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Abstract. The real Jacobi group GJ
1 (R), defined as the semi-direct product of the group

SL(2,R) with the Heisenberg group H1, is embedded in a 4×4 matrix realisation of the group
Sp(2,R). The left-invariant one-forms on GJ

1 (R) and their dual orthogonal left-invariant
vector fields are calculated in the S-coordinates (x, y, θ, p, q, κ), and a left-invariant metric
depending of 4 parameters (α, β, γ, δ) is obtained. An invariant metric depending of (α, β) in
the variables (x, y, θ) on the Sasaki manifold SL(2,R) is presented. The well known Kähler
balanced metric in the variables (x, y, p, q) of the four-dimensional Siegel–Jacobi upper half-

plane X J
1 =

GJ
1 (R)

SO(2)×R ≈ X1×R2 depending of (α, γ) is written down as sum of the squares of

four invariant one-forms, where X1 denotes the Siegel upper half-plane. The left-invariant
metric in the variables (x, y, p, q, κ) depending on (α, γ, δ) of a five-dimensional manifold

X̃ J
1 =

GJ
1 (R)

SO(2) ≈ X1 × R3 is determined.
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1 Introduction

The Jacobi group [39, 55] of degree n is defined as the semi-direct product GJn = HnoSp(n,R)C,
where Sp(n,R)C = Sp(n,C)∩U(n, n) and Hn denotes the (2n+1)-dimensional Heisenberg group
[16, 17, 108]. To the Jacobi group GJn it is associated a homogeneous manifold, called the Siegel–
Jacobi ball DJn [16], whose points are in Cn×Dn, i.e., a partially-bounded space. Dn denotes the
Siegel (open) ball of degree n. The non-compact Hermitian symmetric space Sp(n,R)C/U(n)
admits a matrix realization as a homogeneous bounded domain [63]:

Dn :=
{
W ∈M(n,C) : W = W t, 1n −WW̄ > 0

}
.

The Jacobi group is an interesting object in several branches of Mathematics, with important
applications in Physics, see references in [13, 16, 21, 28, 29].

Our special interest to the Jacobi group comes from the fact that GJn is a coherent state
(CS) group [79, 80, 84, 85, 86, 87], i.e., a group which has orbits holomorphically embedded into
a projective Hilbert space, for a precise definition see [12, Definition 1], [13], [22, Section 5.2.2]
and [29, Remark 4.4]. To an element X in the Lie algebra g of G we associated a first order
differential operator X on the homogenous space G/H, with polynomial holomorphic coefficients,
see [23, 24, 25] for CS based on hermitian symmetric spaces, where the maximum degree of
the polynomial is 2. In [12, 26, 27] we have advanced the hypothesis that for CS groups the
coefficients in X are polynomial, and in [13] we have verified this for GJ1 .
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It was proved in [16, 17, 21] that the Kähler two-form on DJn , invariant to the action of the
Jacobi group GJn, has the expression

−iωDJn(z,W ) = k
2 Tr(B ∧ B̄) + µTr

(
AtM̄ ∧ Ā

)
, A = dz + dWη̄,

B = MdW, M = (1n −WW̄ )−1, z ∈ Cn, W ∈ Dn, (1.1)

η = M(z +Wz̄). (1.2)

It was emphasized [17] that the change of coordinates (z,W ) → (η,W ), called FC-transform,
has the meaning of passing from un-normalized to normalized Perelomov CS vectors [92]. Also,
the FC-transform (1.2) is a homogeneous Kähler diffeomorphism from DJn to Cn × Dn, in the
meaning of the fundamental conjecture for homogeneous Kähler manifolds [53, 61, 103].

We reproduce a proposition which summarizes some of the geometric properties of the Ja-
cobi group and the Siegel–Jacobi ball [21, 22], see the definitions of the notions appearing in
the enunciation below in [13, 19, 20, 22] and also Appendix B for some notions on Berezin’s
quantization:

Proposition 1.1.

(i) The Jacobi group GJn is a unimodular, non-reductive, algebraic group of Harish-Chandra
type.

(ii) The Siegel–Jacobi domain DJn is a homogeneous, reductive, non-symmetric manifold asso-
ciated to the Jacobi group GJn by the generalized Harish-Chandra embedding.

(iii) The homogeneous Kähler manifold DJn is contractible.

(iv) The Kähler potential of the Siegel–Jacobi ball is global. DJn is a Q.-K. Lu manifold, with
nowhere vanishing diastasis.

(v) The manifold DJn is a quantizable manifold.

(vi) The manifold DJn is projectively induced, and the Jacobi group GJn is a CS-type group.

(vii) The Siegel–Jacobi ball DJn is not an Einstein manifold with respect to the balanced met-
ric corresponding to the Kähler two-form (1.1), but it is one with respect to the Bergman
metric corresponding to the Bergman Kähler two-form.

(viii) The scalar curvature is constant and negative.

The properties of geodesics on the Siegel–Jacobi disk DJ1 have been investigated in [13, 19, 20],
while in [22] we have considered geodesics on the Siegel–Jacobi ball DJn . We have explicitly
determined the equations of geodesics on DJn . We have proved that the FC-transform (1.2) is
not a geodesic mapping on the non-symmetric space DJn , see definition in [82].

However, it was not yet anlayzed whether the Siegel–Jacobi ball is a naturally reductive
space or not, even if its points are in Cn × Dn, both manifolds being naturally reductive, see
Definition A.8 and Proposition A.9. In fact, this problem was the initial point of the present
investigation. The answer to this question has significance in our approach [19] to the geometry
of the Siegel–Jacobi ball via CS in the meaning of Perelomov [92]. We have proved in [8] that
for symmetric manifolds the FC-transform gives geodesics, but the Siegel–Jacobi ball is not
a symmetric space. Similar properties are expected for naturally reductive spaces [9, 10].

In the standard procedure of CS, see [16, 92], the Kähler two-form on a homogenous mani-
fold M is obtained from the Kähler potential f(z, z̄) = logK(z, z̄) via the recipe

−iω = ∂∂̄f, (1.3)

where K(z, z) := (ez̄, ez̄) is the scalar product of two CS at z ∈ M . In [21] we have underlined
that the metric associated to the Kähler two-form (1.3) is a balanced metric, see more details in
Appendix B.
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The real Jacobi group of degree n is defined as GJn(R) := Sp(n,R)nHn, where Hn is the real
(2n+1)-dimensional Heisenberg group. Sp(n,R)C and GJn are isomorphic to Sp(n,R) and GJn(R)
respectively as real Lie groups, see [17, Proposition 2].

We have applied the partial Cayley transform from the Siegel–Jacobi ball to the Siegel–Jacobi
upper half-plane and we have obtained the balanced metric on X Jn , see [17, Proposition 3].

However, the mentioned procedure of obtaining the invariant metric on homogeneous Kähler
manifolds works only for even dimensional CS manifolds. For example, starting from the six
dimensional real Jacobi group GJ1 (R) = SL(2,R) nH1, we have obtained the Kähler invariant
two-form ωXJ1

(2.4) on the Siegel–Jacobi upper half-plane, a four dimensional homogeneous

manifold attached to the Jacobi group, X J1 =
GJ1 (R)

SO(2)×R ≈ X1 × R2 [13, 14, 18, 19], obtained

previously by Berndt [37, 38], and Kähler [68, 69].

In the present paper we determine the invariant metric on a five dimensional homogeneous

manifold, here called the extended Siegel–Jacobi upper half-plane, denoted X̃ J1 =
GJ1 (R)
SO(2) ≈

X1 × R3. It will be important to find applications in Physics of the invariant metric (5.25) on
the five-dimensional manifold X̃ J1 .

In order to obtain invariant metric on odd dimensional manifolds, we are obliged to change
our strategy applied previously to get the invariant metric on homogeneous Kähler manifolds.
Instead of the mentioned first order differential operators on M = G/H with holomorphic
polynomial coefficients X associated to X in the Lie algebra g of G [12, 26], we have to use
the fundamental vector field X∗ associated with X, see Appendix A. We have to abandon the
approach in which the Jacobi algebra is defined as the semi-direct sum gJ1 := h1 o su(1, 1),
where only the generators of su(1, 1) have a matrix realization, see [13] and the summary in
Section 2.

The approach of mathematicians is to consider the real Jacobi group GJ1 (R) as subgroup of
Sp(2,R). In the present paper we follow the notation in [39, 55] for the real Jacobi group GJ1 (R),
realized as submatrices of Sp(2,R) of the form

a 0 b q
λ 1 µ κ
c 0 d −p
0 0 0 1

 , M =

(
a b
c d

)
, detM = 1, (1.4)

where

Y := (p, q) = XM−1 = (λ, µ)

(
a b
c d

)−1

= (λd− µc,−λb+ µa) (1.5)

is related to the Heisenberg group H1.

To get the invariant metric on X̃ J1 , we have determined the invariant one-forms λ1, . . . , λ6

on GJ1 (R), the main tool of the present paper, see details on the method in Appendix D.1.1.
Then we have determined the invariant vector fields Lj verifying the relations 〈λi |Lj〉 = δij ,
i, j = 1, . . . , 6, such that Lj are orthonormal with respect to the metric ds2

GJ1 (R)
in the S-variables

(x, y, θ, p, q, κ), see [39, p. 10]. This is the idea of the method of the moving frame of E. Cartan
[49, 50, 56] explained in Section 5.4.

Firstly, we recover the well known two-parameter balanced metric on X J1 as sum of squares
of the invariant one-forms λ1, λ2, λ4, λ5. Then the invariant metric on X̃ J1 is obtained as the
sum of the squares of λ1, λ2, λ4, . . . , λ6.

The paper is laid out as follows. In Section 2 we recall how we have obtained the Kähler
two-forms on the Siegel–Jacobi disk DJ1 and on the Siegel–Jacobi upper half-plane X J1 , spec-
ifying the FC-transforms. Section 3 describes the real Heisenberg group H1 embedded into
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Sp(2,R): invariant one-forms, invariant metrics in the variables (λ, µ, κ). Note that in the
formula (3.4) the last parenthesis (dκ − µdλ + λdµ)2 replaces (dκ)2 on the Euclidean space
R3(κ, λ, µ) and the idea of the paper is to see the effect of this substitution in the invariant
metric of the five-dimensional manifold X̃ J1 . Section 4 deals with the SL(2,R) group as sub-
group of Sp(2,R) in the variables (x, y, θ), which describe the Iwasawa decomposition. SL(2,R)
is treated as a Sasaki manifold, with the invariant metric written down as sum of squares of the
invariant one-forms λ1, . . . , λ3 à la Milnor [83], while the metric on X1 is just λ2

1 + λ2
2. Invariant

metrics on SL(2,R) in other coordinates previously obtained by other authors are mentioned
in Comment 4.2. Details on the calculations referring to SL(2,R) are presented also in Ap-
pendix C.3. Section 5 presents the real Jacobi group GJ1 (R) in the EZ and S-coordinates [39].
The action of the reduced Jacobi group GJ(R)0 on the four-dimensional manifold X J1 is re-
called [13, 14] and the fundamental vector fields on it are obtained. Also the action of GJ1 (R) on
the 5-dimensional manifold X̃ J1 , called extended Siegel–Jacobi upper half-plane, is established in
Lemma 5.1. The well known Kählerian balanced metric on the Siegel–Jacobi upper-half plane
is written down as sum of the square of four invariant one-forms in Section 5.4. For this we
have obtained the invariant one-forms on GJ1 (R) in (5.16). In Comment 5.5 we discuss the
connection of our previous papers [13, 15, 19] on GJ1 (R) with the papers of Berndt [37, 38, 39]
and Kähler [68, 69], developed by Yang [108, 109, 110, 111, 112] for GJn(R). We have also deter-
mined the Killing vector fields as fundamental vector fields on the Siegel–Jacobi upper half-plane
with the balanced metric (5.21b). The same procedure is used to establish the invariant met-
ric on the extended Siegel–Jacobi upper half-plane, which is not a Sasaki manifold. All the
results concerning the invariant metrics on homogenous manifolds of dimensions 2–6 attached
to the real Jacobi group of degree 1 are summarized in Theorem 5.7. As a consequence, we
show by direct calculation that the Siegel–Jacobi upper half-plane is not a naturally reductive
space with respect to the balanced metric, but it is one in the coordinates furnished by the
FC-transform. In fact, this is the answer to the starting point of our investigation referring
to the natural reductivity of X J1 . We also calculate the g.o. vectors [77] on X J1 applying the
geodesic Lemma A.19.

In four appendices we recall several basic mathematical concepts used in paper. Appendix A
is devoted to naturally reductive spaces [51, 71, 88]. We have included the notions of Killing
vectors, Riemannian homogeneous spaces [4], the list of 3 and 4-dimensional naturally reductive
spaces [35, 36, 76, 100], the famous BCV-spaces [41, 48, 104]. Appendix B recalls the notion of
balanced metric in the context of Berezin quantization. The Killing vectors on S2, D1, R2 are
presented in Appendix C. Appendix D refers to notions on Sasaki manifolds [42, 45, 95].

The main results of this paper are stated in Lemma 5.1, Remark 4.3, Propositions 4.1–5.8,
and Theorem 5.7.

Notation. We denote by R, C, Z, and N the field of real numbers, the field of complex
numbers, the ring of integers, and the set of non-negative integers, respectively. We denote the
imaginary unit

√
−1 by i, and the Real and Imaginary part of a complex number by Re and

respectively Im, i.e., we have for z ∈ C, z = Re z + i Im z, and z̄ = cc(z) = Re z − i Im z. We
denote by |M | or by det(M) the determinant of the matrix M . M(n,m,F) denotes the set
of n × m matrices with entries in the field F. We denote by M(n,F) the set M(n, n,F). If
A ∈ Mn(F), then At (A†) denotes the transpose (respectively, the Hermitian conjugate) of A.
1n denotes the identity matrix of degree n. We consider a complex separable Hilbert space H
endowed with a scalar product which is antilinear in the first argument, (λx, y) = λ̄(x, y),
x, y ∈ H, λ ∈ C\0. We denote by “d” the differential. We use Einstein convention that repeated
indices are implicitly summed over. The set of vector fields (1-forms) are denoted by D1 (D1).
If λ ∈ D1 and L ∈ D1, then 〈λ |L〉 denotes their pairing. We use the symbol “Tr” to denote
the trace of a matrix. If Xi, i = 1, . . . , n are vectors in vector space V over the field F, then
〈X1, X2, . . . , Xn〉F denotes their span over F.
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2 The starting point in the coherent states approach

We recall firstly our initial approach [11, 13] to the Jacobi group GJ1 which we have followed
in all our papers devoted to the Jacobi group, except [28] and [29]. The Lie algebra attached
to GJ1 is

gJ1 := h1 o su(1, 1),

where h1 is an ideal in gJ1 , i.e.,
[
h1, g

J
1

]
= h1, determined by the commutation relations[

a, a†
]

= 1, (2.1a)[
K0,K±

]
= ±K±, [K−,K+] = 2K0, (2.1b)

[a,K+] = a†,
[
K−, a

†] = a,[
K+, a

†] = [K−, a] = 0,[
K0, a

†] =
1

2
a†, [K0, a] = −1

2
a.

The Heisenberg algebra is

h1 ≡ gH1 = 〈is1 + xa† − x̄a〉s∈R, x∈C,

where a† (a) are the boson creation (respectively, annihilation) operators which verify the canon-
ical commutation relations (2.1a). The Lie algebra of the group SU(1, 1) is

su(1, 1) = 〈2iθK0 + yK+ − ȳK−〉θ∈R, y∈C,

where the generators K0, K+, K− verify the standard commutation relations (2.1b), and we
have considered the matrix realization

K0 =
1

2

(
1 0
0 −1

)
, K+ = i

(
0 1
0 0

)
, K− = i

(
0 0
1 0

)
. (2.2)

We have determined the invariant metric on the Siegel–Jacobi upper half-plane X J1 from the
metric on DJ1 and the FC-transforms, see [13, 14, 18, 21]. For the actions in Proposition 2.1,
where GJ0 = SU(1, 1) nC, see [17, Proposition 2] and Lemma 5.1 below.

Proposition 2.1. Let us consider the Kähler two-form

−iωDJ1
(w, z) =

2k

(1− |w|2)2
dw ∧ dw̄ + µ

A ∧ Ā
1− |w|2 , A = A(w, z) = dz + η̄dw, (2.3)

GJ0 -invariant to the action on the Siegel–Jacobi disk DJ1(
SU(1, 1)× C2 3

(
p q
q̄ p̄

)
, α

)
· (w, z) =

(
pw + q

q̄w + p̄
,
z + α− ᾱω
q̄w + p̄

)
.

We have the homogeneous Kähler diffeomorphism FC: (DJ1 , ωDJ1 ) → (D1, ωD1) ⊕ (C, ωC),
−iωC = dη ∧ dη̄,

FC: z = η − wη̄, FC−1 : η =
z + z̄w

1− |w|2 ,

and

FC: A(w, z)→ dη − wdη̄.
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The Kähler two-form (2.3) is invariant to the action (g, α)× (η, w) = (η1, w1) of GJ0 on C×D1:
η1 = p(η + α) + q(η̄ + ᾱ).

Using the partial Cayley transform

Φ−1 : v = i
1 + w

1− w, u =
z

1− w, w, z ∈ C, |w| < 1,

Φ: w =
v − i

v + i
, z = 2i

u

v + i
, v, u ∈ C, Im v > 0,

we get the Kähler two-form

−iωXJ1
(v, u) =

2k

(v̄ − v)2
+

2µ

i(v̄ − v)
B ∧ B̄,

B(v, u) = A

(
v − i

v + i
,

2iu

v + i

)
= du− u− ū

v − v̄ dv, (2.4)

GJ(R)0-invariant to the action on the Siegel–Jacobi upper half-plane X J1(
SL(2,R)× C2 3

(
a b
c d

)
, α

)
· (v, u) =

(
av + b

cv + d
,
u+ nv +m

cv + d

)
, α = m+ in. (2.5)

We have the homogeneous Kähler diffeomorphism

FC1 :
(
X J1 , ωXJ1

)
→ (X1, ωD1)⊕ (C, ωC),

FC1 : 2iu = (v + i)η − (v − i)η̄, FC−1
1 : η =

uv̄ − ūv + i(ū− u)

v̄ − v .

The situation is summarized in the commutative diagram of the table FC-transforms

DJ1 3 (ω; z)
FC //

Φ−1

��

(ω; η) ∈ D1 × C

Φ′−1

��
X J1 3 (v;u)

FC1

// (v; p, q) ∈ X1 × C,

where

Φ′−1 : η → q + ip, Φ′ : (q, p)→ η = q + ip.

We recall that in Proposition 2.1 the parameters k and µ come from representation theory
of the Jacobi group: k indexes the positive discrete series of SU(1, 1) (2k ∈ N), while µ > 0
indexes the representations of the Heisenberg group. Note that in the Berndt–Kähler approach
the Kähler potential (5.24) is just “guessed”, see Comment 5.5.

Here we just verify the invariance of the Kähler two-form (2.4) to the action (2.5), see also
Lemma 5.1. We use equations (2.6)

dv1 =
dv

Λ2
, v1 − v̄1 =

v − v̄
|Λ|2 , where Λ = cv + d, (2.6)

and the particular case n = 1 of equations in [17, p. 17]

du1 =
du

Λ
+
nd− c(u+m)

Λ2
dv, B1 =

B

Λ
,

where B is given in (2.4).
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3 The Heisenberg subgroup of Sp(2,R)

The composition law of the 3-dimensional Heisenberg group H1 in (1.4) is:

(λ, µ, κ)(λ′, µ′, κ′) = (λ+ λ′, µ+ µ′, κ+ κ′ + λµ′ − λ′µ).

We denote an element of H1 embedded in Sp(2,R) as in (1.4) with M = 12

H1 3 g =


1 0 0 µ
λ 1 µ κ
0 0 1 −λ
0 0 0 1

 , g−1 =


1 0 0 −µ
−λ 1 −µ −κ
0 0 1 λ
0 0 0 1

 . (3.1)

A base of the Lie algebra h1 = 〈P,Q,R〉R of the Heisenberg group H1 in the realization (3.1)
in the space M(4,R) consists of the matrices

P =


0 0 0 0
1 0 0 0
0 0 0 −1
0 0 0 0

 , Q =


0 0 0 1
0 0 1 0
0 0 0 0
0 0 0 0

 , R =


0 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0

 ,

which verify the commutation relations

[P,Q] = 2R, [P,R] = [Q,R] = 0. (3.2)

If we write

H1 3 g(λ, µ, κ) = 14 + λP + µQ+ κR,

then, using the formulas, see details in Appendix D.1,

g−1dg = Pλp +Qλq +Rλr, dgg−1 = Pρp +Qρq +Rρr,

we find the left-invariant one-forms (vector fields)
λp = dλ,

λq = dµ,

λr = dκ− λdµ+ µdλ,


Lp = ∂λ − µ∂κ,
Lq = ∂µ + λ∂κ,

Lr = ∂κ,

(3.3)

and the right-invariant one-forms (respectively vector fields)
ρp = dλ,

ρq = dµ,

ρr = dκ− µdλ+ λdµ,


Rp = ∂λ + µ∂κ,

Rq = ∂µ − λ∂κ,
Rr = ∂κ.

We have the commutation relations

[Lp, Lq] = 2Lr, [Rp, Rq] = −2Rr.

We get the right (respectively left) invariant metric on H1

gRH1
(λ, µ, κ) = (ρp)2 + (ρq)2 + (ρr)2 = dλ2 + dµ2 + (dκ− µdλ+ λdµ)2, (3.4a)

gLH1
(λ, µ, κ) = (λp)2 + (λq)2 + (λr)2 = dλ2 + dµ2 + (dκ− λdµ+ µdλ)2. (3.4b)

The left (right) invariant action of H1 on itself is given by

exp(λP + µQ+ κR)(λ0, µ0, κ0) = (λ+ λ0, µ+ µ0, κ+ κ0 + λµ0 − µλ0), (3.5a)

(λ0, µ0, κ0) exp(λP + µQ+ κR) = (λ+ λ0, µ+ µ0, κ+ κ0 + λ0µ− µ0λ). (3.5b)

With (3.5), we calculate the fundamental vector fields

P ∗ = ∂λ + µ∂κ, Q∗ = ∂µ − λ∂κ, R∗ = ∂κ.
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4 The SL(2,R) subgroup of Sp(2,R)

An element M ∈ SL(2,R) is realized as an element in Sp(2,R) by the relation

M =

(
a b
c d

)
→ g =


a 0 b 0
0 1 0 0
c 0 d 0
0 0 0 1

∈ GJ1 (R), g−1 =


d 0 −b 0
0 1 0 0
−c 0 a 0
0 0 0 1

 . (4.1)

A basis of the Lie algebra sl(2,R) = 〈F,G,H〉R consists of the matrices in M(4,R)

F =


0 0 1 0
0 0 0 0
0 0 0 0
0 0 0 0

 , G =


0 0 0 0
0 0 0 0
1 0 0 0
0 0 0 0

 , H =


1 0 0 0
0 0 0 0
0 0 −1 0
0 0 0 0

 .

F , G, H verify the commutation relations (C.11). With the representation (4.1), we have

g−1dg = Fλf +Gλg +Hλh, dgg−1 = Fρf +Gρg +Hρh.

Using the parameterization (4.1) for SL(2,R), we find
λf = ddb− bdd,
λg = −cda+ adc,

λh = dda− bdc = cdb− add,


ρf = −bda+ adb,

ρg = ddc− cdd,
ρh = dda− cdb.

(4.2)

We use the notation of [39, Section 1.4]. The Iwasawa decomposition M = NAK of an
element M as in (4.1) reads

M =

(
1 x
0 1

)(
y

1
2 0

0 y−
1
2

)(
cos θ sin θ
− sin θ cos θ

)
, y > 0. (4.3)

Comparing (4.3) with (4.1), we find

a = y1/2 cos θ − xy−1/2 sin θ, b = y1/2 sin θ + xy−1/2 cos θ, (4.4a)

c = −y−1/2 sin θ, d = y−1/2 cos θ, (4.4b)

and

x =
ac+ bd

d2 + c2
, y =

1

d2 + c2
, sin θ = − c√

c2 + d2
, cos θ =

d√
c2 + d2

. (4.5)

From (4.4), we get the differentials

da = −y− 1
2 sin θdx+

1

2y
1
2

(
cos θ +

x

y
sin θ

)
dy − y 1

2

(
sin θ +

x

y
cos θ

)
dθ, (4.6a)

db = y−
1
2 cos θdx+

1

2y
1
2

(
sin θ − x

y
cos θ

)
dy + y

1
2

(
cos θ − x

y
sin θ

)
dθ, (4.6b)

dc = y−1/2

(
sin θ

2y
dy − cos θdθ

)
, dd = −y−1/2

(
cos θ

2y
dy + sin θdθ

)
. (4.6c)

Let M,M ′,M1 ∈ SL(2,R) such that MM ′ = M1, matrices of the form (4.1). With (4.4) we
calculate the explicit action of M ∈ SL(2,R) on (x′, y′, θ′)

x1 + iy1 =
(ax′ + b)(cx′ + d) + acy′2 + iy′

Λ
, Λ = (cx′ + d)2 + (cy′)2, (4.7a)
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sin θ1 =
(cx′ + d) sin θ′ − cy′ cos θ′√

Λ
, cos θ1 =

cy′ sin θ′ + (cx′ + d) cos θ′√
Λ

. (4.7b)

With (4.7), we find out

dx1

y1
=

[(cx′ + d)2 − (cy′)2]dx′ + 2cy′(cx′ + d)dy′

y′Λ
,

dy1

y1
=
−2cy′(cx′ + d)dx′ + [(cx′ + d)2 − (cy′)2]dy′

y′Λ
,

dθ1 = dθ′ + c
cy′dx′ − (cx′ + d)dy′

Λ
.

Introducing (4.4) and (4.6) into (4.2), we find the left (right)-invariant one-forms λ-s with
respect to the action M · (x′, y′, θ′) = (x1, y1, θ1), M ∈ SL(2,R) and (x1, y1, θ1) given by (4.7)
(respectively ρ-s),

λf =
dx

y
cos2 θ +

dy

2y
sin 2θ + dθ,

λg = −dx

y
sin2 θ +

dy

2y
sin 2θ − dθ,

λh = −dx

2y
sin 2θ +

dy

2y
cos 2θ,



ρf = dx− x

y
dy +

x2 + y2

y
dθ,

ρg = −dθ

y
,

ρh =
dy

2y
− x

y
dθ.

(4.8)

We determine the left-invariant vector fields Lf , Lg, Lh on SL(2,R), dual orthogonal to the
left-invariant one-forms λf , λg, λh (4.8)

Lf = y cos 2θ
∂

∂x
+ y sin 2θ

∂

∂y
+ sin2 θ

∂

∂θ
, (4.9a)

Lg = y cos 2θ
∂

∂x
+ y sin 2θ

∂

∂y
− cos2 θ

∂

∂θ
, (4.9b)

Lh = −2y sin 2θ
∂

∂x
+ 2y cos 2θ

∂

∂y
+ sin 2θ

∂

∂θ
, (4.9c)

which verify the commutation relations (C.11) of the generators F , G, H of the Lie algebra
sl(2,R). In fact, Lf , Lg, Lh in (4.9) give the Lie derivative of the matrices F , G, respectively H,
see, e.g., [78, p. 114].

From (4.8), we also get

λf + λg =
1

y
(cos 2θdx+ sin 2θdy),

2λh =
1

y
(− sin 2θdx+ cos 2θdy),

λf − λg =
dx

y
+ 2dθ,

and

1

2

(
Lf + Lg

)
= y cos 2θ

∂

∂x
+ y sin 2θ

∂

∂y
− 1

2
cos 2θ

∂

∂θ
,

1

2

(
Lf − Lg

)
=

1

2

∂

∂θ
,

1

2
Lh = −y sin 2θ

∂

∂x
+ y cos 2θ

∂

∂y
+

1

2
sin 2θ

∂

∂θ
.
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Taking α, β > 0, let us introduce the left invariant one-forms

λ1 =
√
α
(
λf + λg

)
=

√
α

y
(cos 2θdx+ sin 2θdy), (4.10a)

λ2 = 2
√
αλh =

√
α

y
(− sin 2θdx+ cos 2θdy), (4.10b)

λ3 =
√
β
(
λf − λg

)
=
√
β(

dx

y
+ 2dθ). (4.10c)

The parameters α, β introduced in (4.10) will appear in the invariant metrics (4.21) on SL(2,R)
and (5.27) on GJ1 (R), while only α will appear in the invariant metrics (5.22) on X J1 and (5.25)
on X̃ J1 .

Note that in the commutation relations of the generators e1, e2, e3 of the Lie algebra sl(2,R)

[e1, e2] = −4
α√
β
e3, [e2, e3] = 4

√
βe1, [e3, e1] =

√
βe2,

where

e1 =
√
α(F +G), e2 = 2

√
αH, e3 =

√
β(F −G),

there are 2 positive structure constants and one negative, as in the scheme of classification of
three-dimensional unimodular Lie groups, see [83, p. 307].

We determine the left-invariant vector fields Lj such that 〈λi |Lj〉 = δij , i, j = 1, 2, 3,

L1 =
1

2
√
α

(
Lf + Lg

)
=

1√
α

(
y cos 2θ

∂

∂x
+ y sin 2θ

∂

∂y
− 1

2
cos 2θ

∂

∂θ

)
, (4.11a)

L2 =
1

2
√
α
Lh =

1√
α

(
−y sin 2θ

∂

∂x
+ y cos 2θ

∂

∂y
+

1

2
sin 2θ

∂

∂θ

)
, (4.11b)

L3 =
1

2
√
β

(
Lf − Lg

)
=

1

2
√
β

∂

∂θ
. (4.11c)

If we take in (4.11) the limit θ → 0, we project the invariant vector fields of SL(2,R) on the
Siegel half-plane X1 =

{
(x, y) ∈ R2 | y > 0

}
, and we recover the invariant vector fields which

appear in Theorem A.10(2) equation (A.11)

l10 =
y√
α

∂

∂x
, l20 =

y√
α

∂

∂y
. (4.12)

Now we calculate the fundamental vector fields f∗, g∗, h∗ of manifold SL(2,R) attached to
the base F , G, respectively H, invariant to the action (x, y, θ) · (x′, y′, θ′) = (x1, y1, z1) given by
the composition law MM ′ = M1, applying (C.21), (4.4), (4.5):

f∗ = F ∗1 =
∂

∂x
, (4.13a)

g∗ = G∗1 − y
∂

∂θ
=
(
y2 − x2

) ∂
∂x
− 2xy

∂

∂y
− y ∂

∂θ
, (4.13b)

h∗ = H∗1 = 2

(
x
∂

∂x
+ y

∂

∂y

)
, (4.13c)

where we have denoted with a subindex 1 the fundamental vector fields (C.23) of SL(2,R),
corresponding to the action of the group on the Siegel upper half-plane X1. In fact, F ∗1 , G∗1, H∗1
are F, G, H in the convention of Section 1. Evidently, the vector fields (4.13) verify the same
commutation relations as F , G, H, with a minus sign.
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Using (C.22) or directly with (4.13), we calculate the fundamental vector fields v∗, h1∗, w∗

of SL(2,R) corresponding to

v =
√
α(F +G), h1 = 2

√
αH, w =

√
β(F −G),

v∗ =
√
α

[(
1− x2 + y2

) ∂
∂x
− 2xy

∂

∂y
− y ∂

∂θ

]
, (4.14a)

h1∗ = 4
√
α

(
x
∂

∂x
+ y

∂

∂y

)
, (4.14b)

w∗ =
√
β

[(
1 + x2 − y2

) ∂
∂x

+ 2xy
∂

∂y
+ y

∂

∂θ

]
. (4.14c)

Now we consider SL(2,R) as a contact manifold in the meaning of Definition D.3. Firstly we
define an almost contact structure (Φ, ξ, η) as in Definition D.1. We take η = λ3 and ξ = L3,
verifying (D.3a). We have dη = dλ3 =

√
β dx∧dy

y2
, and the condition (D.6) (with n = 1) that η be

a contact form is verified. The only nonzero component of the associated two form Φ̂ in (D.7)

is Φ̂xy =
√
β

2y2
, i.e.,

Φ̂ =

Φ̂xx Φ̂xy Φ̂xθ

Φ̂yx Φ̂yy Φ̂yθ

Φ̂θx Φ̂θy Φ̂θθ

 =


0

√
β

2y2
0

−
√
β

2y2
0 0

0 0 0

 . (4.15)

From (D.5) applied to the metric matrix (4.21) of SL(2,R), we get

Φ =

Φx
x Φx

y Φx
θ

Φy
x Φy

y Φy
θ

Φθ
x Φθ

y Φθ
θ

 =


0

√
β

2α
0

−
√
β

2α
0 0

0 −
√
β

4αy
0

 .

It is convenient to work with the matrix

Φ′ =
2α√
β

Φ =

 0 1 0
−1 0 0
0 − 1

2y 0

 . (4.16)

With (η, ξ,Φ) chosen as
(
λ3, L

3,Φ′
)
, equation (D.3b) and the conditions of Theorem D.2 for an

almost contact structure for the manifold SL(2,R), where Rank(Φ) = 2, are verified.
We have

Ker(η) = 〈V1, V2〉 =

〈
∂

∂x
− 1

2y

∂

∂θ
,
∂

∂y

〉
, (4.17)

and we can write the (1, 1)-tensor Φ′ (D.2) as

Φ′ = −V2 ⊗ dx+ V1 ⊗ dy.

If X = A ∂
∂x + B ∂

∂y + C ∂
∂θ , then Φ′X = BV1 − AV2, and the contact distribution D = 〈V1, V2〉

verifies the condition of Remark D.4.
We also observe that SL(2,R) is a homogeneous contact manifold in the sense of Defini-

tion D.5.



12 S. Berceanu

Now we construct the 4-dimensional symplectization (C(SL(2,R)), ω, ḡ) of SL(2,R), where

ḡ(r, x, y, θ) = dr2 + r2gSL(2,R)(x, y, θ), ω = d
(
r2λ3

)
. (4.18)

In order to see that the Riemann cone (C(SL(2,R)), ω, ḡ) of the manifold SL(2,R) is normal in
the sense of Definition D.10, we calculate the components (D.17) of the (1, 2)-tensor N1 (D.9),
using equations (4.15) and (4.16). Because the tensor (D.10) is antisymmetric in the lower

indexes i, j, we have to calculate only the 9 components
(
N1
)i
x,y

,
(
N1
)i
x,θ

,
(
N1
)i
y,θ

, i = x, y, θ,

which were found to be 0. In accord with Definition D.10, the Riemann cone (C(SL(2,R)), ω, ḡ)
is Sasaki, and, in accord with Theorem D.12, it is a Kähler manifold.

It can be verified that the vector ξ = L3 is a Killing vector for the metric (4.20), and SL(2,R)
has a K-contact structure, in the sense of Definition D.10. In fact, with Remark A.3, it is verified
that ∂

∂x and ∂
∂θ are Killing vectors for the metric (4.21) below, because none of the coordinates x

and θ appear explicitly in (4.20). For completness, if X = X1 ∂
∂x + X2 ∂

∂y + X3 ∂
∂θ then the

equations (A.6) of the Killing vectors in the case of the homogeneous metric (4.21) are

−2(α+ β)X2 + 2(α+ β)y∂xX
1 + 4βy2∂xX

3 = 0, (4.19a)

α∂xX
2 + (α+ β)∂yX

1 + 2βy∂yX
3 = 0, (4.19b)

−2βX2 + 2βy∂xX
1 + (α+ β)∂θX

1 + 2βy∂θX
3 = 0, (4.19c)

−X2 + y∂yX
2 = 0, (4.19d)

2βy∂yX
1 + 4βy2∂yX

3 + α∂θX
2 = 0, (4.19e)

β∂θX
1 + 2βy∂θX

3 + ∂θX
1 + 2βy∂θX

3 = 0. (4.19f)

In fact, we have

Proposition 4.1. The metric on the group SL(2,R), invariant to the action (4.7), is

ds2
SL(2,R)(x, y, θ) = λ2

1 + λ2
2 + λ2

3 = α
dx2 + dy2

y2
+ β

(
dx

y
+ 2dθ

)2

=
(α+ β)dx2 + αdy2

y2
+ 4βdθ2 + 4

β

y
dxdθ. (4.20)

The matrix associated with the metric (4.20) is

gSL(2,R)(x, y, θ) =

gxx 0 gxθ
0 gyy 0
gθx 0 gθθ

 ,

gxx =
α+ β

y2
, gyy =

α

y2
, gθθ = 4β, gxθ =

2β

y
. (4.21)

The invariant vector fields L1, L2, L3 given by (4.11) are orthonormal with respect to the
metric (4.20). The Killing vector fields associated to the metric (4.20), solutions of the equa-
tions (4.19), are given by (4.14).(

L3, λ3,Φ
′) defines an almost contact structure on SL(2,R), where L3, λ3, Φ′ are given

respectively by (4.11c), (4.10c), (4.16). λ3 is the contact structure for SL(2,R), L3 is the Reeb
vector and the contact distribution D is given by (4.17).

(
SL(2,R)(x, y, θ),X1,ds

2
D
)

is a sub-
Riemannian manifold and

ds2
SL(2,R)(x, y, θ) = ds2

X1
+ λ2

3,
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where ds2
X1

is the (Beltrami) Kähler metric (A.11), (A.17),

ds2
X1

= λ2
1 + λ2

2 = α
dx2 + dy2

y2
(4.22)

on the Siegel upper half-plane x, y,∈ R, y > 0. The invariant vector fields l10, l20 given by (4.12)
are orthonormal with respect to the metric (4.22).

The manifold SL(2,R) admits the homogenous contact metric structure
(
λ3, L

3,Φ′, gSL(2,R)

)
.

The group SL(2,R) has the K-contact structure associated with ξ = L3, and it is a Sasaki
manifold with the Riemann cone (C(SL(2,R)), ω, ḡ) with respect to the metric (4.21), where ḡ
and ω are given by (4.18).

The last assertion in Proposition (4.1) is well known, see [2, Example 7].
Now we enumerate other invariant metrics on SL(2,R) appearing in literature, different of

the metric (4.20) in Proposition 4.1:

Comment 4.2. An explicit invariant metric on SL(2,R) in coordinates different of the coordi-
nates (x, y, θ) appears in [74, Theorem 2, p. 141], see also Theorem A.11. A different form of the
invariant metric on SL(2,R) appears in the context of the BCV spaces, see our Remark A.17,
where we have applied the Cayley transform to the metric appearing in Theorem A.15, repro-
duced after [101] and [47, Example 2.1.10, p. 59]. See also [91, Proposition 2.2, p. 1072 and
equation (2.14)].

We also give a direct proof of the some well-known facts, see (b2) in Theorem A.11.

Remark 4.3. The Siegel upper half-plane X1 admits a realization as noncompact Hermitian
symmetric space

X1 =
SL(2,R)

SO(2)
≈ SU(1, 1)

U(1)
. (4.23)

X1 is a symmetric, naturally reductive space.

Proof. We use the equivalence (C.14), but we look at the level of groups. We consider the case
of Sp(n,R). The group Sp(n,K) is the group of matrices M ∈ M(2n,K), where K is R or C, for
which

〈Mα,Mβ〉 = 〈α, β〉, where α, β ∈M(n, 1,K),

and

〈α, β〉 := αtJβ, J =

(
0 1n

−1n 0

)
,

i.e., we have (4.24)

Sp(n,R) =

{
M =

(
a b
c d

)
∈ GL(2n,R) |M tJM = J

}
, a, b, c, d ∈M(n,R). (4.24)

We can identify the complex linear group GL(n,C) with the subgroup of matrices of GL(2n,R)
that commutes with J , i.e., a+ ib ∈ GL(n,C) is identified with the real 2n× 2n matrix (4.25),
see, e.g., [71, p. 115](

a b
−b a

)
. (4.25)
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It is easy to prove, see, e.g., [97, 60], that if M ∈ Sp(n,R), then M is similar with M t

and M−1. If M ∈ Sp(n,R) is as in (4.24), then the matrices a, b, c, d ∈M(n,R) in (4.24) verify
the equivalent conditions

abt − bat = 0, adt − bct = 1n, cdt − dct = 0, (4.26a)

atc− cta = 0, atd− ctb = 1n, btd− dtb = 0. (4.26b)

Note that the inverse of the matrix (4.24) is given by

M−1 =

(
dt −bt
−ct at

)
. (4.27)

The matrices from Sp(n,R) have the determinant 1.
Using the expression (4.27) it can be shown that the matrix

M ∈ Sp(n,R) ∩O2n

has the expression (4.24) and

M =

(
a b
−b a

)
, ata+ btb = 1n, atb = bta. (4.28)

If M ∈M(2n,R) has the property (4.28), let

M ′ := a+ ib ∈M(n,C), (4.29)

and the correspondence M →M ′ of (4.28) with (4.29) is a group isomorphism

Sp(n,R) ∩O2n ≈ U(n).

We identify R2n with Cn via the correspondence α = (p, q) 7→ a,

a =
p+ iq√

2
, p, q ∈ Rn,

Following Bargmann [7], it is useful to introduce the transformation

W : R2n ↔ C2n, α = (p, q) 7→ αC = (a, ā),

αC =Wα, W = 2−
1
2

(
1n i1n
1n −i1n

)
, W−1 = 2−

1
2

(
1n 1n

−i1n i1n

)
,

where

αt =
(
pt, qt

)
, pt = (p1, . . . , pn).

To M ∈M(2n,R) as in (4.24) we associate MC ∈M(2n,C)

MC =WMW−1 =
1

2

(
a+ d+ i(c− b) a− d+ i(b+ c)
a− d− i(c+ b) a+ d+ i(b− c)

)
. (4.30)

If β = Rα, R ∈ Sp(n,R) then

βC = RCαC, where RC =WRW−1 ∈ Sp(n,R)C,

and RC ∈ Sp(n,R)C = Sp(n,C) ∩U(n, n), cf. [7, 59, 66].
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From (4.26) we see that SL(2,R) ≈ Sp(1,R). Next we apply (4.30) to M =
(
a b
c d

)
∈ SL(2,R),

and we get MC =
(
α β
β̄ ᾱ

)
, where α = 1

2(a+d+i(c−b)), β = 1
2(a−d+i(b+c)), i.e., MC ∈ SU(1, 1)

because |α|2 − |β|2 = 1. In particular, if a = cos θ, b = sin θ, c = −b, d = a, then α = e−iθ,
β = 0, and (4.23) is proved.

Now we prove that X1 is a naturally reductive space verifying that the condition (A.10) is
fulfilled. We take into account (C.14) and (C.15a). If we consider sl(2,R) 3 g = m + h for the
homogeneous space M = X1 as in (4.23), then h = 〈H〉, m = 〈F,G〉 = 〈F −G,F +G〉, and the
relation (A.7c) [m, h] ⊂ m follows, i.e., X1 is reductive.

In order to verify the condition (A.10), we take X = aL1 + bL3, Y = a1L
1 + b1L

3, Z =
a2L

1 +b2L
3. We get [X,Z] = (a2b−b2a)L2 ∈ h and [X,Z]m = 0. (A.10) is trivially satisfied. �

We mention that naturally reductive left-invariant metrics on SL(2,R) in the context of
BCV-spaces have been investigated in [62].

5 The Jacobi group GJ
1 (R) embedded in Sp(2,R)

5.1 The composition law

The real Jacobi group GJ1 (R) is the semi-direct product of the real three dimensional Heisenberg
group H1 with SL(2,R). The Lie algebra of the Jacobi group GJ1 (R) is given by gJ1 (R) =
〈P,Q,R, F,G,H〉R, where the first three generators P , Q, R of h1 verify the commutation
relations (3.2), the generators F , G, H of sl(2,R) verify the commutation relations (C.11) and
the ideal h1 in sp(2,R) is determined by the non-zero commutation relations

[P, F ] = Q, [Q,G] = P, [P,H] = P, [H,Q] = Q. (5.1)

Let GJ1 (R) 3 g = (M,h), where M is as in (4.1), while H1 3 h = (X,κ), X = (λ, µ) ∈ R2

and similarly for g′ = (M ′, h′). The composition law of GJ1 (R) is

gg′ = g1, where M1 = MM ′, X1 = XM ′ +X ′, κ1 = κ+ κ′ +

∣∣∣∣XM ′X ′

∣∣∣∣ , (5.2)

where

g1 =

(
aa′ + bc′ ab′ + bd′

ca′ + dc′ cb′ + dd′

)
,

(λ1, µ1) = (λ′ + λa′ + µc′, µ′ + λb′ + µd′), κ1 = κ+ κ′ + λq′ − µp′.

The inverse element of g ∈ GJ1 (R) is given by

(M,X, κ)−1 =
(
M−1,−Y,−κ

)
→ g−1 =


d 0 −b −µ
−p 1 −q −κ
−c 0 a λ
0 0 0 1

 , (5.3)

where Y was defined in (1.5).

Using the notation of [39, p. 9], the EZ-coordinates (EZ – from Eichler and Zagier) of an
element g ∈ GJ1 (R) (1.4) are (x, y, θ, λ, µ, κ), where M is related with (x, y, θ) by (4.4), (4.5).

The S-coordinates (S – from Siegel) of g = (M,h) ∈ GJ1 (R) are (x, y, θ, p, q, κ), where (x, y, θ)
are expressed as function of M ∈ SL(2,R) by (4.5).
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5.2 The action

Let

τ := x+ iy, z := pτ + q = ξ + iη, ξ, η ∈ R. (5.4)

Let X J1 ≈ X1 × R2 be the Siegel–Jacobi upper half-plane, where X1 = {τ ∈ C, y := Im τ > 0}
is the Siegel upper half-plane, and X̃ J1 = X J1 × R denotes the extended Siegel–Jacobi upper
half-plane. Simultaneously with the Jacobi group GJ1 (R) consisting of elements (M,X, κ), we
consider the group GJ(R)0 of elements (M,X). It should be mentioned that there is a group
homomorphism GJ1 (R) 3 (M,X, κ) 7→ (M,X) ∈ GJ(R)0, through which the action of GJ1 (R)
on X J1 can be defined, see [17, Proposition 2]. Then

Lemma 5.1. The action GJ(R)0 ×X J1 → X J1 is given by

(M,X)× (τ ′, z′) = (τ1, z1), where τ1 =
aτ ′ + b

cτ ′ + d
, z1 =

z′ + λτ ′ + µ

cτ ′ + d
, (5.5)

(M,X)× (x′, y′, p′, q′) = (x1, y1, p1, q1), (5.6)

where z′ = p′τ ′ + q′, τ ′ = x′ + iy′ as in (5.4),

(p1, q1) = (p, q) + (p′, q′)

(
a b
c d

)−1

= (p+ dp′ − cq′, q − bp′ + aq′), (5.7)

while (x1, y1) are given by (4.7a).

The action GJ1 (R)× X̃ J1 → X̃ J1 is given by

(M,X, κ)× (τ ′, z′, κ′) = (τ1, z1, κ1),

(M,X, κ)× (x′, y′, p′, q′, κ′) = (x1, y1, p1, q1, κ1),

κ1 = κ+ κ′ + λq′ − µp′, (p′, q′) =

(
η′

y′
, ξ′ − x′

y′
η′
)
. (5.8)

Proof. The assertion (5.5) is expressed in [39, p. 11], reproduced in [13, Remark 9.1]. Details
of the proof are given in [14, Remark 1]. The calculation of κ1 in (5.8) is an easy consequence
of the composition law (5.2). The expression of (p′, q′) in (5.8) is a consequence of (5.4). �

5.3 Fundamental vector fields

In order to calculate the change of coordinates of a contravariant vector field under the change
of variables (5.4) (x, y, ξ, η)→ (x, y, p, q), where (p, q) =

(η
y , ξ −

η
yx
)
, we firstly observe that the

Jacobian is ∂(x,y,ξ,η)
∂(x,y,p,q) = −y < 0, and we get easily

∂x → ∂x − p∂q, ∂y → ∂y −
p

y
(∂p − x∂q), ∂ξ → ∂q, ∂η →

1

y
(∂p − x∂q). (5.9)

In order to calculate the change of coordinates of a contravariant vector field under the change
of variables (5.4) (x, y, p, q, κ)→ (x, y, ξ, η, κ), we get easily

∂x → ∂x + p∂ξ, ∂y → ∂y + p∂η, ∂p → x∂ξ + y∂η, ∂q → ∂ξ. (5.10)

With (5.9) and the action (5.5) on X J1 , and then with (5.10) for the action (5.8) on X̂ J1 , we get
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Proposition 5.2. The fundamental vector fields expressed in coordinates (τ, z) of the Siegel–
Jacobi upper half-plane X J1 on which act the reduced Jacobi group GJ(R)0 by (5.5) are given by
the holomorphic vector fields

F ∗ = ∂τ , G∗ = −τ2∂τ − zτ∂z, H∗ = 2τ∂τ + z∂z, (5.11a)

P ∗ = τ∂z, Q∗ = ∂z, R∗ = 0. (5.11b)

Then the real holomorphic fundamental vector fields corresponding to τ = x + iy, y > 0,
z = ξ + iη in the variables (x, y, ξ, η) are

F ∗ = F ∗1 , G∗ = G∗1 + (ηy − ξx)∂ξ − (ξy + xη)∂η, (5.12a)

H∗ = H∗1 + ξ∂ξ + η∂η, P ∗ = x∂ξ + y∂η, Q∗ = ∂ξ, R∗ = 0, (5.12b)

where F ∗1 , G∗1, H∗1 are the fundamental vector fields (C.23) attached to the generators F , G, H
of sl(2, R) corresponding to the action (5.5) of SL(2,R) on X1.

If we express the fundamental vector fields in the variables (x, y, p, q) where ξ = px + q,
η = py, we find

F ∗ = F ∗1 − p∂q, G∗ = G∗1 − q∂p, H∗ = H∗1 − p∂p + q∂q, (5.13a)

P ∗ = ∂p, Q∗ = ∂q, R∗ = 0. (5.13b)

Now we consider the action (5.8) of GJ1 (R) on the points (τ, z, κ) of X̃ J1 .
Instead of (5.11), we get the fundamental vector fields in the variables (τ, z, p, q, κ)

F ∗ = ∂τ , G∗ = −τ2∂τ − zτ∂z, H∗ = 2τ∂τ + z∂z,

P ∗ = τ∂z + q∂κ, Q∗ = ∂z − p∂κ, R∗ = ∂κ, p =
Im(z)

Im(τ)
, q =

Im(z̄τ)

Im(τ)
.

Instead of (5.12), we get the fundamental vector fields in X̃ J1 in the variables (x, y, ξ, η, κ)

F ∗ = F ∗1 , G∗ = G∗1 + (ηy − ξx)∂ξ − (ξy + xη)∂η,

H∗ = H∗1 + ξ∂ξ + η∂η, P ∗ = x∂ξ + y∂η + q∂κ, Q∗ = ∂ξ − p∂κ, R∗ = ∂κ.

Instead of (5.13), we ge the fundamental vector fields in the variables (x, y, p, q, κ)

F ∗ = F ∗1 − p∂q, G∗ = G∗1 − q∂p, H∗ = H∗1 − p∂p + q∂q, (5.14a)

P ∗ = ∂p + q∂k, Q∗ = ∂q − p∂k, R∗ = ∂κ. (5.14b)

5.4 Invariant metrics

We explain the method to get invariant metrics on G-homogeneous manifolds M from invariant
metrics of G, see also Appendix D.1.1.

Let M = G/H be a reductive homogeneous space. If g (h) is the Lie algebra of G (respec-
tively, H), then there exists a vector space m such that we have the vector space decomposition
g = m+h, m∩h = ∅, and the tangent space at x, TxM , can be identified with m, where H = Gx
is the isotropy group at x, see Definition A.5 and Lemma A.6. Then let Xi, i = 1, . . . , n be
a basis of the Lie algebra g such that

m = 〈X1, . . . , Xm〉, h = 〈Xm+1, . . . , Xn〉,

where dimm = m. The left-invariant one forms λi on G are given by

g−1dg =
n∑
i=1

λiXi,
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and the left-invariant vector fields Li on G are determined from the relations 〈λi |Lj〉 = δij ,
i, j = 1, . . . , n. Then the invariant metric on G is given by ds2

G =
∑n

i=1 λ
2
i and gG(Li, Lj) = δi,j ,

where i, j = 1, . . . , n. Let now Lj0 be the projections on M of the vector fields Lj , j = 1, . . . ,m.

We stil have 〈λi |Lj0〉 = δij , i, j = 1, . . . ,m and ds2
M =

∑m
i=1 λ

2
i . The fundamental vector

fields X∗i , i = 1, . . . ,m are Killing vectors of the metric gM .
Now we calculate the left-invariant one-forms on GJ1 (R)

g−1dg = λFF + λGG+ λHH + λPP + λQQ+ λRR,

where g is as in (1.4) and g−1 as in (5.3). We find the left-invariant one-forms on GJ1 (R)

λF = λf , λG = λg, λH = λh, (5.15a)

λP = dλ− pda− qdc = cdq + adp = λp − λλh − µλg (5.15b)

= −y− 1
2 sin θdq +

(
y

1
2 cos θ − xy− 1

2 sin θ
)
dp, (5.15c)

λQ = ddq + bdp = λq − pdb− qdd = λq − λλf + µλh (5.15d)

= y−
1
2 cos θdq +

(
y

1
2 sin θ + xy−

1
2 cos θ

)
dp, (5.15e)

λR = dκ− pdq + qdp = λr + λ2λf − µ2λg − 2λµλh. (5.15f)

In (5.15), equations (5.15c), (5.15e), (5.15f) are expressed in the S-coordinates (x, y, θ, p, q, κ),
λp, λq, λr have the expression (3.3) in the (λ, µ, κ)-coordinates, while λf , λg, λh have the
expressions (4.2) in the (a, b, c, d)-coordinates of SL(2,R) and (4.8) are expressed in the (x, y, θ)-
coordinates. Also the elements a, b, c, d of the matrix M ∈ SL(2,R) (1.4) are expressed in the
(x, y, θ)-coordinates by (4.4).

Now we calculate the left-invariant vector fields for the real Jacobi group

Proposition 5.3. The left-invariant vector fields Lα for the real Jacobi group GJ1 (R) orthogonal
with respect to the invariant one-forms λβ,

〈λβ |Lα〉 = δα,β, α, β = F,G,H, P,Q,R,

are given by the equations

LF = Lf , LG = Lg, LH = Lh, LP = LP0 + LP+, LQ = LQ0 + LQ+, (5.16a)

LP0 = d
∂

∂p
− b ∂

∂q
=

cos θ

y
1
2

∂

∂p
− x cos θ + y sin θ

y
1
2

∂

∂q
, (5.16b)

LP+ = −(pb+ qd)
∂

∂κ
= − 1

y1/2
[p(x cos θ + y sin θ) + q cos θ]

∂

∂κ
, (5.16c)

LQ0 = −c ∂
∂p

+ a
∂

∂q
=

sin θ

y
1
2

∂

∂p
+
y cos θ − x sin θ

y
1
2

∂

∂q
, (5.16d)

LQ+ = (pa+ qc)
∂

∂κ
=

1

y1/2
[p(y cos θ − x sin θ)− q sin θ]

∂

∂κ
, (5.16e)

LR =
∂

∂κ
. (5.16f)

The invariant vector fields LF , LG, LH , LP , LQ, LR verify the commutations relations (C.11),
(3.2) and (5.1) of the generators F , G, H, P , Q, R of the Lie algebra gJ1 (R).

Besides the formulas for λ1, λ2, λ3 defined in (4.10), we introduce the left-invariant one-forms:

λ4 =
√
γλP , λ5 =

√
γλQ, λ6 =

√
δλR, γ, δ > 0, (5.17)
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where λP , λQ, λR are defined in (5.15). Note that the parameters γ, δ introduced in (5.17) will
appear also in the invariant metrics (5.25) on X̃ J1 and (5.27) on GJ1 (R), while in the metric (5.22)
on X J1 appears only γ. The invariant metrics on DJn and X Jn depend only of two parameters
α, γ > 0 [16, 17, 21, 109, 111]. In fact, the first time they appear in the papers of Kähler [68, 69]
and Berndt [37, 38], parameterizing the invariant metric on X J1 .

Also, besides the left-invariant vector fields L1, L2, L3 defined in (4.11), we introduce the left
invariant one forms

L4 =
1√
γ
LP , L5 =

1√
γ
LQ, L6 =

1√
δ
LR, (5.18)

where LP , LQ, LR are defined in (5.16). The vector fields Li, i = 1, . . . , 6 verify the commutations
relations[

L1, L2
]

= −
√
β

α
L3,

[
L2, L3

]
=

1

2
√
β
L1,

[
L3, L1

]
=

1√
β
L2, (5.19a)[

L1, L4
]

= − 1

2
√
α
L5,

[
L1, L5

]
= − 1

2
√
α
L4,

[
L1, L6

]
= 0, (5.19b)[

L2, L4
]

= − 1

2
√
α
L4,

[
L2, L5

]
=

1

2
√
α
L5,

[
L2, L6

]
= 0, (5.19c)[

L3, L4
]

= − 1

2
√
α
L5,

[
L3, L5

]
=

1

2
√
β
L4,

[
L3, L6

]
= 0, (5.19d)

[
L4, L5

]
=

2
√
δ

γ
L6,

[
L4, L6

]
= 0,

[
L5, L6

]
= 0. (5.19e)

Similarly, we introduce

L4
0 =

1√
γ
LP0 , L5

0 =
1√
γ
LQ0 , L6

0 =
1√
δ
LR. (5.20)

Recalling also Proposition 2.1, where we have replaced u = pv+q, v = x+iy with z = pτ +q,
respectively τ = x+ iy, and k = 2c1, µ = c2

2 , we have proved:

Proposition 5.4. The balanced metric (5.21) on the Siegel–Jacobi upper half-plane X J1 , left-
invariant to the action (5.5), (5.6), (5.7) of reduced group GJ(R)0 is

ds2
XJ1

(τ, z) = −c1
dτdτ̄

(τ − τ̄)2
+

2ic2

τ − τ̄ (dz − pdτ)× cc, p =
z − z̄
τ − τ̄ , (5.21a)

ds2
XJ1

(x, y, p, q) = c1
dx2 + dy2

4y2
+
c2

y

[(
x2 + y2

)
dp2 + dq2 + 2xdpdq

]
= c1

dx2 + dy2

4y2
+ c2

x2 + y2

y

[(
dp+

x

x2 + y2
dq

)2

+

(
ydq

x2 + y2

)2
]
, (5.21b)

ds2
XJ1

(x, y, ξ, η) = c1
dx2 + dy2

4y2

+
c2

y

[
dξ2 + dη2 +

(
ξ

y

)2

(dx2 + dy2)− 2
η

y
(dxdξ + dydη)

]
. (5.21c)

The metric (5.21) is Kähler.
If we denote c1

4 = α, c2 = γ, then the matrix attached to the left invariant metric (5.21b)
on X J1 reads

gXJ1
=


gxx 0 0 0
0 gyy 0 0
0 0 gpp gpq
0 0 gpq gqq

 ,
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gxx = gyy =
α

y2
, gpp = γ

x2 + y2

y
, gqq =

γ

y
, gpq = γ

x

y
. (5.22)

The metric (5.21b) can be written as

ds2
XJ1

= λ2
1 + λ2

2 + λ2
4 + λ2

5.

The vector fields Lj0 dual orthogonal to the invariant one-forms λi, 〈λi |Lj0〉 = δij, i, j = 1, 2, 4, 5,
with respect to the bases dx, dy, dp, dq and ∂

∂x , ∂
∂y , ∂

∂p , ∂
∂q are

L1
0 =

y√
α

(
cos 2θ

∂

∂x
+ sin 2θ

∂

∂y

)
, L2

0 =
y√
α

(
− sin 2θ

∂

∂x
+ cos 2θ

∂

∂y

)
,

and L4
0, L5

0 defined by (5.20). The metric (5.21b) is orthonormal with respect to the vector fields
L1

0, L2
0, L4

0, L5
0.

The fundamental vector fields given by (5.13) are the solutions of the equations of the Killing
vector fields (5.23) on X J1 in the variables (x, y, p, q) corresponding to the metric (5.21b), in-
variant to the action (5.5), made explicit in (4.7) and (5.7), (5.8):

−X2 + y∂xX
1 = 0, (5.23a)

∂xX
2 + ∂yX

1 = 0, (5.23b)

c2

[(
x2 + y2

)
∂xX

3 + x∂xX
4
]

+
c1

4y
∂pX

1 = 0, (5.23c)

c1

4y
∂qX

1 + c2

(
x∂xX

3 + ∂xX
4
)

= 0, (5.23d)

−X2 + y∂yX
2 = 0, (5.23e)

c2

[(
x2 + y2

)
∂yX

3 +
x

y
∂yX

4

]
+
c1

y
∂pX

2 = 0, (5.23f)

c2

[
x∂yX

3 + ∂yX
4
]

+
c1

4y
∂qX

2 = 0, (5.23g)

2xyX1 +
(
−x2 + y2

)
X2 + 2y

(
x2 + y2

)
∂pX

3 + 2xy∂pX
4 = 0, (5.23h)

yX1 − xX2 + xy∂pX
3 + y∂pX

4 + y
(
x2 + y2

)
∂qX

3 + xy∂qX
4 = 0, (5.23i)

−X2 + 2xy∂qX
3 + 2y∂qX

4 = 0. (5.23j)

We make a “historical” comment

Comment 5.5. In [37, p. 8], Berndt considered the closed two-form Ω = dd̄f on Siegel–Jacobi
upper half-plane X J1 , GJ(R)0-invariant to the action (5.5), obtained from the Kähler potential

f(τ, z) = c1 log(τ − τ̄)− ic2
(z − z̄)2

τ − τ̄ , c1, c2 > 0, (5.24)

where c1 = k
2 , c2 = 2µ comparatively to our formula (2.4). Formula (5.24) is presented by

Berndt as “communicated to the author by Kähler”, where it is also given equation (5.21a),
while (5.21b) has two printing errors. Later, in Section 36 of his last paper [68], reproduced
also in [69], Kähler argues how to choose the potential as in (5.24); see also [68, Section 37,
equation (9)], where c1 = λ

2 , c2 = iµπ, and the metric (8) differs from the metric (5.21) by
a factor two, because the hermitian metric used by Kähler is ds2 = 2gij̄dzidz̄j .

We also recall that in [110] Yang calculated the metric on X Jn , invariant to the action
of GJn(R)0. The equivalence of the metric of Yang with the metric obtained via CS on DJn
and then transported to X Jn via partial Cayley transform is underlined in [17]. In particular,
the metric (5.21c) appears in [110, p. 99] for the particular values c1 = 1, c2 = 4. See also
[109, 111, 112].
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Now we shall establish a metric invariant to the action given in Lemma 5.1 of GJ1 (R) on
the extended Siegel–Jacobi upper half-plane X̃ J1 . Because the manifold X̃ J1 is 5-dimensional, we
want to see if the extended Siegel–Jacobi upper half-plane is a Sasaki manifold, as in the case
of SL(2,R) in Proposition 4.1. If we take as contact form η = λ6, then dη = −2

√
δdp ∧ dq,

and η(∧η)2 = 0. If we try to determine a contact distribution D = Ann(η), we get D =〈
∂
∂p − q ∂∂θ ,

∂
∂q + p ∂

∂θ

〉
. From (D.4), we find Φκ

λ = 0, and Φκ
p = qΦλ

κ, Φλ
q = −pΦλ

κ, where
λ = x, y, p, q, κ. So Φ has Rank(Φ) < 4. In conclusion, (Φ, ξ, η) chosen as above can not be an
almost contact structure for the extended Siegel–Jacobi upper half-plane X̃ J1 .

We obtain

Proposition 5.6. The metric on the extended Siegel–Jacobi upper half-plane X̃ J1 , in the partial
S-coordinates (x, y, p, q, κ):

ds2
X̃J1

= ds2
XJ1

(x, y, p, q) + λ2
6(p, q, κ)

=
α

y2

(
dx2 + dy2

)
+

[
γ

y

(
x2 + y2

)
+ δq2

]
dp2 +

(
γ

y
+ δp2

)
dq2 + δdκ2

+ 2

(
γ
x

y
− δpq

)
dpdq + 2δ(qdpdκ− pdqdκ) (5.25)

is left-invariant with respect to the action given in Lemma 5.1 of the Jacobi group GJ1 (R).
The matrix attached to metric (5.25) is

gX̃J1
=


gxx 0 0 0 0
0 gyy 0 0 0
0 0 g′pp g′pq g′pκ
0 0 g′qp g′qq g′qκ
0 0 g′κp g′κq g′κκ

 ,

g′pq = gpq − δpq, g′pκ = δq, g′qκ = −δp, g′pp = gpp + δq2,

g′qq = gqq + δp2, g′κκ = δ, (5.26)

while gxx, gyy, gpp, gqq, gpq are given in the metric matrix (5.22) associated with the balanced
metric (5.21b) on X J1 .

The metric (5.26) is orthonormal with respect to the invariant vector fields Li0, i = 1, 2,
Li, i = 4, 5, 6. The fundamental vector fields with respect to the action (5.8) in the variables
(x, y, p, q, κ) are given by (5.14).

The extended Siegel–Jacobi upper half-plane X̃ J1 does not admit an almost contact structure
(Φ, ξ, η) with a contact form η = λ6 and Reeb vector ξ = Ker(η).

With (5.15c), (5.15e), (5.15f), we find the invariant metric on the Jacobi group GJ1 (R):

Theorem 5.7. The composition law for the real Jacobi group GJ1 (R) in the S-coordinates
(x, y, θ, p, q, κ) is given by (4.7) for (x, y, θ), (5.6) for (p, q) and (5.8) for the coordinate κ,
replacing in the matrix M ∈ SL(2,R) the values of a, b, c, d as function of (x, y, θ) given
by (4.4).

The left-invariant metric on the real Jacobi group GJ1 (R) in the S-coordinates (x, y, θ, p, q, κ)
is

ds2
GJ1 (R)

=
6∑
i=1

λ2
i = α

dx2 + dy2

y2
+ β

(
dx

y
+ 2dθ

)2

+
γ

y

[
dq2 +

(
x2 + y2

)
dp2 + 2xdpdq

]
+ δ(dκ− pdq + qdp)2, (5.27)
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where λ1, . . . , λ3 are defined by (4.10), while λ4, . . . , λ6 are defined by (5.17), (5.15c)–(5.15f).
The matrix attached to the metric (5.27) in the variables (x, y, θ, p, q, κ) reads

gGJ1
=



gxx 0 gxθ 0 0 0
0 gyy 0 0 0 0
gθx 0 gθθ 0 0 0
0 0 0 g′pp g′pq g′pκ
0 0 0 g′qp g′qq g′qκ
0 0 0 g′κp g′κq g′κκ

 ,

where gxx, gyy, gxθ, gθθ are those attached to SL(2,R) given by (4.21), g′pp, g
′
pq, g

′
qq, g

′
pκ, g′qκ,

g′κκ are given by (5.26).
We have

〈λi |Lj〉 = δij , i, j = 1, . . . , 6,

where L1, . . . , L3 are defined by (4.11), while L4, . . . , L6 are defined by (5.18), (5.16b)–(5.16f).
The vector fields Li, i = 1, . . . , 6 verify the commutations relations (5.19) and are orthonormal
with respect to the metric (5.27).

Depending of the values of the parametres α, β, γ, δ, we have invariant metric on the following
manifolds:

1) the Siegel upper half-plane X1 if β, γ, δ = 0, see Proposition 4.1,

2) the group SL(2,R) if γ, δ = 0, β 6= 0, see Proposition 4.1,

3) the Siegel–Jacobi half-plane X J1 if β, δ = 0, see Proposition 5.4,

4) the extended Siegel–Jacobi half-plane X̃ J1 if β = 0, see Proposition 5.6,

5) the Jacobi group GJ1 if αβγδ 6= 0.

We show some consequences of Theorem 5.7. We investigate if the homogeneous manifold X J1
is a naturally reductive manifold or not. The fact that X J1 is not a naturally reductive 4-
dimensional manifold is well known, see Theorem A.12, but in Proposition 5.8 below we present
a direct proof.

Proposition 5.8. The Siegel–Jacobi upper half-plane realized as homogenous Riemannian mani-

fold
(
X J1 =

GJ1 (R)
SO(2)×R , gXJ1

)
is a reductive, non-symmetric manifold, not naturally reductive with

respect to the balanced metric (5.21b).
The Siegel–Jacobi upper half-plane X J1 is not a g.o. manifold with respect to the balanced

metric.
When expressed in the variables that appear in the FC-transform given in Proposition 2.1,

X J1 is a naturally reductive space with the metric gX1×gR2, where gX1 is given by (4.22) and gR2

is the Euclidean metric (A.14).
If

gJ1 3 X = aL1 + bL2 + cL3 + dL4 + eL5 + fL6, (5.28)

then a geodesic vector of the homogeneous manifold X J1 has one of the following expressions
given in Table 1.

Proof. From the commutation relations (C.11), (3.2), (5.1), it is seen that for gJ1 (R), we have

m = 〈F,G, P,Q〉, h = 〈H,R〉, (5.29)

because [m, h] ⊂ m, i.e., X J1 is a reductive space, cf. Definition A.5.
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Table 1. Components of the geodesic vector (5.28).

Nr. cr. a b c d e f

1 0 0 c 0 0 f

2 a b 0 0 0 f

3 rc 0 c ±rc 0 f

4 a 0 −a 0 ε
√
ra f

5 ε1ε2
1−r√
r
e ε1e − ε1ε2√

r
e ε2

√
re e f

Here r =
√

α
β , ε21 = ε22 = ε2 = 1.

But [m,m] * h, and X J1 is not a symmetric manifold.

We verify (A.10) written as

g([X1, X3]m, X2) + g(X1, [X3, X2]m) = 0, ∀X1, X2, X3 ∈ m. (5.30)

Instead of (5.29) we take

m = 〈L1, L2, L4, L5〉, h = 〈L3, L6〉,

where L1, . . . , L3 (L4, . . . , L6) are defined in (4.11), (respectively (5.18)).

We take

Xi = aiL
1 + biL

2 + ciL
4 + diL

5, i = 1, 2, 3,

and, with the commutation relations (5.19), we find

[X1, X3] =
1

2
√
α

[
(d1a3 − a1d3 + c1b3 − b1c3)L4 + (c1a3 − a1c3 + b1d3 − d1b3)L5

]
.

Taking into account that the vector fields L1, . . . , L6 are orthonormal with respect to the met-
ric (5.27) on GJ1 as in Theorem 5.7, the condition (5.30) of the geodesic Lemma A.19 reads

c3(a2d1 − a1d2 + b2c1 − b1c2) + d3(b1d2 − b2d1 + a2c1 − a1c2) = 0. (5.31)

The condition (5.31) implies that the system of algebraic equations

a1d2 + b1c2 = c1b2 + d1a2,

a1c2 − b1d2 = c1a2 − d1b2,

must have a solution for any ai, bi, ci, di, i = 1, 2, 3, which is not possible, and X J1 is not
naturally reductive with respect to the balanced metric.

Due to Theorem A.20, the four-dimensional manifold X J1 is not a g.o. manifold.

We also recall that in [17, Propositions 3 and 4] it was proved that under the so called FC-
transform, the manifold X Jn is symplectomorph with X n×Cn. The particular case of the Jacobi
group of degree 1 was reproduced in Proposition 2.1 and, in particular, X J1 is equivalent with
the symmetric space X1 × C, which is naturally reductive, as in Theorem A.12.

To find the geodesic vectors on the Siegel–Jacobi upper half-plane X J1 , we look for the solu-
tion (5.28) that verifies the condition (A.22) of the geodesic lemma expressed in Proposition A.19.
Taking

m 3 Y = a1L
1 + b1L

2 + d1L
4 + e1L

5,
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the condition (A.22)

a1

(
bc√
β

+
ed√
α

)
+
b1
2

[
− ac√

β
+

1√
α

(
d2 − e2

)]
− d1

2
√
α

(bd+ ec+ ae) +
e1

2

[
cd√
β

+
1√
α

(be− ad)

]
= 0

must be satisfied for every values of a1, b1, d1, e1, i.e., the coefficients of the geodesic vector (5.28)
are solutions of the system of algebraic equations

rbc+ de = 0,

−rac+ d2 − e2 = 0,

bd+ e(a+ c) = 0,

rcd+ be− ad = 0. (5.32)

The solutions of the system (5.32) are written in Table 1. �

A Naturally reductive spaces

A.1 Fundamental vector fields

A homogeneous space is a manifold M with a transitive action of a Lie group G. Equivalently,
it is a manifold of the form G/H, where G is a Lie group and H is a closed subgroup of G, cf.,
e.g., [6, p. 67].

Let (M, g), (N, g′) be Riemannian manifolds. An isometry is a diffeomorphism f : M → N
that preserves the metric, i.e., gp(u, v) = g′f(p)(dfp(u),dfp(v)), ∀ p ∈M , ∀u, v ∈ TMp. If (M, g)

is a Riemannian manifold, the set I(M, g) (or I(M)) of all isometries M → M forms a group
called the isometry group of M .

A Riemannian homogenous space is a Riemannian manifold (M, g) on which the isometry
group I(M) acts transitively. A Riemannian manifold (M, g) is a G-homogenous (or homogenous
under a Lie group G) if G is a closed subgroup of I(M, g) which acts transitively on M , cf. [40,
p. 178].

Let G be a Lie group of transformations acting on the manifold M , cf. [63, Chapter II,
Section 3, p. 121]. In [63, p. 122] it is introduced the notion of vector field on M induced by the
one parameter subgroup exp tX, t ∈ R, X ∈ g, denoted X+, where g is the Lie algebra of G. In
[70, Section 5, p. 51], in the context of principal fibre bundle P (M,G) over M with structure
group the Lie group G, it is introduced the same notion under the name fundamental vector
field associate to X ∈ g, denoted X∗, see also [70, Proposition 4.1, p. 42].

Let M = G/H be a homogeneous n-dimensional manifold and let us suppose that G acts
transitively on the left on M , G×M →M : g·x = y, where y = (y1, . . . , yn)t. Then g(t)·x = y(t),
where g(t) = exp(tX), t ∈ R, generates a curve in M with y(0) = x and ẏ(0) = X. The
fundamental vector field attached to X ∈ g at x ∈M is defined as

X∗x :=
d

dt
y(t)

∣∣∣
t=0

=
d

dt
(exp(tX) · x)

∣∣∣
t=0

.

We write the fundamental vector field attached to X ∈ g as

X∗x =

n∑
i=1

(X∗i )x
∂

∂zi
, (X∗i )x =

dyi(t)

dt

∣∣∣
t=0

.

Now, because [X∗, Y ∗] = −[X,Y ]∗, see, e.g., in [63, Theorem 3.4, p. 122], it is observed
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Lemma A.1. If the generators X1, . . . , Xn of a Lie algebra g verify the commutations relations

[Xi, Xj ] = ckijXk, (A.1)

then the associated fundamental vector fields verify the commutation relations

[X∗i , X
∗
j ] = −ckijX∗k .

Note that if the action of G on M is on the right as in [70, p. 51], then

[X∗i , X
∗
j ] = ckijX

∗
k .

A.2 Killing vectors

A vector field X ∈ D1(M) on a Riemannian manifold (M, g) is called an infinitesimal isometry
or a Killing vector field if the local 1-parameter group of local transformations by X in a neigh-
bourhood of each point of M consists of local isometries, see also in [70, Proposition 3.2, p. 237],
i.e.,

LXg = 0, X ∈ D1(M), (A.2)

where LX is the Lie derivative on M .
We recall below in Lemma A.2 the Killing equations (A.5), see, e.g., [113, Theorem 1.3, p. 5]

or [104, equation (40′), p. 247]. We use the tensor notation as in [104, 113].
Let us consider a n-dimensional Riemannian manifold (M, g) and a vector field with the

contravariant components Xi, i = 1, . . . , n:

X =
n∑
i=1

Xi ∂

∂xi
. (A.3)

If ∇ denotes the covariant derivative, we have the standard formulas

∇µgλχ := ∂µgλχ − Γρµλgρχ − Γρµχgλρ, (A.4a)

∇µXχ := ∂µX
χ + ΓχµλX

λ, (A.4b)

∇µXχ := ∂µXχ − ΓλµχXλ, (A.4c)

Xµ := gµλX
λ, (A.4d)

LXgλχ := Xµ∂µgλχ + gρχ∂λX
ρ + gλρ∂χX

ρ. (A.4e)

Lemma A.2. Let (M, g) be a n-dimensional Riemannian manifold with a Riemannian (metric)
connection. The field X is a Killing vector field if and only if its covariant components Xµ,
µ = 1, . . . , n verify the Killing equations

∇λXχ +∇χXλ :=
∂Xχ

∂xλ
+
∂Xλ

∂xχ
− 2ΓρλχXρ = 0, λ, χ = 1, . . . , n. (A.5)

Remark A.3. If the coordinate xα is not present in the expression of metric tensor gλχ, λ, χ =
1, . . . , n, then ∂

∂xα is a Killing vector field for the metric gλχ.

With (A.4e), the condition (A.2) of a vector field (A.3) to be a Killing vector field is that its
contravariant components to verify the equations

Xµ∂µgλχ + gµχ∂λX
µ + gλµ∂χX

µ = 0, λ, χ, µ = 1, . . . ,dimM = n. (A.6)
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The system (A.6) of n(n + 1)/2 equations of a Killing vector field X1(x), . . . , Xn(x) is overde-
termined, and no-nonvanishing solution is guaranteed, in general. The set ι(M) of all Killing

vector fields on n-dimensional manifold M forms a Lie algebra of dimension not exceeding n(n+1)
2

and dim(ι(M)) = n(n+1)
2 is obtained only for spaces of constant curvature, see [70, Theorem 3.3,

p. 238]. For example, maximal solution is obtained for the (pseudo)-Euclidean spaces Er,n−r,
for the sphere Sn or the real projective space RPn = Sn/(±I), see, e.g., [70, Theorem 1, p. 308],
[104, p. 251] and [57, Section 4.6.6, p. 83]. We have ι(Er,s) = so(r, s) n Rr+s. The Euclidean
group En of Rn has dimension n(n+1)/2, where n degrees of freedom correspond to translations,
the other n(n− 1)/2 correspond to rotations, see also Proposition A.13 and Remark C.4 below.

The following remark is very important for the determination of Killing vector fields on
Riemannian homogeneous manifolds, see, e.g., see [35, p. 4] or [72, Proposition 2.2, p. 139]:

Remark A.4. If (M, g) is a Riemannian homogeneous space M = G/H endowed with a G-
invariant Riemannian metric g, then each X ∈ g generates a one-parameter subgroup of the
group I(M) of isometries (motions) of M via p → (exp tX) · p. Hence the fundamental vector
field X∗ on a Riemannian homogeneous manifold is a Killing vector. For Riemannian homoge-
neous spaces M = G/H, dim(I(M)) = dim(G).

A.3 Reductive homogeneous spaces

The following notions are standard, see [63, pp. 121, 123 and 125] or [70, p. 155] and [71, p. 187];
see also [3, 89, 90].

The set of elements Gx of a given group G, acting on a set M as group of transformations
that leaves the point x fixed, is called isotropy group, also called stationary group or stabilizer.
If G is a Lie group and H is a closed subgroup, then the coset space G/H, in particular,
H = Gx is taken with the analytic structure given in [63, Theorem 4.2, p. 123]. For x ∈ G,
the diffeomorphism of G/H into itself is τ(x) : yH → xyH. The natural representation of the
isotropy group of a differentiable transformation group in the tangent space to the underling
manifold is called isotropy representation. If G is the group of differentiable transformations on
the manifold M and Gx is the corresponding isotropy subgroup at the point x ∈ M , then the
isotropy representation Isx : Gx → GL(TxM) associates to each h ∈ Gx the differential Isx(h) :=
(dτ(h))λ(H) of the transformation h at x, where λ : G→ G/H is the canonical projection. The
image of the isotropy representation, Isx(Gx), is called the linear isotropy group at x.

If G is a Lie group with a countable base acting transitively and smoothly on M , then the
tangent space TxM can be naturally identified with the space g/gx, where g ⊃ gx are respectively
the Lie algebras of the groups G ⊃ Gx. The isotropy representation Isx is now identified with
the representation Gx → GL(g/gx), induced by the restriction of the adjoint representation
AdG of G to Gx. See details below in Lemma A.6.

Definition A.5 (cf. Nomizu [88]). A homogeneous space M = G/H is reductive if the Lie
algebra g of G may be decomposed into a vector space direct sum of the Lie algebra h of H and
an Ad(H)-invariant subspace m, that is

g = h + m, h ∩m = ∅, (A.7a)

Ad(H)m ⊂ m. (A.7b)

Condition (A.7b) implies

[h,m] ⊂ m (A.7c)

and, conversely, if H is connected, then (A.7c) implies (A.7b). Note that H is always con-
nected if M is simply connected. The decomposition (A.7a) verifying (A.7b) is called a H-stable
decomposition.
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Lemma A.6. If a homogeneous space M is reductive, then TxM can be identified with m,
while Isx can be identified with the representation h 7→ (AdG h)|m. In this case, the isotropy
representation is faithful if G acts effectively.

So let us denote by x(s) the 1-parameter subgroup of G generated by X ∈ m and let x∗(s) =
λ(x(s)) be the image of x(s) by the projection λ of G onto G/H:

x∗(s) = x(s).o = (exp sX∗).o.

Identifying X∗ with X ∈ m, we can write down

x∗(s) = exp(sX).o.

The invariant tensor fields on a homogeneous space M are in one-to-one correspondence with
the tensor fields on TxM that are invariant with respect to the isotropy representation. In
particular, M has an invariant Riemannian metric if and only if TxM has a Euclidean metric
that is invariant under the linear isotropy group.

In accord with [71, Proposition 3.1 and Corollary 3.2, p. 200] and [6, p. 78]:

Proposition A.7. Let M = G/H be a homogenous space where G is a Lie group acting effec-
tively on M , which is reductive.

The one-to-one correspondence between G-invariant indefinite Riemannian metrics g on M =
G/H and Ad(H)-invariant non-degenerate symmetric bilinear forms B on m

B(X,Y ) = B
(
AdG/H(h)X,AdG/H(h)Y

)
, ∀X,Y ∈ m, h ∈ H,

is given by

B(X,Y ) = g(X∗, Y ∗)o, for X,Y ∈ m, (A.8)

Explicitly, the Ad(H) invariance of the symmetric non-degenerate form B in (A.8) means,
see, e.g., [71, p. 201]

B(X, [Z, Y ]) +B([Z,X], Y ) = 0, X, Y ∈ m, Z ∈ h. (A.9)

Usually it is asked that the group of isometries G acts effectively on M , cf. [51].

The canonical connection, see [71, p. 192], or canonical affine connection of second type,
see [88], on the reductive space M = G/H verifying (A.7a), (A.7b), is the unique G-invariant
affine connection on M such that for any vector field X ∈ m and any frame u at the point o,
the curve (exp tX)u in the principal fibration of frames over M is horizontal. The canonical
connection is complete and the set of its geodesics through o coincides with the set of curves of
the type (exp tX)o, where X ∈ m, see also [71, Proposition 2.4 and Corollary 2.5, p. 192]. In
a reductive space there is a unique G-invariant affine connection with zero torsion having the
same geodesics as the canonical connection, cf. [71, Theorem 2.1, p. 197]. This connection is
called in [71] natural torsion-free connection on M = G/H relative to the decomposition (A.7a),
or canonical affine connection of the first kind in [88].

A.4 Naturally reductive spaces

For the next definition and (A.10) below, see in [88, Chapter II, Section 13, metric connections],
[71, p. 202] and [51],



28 S. Berceanu

Definition A.8. A homogeneous Riemannian or pseudo-Riemannian space M = G/H is natu-
rally reductive if it is reductive, i.e., it verifies (A.7a), (A.7b), and

B(X, [Z, Y ]m) +B([Z,X]m, Y ) = 0, X, Y, Z ∈ m, (A.10)

where B is the non-degenerate symmetric bilinear form on m induced by the Riemannian
(pseudo-Riemannian) structure on M under the natural identification of the spaces m and Mo,
as in (A.8).

If M = G/H is a naturally reductive Riemannian or pseudo-Riemannian space verifying
(A.7a), (A.7b), and (A.10), then the natural torsion-free connection coincides with the corre-
sponding Riemannian or pseudo-Riemannian connection on M [3].

Based on [4, Theorem 5.4], [71, Chapter X, Section 3], [100, Theorem 6.2, p. 58] and [35,
Proposition 1, p. 5], it is formulated the following

Proposition A.9. Let (M, g) be a homogeneous Riemannian manifold. Then (M, g) is a nat-
urally reductive Riemannian homogenous space if and only if there exists a connected Lie sub-
group G of I(M) acting transitively and effectively on M and a reductive decomposition (A.7a),
such that one of the following equivalent statements hold:

(i) (A.10), or

g([X,Z]m, Y ) + g(X, [Z, Y ]m) = 0 ∀X,Y, Z ∈ m,

is verified;

(ii) the Levi-Civita connection of (M, g) and the natural torsion-free connection with respect
to the decomposition (A.7a) are the same;

(iii) (∗) is true, i.e., every geodesic in M is the orbit of a one-parameter subgroup of I(M)
generated by some X ∈ m.

It is not always easy to decide whether a given homogenous Riemannian space is naturally
reductive [1]. The Riemannian manifold M = G/H might be naturally reductive although for
any reductive decomposition g = h+m none of the statements in Proposition A.9 holds, because
that might exist another appropriate subgroup G̃ ⊂ I(M) such that M = G̃/H̃ and with respect
to such decomposition the conditions of Proposition A.9 are satisfied, see, e.g., [35, p. 5]. In
accord with [35, Proposition 2, p. 5], a necessary and sufficient condition that a complete and
simply connected manifold be naturally reductive is that there exists a homogeneous structure T
on M with T∗v = 0, for all tangent vectors v of M .

Ambrose and Singer found the condition for a Riemannian manifold be locally homoge-
neous [4].

A.5 Naturally reductive spaces of dimension ≤ 4

The connected homogeneous Riemannian Vn naturally reductive spaces of dimension n ≤ 6 are
classified.

For two dimensional manifolds, because the homogeneous manifolds V2 have constant curva-
ture, they are locally symmetric spaces, see, e.g., in [100, Theorem 4.1, Section 4].

Theorem A.10. The only homogenous structure on R2 and S2 is given by T = 0, cf. [100,
Corollary 4.2].

Let (M, g) be a connected and simply connected surface. Then (M, g) admits a homogenous
structure T 6= 0 if and only if (M, g) is isomorphic to the hyperbolic plane, cf. [35, Theorem 4.3].

Up to an isomorphism, H2 has only two homogenous structures, namely:
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1. T = 0, corresponding to the symmetric case H2 = SO0(1, 2)/U(1), where SO0(1, 2) =
SL(2,R)/±I is the connected component of the identity of the Lorentz group, see also (C.14).

2. TXY = g(X,Y )ξ − g(ξ, Y )X, ξ = ξ1E1 + ξ2E2, E1 = 1
ry

1 ∂
∂y1

, E2 = 1
ry

1 ∂
∂y2

,

g = r2
(
y1
)−2((

dy1
)2

+
(
dy2
)2)

, (A.11)

X,Y ∈ D1(M), r > 0. This homogenous structure corresponds to the Lie algebra g with the
product (y1, y2)(y′1, y

′
2) = (y1y

′
1, y1y

′
2 +y2), i.e., the semi-direct product of the multiplicative

group R+
0 and the additive group R.

The case n = 3 was considered by Kowalski [74]. The proof of Theorems A.11 and A.12
below is based on the Ambrose and Singer theorem in the formulation of [100, Section 2] and the
classification of 3-dimensional unimodular Lie groups with left-invariant metrics of Milnor [83].

The following theorem is [100, Theorem 6.5, p. 63], [36, Theorem 2] or [1, Theorem 5.2]:

Theorem A.11. A three-dimensional complete, simply connected naturally reductive Rieman-
nian manifold (M, g) is either:

(a) a symmetric space realized by the real forms: R3, S3 or the Poincaré half-space H3, and
S2 × R, H2 × R, or

(b) a non-symmetric space isometric to one of the following Lie groups with a suitable left-
invariant metric:

(b1) SU(2),

(b2) S̃L(2,R), the universal covering of SL(2,R), with a special left-invariant metric,

(b3) the 3-dimensional Heisenberg group H1, where the Heisenberg group has a left-inva-
riant metric.

The Poincaré half-space Hn is the set (x1, . . . , xn) ∈ Rn, x1 > 0, with the metric proportional
with

ds2 := x−2
1

n∑
i=1

(dxi)
2. (A.12)

For the left invariant Riemannian metrics which appear in Theorem A.11, see [74, Theorem 2]
and [91]. For H1 = R3[x, y, z] a left-invariant metric is

ds2
H3

=
1

b

(
dx2 + dz2 + (dy − xdz)2

)
, b ∈ R+.

Note that in [35, Theorem 1, p. 6] appear only the non-symmetric naturally reductive spaces of

dimensions 3: SU(2) ∼= S3, S̃L(2,R) and Nil3. The metrics of these spaces are particular cases
of the 7-families of BCV-spaces that appear in Theorem A.15, because the naturally reductive
spaces are a particular class of homogenous spaces.

The case of four-dimensional manifolds was treated by Kowalski and Vanhecke, see [76, Theo-
rem 1, p. 224] or [35, Theorem 2, p. 6]:

Theorem A.12. Let (M, g) be a four-dimensional simply connected naturally reductive Rieman-
nian manifold. Then (M, g) is either symmetric or it is a Riemannian product of the naturally
reductive spaces of dimension 3 of type (b) appearing in Theorem A.11 times R. In the last
cases, (M, g) is not locally symmetric.



30 S. Berceanu

A.6 V2 and V3 spaces with transitive group

The determination of the groups G3 of isometries with three parameters of a two-dimensional
space V2 with positive definite metric was done by Bianchi [41]. In Proposition A.13 below we
follow Vranceanu, see [104, Chapter V, Section 14, p. 288]. The generators of G3 in [104, equa-
tion (90)] considered by Vranceanu, in our notation (C.37), verifies the commutation relations

[X,Y ] = −εZ, [Y,Z] = −kX, [Z,X] = −Y, ε = ±1. (A.13)

Below we also write down V2 as a homogenous manifolds.

E(2) is the group of rigid motions of the Euclidean 2-space, denoted M(2) in [102, p. 195],
see also [102, Section 8.5].

Proposition A.13.

1. If k = 0, ε = 1, then the invariant metric of V2 is given by (A.14),

ds2 = dx2 + dy2, (A.14)

and V2 is the Euclidean space E2 = E(2)/O(2). The Euclidean group is E(2) = R2oO(2).

2. If k = 0, ε = −1, then the invariant metric of V2 is

ds2 = dx2 − dy2,

on the pseudo-euclidean space V2 = E1,1 = E(1, 1)/O(1, 1), E(1, 1) = R2 oO(1, 1).

3. A space V2 with group G3 always admits a simply transitively subgroup, except when the
generators (A.13) of the structure group for ε = 1 and k > 0, when the stereographic
projection of the sphere from the south pole (0, 0,−R) to plane tangent in the north pole
(0, 0, R) has the expression (C.8), where m = k

4 , and the generators (C.36) are

X =
√
k

(
z
∂

∂x
− x ∂

∂z

)
, Y =

√
k

(
−y ∂

∂z
+ z

∂

∂y

)
, Z = y

∂

∂x
− x ∂

∂y
,

i.e., rotations around the axes x, y, z. We have V2 = S2 ∼= CP1 ∼= SU(2)/U(1). The
metric of a space V2 with simply transitive abelian group may be written as

ds2 = e2λvdu2 + εdv2, k = −λ2. (A.16)

If ε = 1 and k > 0, then (A.16) can be written down as

ds2 = du2 + dv2 +
k(udv + vdu)2

1− k
(
u2 + v2

) , k =
1

R2
.

4. If ε = 1 and k < 0, then the metric on V2 is (the Beltrami) metric

ds2 =
dξ2 + dη2

λ2η2
, k = −λ2, η > 0, (A.17)

see also (A.12). V2 is of the type of a Siegel disk V2 = D1 ≡ SU(1, 1)/U(1) or, equivalently,
Siegel upper half-plane H1.

For (A.17), see [97, equation (2)] or [64, Theorem 3, p. 644].

The formulation of the following proposition is extracted from [65]:
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Proposition A.14. If (V3, g) is a homogenous space of dimension 3, then dim(I(V3)) = 6, 4
or 3.

1. If dim(I(V3)) = 6, then V3 is of the type of the real space forms, i.e., the real Euclidean
space E3, the sphere S3(κ), or the hyperbolic space H3(κ).

2. If dim(I(V3)) = 4, then V3 is either a Riemannian product H2(κ) × R or S2(κ) × R, or

one of the following Lie groups with left invariant metric: SU(2), S̃L(2,R) or H1, see [83].

3. If dim(I(V3)) = 3, then V3 is a general 3-dimensional Lie group with left-invariant metric,
e.g., the Lie group Sol3, i.e., the group with the composition law:

(x1, y1, t1)(x2, y2, t2) =
(
x1 + etx2, y1 + e−ty2, t1 + t2

)
and the left-invariant metric

ds2 = e−2tdx2 + e2tdy2 + dt2.

The above classification contains the eight model geometries of Thurston [99]: E3, H3, S3,
H2 × R, S2 × R, S̃L(2,R), H1 and Sol3.

Cartan classified all 3-dimensional spaces V3 with a 4-dimensional isometry group G4 in [48],
see also [41] and [104]. See also [91] for a modern presentation of Cartan approach.

The Bianchi–Cartan–Vranceanu (BCV) spaces are V3 spaces with dim(I(V3)) = 4 together
with E3 and S3(κ), while the hyperbolic space H3(κ) appearing in Theorem A.11 – a symmetric
naturally reductive – is missing in the list of BCV-spaces.

For κ, τ ∈ R, it is defined the open subset of R3

BCV(κ, τ) :=
{

(x, y, z) ∈ R3 |D = D(x, y, z;κ) > 0, where D := 1 +
κ

4

(
x2 + y2

)}
, (A.18)

equipped with the metric

ds2
BCV(x, y, z;κ, τ) =

dx2 + dy2

D2
+

(
dz + τ

ydx− xdy

D

)2

. (A.19)

Following [101, Section 2.5] and [47, Example 2.1.10, p. 59], the BCV spaces are described as
in

Theorem A.15. All 3-dimensional homogenous spaces V3 with isometry group G4 are locally
isomorphic with the BCV-spaces. The BCV family also includes two real space forms, with
isometry group G6, see Proposition A.14. The full classification of these spaces is as follows:

1) if κ = τ = 0, then BCV(κ, τ) ∼= E3;

2) if κ = 4τ 6= 0, then BCV(κ, τ) ∼= S3
(
κ
4

)
\ {∞};

3) if κ > 0 and τ = 0, then BCV(κ, τ) ∼= S2(κ) \ {∞})× R;

4) if κ < 0 and τ = 0, then BCV(κ, τ) ∼= H2(κ)× R;

5) if κ > 0 and τ 6= 0, then BCV(κ, τ) ∼= SU(2) \ {∞};
6) if κ < 0 and τ 6= 0, then BCV(κ, τ) ∼= S̃L(2,R);

7) if κ = 0 and τ 6= 0, then BCV(κ, τ) ∼= Nil3.

Here the Poincaré (Siegel) disc is

H2(κ) ∼=
{

(x, y) ∈ R2 |D < 0, ds2 =
dx2 + dy2

D2

}
.
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An orthonormal frame of vectors on BCV(κ, τ) is given by

e1 = D
∂

∂x
− τy ∂

∂z
, e2 = D

∂

∂y
+ τx

∂

∂z
, e3 =

∂

∂z
, (A.20)

verifying the commutation relations

[e1, e2] =
κ

2
(−ye1 + xe2) + 2τe3, [e2, e3] = [e3, e1] = 0.

The dual 1-forms ωi, 〈ωi | ej〉 = δij, i, j = 1, 2, 3, to the orthonormal vector fields (A.20) are

ω1 =
dx

D
, ω2 =

dy

D
, ω3 = dz + τ

ydx− xdy

D
, (A.21)

and we write down (A.19) as

ds2
BCV =

3∑
i=1

ωi ⊗ ωi.

Let D be a distribution generated by e1, e2. The intrinsic (extrinsic) ideal is given by J = 〈ω3〉
(respectively, I = 〈ω1, ω2〉).

If τ 6= 0, the distribution is step 2 everywhere and ω3 is a contact form. If we consider the
sub-Riemannian metric

ds2
D =

2∑
i=1

ωi ⊗ ωi,

then the BCV-space is a sub-Riemannian manifold
(
BCV,D, ds2

D
)
.

Remark A.16. Note that the BCV metrics appearing in Cases 1, 2, 5, 6, 7 are metrics on
the corresponding naturally reductive spaces of Theorem A.11. Note that naturally reductive
space H3 in Theorem A.11, corresponding to the isometry group of dimension 6, is not a BCV
space.

See [58] for a generalization of BCV spaces to 7 dimensions.
Applying the Cayley transform, we can formulate Theorem A.15 on the Siegel upper half-

plane, instead on the Siegel disk D(x, y, z;κ) defined by (A.18). We get

Remark A.17. With the Cayley transform√
−κ

4
ζ =

v − i

v + i
,

we get for (A.18)

D(x, y, z;κ) = 1 +
4

κ

(
x2 + y2

)
= 4

Im v

|v + i|2 > 0,

where ζ := x + iy. If v := α + iβ, E := α2 + (β + 1)2, then the left invariant one-forms (A.21)
in the new variables are

ω1 =

√−κ
4

(
−α2 + β2 + 2β + 1

)
dα− 2α(β + 1)dβ

βE
,

ω2 =

√−κ
4

(α2 − β2 − 2β − 1)dα+ 2αdβ

βE
,

ω3 = dz +
2τ

κ

(
α2 − β2 + 1

)
dα+ 2αβdβ

βE
.

Instead of the family of metrics (A.19), we get in Theorem A.15

ds2
BCV(α, β, z;κ, τ) = −1

κ

dα2 + dβ2

β2
+
(
ω3
)2
.
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A.7 G.o. spaces

The natural reductivity is a special case of spaces with a more general property than (∗), see [77]:
(∗∗) Each geodesic of (M, g) = G/H is an orbit of a one parameter group of isometries {exp tZ},
Z ∈ g.

Definition A.18. A vector X ∈ g\{0} is called a geodesic vector if the curve γ(t) = (exp tX)(p)
is a geodesic.

Riemannian homogeneous spaces with property (∗∗) are called g.o. spaces (g.o. = geodesics
are orbits). All naturally reductive spaces are g.o. manifolds.

Kowalski and Vanhacke [77] have proved that

Proposition A.19 (geodesic lemma). On homogeneous Riemannian manifolds M = G/H
a vector X ∈ g \ {0} is geodesic if and only if

B([X,Y ]m, Xm) = 0, ∀Y ∈ m. (A.22)

It is known, cf. [77]:

Theorem A.20. Every simply connected Riemannian g.o. space (G/H, g) of dimension n ≤ 5
is a naturally reductive Riemannian manifold.

Kowalski and Szenteke [75] proved that

Theorem A.21. Any homogeneous Riemannian manifold admits at least one homogeneous
geodesic through every point o ∈M .

More details on g.o. spaces and examples are given in [54].

B Balanced metrics and Berezin quantization

In our approach to Berezin quantization on Kähler manifold M of complex dimension n, see,
e.g., [21], we considered the Kähler two-form

ωM (z) = i

n∑
α,β=1

hαβ̄(z)dzα ∧ dz̄β, hαβ̄ = h̄βᾱ = hβ̄α.

We have considered homogenous Kähler manifolds M = G/H, where the G-invariant Kähler
two-form is deduced from a Kähler potential f

hαβ̄ =
∂2f

∂zα∂z̄β
.

We have applied Berezin recipe to quantization [31, 32, 33, 34], where the Kähler potential
is obtained from the scalar product of two Perelomov CS-vectors ez, z ∈M [92]

f(z, z̄) = lnKM (z, z̄), KM (z, z̄) = (ez̄, ez̄),

i.e., (1.3).
This choice of f corresponds to the situation where the so called ε-function, see [46, 93, 94],

ε(z) := e−f(z)KM (z, z̄),

is constant. The corresponding G-invariant metric is called balanced metric. This denomination
was firstly used in [52] for compact manifolds, then it was used in [5] for noncompact manifolds



34 S. Berceanu

and also in [81] in the context of Berezin quantization on homogeneous bounded domain, and
we have used it in the case of the partially bounded domain DJn – the Siegel–Jacobi ball [21].

We recall that in [46, 93, 94] Berezin’s quantization on homogenous Kähler manifolds via
CS was globalized and extended to non-homogeneous manifolds in the context of geometric
(pre-)quantization [73, 107]. To the Kähler manifold (M,ω), it is also attached the triple
σ = (L, h,∇), where L is a holomorphic (prequantum) line bundle on M , h is the Hermi-
tian metric on L and ∇ is a connection compatible with metric and the Kähler structure [30].
The connection ∇ has the expression ∇ = ∂ + ∂ ln ĥ + ∂̄. The manifold is called quantizable
if the curvature of the connection F (X,Y ) = ∇X∇Y −∇Y∇X −∇[X,Y ] has the property that

F = −iωM , or ∂∂̄ log ĥ = iωM , where ĥ is a local representative of h, taken ĥ(z) = K−1
M (z, z̄).

Then ωM is integral, i.e., the first Chern class is given by

c1[L] =
i

2π
F =

ω

π
,

and we have (1.3).

C Killing vectors on S2, D1 and R2

C.1 Killing vectors on S2

We consider on the sphere S2{
x ∈ R3 |x2

1 + x2
2 + x2

3 = R2
}
, R > 0,

the spherical coordinates, as in Fig. 1, where R = 1, 0 ≤ θ ≤ π, 0 ≤ ϕ ≤ 2π and

x1 = R sin θ cosϕ, x2 = R sin θ sinϕ, x3 = R cos θ. (C.1)

The metric on S2 is

ds2
S2(θ, ϕ) = gθθdθ

2 + gθϕdθdϕ+ gϕϕdϕ2,

where

gθθ = 1, gθϕ = 0, gϕϕ = sin2 θ, gθθ = 1, gθϕ = 0, gϕϕ =
1

sin2 θ
,

i.e.,

ds2
S2(θ, ϕ) = dθ2 + sin2 θdϕ2. (C.2)

We consider a unitary sphere with spherical coordinates (C.1) measured from the origin
O(0, 0, 0). The north (south) pole has coordinates N(0, 0, 1) (respectively, S(0, 0,−1)). We take
a point P (x1, x2, x3) on the sphere S2 and let P ′(ξ, η) (P ′′(ξ′, η′)) be the intersection of the
line NP (respectively SP ) with the plane x3 = 0, see Fig. 2. The triangles ∆QNP and ∆ONP ′

(respectively ∆QPS and ∆OP ′′S) are similar, and we have

1− x3

1
=
x1

ξ
=
x2

η
,

1 + x3

1
=
x1

ξ′
=
x2

η′
. (C.3)

The change of coordinates (x1, x2, x3) → (ξ, η) (respectively, (x1, x2, x3) → (ξ′η′)) is given by
the formulas

(ξ, η) =

(
x1

1− x3
,

x2

1− x3

)
, (ξ′, η′) =

(
x1

1 + x3
,

x2

1 + x3

)
,
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0

N(0,0,1)

P (x1, x2, x3)

θ

x3

x2

x1
ϕ

Figure 1. Spherical coordinates.

The change of coordinates (ξ, η)→ (x1, x2, x3) (respectively, (ξ′, η′)→ (x1, x2, x3)) is

x1 =
2ξ

1 + ξ2 + η2
, x2 =

2η

1 + ξ2 + η2
, x3 =

−1 + ξ2 + η2

1 + ξ2 + η2
,

x1 =
2ξ′

1 + (ξ′)2 + (η′)2
, x2 =

2η′

1 + (ξ′)2 + (η′)2
, x3 =

1− (ξ′)2 − (η′)2

1 + (ξ′)2 + (η′)2
.

Let C 3 z := ξ − iη, z′ := ξ′ + iη′. Then zz′ = 1. With (C.3), (C.1), we find

z = cot
θ

2
e−iϕ. (C.4)

Introducing (C.4) into the metric on the Riemann sphere

ds2(z) = 4
dzdz̄(

1 + |z|2
)2

corresponding to the Kähler two-form (C.5)

ω = 2j
idz ∧ dz̄(
1 + |z|2

)2 , (C.5)

where, if we take 2j = 4, we get again (C.2).
The equations (A.5) of the covariant components (Xθ, Xϕ) of the Killing vectors on the

sphere S2 read

Xθ,θ = 0, Xϕ,ϕ + 2 sin θ cos θXθ = 0, Xθ,ϕ +Xϕ,θ − 2 cot θXϑ = 0.

But

Xθ = gθνX
ν = Xθ = u, Xϕ = gνϕX

ν = gϕϕX
ϕ = sin2 θv,

where
(
Xθ, Xϕ

)
are the contravariant components of the Killing vector fields on the sphere S2.

The equations of the contravariant components of the Killing vector (u, v) :=
(
Xθ, Xϕ

)
become

∂u

∂θ
= 0, sin2 θ

∂v

∂ϕ
+ sin θ cos θu = 0,

∂u

∂ϕ
+
∂v

∂θ
− 2 cot θ sin2 θv = 0.

We find
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0

N(0, 0, 1)

S(0, 0,−1)

P (x1, x2, x3)

P ′(ξ, η)

Q(0, 0, x3)

P ′′(ξ′, η′)

Figure 2. Stereographic projection.

Remark C.1. There are three linearly independent Killing vectors on the sphere S2

X =
∂

∂ϕ
, Y = sinϕ

∂

∂θ
+ cosϕ cot θ

∂

∂ϕ
, Z = cosϕ

∂

∂θ
− sinϕ cot θ

∂

∂ϕ
, (C.6)

which verify the commutation relations

[X,Y ] = Z, [Z,X] = Y, [Y, Z] = X.

The Killing vector fields (C.6) in spherical coordinates (θ, ϕ) on the sphere S2 in the stereographic
coordinates (ξ, η) are

X = −η ∂
∂ξ

+ ξ
∂

∂η
, Y =

1

2

[
2ξη

∂

∂ξ
+
(
1− ξ2 + η2

) ∂
∂η

]
,

Z = −1

2

[(
1 + ξ2 − η2

) ∂
∂ξ

+ 2ξη
∂

∂η

]
. (C.7)

(C.7) are equations in [104, p. 292]: our (X,Y, Z) in (C.7) correspond to
(
−Z, 1

2Y,−1
2X
)
,

with m = 1 to formulas of Vranceanu, where the Riemann metric on the Riemann sphere S2 is

ds2 =
dξ2 + dη2[

1 +m
(
ξ2 + η2

)]2 . (C.8)

C.2 Killing vectors on the Siegel disk D1

The metric on the Siegel disk |z| < 1 is

ds2 = 4
dzdz̄

B2
, B = 1− |z|2, z = ξ − iη. (C.9)

The equations (A.4e) of the Killing vectors u ∂
∂ξ + v ∂

∂η corresponding to the metric (C.9), which
are obtained as solution of the equation LXg = 0, are

2

B
(ξu+ ηv) +

∂u

∂ξ
= 0,

2

B
(ξu+ ηv) +

∂v

∂η
= 0,

∂v

∂ξ
+
∂u

∂η
= 0.

We find for D1
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Remark C.2. The Killing vectors on the Siegel disk D1 corresponding to the metric (C.9) are

X1 =
1

2

(
ξ2 − η2 − 1

) ∂
∂ξ

+ ξη
∂

∂η
, Y1 = ξη

∂

∂ξ
+

1

2

(
η2 − ξ2 − 1

) ∂
∂η
,

Z1 = η
∂

∂ξ
− ξ ∂

∂η
. (C.10)

The Killing vectors (C.10) on the Siegel disk D1 verify the commutation relations

[X1, Y1] = −Z1, [Y1, Z1] = X1, [Z1, X1] = Y1.

C.3 Fundamental vector fields as Killing vector fields on D1 and X1

We recall some general facts about Hermitian symmetric spaces, see, e.g., [23, 105, 106].
Let

• Xn = Gn/K: Hermitian symmetric space of noncompact type.

• Xc: compact dual form of Xn, Xc = Gc/K.

• Gn: largest connected group of isometries of Xn, a centerless semisimple Lie group.

• Gc: compact real form of Gn.

• Gc = Gcn = Gcc = G: complexification of Gc and Gn.

• K: maximal compact subgroup of Gn.

• gn, g, gc, k: Lie algebras of Gn, G, Gc, K respectively.

• gn = k + mn, sum of +1 and −1 eigenspaces of the Cartan involution σ.

• g = gcn = kc + m: complexification, where m = mc
n.

• gc = k + mc: compact real form of gn, where mc = imn.

We consider the simple Lie algebra sl(2,C) = 〈F,G,H〉C, whose generators verify the com-
mutation relations

[F,G] = H, [G,H] = 2G, [H,F ] = 2F. (C.11)

We consider the following matrix realization of the sl(2,C) algebra

F = e12 =

(
0 1
0 0

)
, G = e21 =

(
0 0
1 0

)
, H = e11 − e22 =

(
1 0
0 −1

)
. (C.12)

To the complex Lie algebra A1 = sl(2,C) are associated the compact real form sl(2,C)c = su(2)
and the non-compact real forms su(1, 1) and sl(2,R), see [63, pp. 186, 446], [23, 105, 106], and
we have

su(2) = 〈iH,−F +G, i(F +G)〉R, (C.13a)

su(1, 1) = 〈iH, i(F −G), F +G〉R, (C.13b)

sl(2,R) = 〈H,−F +G,F +G〉R. (C.13c)

We have also the isomorphisms between the compact real forms

su(2) ∼ so(3) ∼ sp(1),

and the non-compact real forms

sl(2,R) ∼ su(1, 1) ∼ so(2, 1) ∼ sp(1,R). (C.14)
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We have also the relations

su(1, 1) = gn = k + mn, k = iH, mn = 〈i(F −G), F +G〉R, (C.15a)

su(2) = gc = k + mc, mc = 〈F −G, i(F +G)〉R, (C.15b)

sl(2,C) = g = su(1, 1)c = su(2)c = kc + mc
n, kc = 〈H〉C, mn = 〈F,G〉C. (C.15c)

We calculate the fundamental vector fields for the real noncompact group SU(1, 1). Let us
denote the elements of the Lie algebra su(1, 1) as

G1 := iH = i

(
1 0
0 −1

)
, G2 := i(F −G) = i

(
0 1
−1 0

)
,

G3 := F +G =

(
0 1
1 0

)
. (C.16)

Note the commutation relations

[G1, G2] = −2G3, [G2, G3] = 2G1, [G3, G1] = −2G2. (C.17)

If we make the notation Gi = 2G′i, i = 1, 2, 3, then the commutation relations (C.17) became

[G′1, G
′
2] = −G′3, [G′2, G

′
3] = G′1, [G′3, G

′
1] = −G′2. (C.18)

We obtain, see also [102, p. 294],

etG1 =

(
eit 0
0 e−it

)
, etG2 =

(
cosh t i sinh t
−i sinh t cosh t

)
, etG3 =

(
cosh t sinh t
sinh t cosh t

)
.

We get

∂
(
etG1 .w

)
∂t

∣∣∣
t=0

= 2iw,
∂
(
etG2 .w

)
∂t

∣∣∣
t=0

= i
(
1 + w2

)
,

∂
(
etG3 .w

)
∂t

∣∣∣
t=0

= 1− w2. (C.19)

With (C.19), we get the corresponding holomorphic fundamental vector fields on the Siegel disk

D1 = SU(1,1)
U(1) :

G∗1 = 2iw
∂

∂w
, G∗2 = i

(
1 + w2

) ∂
∂w

, G∗3 =
(
1− w2

) ∂
∂w

. (C.20)

If we introduce w = ξ − iη, we write (C.20) as

G∗1 = Z1 + i

(
ξ
∂

∂ξ
+ η

∂

∂η

)
, G∗2 = Y1 +

i

2

[(
1 + ξ2 − η2

) ∂
∂ξ

+ 2ξη
∂

∂η

]
,

G∗3 = −X1 +
i

2

[
2ξη

∂

∂ξ
+
(
1− ξ2 + η2

) ∂
∂η

]
,

where X1, Y1, Z1 are the Killing vector fields of the Siegel disk D1 calculated in (C.10).
We also have the relations, see also [102, p. 353]

etF =

(
1 t
0 1

)
, etG =

(
1 0
t 1

)
, etH =

(
et 0
0 e−t

)
, (C.21)

et(F+G) =

(
cosh t sinh t
sinh t cosh t

)
, et(F−G) =

(
cos t sin t
− sin t cos t

)
, (C.22)

etF · τ = τ + t, etG · τ =
τ

1 + tτ
, etH · τ = e2tτ,
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d

dt
etF · τ

∣∣∣
t=0

= 1,
d

dt
etG · τ

∣∣∣
t=0

= −τ2,
d

dt
etH · τ

∣∣∣
t=0

= 2τ,

F ∗ = ∂τ , G∗ = −τ2∂τ , H∗ = 2τ∂τ .

If we put τ = x+ iy, we find the fundamental vector fields on the homogenous manifold X1, see
Theorem A.10(1) and (4.23)

F ∗1 =
∂

∂x
, G∗1 =

(
y2 − x2

) ∂
∂x
− 2xy

∂

∂y
, H∗1 = 2

(
x
∂

∂x
+ y

∂

∂y

)
. (C.23)

In the convention of Section 1, the vector fields F ∗1 , G∗1, H∗1 are F, G, H.
If

A =

(
a b
c d

)
∈ SL(2,R), (C.24)

then, with formula (C.25),

Ad(g)X = gXg−1, g ∈ G, X ∈ g, (C.25)

we find easily

Ad(A)F = a2F − c2G− acH,
Ad(A)G = −b2F + d2G+ bdH,

Ad(A)H = −2abF + 2cdG+ (ad+ bc)H.

We find out that in the base (C.12)

Ad(A) =

 a2 −c2 −ac
−b2 d2 bd
−2ab 2cd ad+ bc

 , (C.26)

and det(Ad) = 1,
Now let us consider an element X ∈ sl(2,R)

X = aH + bF + cG =

(
a b
c −a

)
. (C.27)

Then we find

[X,H] = −2bF + 2cG, [X,F ] = 2aF − cH, [X,G] = −2aG+ bH. (C.28)

With (C.28) we find in the base H, F , G the expression of ad(X) for X given by (C.27)

ad(X) =

 0 −2b 2c
−2c 2a 0
b 0 −2a

 , (C.29)

and

Tr ad = 0.

(C.29) implies, see also [63, p. 551]:

K(X,X) = Tr(adX ◦ adX) = 8
(
a2 + bc

)
= 4 Tr(XX). (C.30)
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As in Remark C.3, we consider

X = aX1 + bX2 + cX3 ∈ su(2),

where, as in (C.13a),

X1 = iH, X2 = −F +G, X3 = i(F +G).

Then

adX =

 0 −2c 2b
2c 0 −2a
−2b 2a 0

 ,

and

K(X,Y ) = −4(aa′ + bb′ + cc′), (C.31)

i.e., the Killing form for SU(2) is K(X,Y ) = 4 Tr(XY ).
Note that for su(2), we have m = 〈X2, X3〉.
Putting together (C.16)–(C.30) and (C.31), we have proved

Remark C.3. With (C.16), (C.12), (2.2), we get

K0 = − i

2
G1, K+ =

1

2
(G2 + iG3), K− = −1

2
(G2 − iG3). (C.32)

Introducing in (C.20) and (C.32), we get the holomorphic fundamental vector fields

K∗0 = w
∂

∂w
, K∗+ = i

∂

∂w
, K∗− = −iw2 ∂

∂w
, w ∈ C, |w| < 1.

Note that the vector fields ReG∗i, i = 1, 2, 3 verify the commutation relations (C.18) with the
sign −, i.e., the (real) Killing vector fields Z1, Y1, −X1 on D1 are the real part of the fundamental
vector fields G′∗1 , G′∗2 , G′∗3 , corresponding to the metric (C.9).

The fundamental vector fields F ∗1 , G∗1, H∗1 associated to the generators F , G, H (C.12)
of sl(2,C), given by (C.23), verify the commutation relations (C.11) with a minus sign. They
are Killing vector fields corresponding to the Killing equation

−X2 + y∂xX
1 = 0, ∂xX

2 + ∂yX
1 = 0, −X2 + y∂yX

2 = 0

associated to the metric

c1
dx2 + dy2

4y2
, c1 > 0

on the Siegel upper half-plane X1, x, y ∈ R, y > 0.
If A ∈ SL(2,R) has the expression (C.24), then the expression of Ad(A) with respect to the

base F , G, H (C.12) is (C.26), and the group SL(2,R) is unimodular.
The ad matrix in the base H, F , G of sl(2,R) is given by (C.29). The Killing form for sl(2,R)

is

K(X,Y ) = 4 Tr(XY ). (C.33)

The Killing form (C.33) is SL(2,R)-invariant and verifies (A.9). Note that

K(H,H) = K(F,G) = 4, (C.34)

and K(X,Y ) = 0 for all X,Y ∈ sl(2,R) different of the choice in (C.34).
The Killing form for the compact group SU(2) is K(X,Y ) = 4 Tr(XY ), and m = 〈X2, X3〉.
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C.4 Killing vectors on R2

The Perelomov’s coherent state vectors (Glauber’s coherent states) for the oscillator group are,
see, e.g., [12],

ez := eza
†
e0,

and the scalar product is

(ez̄, ez̄′) = ezz̄
′
. (C.35)

The scalar product (C.35) of Glauber coherent states on C implies the metric on R2 (A.14)
ds2

R2 = dx2
1 + dx2

2, where we have considered z = x1 + ix2.

Let as consider a vector field on R2

X = X1 ∂

∂x1
+X2 ∂

∂x2
. (C.36)

We formulate a remark, see also in [57, Section 4.6.7, p. 83]:

Remark C.4. The Killing vectors on R2 associated with the metric (A.14) are

AX +BY + CZ, (C.37)

where

X = −x2
∂

∂x1
+ x1

∂

∂x2
, Y =

∂

∂x1
, Z =

∂

∂x2
,

verifying the commutation relations

[X,Y ] = −Z, [Y,Z] = 0, [Z,X] = −Y.

−X is a rotation around (0, 0) ∈ R2. Y (Z) represents a translation around the x1 (respec-
tively x2) axis. The Killing vectors (C.37) can be put into correspondence with matrix repre-
sentation (C.38)

a1 =

0 0 1
0 0 0
0 0 0

 , a2 =

0 0 0
0 0 1
0 0 0

 , a3 =

 0 1 0
−1 0 0
0 0 0

 , (C.38)

of the Lie algebra e(2) in the representation (C.39)

g =

cos θ − sin θ a
sin θ cos θ b

0 0 1

 , θ ∈ [0, 2π), (a, b) ∈ R2, (C.39)

of the group E(2).

The Lie algebra of the Killing vectors of R2 with the Euclidean metric (A.14) is ι(R2) =
R2 o so(2), and the Euclidean group E(2) of the plane R2 is E(2) = R2 oO(2).
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D Sasaki manifolds

D.1 Contact structures

D.1.1 Maurer–Cartan equations

Let G be a Lie group with Lie algebra g, which has the generators X1, . . . , Xn verifying the
commutation relations (A.1). To X ∈ g we associate the left-invariant vector X̃ on G such that
X̃e = X, see [63, p. 99].

Let ω1, . . . , ωn be the 1-forms on G determined by the equations 〈ωi | X̃j〉 = δij , i, j = 1, . . . , n.
Then we have the Maurer–Cartan equations, see, e.g., [63, Proposition 7.2, p. 137]:

dωi = −1

2

n∑
j,k=1

cijkωj ∧ ωk,

where cijk are the structure constants (A.1).

If G is embedded in GL(n) by a matrix valued map g = (g)ij , i, j = 1, . . . , n, then let λ
(L) denote a left-invariant one-form (vector field) on G and ρ (R) a right-invariant one-form
(respectively, vector field) on G. We have the relations

g−1dg = Xiλi, dgg−1 = Xiρi, (D.1a)

〈λa |Lb〉 = δab, 〈ρa |Rb〉 = δab, (D.1b)

dλa = −1

2
cabcλb ∧ λc, dρa =

1

2
cabcρb ∧ ρc, (D.1c)

[La, Lb] = ccabLc, [Ra, Rb] = −ccabRc. (D.1d)

D.1.2 Almost contact manifolds

Following Sasaki [95] and [45, Definition 6.2.5], we use

Definition D.1. Let Mm be a m = (2n + 1)-dimensional manifold. Mm has a (strict) almost
contact structure (Φ, ξ, η) (or (ξ, η,Φ)) if there exists a (1, 1)-tensor field Φ, a contravariant
vector field (Reeb vector field, or characteristic vector field) ξ, and a one-form η

Φ = Φi
j

∂

∂xi
⊗ dxj , ξ = ξi

∂

∂xi
, η = ηidx

i, (D.2)

verifying the relations

〈η|ξ〉 = 1, or ηyξ = 1, or ηξ = 1, or ξiηi = 1, (D.3a)

Φ2X = −X + η(X)ξ or Φ2 = −1m + ξ ⊗ η, or Φi
jΦ

j
k = −δik + ξiηk, (D.3b)

where we have used the convention

ξt =
(
ξ1, . . . , ξm

)
∈M(1,m,R), η = (η1, . . . , ηm) ∈M(1,m,R),

Φ =
(
Φi
j

)
∈M(m,R).

Manifolds M with a structure (Φ, ξ, η) as in Definition (D.3) are called almost contact mani-
folds.

Sasaki has proved, see [95, Theorem 1.1] and [96, equation (5.16)]:
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Theorem D.2. For an almost contact structure (Φ, ξ, η), the following relations hold

Φi
jξ
j = 0, or Φξ = 0, Φi

jηi = 0, or ηΦ = 0, Rank
(
Φi
j

)
= 2n. (D.4)

Let M2n+1 be a differentiable manifold with almost contact structure (Φ, ξ, η). Then there exists
a positive Riemannian metric g such that

g(ξ,X) = η(X), or ηi = gijξ
j , or ηt = gξ,

g(ΦX,ΦY ) = g(X,Y )− η(X)η(Y ), or Φi
hgijΦ

j
k = ghk − ηhηk, or

ΦtgΦ = g − ηt ⊗ η.

If we put

Φ̂ij := gihΦh
j , or Φ̂ := gΦ, (D.5)

then Φ̂ij = −Φ̂ji.
Φ̂ij is called the associated skew-symmetric tensor of the almost contact metric structure, see

also (D.7) below.

D.1.3 Contact structures

Following [44], we define

Definition D.3. Let M2n+1 be a C∞-manifold of dimension (2n+ 1). A contact structure can
be given by a codimension one subbundle D of the tangent bundle TM which is as far from being
integrable as possible.

Alternatively, the codimension one subbundle D of TM can be given as the kernel of a smooth
1-form η – the contact form, D := Ker(η) – which satisfies the condition

η ∧ (dη)n 6= 0, (D.6)

and from (D.6) it follows that the distribution D is not integrable.

D is called the contact distribution of the strict contact manifold (M,η). A contact structure
on M is an equivalence class of such 1-forms, where η′ ∼ η if there is a nowhere vanishing
function on M such that η′ = fη, cf. [45, Definition 6.1.7].

The tangent space of M has the orthogonal decomposition, see, e.g., [67, p. 9],

TM = D ⊕ 〈ξ〉, where D = Ann(η) = {X ∈ TM | η(X) = 0}.

Remark D.4. The codimension one subbundle D = Ker(η) of TM has an almost complex
structure J = Φ|D.

Boothby and Wang [43] have defined

Definition D.5. A contact manifold M is said to be homogeneous if there is a connected Lie
group G acting transitively and effectively as a group of differentiable homeomorphisms on M
which leave η invariant.

If the 1-form η has the expression given in (D.2), then

dη = Φ̂ijdx
i ∧ dxj , where − 2Φ̂ij = ∂iηj − ∂jηi. (D.7)

Note that in [95, equation (3.4)] the minus sign was omitted.
Sasaki has proved, see [95, Theorem 3.1]:
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Theorem D.6. Let M2n+1 be a differentiable manifold with η the contact form. Then we can
find an almost contact metric structure (Φ, ξ, η, g) such that

dη(X,Y ) = g(X,Φ(Y )),

i.e., (D.5) is verified with Φ̂ given by (D.7).

M2n+1 from Theorem D.6 is said to be a contact (Riemannian) manifold associated with η.

D.2 Structures on cones

Following [45, p. 201], we define

Definition D.7. Let (M, g) be a smooth Riemannian manifold and let us consider the cone
C(M) := M × R+ endowed with the Riemannian metric

ḡ = dr2 + r2g, r ∈ R+.

(C(M), ḡ) is called the Riemannian cone (or metric cone) on M .

Let M be endowed with the almost contact structure (Φ, ξ, η). Let us define a section Φ̄ of
the endomorphism bundle of the TC(M) = TM ⊕ TR+ as

Φ̄Y = ΦY + η(Y )Ψ, Φ̄Ψ = −ξ, where Y ∈ TM, Ψ = r
∂

∂r
∈ TR+. (D.8)

Then

Remark D.8. In the notation (D.8), Φ̄ defines an almost complex structure on TC(M).

Let

ω := d
(
r2η
)
.

In accord with [45, Proposition 6.5.5], we have a symplectization (or symplectification) of M :

Proposition D.9. There is one-to-one correspondence between the contact metric structures
on (M, ξ, η, g,Φ) and the almost Kähler structures (C(M), ω, ḡ, Φ̄).

According to [45, Definitions 6.4.7, 6.5.7 and 6.5.13]:

Definition D.10. An almost contact structure (ξ, η,Φ) is normal if the corresponding struc-
ture Φ̄ on C(M) is integrable. A normal contact metric structure S = (M, ξ, η,Φ, g) is called
a Sasakian structure. M has a K-contact structure if ξ is a Killing vector for g.

Following [42, p. 47], let us introduce

Definition D.11. Let h be a tensor field of type (1, 1). Then the Nijenhuis torsion [h, h] of h
is the tensor field of type (1, 2) given by

[h, h](X,Y ) = h2[X,Y ] + [hX, hY ]− h[hX, Y ]− h[X,hY ].

Let us define the (1, 2)-tensor

N1 := [Φ,Φ] + 2dη ⊗ ξ. (D.9)

According with [45, Theorem 6.5.9]:
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Theorem D.12. An almost contact structure (ξ, η,Φ) on M is normal if and only if N1 = 0.
Then (C(M), ḡ, ω, Φ̄) is Kähler.

Lemma D.13. The components of the tensor (D.9) are given by

(
N1
)i
jk

= Φh
j

∂Φi
k

∂xh
− Φh

k

∂Φi
j

∂xh
+ Φi

h

(
∂Φh

j

∂xk
− ∂Φh

k

∂xj

)
+ 2Φ̂jkξ

i. (D.10)

Proof. In the calculation below we use the expressions

ΦX = (ΦX)i
∂

∂xi
= Φi

jX
j ∂

∂xi
, (D.11a)

[X,Y ] = [X,Y ]j
∂

∂xj
=

(
Xi∂Y

j

∂xi
− Y i∂X

j

∂xi

)
∂

∂xj
, (D.11b)

N1(X,Y ) =
(
N1
)i
jk
XjY k ∂

∂xi
. (D.11c)

Let us introduce the notation

A := Φ2[X,Y ], B := [ΦX,ΦY ], C := Φ[ΦX,Y ],

D := Φ[X,ΦY ], E := 2dη ⊗ ξ(X,Y ).

With (D.11), we get for A, . . . , E the expressions

A = Φ(Φ[X,Y ])i
∂

∂xi
= Φa

b (Φ[X,Y ])b
∂

∂xi
= Φa

bΦ
b
k[X,Y ]k

∂

∂xa

=
(
−δak + ξaηk

)
[X,Y ]k

∂

∂xa
, (D.12)

B = [ΦX,ΦY ]a
∂

∂xa
=

[
(ΦX)c

∂(ΦY )a

∂xc
− (ΦY )c

∂(ΦX)a

∂xc

]
∂

∂xa

=

[
XdY b

(
Φc
d

∂Φa
b

∂xc
− Φc

b

∂Φa
d

∂xc

)
+ Φc

dΦ
a
b

(
Xd∂Y

b

∂xc
− Y d∂X

b

∂xc

)]
∂

∂xa
, (D.13)

C = Φa
j [ΦX,Y ]j

∂

∂xa
= Φa

j

(
Φi
kX

k ∂Y
j

∂xi
− Y i∂(Φj

hX
h)

∂xi

)
∂

∂xa
, (D.14)

−C −D =

[
Φa
jΦ

i
k

(
Y k ∂X

j

∂xi
−Xk ∂Y

j

∂xi

)
+
(
−δak + ξaηk

)
[Y,X]k

+ Y iXkΦa
j

(
∂Φj

k

∂xi
− Φj

i

∂xk

)]
∂

∂xa
, (D.15)

E = 2Φ̂ijX
iY jξa

∂

∂xa
. (D.16)

Introducing the values of A, B, D + C and E obtained in equations (D.12), (D.13), (D.15),
respectively (D.16), we get for A+B − C −D + E the values given in (D.10). �

Note that formula given in [95, pp. 7–10](
N1
)i
jk

= Φh
k

(
∂hΦi

j − ∂jΦi
h

)
− Φh

j

(
∂hΦi

k − ∂kΦi
h

)
+
(
∂jξ

i
)
ηk −

(
∂kξ

i
)
ηj (D.17)

is wrong. The same wrong formula appears also in [98, equation (3.7)].

The Heisenberg group H1 is a Sasaki manifold [44].
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Univ. Timişoara Ser. Mat.-Inform. 39 (2001), 31–55, arXiv:math.DG/0408254.

[27] Berceanu S., Gheorghe A., Differential operators on orbits of coherent states, Romanian J. Phys. 48 (2003),
545–556, arXiv:math.DG/0211054.

[28] Berceanu S., Gheorghe A., Applications of the Jacobi group to quantum mechanics, Romanian J. Phys. 53
(2008), 1013–1021, arXiv:0812.0448.

[29] Berceanu S., Gheorghe A., On the geometry of Siegel–Jacobi domains, Int. J. Geom. Methods Mod. Phys.
8 (2011), 1783–1798, arXiv:1011.3317.

[30] Berceanu S., Schlichenmaier M., Coherent state embeddings, polar divisors and Cauchy formulas, J. Geom.
Phys. 34 (2000), 336–358, arXiv:math.DG/9903105.

[31] Berezin F.A., Quantization in complex bounded domains, Dokl. Akad. Nauk SSSR 211 (1973), 1263–1266.

[32] Berezin F.A., Quantization, Math. USSR-Izv. 8 (1974), 1109–1165.

[33] Berezin F.A., General concept of quantization, Comm. Math. Phys. 40 (1975), 153–174.

[34] Berezin F.A., Quantization in complex symmetric spaces, Math. USSR-Izv. 9 (1975), 341–379.

[35] Berndt J., Tricerri F., Vanhecke L., Generalized Heisenberg groups and Damek-Ricci harmonic spaces,
Lecture Notes in Mathematics, Vol. 1598, Springer-Verlag, Berlin, 1995.

[36] Berndt J., Vanhecke L., Naturally reductive Riemannian homogeneous spaces and real hypersurfaces in
complex and quaternionic space forms, in Differential Geometry and its Applications (Opava, 1992), Math.
Publ., Vol. 1, Silesian University Opava, Opava, 1993, 353–364.

[37] Berndt R., Some differential operators in the theory of Jacobi forms, preprint IHES/M/84/10, 1984, 31 pages.

[38] Berndt R., Sur l’arithmétique du corps des fonctions elliptiques de niveau N , in Seminar on Number Theory,
Paris 1982–83 (Paris, 1982/1983), Progr. Math., Vol. 51, Birkhäuser Boston, Boston, MA, 1984, 21–32.
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[105] Wolf J.A., The action of a real semisimple group on a complex flag manifold. I. Orbit structure and
holomorphic arc components, Bull. Amer. Math. Soc. 75 (1969), 1121–1237.

[106] Wolf J.A., Fine structure of Hermitian symmetric spaces, in Symmetric Spaces (Short Courses, Washington
Univ., St. Louis, Mo., 1969–1970), Pure and App. Math., Vol. 8, Editors W.M. Boothby, G.I. Weiss, Marcel
Dekker and G.L. Weiss, New York, 1972, 271–357.

[107] Woodhouse N., Geometric quantization, Oxford Mathematical Monographs, The Clarendon Press, Oxford
University Press, New York, 1980.

[108] Yang J.-H., The method of orbits for real Lie groups, Kyungpook Math. J. 42 (2002), 199–272,
arXiv:math.RT/0602056.

[109] Yang J.-H., Remark on harmonic analysis on Siegel–Jacobi space, arXiv:math.NT/0612230.

[110] Yang J.-H., Invariant metrics and Laplacians on Siegel–Jacobi space, J. Number Theory 127 (2007), 83–102,
arXiv:math.NT/0507215.

[111] Yang J.-H., A partial Cayley transform of Siegel–Jacobi disk, J. Korean Math. Soc. 45 (2008), 781–794,
arXiv:math.NT/0507216.

[112] Yang J.-H., Invariant metrics and Laplacians on Siegel–Jacobi disk, Chin. Ann. Math. Ser. B 31 (2010),
85–100, arXiv:math.NT/0507217.

[113] Yano K., The theory of Lie derivatives and its applications, Bibliotheca Mathematica, Vol. 3, North-Holland
Publishing Company, Amsterdam, 1957.

https://doi.org/10.1070/SM1967v003n03ABEH002746
https://doi.org/10.1090/S0002-9904-1969-12359-1
https://arxiv.org/abs/math.RT/0602056
https://arxiv.org/abs/math.NT/0612230
https://doi.org/10.1016/j.jnt.2006.12.014
https://arxiv.org/abs/math.NT/0507215
https://doi.org/10.4134/JKMS.2008.45.3.781
https://arxiv.org/abs/math.NT/0507216
https://doi.org/10.1007/s11401-008-0348-7
https://arxiv.org/abs/math.NT/0507217

	1 Introduction
	2 The starting point in the coherent states approach
	3 The Heisenberg subgroup of Sp(2,R)
	4 The SL(2,R) subgroup of Sp(2,R)
	5 The Jacobi group GJ1(R) embedded in Sp(2,R)
	5.1 The composition law
	5.2 The action
	5.3 Fundamental vector fields
	5.4 Invariant metrics

	A Naturally reductive spaces
	A.1 Fundamental vector fields
	A.2 Killing vectors
	A.3 Reductive homogeneous spaces
	A.4 Naturally reductive spaces
	A.5 Naturally reductive spaces of dimension 4
	A.6 V2 and V3 spaces with transitive group
	A.7 G.o. spaces

	B Balanced metrics and Berezin quantization
	C Killing vectors on S2, D1 and R2
	C.1 Killing vectors on S2
	C.2 Killing vectors on the Siegel disk D1
	C.3 Fundamental vector fields as Killing vector fields on D1 and X1
	C.4 Killing vectors on R2

	D Sasaki manifolds
	D.1 Contact structures
	D.1.1 Maurer–Cartan equations
	D.1.2 Almost contact manifolds
	D.1.3 Contact structures

	D.2 Structures on cones

	References

