 2-frieze of width 1 given by

· · · 1 1 1 1 1 1 1 1 1 · · ·
· · · −1 0 −1 0 −1 0 −1 0 −1 · · ·
· · · 1 1 1 1 1 1 1 1 1 · · ·

(6.7)

(ii) There is at most one cluster-singular tame symplectic 2-frieze of width 2.

Proof. For w = 1, a tame symplectic 2-frieze is entirely determined by two consecutive non-
zero entries. Indeed, a tame symplectic 2-frieze of width 1 is necessarily 6-periodic and two
consecutive non-zero entries allow to obtain 6 consecutive entries using the frieze rule. The
cluster algebra of type C2 has exactly 6 clusters given as two consecutive entries in the single
non trivial row of the array (3.5). There are only two ways to avoid two consecutive non zero
entries in a symplectic 2-frieze of width 2, leading to (6.7) and to

· · · 1 1 1 1 1 1 1 1 1 1 · · ·
· · · 0 i 0 −i 0 i 0 −i 0 i · · ·
· · · 1 1 1 1 1 1 1 1 1 1 · · ·

(6.8)

One checks that the frieze (6.7) is tame. To do so one uses Remark 4.3 and check (4.1) and (4.3)
centered at a black zero entry. The only relevant calculations are to

∣∣∣∣∣∣

0 1 0
1 0 1
0 1 0

∣∣∣∣∣∣
= 0,

∣∣∣∣∣∣∣∣∣∣

0 1 0 0 0
1 0 1 0 0
0 1 0 1 0
0 0 1 0 1
0 0 0 1 0

∣∣∣∣∣∣∣∣∣∣

= 0,

which allow to conclude that (6.7) is tame. Similarly for (6.8) one computes

∣∣∣∣∣∣∣∣

i 1 0 0
1 −i 1 0
0 1 i 1
0 0 1 −i

∣∣∣∣∣∣∣∣
= −1,

which shows that (6.8) is not tame since (4.2) fails. Hence (i).
For w = 2, we start by establishing two lemmas covering the cases when the frieze has four

adjacent non-zero entries or two consecutive zero entries (we believe that the first lemma should
also be true for an arbitrary width and arbitrary double zig-zag).

Lemma 6.15. Four non-zero entries in two consecutive columns, or in two consecutive diag-
onals, determine a unique tame symplectic 2-frieze of width 2 over the complex numbers. This
symplectic 2-frieze is cluster-regular.
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Proof. Since a tame symplectic 2-frieze is invariant under a glide symmetry it has the following
general form:

· · · 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 · · ·
· · · A b C d E f G h I j K l M n A · · ·
· · · h I j K l M n A b C d E f G h · · ·
· · · 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 · · ·

(6.9)

where the upper case letters are black entries and lower case letterr white entries. Let us assume
that the four entries C, d, j, K are non zero complex numbers. We know that there is at least
one tame symplectic 2-frieze with these particular entries C, d, j, K in two consecutuve columns.
This is the frieze obtained by specializing the cluster χ = (x′1, x2,x3,x

′
4) to (d, j, C,K) in (6.4)

for w = 2.

Let us show that there is at most one tame symplectic 2-frieze with these particular entries
C, d, j, K in two consecutuve columns. The frieze rule uniquely determines the entries A, b,
E, f , h, I, l, M of the frieze. The entries G and n are possibly undefined by the frieze rule
(this happens in the case where E = I = b = l = 0). However the tameness condition (4.1)
expressed in the 3 × 3 minor centered at E implies that G is uniquely determined (one has
Gd− CM + 1 = E with d 6= 0). Then n = MA−G is also uniquely determined. �

Lemma 6.16. Tame symplectic 2-friezes of width 2 over C containing two consecutive zero
entries in at least one of its rows are exactly of the following form

· · · 1 1 1 1 1 1 1 1 1 1 1 1 1 · · ·
· · · A −1 0 0 1 f G h 1 0 0 −1 M · · ·
· · · h 1 0 0 −1 M n A −1 0 0 1 f · · ·
· · · 1 1 1 1 1 1 1 1 1 1 1 1 1 · · ·

(6.10)

with G = f+M , h = f+2M−1, n = −f−M2, A = 1−M , for some free parameters f,M ∈ C.

Proof. Let us consider the general tame symplectic 2-frieze (6.9). Assume C = d = 0. The
frieze rule immediately implies j = K = 0 and then E2 = −l = E. So one immediately gets
two possible values for E, namely E = 0 or E = 1. The tameness condition (4.1) expressed
in the 3 × 3-minor centered at C implies IE − 1 = 0. Therefore E 6= 0 so that E = 1 and
l = −1, I = 1. Using the frieze rule one deduces b = −1, G = f +M , n = −f −M2. Finally the
tameness condition (4.1) expressed in the 3×3 minor centered at M gives A = 1−M from which
one deduces h = f + 2M − 1 with the frieze rule. We have established that a tame symplectic
2-friezes of width 2 containing two consecutive zero entries are necessarily of the form (6.10).
Let us show that the symplectic 2-frieze (6.10) is tame for any values of the parameters f
and M . When fM 6= 0 the frieze (6.10) is exactly the one obtained by specializing the cluster
χ = (x′1, x2,x3,x

′
4) to (f,−1, 1,M) in (6.4) for w = 2. This means that the polynomials

identities (4.1), (4.2), (4.3), required for the tameness of the frieze, hold for any non-zero values
of f and M , and therefore for any values of f and M . �

We go back to the proof of Proposition 6.14(ii). We are looking for cluster-singular symplectic
2-friezes of width 2. Let us consider a tame symplectic 2-frieze of width 2.

Case (1): there are two consecutive zeroes on the first (or last) row of the frieze. By
Lemma 6.16 the array is of the form (6.10). If (f,M) 6=

(
0, 1

2

)
the frieze always contains

four adjacent non-zero entries, so that it is cluster-regular according to Lemma 6.15.
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Case (2): the first (or last) row has a sequence of the form (x, 0, y, 0, z, 0, t) where xyzt 6= 0
are either black or white entries. The frieze rule will imply that the array is of the form

1 1 1 1 1 1 1 1
x 0 y 0 z 0 t r
r xy s yz u zt v
1 1 1 1 1 1 1 1

with rsuv 6= 0 so that the specified entries in the second row are non zero. By glide symmetry,
one would have the entry r next to t in the first row so that (t, zt, r, v) are non zero entries in
two consecutive diagonals. So the frieze is cluster-regular according to Lemma 6.15.

Case (3): the first row has two consecutive non zero entries (x, y). Let us denote by (s, t) the
entries under (x, y). If st 6= 0 then one has two consecutive columns of non-zero entries and we
are done by Lemma 6.15. By the frieze rule one has (s, t) 6= (0, 0). We can now assume that the
array is locally of the form

1 1 1 1
x y z
0 t u v
1 1 1 1

with t 6= 0. If u 6= 0 then (x, t, y, u) are non zero entries in two consecutive diagonals and we
are done by Lemma 6.15. If u = 0 then v 6= 0 (otherwise it goes back to Case (1)) and therefore
z = tv 6= 0. By induction we show that the next entries on the first row are non zero and the
one of the second row alternate zero and non-zero, so that it goes back to Case (2). �

Remark 6.17. To give a complete answer to the open problem 6.12 it remains to determine
whether the following tame symplectic 2-frieze is cluster-regular or not:

· · · 1 1 1 1 1 1 1 1 1 1 1 1 · · ·
· · · −1 0 0 1 0 1

2 0 1 0 0 −1 1
2 · · ·

· · · 1 0 0 −1 1
2 −1

4
1
2 −1 0 0 1 0 · · ·

· · · 1 1 1 1 1 1 1 1 1 1 1 1 · · ·

(this is the frieze (6.10) for (f,M) =
(
0, 1

2

)
).

Remark 6.18. The frieze (6.7) is the point of coordinates (a1, . . . , a6) = (0, . . . , 0), (b1, . . . , b6) =
(−1, . . . ,−1) in the variety described in Example 3.5. The tangent space at this point is of
dimension 2 so that it is not a singular point of the variety (the variety is actually smooth).

Conjecture 6.19. The frieze of width 7 given in (4.5) is cluster-singular.

7 Further investigations

7.1 Symplectic 2-friezes of positive integers

A major problem in the theory of friezes is the classification of the friezes with positive integers.
This problem usually leads to very nice combinatorial interpretations. The main result in the
domain is the theorem of Conway–Coxeter [7] that classifies Coxeter friezes with triangulations
of polygons. There are many results along the same line for the classification of other types of
friezes, e.g., [3, 5, 16, 27].

There is also a nice extension of the Conway–Coxeter theorem in terms of 3d-dissections of
polygons by allowing negative entries in the Coxeter friezes [26].
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Open problem 7.1. Find a combinatorial model for the classification of the symplectic 2-friezes
of positive integers.

Note that it is still an open problem in the case of classical 2-friezes and SL-friezes.
An “easy” way to produce symplectic 2-friezes of positive integers is to use the maps φχ

given in Proposition 6.11 and evaluate on the point (z1, . . . , z2w) = (1, . . . , 1). It was proved
in [22] that when the cluster algebra A is of infinite type, i.e., has infinitely many clusters, this
produces infinitely many friezes of positive integers. When the cluster algebra A is of finite type
this procedure is in general not sufficient to produce all the friezes with positive integers (except
in the case of Coxeter friezes).

Proposition 7.2. There exist exactly 6 symplectic 2-friezes of width 1 with positive integers.

Proof. The formal frieze F1, cf. (6.4) contains the 6 cluster variables of type C2. It is known
that in this case there is only 6 ways to get positive integers simultaneously for all the cluster
variables [16]. �

The 6 friezes are all obtained from (3.2) under the action of the diedral group D6.

Conjecture 7.3. There exist exactly 112 symplectic 2-friezes of width 2 with positive integers.

This conjecture is based on two evidences. First, Michael Cuntz kindly provide me with
the 112 arrays of SL3-friezes which are symmetric with respect to the middle line. By Theo-
rem 2.2 they correspond to symplectic 2-friezes of width 2. The 112 SL3-friezes are grouped in
9 arrays modulo the action of the diedral group D7. The second evidence is that the entries of
the symplectic 2-friezes of width 2 are cluster variables of type F4 (see Example 6.2) and it has
been already conjectured in [16] that there are only 112 evaluations that make all the cluster
variables positive integers. Note that in this case only 14 out of 28 cluster variables appear in
the frieze, so that it was not necessary to have all the cluster variables simultaneously positive
integers. Note also that there are 105 clusters of type F4. Which would mean that 7 friezes are
not obtained as φχ(1, . . . , 1).

Bernhard Keller mentioned to me that the applet [18] allows to check that the cluster algebra
of type C2�Aw is cluster-infinite whenever w ≥ 3. By consequence, there exist infinitely many
symplectic 2-friezes of positive integers of width w whenever w ≥ 3.

7.2 The 2-friezes of type G2

Replacing the square by a cube in the local rule of the symplectic 2-frieze, i.e., when the local
rule in the array (2.1) reads

AD−BC = e, eh− fg = D3,

leads to interesting arrays. In particular they are still periodic, of period 2(m + 7) where m is
the width, and are invariant under a glide symmetry. They are related to the combinatorics of
the cluster algebras of type G2 × Am. Such friezes could be called “2-friezes of type G2” and
it would be interesting to study them further from a combinatorial viewpoint and geometric
viewpoint.

Open problem 7.4. What are the configurations spaces related to the 2-friezes of type G2?

We give below examples of 2-friezes of type G2 of width 1 and 2.

· · · 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 · · ·
· · · 1 2 3 14 5 9 2 1 1 2 3 14 5 9 2 1 · · ·
· · · 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 · · ·
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· · · 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 · · ·
· · · 1 2 3 15 7 28 6 9 2 1 1 3 6 77 14 36 3 1 · · ·
· · · 1 1 3 6 77 14 36 3 1 1 2 3 15 7 28 6 9 2 · · ·
· · · 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 · · ·

7.3 Symplectic friezes in arbitrary dimensions

In [6], the spaces of Lagrangian configurations of n lines in C2k modulo Sp2k are studied. These
configurations should give rise to more general symplectic friezes (recall that the case of sym-
plectic 2-frieze is when k = 2) and be connected to the cluster combinatorics of type Ck × Am,
where n = 2k + m + 1. In particular the moduli space of Lagrangian configurations of 2k + 2
lines in C2k should be a cluster variety of type Ck.

Open problem 7.5. What are the friezes related to Lagrangian configurations in arbitrary
dimensions?

A Desnanot–Jacobi identity

The Desnanot–Jacobi identity, or Dodgson formula, is a classical formula involving the determi-
nant of an (n × n)-matrix and its minors of order an n − 1 and n − 2 obtained by erasing the
first and/or last row/column. The formula can be pictured as follows

∣∣∣∣∣∣∣∣

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣

∗ ∗
∗ ∗

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣

∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣

∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

∣∣∣∣∣∣∣∣
−

∣∣∣∣∣∣∣∣

∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣

∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

∣∣∣∣∣∣∣∣
,

where the deleted columns/rows are left blank.
It is a key identity to establish Proposition 4.1.

B Properties of SLk+1-friezes

B.1 Definition of tame SLk+1-friezes

An SLk+1-frieze is an array of numbers consisting in a finite number of infinite rows:

...
...

0 0 0 0 0 . . .

. . . 1 1 1 1 1

. . . d0,w−1 d1,w d2,w+1 . . . . . .

. .
.

. .
.

. .
.

. . . d0,1 d1,2 d2,3 d3,4 d4,5

d0,0 d1,1 d2,2 d3,3 d4,4 . . .

. . . 1 1 1 1 1

0 0 0 0 0 . . .
...

...

(B.1)

where the strip is bounded by k rows of 0’s at the top, and at the bottom, and where every
“diamond” (k+ 1)× (k+ 1)-subarray forms an element of SLk+1. The number of rows between
the bounding rows of 1’s is called the width and is denoted by w.
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More precisely, the entries in the array are denoted by (di,j), with i, j ∈ Z such that

i− k − 1 ≤ j ≤ i+ w + k.

The array is a tame SLk+1-frieze of width w when it satisfies:

• “boundary conditions”

{
di,i−1 = di,i+w = 1 for all i,

di,j = 0 for i− k − 1 ≤ j < i− 1 or i+ w < j ≤ i+ w + k.

• “SLk+1-conditions” on the (k + 1)× (k + 1)-adjacent minors

∣∣∣∣∣∣∣∣

di,j di,j+1 . . . di,j+k
di+1,j di+1,j+1 . . . di+1,j+k

. . . . . . . . .
di+k,j di+k,j+1 . . . di+k,j+k

∣∣∣∣∣∣∣∣
= 1,

for all (i, j) in the index set.

• “tameness conditions” on the (k + 2)× (k + 2)-adjacent minors

∣∣∣∣∣∣∣∣

di,j di,j+1 . . . di,j+k+1

di+1,j di+1,j+1 . . . di+1,j+k+1

. . . . . . . . .
di+k+1,j di+k+1,j+1 . . . di+k+1,j+k+1

∣∣∣∣∣∣∣∣
= 0,

for all (i, j) in the index set.

B.2 Tame SLk+1-friezes and difference equations

An n-superperiodic difference equation of order k + 1 is a system

Vi = a1
iVi−1 − a2

iVi−2 + · · ·+ (−1)k−1aki Vi−k + (−1)kVi−k−1, (B.2)

where aji ∈ C, with i ∈ Z and 1 ≤ j ≤ k, are given coefficients (note that the superscript j is an
index, not a power) and Vi are unknowns, such that

• the coefficients are n-periodic, i.e., aji+n = aji , for all i, j.

• every solution (Vi)i∈Z is n-(anti)periodic, i.e., Vi+n = (−1)kVi, for all i ∈ Z.

Proposition B.1 ([24]). An array (di,j) as (B.1) forms a tame SLk+1 friezes if and only if
every diagonal

di,• = (0, . . . , 0, 1, di,i, di,i+1, . . . , di,i+w−1, 1)

gives a solution of a same (w + k + 2)-superperiodic equation of the form (B.2) with initial
conditions

(Vi−k−1, Vi−k, . . . , Vi−1) = (0, 0, . . . , 0, 1).
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B.3 Coefficients of the difference equations from the entries of the frieze
and vice versa

We collect some formulas given in [24, Sections 5.2 and 5.3].
Let (B.2) be the associated equation associated to a tame SLk+1-frieze (B.1). The coeffi-

cient ak−ji−1 of the equation can be expressed as a (j + 1) × (j + 1)-minor of adjacent entries in
the frieze:

ak−ji−1 =

∣∣∣∣∣∣∣

di+1,i+w 1
...

. . . 1
di+j+1,i+w · · · di+j+1,i+j+w

∣∣∣∣∣∣∣
. (B.3)

Conversely, the entries of the frieze can be computed as determinant of matrices involving the
coefficients of the equation. The entry di,i+j can be computed using (j+1)×(j+1)-determinants

di,i+j =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a1
i 1
... a1

i+1 1

aki+k−1

. . .
. . .

1
. . .

. . .

. . . a1
i+j−1 1

1 aki+j . . . a1
i+j

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, (B.4)

or alternatively, using (w − j)× (w − j)-determinants

di,i+j =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

aki−w+j−1 . . . a1
i−w+j−1 1

1 aki−w+j . . . a1
i−w+j 1

1 . . .
. . . 1

. . .
. . .

...

1 aki−3 ak−1
i−3

1 aki−2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

. (B.5)

B.4 Projective duality

Given a tame SLk+1-frieze (di,j), its projective dual is defined as the array consisting of k × k
adjacent minors:

d∗i,j =

∣∣∣∣∣∣∣∣∣

di,j di,j+1 . . . di,j+k−1

di+1,j di+1,j+1 . . . di+1,j+k−1

...
...

di+k−1,j di+k−1,j+1 . . . di+k−1,j+k−1

∣∣∣∣∣∣∣∣∣
.

Proposition B.2 ([24]).

(i) The projective dual frieze to a tame SLk+1-frieze is a tame SLk+1-frieze.

(ii) If aji are the coefficients of the equation (B.2) associated to a SLk+1-frieze, then

V ∗i = aki+k−1V
∗
i−1 − ak−1

i+k−2V
∗
i−2 + · · ·+ (−1)k−1a1

iV
∗
i−k + (−1)kV ∗i−k−1 (B.6)

is the superperiodic equation associated to the projective dual.
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(iii) The projective dual to a tame SLk+1-frieze is just the symmetric array with respect to the
median horizontal axis.

Let us make the above statement number (iii) more precise.

Proposition B.3. A tame SLk+1-frieze of width w satisfies

di,j =

∣∣∣∣∣∣∣

dj−w−k,i−k−1 . . . dj−w−k,i−2

...
...

dj−w−1,i−k−1 . . . dj−w−1,i−2

∣∣∣∣∣∣∣
= d∗j−w−k,i−k−1 (B.7)

for all i, j.

Proof. First, note the diagonals

d•,i = (0, . . . , 0, 1, di,i, di−1,i, . . . , di−w+1,i, 1)

satisfy the dual equation (B.6). Let us consider two sequences V = (V`)1≤`≤j−i+k+2 and W =
(W`)1≤`≤j−i+k+2 forming blocks of size (k+ 1)× (j− i+k+ 2) in the frieze that differ by a shift
along the north-west diagonal:

V1 V2 · · · Vk+1 Vk+2 · · ·Vj−i+1 Vj−i+k+2





dj−w−k,i−k−1 dj−w−k,i−k · · · · · · dj−w−k,i · · · 1 0 0

...
...

... · · · 1 = V,

...
...

... · · · . . . 0

dj−w,i−k−1 dj−w,i−k · · · · · · dj−w,i · · · · · · 1

...
...

...
...







1 di−k,i−k · · · · · · di−k,i · · · · · · di−k,j

0 1
. . .

...
... =W.

...
...

. . .
. . .

...
...

0 0 · · · 1 di,i · · · · · · di,j

W1 W2 · · ·Wk+1 Wk+2 · · · · · · Wj−i+k+2

To simplify the picture we have rotated the frieze by 45 degree so that the shift between the
blocks is now seen vertically.

Due to the recurrence relation in the frieze, the matrix V can be obtained from W by
multiplying on the left by a product of matrices of the form

(−1)k




(−1)kak`+k−1 . . . −a1
` 1

1
. . .

1 0


 .

So that we have V = TW with V ∈ SLk+1. This implies that the minors of order (k + 1) in V
and W involving the same columns are equal. In particular, we have

di,j = det(W1, . . . ,Wk,Wj−i+k+2) = det(V1, . . . , Vk, Vj−i+k+2) (B.8)

=

∣∣∣∣∣∣∣

dj−w−k,i−k−1 . . . dj−w−k,i−2

...
...

dj−w−1,i−k−1 . . . dj−w−1,i−2

∣∣∣∣∣∣∣
. �
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B.5 Gale duality

The Gale duality is a one-to-one correspondence between SLk+1-frieze of width w and SLw+1-
frieze of width k. The correspondence is given by the following result.

Proposition B.4 ([24, Proposition 4.1.3]). Consider a SLk+1-frieze of width w, and its associ-
ated equation (B.2). The following array formed by the coefficients of the equation

. . . 1 1 1 1 1 1
. . . a1

n a1
1 a1

2 . . . a1
n

a2
n a2

1 a2
2 a2

n

. . . . .
.

. .
.

. .
.

. .
.

. . .
akn ak1 ak2 . . . akn . . .

1 1 1 1 1 1 . . .

is an SLw+1-frieze of width k.
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