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Abstract. We study metric invariants of Riemannian manifolds X defined via the T⋊-sta-
bilized scalar curvatures of manifolds Y mapped to X and prove in some cases additivity of
these invariants under Riemannian products X1 ×X2.
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1 T⋊-stabilization

A “warped” TN -extension, N = 0, 1, . . . , of a Riemannian manifold X = (X, g), possibly with
a boundary, is

X⋊
N = X ⋊ TN =

(
X × TN , g⋊

)
,

where TN is the (flat split) N -torus and where X⋊
N is endowed with a warped metric,

g⋊ = g⋊N = g⋊N,{φi} = g +

N∑
i=1

φ2
i dt

2
i ,

where φi(x) ≥ 0 are smooth positive functions, which are strictly positive (> 0) in the interior
X \ ∂X of X.

Assume g is smooth and let Sc⋊{φi}(X) be the scalar curvature of g⋊, that is,

Sc⋊{φi}(X) = Sc(g⋊N,{φi}) = Sc

(
g +

N∑
i=1

φ2
i dt

2
i

)
,

where Sc⋊{φi}(X) = Sc⋊{φi}(X,x) is a function on X, since g⋊N is invariant under the obvious

action of TN on X⋊
N = X × TN .

Let Sc⋊(X), X = (X, g), be the supremum of the numbers σ such that Sc⋊N,{φi}(X) > σ for
some N and φi.
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⊃-Monotonicity. Clearly,

Sc⋊(Y ) ≥ Sc⋊(X)

for all smooth domains Y ⊂ X.
1.A. Formulas. A computation shows1 that

Sc

(
g +

N∑
i=1

φ2
i dt

2
i

)
= Sc(g)− 2

N∑
i=1

∆φi
φi

− 2
∑
i<j

⟨∇g logφi,∇g logφj⟩.

For instance, if N = 1 and φ1 is a positive eigenfunction of the operator −∆+ 1
2σ, for

σ(x) = Sc(g, x),

that is,

φ(x) 7→ −∆φ(x) +
1

2
σ(x)φ(x)

and

−∆φ1 +
1

2
σ(x)φ1 = λ1φ1,

then

Sc
(
g + φ2

1 dt
2
)
= σ − 2

∆φ1

φ1
= σ − 2

1
2σφ1 − λφ1

φ1
= 2λ1.

Thus,

Sc⋊(X) ≥ 2λ1 = 2λ1

(
∆+

1

2
Sc(x)

)
.

Recall at this point that if X is a compact connected manifold without boundary, then, for
all functions σ(x),

λ1 = inf
φ ̸=0

(−
∫
X φ(x)∆φ(x)dy∫
X φ(x)

2dy
+

1

2

∫
X σ(x)φ

2(x)dy∫
X φ(x)

2dy

)
≥ inf

φ ̸=0

(−
∫
X φ(x)∆φ(x)dy∫
X φ(x)

2dy
+

1

2
inf
x∈X

σ(x)

)
≥ 1

2
inf
x∈X

σ(x),

where the latter inequality follows from positivity of −∆ and this inequality is strict (>) with
φ = φ1, unless σ(x) is constant.

Also, the strict inequality λ1 > infx∈X Sc(X,x) holds for the Dirichlet eigenvalue λ1 on
compact connected manifolds with boundaries, since the above relations are satisfied for func-
tions φ(x), which vanish on the boundary.

Next, now for all N and all φi, rewrite the above expression for Sc
(
g+

∑N
i=1 φ

2
i dt

2
i

)
with the

function Φ(x) = log(φ1(x) · · ·φ(x)N ) as follows:

Sc

(
g +

N∑
i=1

φ2
i dt

2
i

)
= Sc(g)− 2∆Φ− ||∇Φ||2 −

∑
i

||∇ logφi||2.

1See [10], [21, formulas (7.33) and (12.5)], also [46], and [17, Section 2.4.1].



Product Inequalities for T⋊-Stabilized Scalar Curvature 3

This shows that Sc
(
g +

∑N
i=1 φ

2
i dt

2
i

)
increases under replacing all φi by their geometric mean,

φi ; ϕ = N
√∏

i φi, i.e.,

Sc(g)− 2∆Ψ− N + 1

N
||∇Ψ||2 ≥ Sc(g)− 2∆Φ− ||∇Φ||2 −

∑
i

||∇ logφi||2

for Ψ = log ϕN , where the equality holds only if all ∇ logφi are mutually equal. Hence,

sup
φi>0

Sc

(
g +

N∑
i=1

φ2
i dt

2
i

)
= sup

Ψ
Sc(g)− 2∆Ψ− N + 1

N
||∇Ψ||2,

where this “sup” increases with N ; thus, by letting N → ∞, we see that

Sc⋊(X) = sup
Ψ(x)

inf
x∈X

Sc(X,x)− 2∆Ψ(x)− ||∇Ψ(x)||2

= sup
ψ(x)>0

inf
x∈X

Sc(X,x)− 2
∆ψ(x)

ψ(x)
+

||∇ψ(x)||2

ψ(x)2
.

Rewrite this equation with Ψ = 2Θ as follows:

Sc⋊(X) = sup
Θ

inf
x∈X

Sc(X,x)− 4
(
∆Θ(x) + ||∇Θ(x)||2

)
= sup

θ
inf
x∈X

Sc(X,x)− 4
∆θ(x)

θ(x)
for θ = expΘ.

Therefore, if X is compact, then

Sc⋊(X) ≥ 4λ⋊1 (X),

where λ⋊1 (X) is the lowest eigenvalue of the operator −∆+ 1
4 Sc on X with the Dirichlet (van-

ishing on the boundary) condition.

(If a connected manifold X has no boundary and the scalar curvature of X is constant, then
Sc⋊(X) = Sc(X); otherwise

Sc⋊(X) > inf
x∈X

Sc(X,x).

Moreover,

Sc⋊(X) > β−1λ1 (−∆+ β Sc(X))

for all β > 1/4, since the operator −∆ is strictly positive on non constant functions on X.)

1.B. 1
4
-Proposition. Let X = (X, g) be a compact Riemannian manifold with a boundary.

Then

Sc⋊(X) = 4λ⋊1 (X).

In fact, let θ1(x) = θ⋊1 (x) ≥ 0, be the first Dirichlet eigenfunction of the operator −∆ + 1
4 Sc

and let θ(x) > 0 be an arbitrary smooth strictly positive function on X.

Since θ1 is strictly positive in the interior of X, the ratio θ1(x)
θ(x) assumes its maximum, call

it a, at an interior point x0 ∈ X, where

θ1(x0) = aθ(x), a∇θ1(x0) = ∇θ(x) and ∆θ1(x) ≤ a∆θ(x),
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and consequently

−∆θ1(x0)

θ1(x0)
+

1

4
Sc(X,x0) ≥ −∆θ(x0)

θ(x0)
+

1

4
Sc(X,x0).

Since the sum −∆θ1(x)
θ1(x)

+ 1
4 Sc(X,x) is constant (= λ⋊1 ), this inequality holds at the minimum

point xo ∈ X of the function −∆θ(x)
θ(x) + 1

4 Sc(X,x); hence, infx∈X Sc(X,x)− 4∆θ⋊1(x)
θ⋊(x) majorizes

infx∈X Sc(X,x)− 4∆θ1(x)
θ(x) for all smooth strictly positive functions on X.

Finally, by⊃-monotonicity of Sc⋊ and the continuity of the first eigenvalue λ1(−∆g+Sc(g)/4)
in (the space of C2-metrics) g, this majorization holds for functions θ which is strictly positive
only in the interior of X.2 Then the proof of the 1

4 -proposition follows.
1
4
-Remark. This 1

4 agrees with that in the Schrödinger–Lichnerowicz formula D2 = ∇∗∇+
1
4 Sc via the Kato inequality for the squared Dirac operator on X⋊ =

(
X × TN , g⋊

)
, which, to

make it index-wise more interesting, may be twisted with the canonical N -parametric family
of flat unitary complex line bundles over X⋊. (Probably, there is much of what we do not
understand about the relations between the two 1

4 .)

Corollaries/Examples

1.B1. If X is non-compact, then

Sc⋊(X) = lim
i→∞

Sc⋊(Xi)

for compact equidimensional submanifolds X1 ⊂ · · · ⊂ Xi ⊂ · · · ⊂ X, which exhaust X.
1.B2. Sc⋊ is additive under Riemannian products:

Sc⋊(X1 ×X2) = Sc⋊(X1) + Sc⋊(X2).

For instance, the rectangular solids satisfy

Sc⋊ (×n
1 [−ai, bi]) = 4

n∑
1

λ1[ai, bi] =
n∑
1

4π2

(bi − ai)2
.

1.B3. Manifolds X with constant scalar curvature σ satisfy

Sc⋊(X) = 4λ1(X) + σ

for the first eigenvalue λ1 of the Laplace operator on X.
For instance, unit hemispheres satisfy

Sc⋊(Sn+) = n(n− 1) + 4n = n(n+ 3)

and the unit balls Bn = Bn(1) ⊂ Rn satisfy

Sc⋊(Bn) = 4j2ν ,

for the first zero of the Bessel function Jν , ν = n
2 − 1, where j−1/2 =

π
2 , j0 = 2.4042 . . . , j1/2 = π

and if ν > 1/2, then

ν +
aν

1
3

2
1
3

< jν < ν +
aν

1
3

2
1
3

+
3

20

2
2
3a2

ν
1
2

,

where a =
(
9π
8

) 2
3 (1 + ε) ≈ 2.32 with ε < 0.13

(
8

2.847π

)2
[36].

2One needs to be slightly careful here, since ∆θ/θ may, a priori, blow up at the boundary of X.
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Specifically,

Sc⋊
(
B2
)
= 4(2.404 . . . )2 = 23.116 . . . > 10 = Sc⋊

(
S2
+

)
,

Sc⋊
(
B3
)
> 36 > 18 = Sc⋊

(
S3
+

)
,

Sc⋊
(
B4
)
= 4(3, 817 . . . )2 = 52.727 . . . > 28 = Sc⋊

(
S4
+

)
,

Sc⋊
(
B8
)
= 4(6.380 . . . )2 = 162.827 . . . > 88 = Sc⋊

(
S8
+

)
.

1.B4. Ricci comparison inequality. Let X be a (metrically) complete Riemannian mani-
fold with a boundary such that Ricci(X) ≥ (n− 1)κ and mean.curv(∂x) ≥ µ. Then

Sc⋊(X) ≥ Sc⋊(Bn
κ,µ),

where Bn
κ,µ is the ball in the complete simply connected n-space Snκ with sectional curvature κ,

and where the mean curvature of the boundary ∂Bn
κ,µ is equal to µ.3

For instance, if Ricci(X) ≥ 0 and mean.curv(∂X) ≥ n− 1, then

Sc⋊(X) ≥ Sc⋊(Bn = Bn
0,n−1) = 4j21 .

In fact, let φ(b) = ϕ(d(b)) = ϕκ,µ(d) be the first Dirichlet eigenfunction in Bn
ρ,µ written as

a function of d = d(b) = dist(b, ∂(Bn
κ,µ)) and let φ(x) = ϕ(dist(X, ∂x)). Then, by the Bishop

comparison inequality,

∆Xφ(x)

φ(x)
≥

∆Sn
κ
ϕ(d(b))

ϕ(d(b))
= λ1(∆Bn

κ
), d(b) = dist(X, ∂x),

and the proof follows.

1.B5. If Bn
−1(r) is the hyperbolic r-ball, then, clearly, Sc

⋊(Bn
−1(r)) is monotonically decreas-

ing in r, asymptotically to 4 j
2
ν
r2

for r → 0 and Sc⋊(Bn
−1(r)) → −(n− 1) for r → ∞.

In fact, it follows from [1, Theorem 3.3] that

Sc⋊(Bn
−1(r)) = −n(n− 1) + (n− 1)2

(
1

r2
+ c(r)

)
for a bounded positive function c(r) such that c(r) → 1 for r → ∞, and

1

6
≤ c(r) ≤ 1 for r ≥ 1 and n ≥ 2.

Thus,

Sc⋊(Bn
−1(r)) > 0 for r ≤

√
6(n− 1)

5n+ 1
, Sc⋊(Bn

−1(r)) < 0 for r ≥ 3 and n ≥ 2

roughly.

1.C. General torical stabilizations. The most permissive torical “extension” of a Rie-
mannian manifold X is a Riemannian manifold X♮ with an isometric TN -action and an isometry
X♮/TN ↔ X. Here, as earlier, one defines the number Sc♮(X), which is clearly ≥ Sc⋊(X).

It seems, however – I did not honestly checked this – that the curvature formulas for Rie-
mannian submersions [35] imply that Sc♮(X) ≤ Sc⋊(X).

3The corresponding, comparison inequality for the Dirichlet (Schrödinger) λ1(∆) (compare with [7] and [1])

has, undoubtedly, been known for at least 45 years and the relation λ1 = − supφ>0 infx∈X
∆φ(x)
φ(x)

must be dated

to the 19th century. My apologies to the author(s), whose paper(s) I failed to find on the web.
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Alternatively, if the fibration X♮ → X♮/TN = X admits a section, then the ⋊-rendition of
the Schoen–Yau argument4 implies the equality

Sc♮(X) = Sc⋊(X)

for dim(X) = n ≤ 8,5 while for all n this may follow from [43], where both arguments apply not
only to Riemannian submersions but to all distance non-increasing maps

(
X×TN , G

)
→ (X, g).

1.D. λ1(β)-Remarks. The formal properties of the operators −∆ + β Sc are similar for
all β, e.g., if a Riemannian manifold X0 admits a locally isometric equidimensional map to X,
then

λ1(−∆X0 + β Sc(X0)) ≥ λ1(−∆X + β Sc(X));

the spectra {λ1, λ2, . . . } of the operators −∆+ β Sc are additive under Riemannian products,

spec(−∆X1×X2 + β Sc(X1 ×X2)) = spec(−∆X1 + β Sc(X1)) + spec(−∆X2 + β Sc(X2)).

There are several special values of β:

� if β = (N + 1)/4N (> 1/4), then the corresponding λ1 is equal to the maximal constant
scalar curvature of the warped metrics on X × TN ;

� if β = (n− 1)/4n (< 1/4), n = dim(X), this implies positivity of the square of the Dirac
operator by refined Kato’s inequality [24].

� if β = (n − 2)(4(n − 1)) (< (n − 1)/4n), then the inequality λ1 > 0 implies the existence
of a conformal metric on X with Sc > 0 by the Kazdan–Warner theorem.

The geometric meaning of other β, as well as of the higher eigenvalues λi(X,β) of −∆+β Sc
is unclear.6

2 Sc⋊↓, Sc⋊↓
sp , . . . , Sc

⋊↓
∗ on homology

Let X be a metric space, e.g., a Riemannin manifold Sc⋊↓(h) = Sc
⋊↓
dist(h), h ∈ Hm(X, ∂X),

denote the supremum of the numbers σ such that the homology class h is representable by
a distance decreasing map f from an oriented Riemannian m-manifold Y with Sc⋊(Y ) ≥ σ,

f : (Y, ∂Y ) → (X, ∂X), f∗[Y, ∂Y ] = h.

Smoothness remark. If X is a smooth Riemannian manifold, then an obvious approximation
argument shows that requiring maps f to be smooth does not change the value of Sc

⋊↓
dist(h).

(However, smoothness of a distance non-increasing map f in the extremal case, where Sc⋊(Y ) =
Sc⋊↓(h) is a delicate matter, see [5].)

Below the are several versions of this definition with the generic notation Sc
⋊↓
∗ .

I. Restrict/relax the topology of Y , e.g., by requiring that

•sp Y is spin;7

4See [18] and references therein.
5The case n = 8 depends on [40].
6The second eigenvalue of λ2(−∆+

1
2
Sc) is used by Marques and Neves in the proof of the S3-min-max theo-

rem, [33], but the role of λi(X,β) remains problematic for dim(X) ≥ 4, i ≥ 2 and all β.
7A referee suggested to constrain maps rather then manifolds Y , e.g., by allowing spin maps only (in the case,

where X is a manifold), but I could not figure out what to do with it.
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•s̃p the universal covering of Y is spin;8

•π2=0 the second homotopy group of Y is zero;

•st.par Y is stably parallelizable;

•⊙ allow representation of h by quasi-proper maps from complete manifolds Y to X, where
“quasi-proper” means locally constant at infinity.

Clearly,

Sc
⋊↓
⊙ ≥ Sc⋊↓ ≥ Sc

⋊↓
s̃p ≥ Sc

⋊↓
sp ≥ Sc

⋊↓
st.par and Sc

⋊↓
s̃p ≥ Sc

⋊↓
π2=0 .

II. Assuming X is a Riemannian manifold, relax the distance decreasing condition on f by
the following

•area the map f decreases the areas of all surfaces in Y .9

Clearly, Sc
⋊↓
area ≥ Sc⋊↓ and we show in §2.E below that the ratio Sc

⋊↓
area

Sc
⋊↓ can be arbitrarily large.

III. Replace the integer homology by the rational homology H∗(X;Q), which is essentially
(but not quite) the same as allowing maps f : Y → X, where f∗ sends the fundamental class
of Y to a non-zero multiple of h.

IV. Instead of homology, use a bordism group of X, e.g., the spin bordism group, which is
well adapted to Sc > 0.

V. Remarks on singular Y .
(a) If hm ∈ Hm(X) is not representable as f∗[Y ] for a smooth manifold Y , it may be interesting

to try pseudomanifolds Y with suitably defined singular Riemannian metrics g with Sc(g) ≥ σ.
(b) Conical example. Here Y has an isolated singularity at a point y0 ∈ Y , where g is

a smooth Riemannian metric on the complement to y0 such that Sc(g) ≥ σ and such that g is
(approximately) conical at y0.

This means that there exists an ε-neighbourhood (ball) U = Uε ⊂ Y of y0, which topologically
splits away from y0,

U \ {y0} = Z × (0, ε],

where Z = (Z, gZ) is a compact smooth Riemannian manifold such that the metric g restricted
to U \ {y0} is related to gZ as follows:

g = a2(t)t2gZ + dt2,

where a2(t) > 0 is a smooth positive function on the (now closed) interval [0, ε]. (One may
assume, if one wishes, that a(t) is constant near t = 0.)

(c) One may additionally assume that Sc(gZ) ≥ Sc
(
Sm−1

)
= (m−1)(m−2) for m = dim(Y )

and, to make the metric truly conical, to require a(t) to be constant near t = 0.
But this is not truly needed, since it can always be achieved by a small deformation of our g

near y0.
(d) Iterated conical singularities. Next, following [8], define m-dimensional (roughly) cone-

singular spaces Y with Sc(Y ) ≥ σ by induction on m, where (as in the above conical case) the
metric (i.e., the distance function) on Y is defined by a smooth Riemannian metric g on the
non-singular part Y0 ⊂ Y , where the following conditions are satisfied:

(i) The singular locus Σ = Y \ Y0 is a closed subset in Y with codimension two in Y .

(ii) Sc(g, y) ≥ σ for all y ∈ Y0.

8This condition is satisfied in several interesting examples of non-spin manifolds X, e.g., where π2 = 0. At the
same time, much of the Dirac theoretic scalar curvature results apply to these X, see [13, Section 9 1

2
].

9This makes sense for general metric spaces X with the “Hilbertian area” defined in [15].
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(iii) Each y0 ∈ Y admits a neighbourhood U0, which is topologically (but not metrically)
cylindrically splits away from y0,

U0 \ {y0} = Z0 × (0, ε0],

where Z0 = (Z0, gZ0), is a compact (m−1)-dimensional cone-singular space and where the
Riemannian metric g on the non-singular part of U0 \ {y0}, denoted U00 ⊂ U0 \ {y0}, is

g = a20(t)t
2gZ0 + dt2 + δ0,

where a20(t) > 0 is a smooth positive function on [0, ε0] and where δ0 = δ0(u) is a (small)
smooth quadratic differential form on U0, which converges to zero for u→ y0.

(e) Due to h0, the above “conical” is slightly more general than how it is defined in (b) for
an isolated singularity y0.

(f) Similarly to the isolated singularity case, the requirement Sc(Z0) ≥ m − 1)(m − 2) does
not significantly change the definition of Sc(Y ) ≥ σ.

(g) One may also insist on the split-conical geometry at all points y0: if y0 is contained in the
interior of an l-dimensional strata S ⊂ Σ, then a small neighbourhood U0 ⊂ Y of y0 metrically
splits: U0 = S0 × N0, where S0 = U0 ∩ S, and where N0 is a con-singular manifold with an
(m− l − 1)-dimensional base.

(h) Probably, as in the isolated singularity case, this additional condition can be achieved by
a small deformation of g near Σ.

Question. How does the resulting Sc⋊↓(h), h ∈ Hm(X), depend on the topology of the
singular locus Σ ⊂ Y ?

For instance, Y may be iterated conical space with initial cones based on products of complex
projective spaces and/or other generators of the oriented bordisms groups with Sc > 0 metrics
(e.g., as in [21]), where we allow cones over l-dimensional Y only if they admit metrics g with
“suitably defined” Sc(g) > 0 and/or, which is probably equivalent with Sc⋊(g) > 0.

(Probably, stable minimal hypersurfaces and µ-bubbles in such Y , similarly to how it is in
a smooth Y , enjoy necessary properties required for the study of the scalar curvature and this
is also conceivable for the Dirac theoretic approach (compare with [2]).)

VI. If X is non-compact, allow classes h with infinite supports10 and use proper (and quasi-
proper) maps f : Y → X.

Remark on Completeness of Y . Regardless of X being complete or not, the value Sc
⋊↓
area[X]

defined with complete Y mapped to X may be very different without this completeness.

For instance, Sc
⋊↓
area,sp[Rn] defined with non-complete Y is infinite.

In fact, if g0 is a metric on R2 such that Sc(g0) = 1 and area(Y0, g0) = ∞ (as in §2.A
below), then Y =

(
Rn−2 × R2, gEucl + g0

)
admits an obvious area contracting diffeomorphism

onto
(
RN , gEucl

)
.

But if we limit to complete spin manifolds Y , then Sc
⋊↓
area,sp,compl[R

n] = 0.

(It is unknown for n ≥ 4 whether Sc
⋊↓
area,compl[R

n] is zero or infinity without the spin assump-
tion on Y .)

2.A. Surface examples. Closed connected simply connected, i.e., spherical Riemann sur-
faces X satisfy

Sc
⋊↓
area[X] =

8π

area(X)
.

10Sometimes referred to as “locally finite homology classes” as was pointed out to me by a referee.



Product Inequalities for T⋊-Stabilized Scalar Curvature 9

Indeed, the inequality Sc
⋊↓
area[X] ≥ 8π

area(X) follows from the existence of a measure preserv-

ing diffeomorphism from the 2-sphere with constant scalar curvature σ = 8π
area(X) onto X; the

opposite inequality follows from Zhu’s lemma (see [46] and [17, Section 2.8]).

Similarly, one shows that Sc
⋊↓
area[X] for closed surfaces X of positive genera.

On the opposite end of the spectrum, non-compact connected surfaces X satisfy Sc
⋊↓
area[X] =

∞, since all the surfaces X admit Riemannian metrics with Sc = 1, and with the given areas
(including area = ∞ for non-compact X) and since connected mutually diffeomorphic Riemann
surfaces X1 and X2 of equal areas admit area preserving diffeomorphisms X1 ↔ X2.

Problem with Sc⋊↓[X] = Sc
⋊↓
dist[X]. Unlike Sc

⋊↓
area, the geometric meaning of Sc⋊↓ [X] for

spherical surfaces X remains obscure. All one knows besides Zhu’s lemma for general X (see
[17, Section 2.8]) is that

Sc⋊↓ [X] <
4π2

diam(X)2
.

2.B. H2m(CPn)-example. Let the complex projective space CPn be endowed with the
U(n + 1) invariant (Fubini–Study)-metric such that the projective lines have scalar curvatures
equal 2 and let CPm ↪→ CPn be an m-plane.

If m is odd, then the manifold CPm is spin, and both homology and the spin-bordism class
of CPm ↪→ CPn satisfy

Sc⋊↓ [CPm] ≥ Sc
⋊↓
sp (k[CPm]) ≥ Sc⋊↓ [CPm]sp.brd ≥ Sc(CPm) = m(m+ 1)

and the same holds for the multiples k[CPm] ∈ H2m(CPn), k = . . . ,−1, 0, 1, 2, . . . .
If k is even, then if m is even, then the Sc⋊↓ k[CPm] ≥ m(m+1) remains valid for all k. But

if k is odd, then Sc
⋊↓
sp (k[CPm]) = 0, since the classes k[CPm] ∈ H2m(CPn) are not representable

by the maps from spin manifolds Y → CPn.
In fact, if an oriented manifold Y 2m contains a smooth hypersurface H such that the m-fold

self-intersection index H ⌢ · · ·⌢ H︸ ︷︷ ︸
m

is odd, then the (m − 1)-fold intersection is an orientable

surface Σ ⊂ Y , which for even m has non-trivial normal bundle; hence w2[Σ]Z2 ̸= 0.
And if k is even, then

Sc
⋊↓
sp (k[CPm]) ≥ m2

since the class 2[CPm]) is represented by the quadric Qm ⊂ CPm+1 ⊂ CPn given by the equation
z20 + z21 + · · ·+ z2m = 0, where this Qm is spin and has scalar curvature m2.

Finally,

Sc
⋊↓
st.par(m!h2m) ≥ constm · Sc

(
S2(1)× · · · × S2(1)

)︸ ︷︷ ︸
m

= 2m for all m and n ≥ m,

since the quotient space(
S2
)m
/Π(m) of

(
S2
)m

= S2(1)× · · · × S2(1)︸ ︷︷ ︸
m

by the permutation group Π(m) admits a natural biholomorphic map ψ :
(
S2
)m → CPm, where

constm > 0 is the squared reciprocal to the minimal Lipschitz constant of maps in the homotopy
class of this ψ.

Question. What are Sc⋊↓
[(
S2
)m
/Π(m)

]
and of the symmetric powers [(X)m/Π(m)] for more

general manifolds X?11

11These are among most attractive singular quasi-conical spaces discussed earlier.



10 M. Gromov

2.C. Upper bounds and equalities. The (T⋊-stabilized and s̃p-generalized) rigidity
theorem by Min-Oo [34] and (the spin cobordims version of) Goette–Semmelmann’s theorem
from [11] imply that the class h2m = [CPm] ∈ H2m(CPm) satisfy the following relations:

Sc
⋊↓
area,sp.brdCPm(h2m) = m(m+ 1) for all m and n ≥ m,

where “sp.brd” indicates that this Sc
⋊↓
area defined with smooth maps Y → X which are spin-

bordant to the embedding CPm ↪→ CPn,12

Sc
⋊↓
area,s̃p(h2m) = m(m+ 1) for odd m,

Sc
⋊↓
area,s̃p(h2m) = m2 for even m,

Sc
⋊↓
area,st.par(h2m)area = 2m for all m and n ≥ 2m− 1.

2.D. Homological homogeneity conjecture. Let X be a compact symmetric space and
H ⊂ Hm(X,Q) be the linear subspace generated by the fundamental classes [Yi] ∈ Hm(X) of ho-
mogeneous (not necessarily totally geodesic) m-submanifolds Yi ⊂ X.13 Then all classes hm ∈ H

can be represented by linear combinations of homogeneous Yi such that Sc
⋊↓
area[Yi] ≥ Sc

⋊↓
area(h).

(This maybe overoptimistic in general, but the s̃p-version of this can be, probably, proved with
available means for products of spheres, complex and quaternionic projective spaces.)

2.E. Equivalence conjecture. All rational h ∈ Hm(X) for compact Riemannian mani-
folds X without boundaries satisfy:14

Sc
⋊↓
⊙ (h) = Sc⋊↓(h) and Sc

⋊↓
sp,⊙(h) = Sc

⋊↓
sp (h),

Sc⋊↓(h) ≤ A · Sc⋊↓
s̃p (h),

Sc
⋊↓
s̃p (h) ≤ B · Sc⋊↓

sp (h),

Sc
⋊↓
sp (h) ≤ C · Sc⋊↓

st.par(h),

where A = An, B = Bn and C = Cn are universal constants, and where the same relations are
expected for the area version of these five Sc⋊↓ .

2.F. Positivity. Unlike Sc⋊, the values of all Sc⋊↓ = Sc
⋊↓
dist-invariants are non-negative, since

all (compact or not) manifolds Y admit arbitrarily large Riemannian metrics with Sc > ε.
Moreover, the fundamental classes of compact connected manifolds X with non-empty bound-

aries are strictly positive since such manifolds admit metrics with Sc > 0. (For instance, the
r-balls with hyperbolic metrics g, sect.curv(g) = −1, admit (obvious radial) metrics g+ ≥ g with
Sc(g+) ≥ exp−4r.)

2.G. [∃ Sc > 0]-Conjecture. If a rational homology class h ∈ Hm(X;Q) vanishes under
the classifying map β : X →B(π1(X))

β∗(h) = 0,

then Sc⋊↓(h) > 0.15

2.H. Finiteness. Sc⋊↓(h) may be, a priori, infinite. However, the finiteness of Sc⋊↓ =

Sc
⋊↓
dist easily follows from the □m-inequality (3.8) in [17], where the proof for m ≥ 9 relies on

Theorem 4.6 in [39] and where the finiteness of Sc
⋊↓
sp (h) for all m follows from [43]. (Probably,

the arguments used in [43] generalize to Sc
⋊↓
s̃p .)

12It is unclear what happens for m ≤ n ≤ 2m− 2.
13Y ⊂ X is homogeneous if an isometry group of X preserves Y and is transitive on Y .
14The dimension m = 4 may be special.
15This seems more realistic if β can be homotoped to the (m − 2)-skeleton of (some cell decomposition of)

B(π1(X)).
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2.I. ∄Sc > 0-Problem. Does non-vanishing of a rational h ∈ Hm(X;Q) under the above

classifying map B(π1(X)) imply that Sc⋊↓ = 0? This is known for m = 3, and also for Sc
⋊↓
s̃p (h)

and allm if the spinorial curvature Sp.curv↓(β∗(h) ∈ Hm(B(π1(X)) defined in Section 7 vanishes,
e.g., if our B(π1) admits a complete metric with sect.curv ≤ 0, see [17] and references therein.
(I am not certain if there are examples of non-zero rational homology classes h in aspherical,
say, compact finite-dimensional spaces such that Sp.curv↓(h) ̸= 0.)

2.J. Sc
⋊↓
area-finiteness question. Is Sc

⋊↓
area[X] <∞ for all compact Riemannian manifolds X

without boundaries?

Remarks. (a) All metrics g+ on a compact Riemannian manifold (X, g) such that areag+(Σ) ≥
areag(Σ) for all surfaces Σ ⊂ X satisfy

Sc⋊(g+) ≤ const · (X, g) <∞.

In fact, this inequality holds for all (Y, g+) what admit area decreasing spin maps16 f : Y → X
with non-zero degrees.

(b) Let X = X0 × Y , where Y is enlargeable17 and dim(X0) = 2. Then the finiteness of

Sc
⋊↓
area(X) for X follows from [47], where for dim(X) ≥ 8 one needs a version of Theorem 4.6

from [39].

Also the ⋊-stabilized version of the area slicing theorem from [28] (this stabilization is likely

to be true) delivers an effective finite bound on Sc
⋊↓
area(X0 × Y ). For dim(X0) = 3, provided Y

is enlargeable and dim(X) ≤ 8.

But the principal case, where X = Sn remains problematic for all n ≥ 4 and neither can
one prove or disprove the existence of (necessarily non-spin) complete orientable n-manifolds Y ,
n ≥ 4, with Sc ≥ σ > 0, which admit smooth proper area decreasing maps to Rn, n ≥ 4, with
non-zero degrees.

2.K. Outline of construction for Sc
⋊↓
area / Sc

⋊↓
dist → ∞. Let g0 be a metric on a man-

ifold Y such that Sc(g0) > 0, then there exists metrics g on Y with arbitrarily large ratios

Sc⋊↓
area(g)/ Sc

⋊↓
dist(g). In fact, let Y = (Y, g0) be an arbitrary Riemannian manifold and U ⊂ Y

an open subset. Then for all ε > 0 and δ > 0, there exists a Riemannian metric gε,δ on Y such
that Sc(gε,δ) ≥ Sc(g0)− ε and

•Y \U the metric gε,δ is equal to g0 outside U ;

•area the metric gε,δ is area-wise smaller than g0,

areagε,δ(S) ≤ areag0(S) for all smooth surfaces S ⊂ Y ;

•dist all Riemannian manifolds X, which 1-Lipschitz dominate18 (Y, gε,δ), have Sc⋊(X) ≤ δ.
The only non-trivial condition here is •dist, which is achieved with the follow ing one.

•D There is an open subset UD ⊂ U with D = 10
√

1
δ such that (UD, gε,δ) is isometric to the

product

T1(ε)× Tn−2(2π)× [−D,D],

where T 1(ε) is the circle of length ε and Tn−2(2π) is the standard flat torus.

16A continuous map between orientable manifolds, f : Y → X, is spin if f∗(w2(X)) = w2(Y ), where w2 is the
second Stiefel–Whitney class.

17A compact Riemannian n-manifold X is enlargeable if there exists a sequence of oriented coverings X̃i → X
and distance decreasing maps fi : X̃i → Sn(Ri), Ri → ∞, which are constant at infinity and which have non-zero
degrees, compare with [4, 20, 23, 38], in [17, §4.7], [18, §2.A].

18“Domination” is a map with non-zero degree, see [17, §1.5].
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The construction of gε,δ, which satisfies •Y \U , •area and •D is elementary (left to the reader19)

while the implication •D ⇒ •dist follows the 2π
n -inequality (see [17, §3.6] and references therein).20

Thus, we see that if a non-torsion homology class h in a compact manifold X satisfies
Sc

⋊↓
dist(h) > 0, then the ratio Sc

⋊↓
area,sp(h)/Scdist,sp(h)

⋊↓ can be made arbitrarily large with some
Riemannian metric on X.

2.L. Question on λ↓
1(h, β). The definition of Sc⋊↓(h), which depends on λ1(Y, β = 1/4)

(see (N +1)/4N -Remark 1.D) makes sense for all β and the arguments which depends on stable
minimal hypersurfaces and µ-bubbles generalize to all β, e.g., as the □∃∃(n,m,N)-inequality,
which is stated in [18, §2.B] for β = N/(N + 1). However, the geometric significance of this for
β ̸= N/(N + 1) is unclear.

Probably, if X is simply connected, β ≤ βm > 0 and m ≥ 3, then an integer multiples lh for
some l ̸= 0 and all h ∈ Hm(X) are representable by a distance decreasing maps Y → X, where
λ1(Y, β) ≥ C for a given C > 0.

Exercises

2.M. Let g be a Riemannian metric on an open manifold21 X of dimension dim(X) = n ≥ 2.
Show that there exists a Riemannian metric g+ on X such that Sc(g+) = 1 and areag+(Σ) ≥
areag(Σ) for all smooth surfaces Σ ⊂ X.

Hint: Observe that [0, 1]×Rn−1 admits an area decreasing diffeomorphism onto Rn and use
products of surfaces with constant curvatures by Rn−2 as building blocks for (X, g+).

Remark. If Y is a complete spin n-manifold with Sc⋊(Y ) ≥ σ > 0, then it admits no proper
area decreasing map to Rn with non-zero degree [21].

2.N. Show that non-zero multiples of homology classes h in simply connected manifolds X
have Sc

⋊↓
st.par(ih) > 0, for some i ̸= 0.

Hint. Recall the Serre–Thom theorem on framed bordisms and apply Stolz’ theorem on spin
manifolds [41].

3 ⋊↓-extremality and ⋊↓-rigidity

3.A. Homological Sc
⋊↓
∗ -problems. Let X be a Riemannian manifold and h ∈ Hm(X) a ho-

mology class, e.g., m = n = dim(X), and let h be the fundamental class [X] of X, where X is
assumed oriented.

Evaluate Sc
⋊↓
∗ and/or find relations between Sc

⋊↓
∗ and more accessible metric invariants of X.

Decide if Sc
⋊↓
∗ (h) is represented by an Sc

⋊↓
∗ -extremal, or, for brevity, ⋊↓

∗-extremal, oriented
Riemannian m-manifold mapped to X,

Y
f→ X such that f∗(Y ) = h and Sc⋊(Y ) = Sc

⋊↓
∗ (h),

where f is the distance or the area decreasing depending on “∗” and where, ideally, f is an
isometric immersion.

For instance, given a submanifold Y ↪→ X, e.g., Y = X decide if it is Sc
⋊↓
∗ -extremal, or,

moreover, if it is rigid, that is unique extremal (compare with §3.D below).
Find examples of h, where there is no extremal manifold Y → X with f∗[Y ] = h, but such

a generalized Y , e.g., a singular extremal one does exist. (We saw some potential examples of
such singular Y , and stable minimal singular hypersurfaces suggest further examples.)

19To get an insight, start with Y = S2, then look at Y = S2 × Tn−2.
20The proof of 2π

n
-inequality for n ≥ 9 relies on Theorem 4.6 in [39], and if one is satisfied with

Sc⋊↓
area(g)/Sc

⋊↓
dist,sp(g) → ∞, then one can use the spinorial version of 2π

n
from [45].

21A manifold X is open if it contains no closed manifold connected component.
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Determine which closed manifolds X admit ⋊↓-extremal Riemannian metrics.
(Possibly, metrics g0 with Ricci(g0) > 0 can be deformed to g ≥ g0 with Sc⋊(g) = Sc⋊↓(g).

But, for instance, metrics g0 = g1 + g2 on X = X1 × X2, where sect.curv(g1) = 1 and
sect.curv(g2) < 0 admit no such deformations. However, the pointed Hausdorff limit mani-
folds limλ→∞(X, g+λg2), which are isometric to X1 × Rdim(X), are extremal.

In general, the existence of a metric g0 on X with Ricci(g0) ≥ 0 might be necessary for the
existence of an extremal metric g on X.

Examples

3.BSn. Complete manifolds with constant sectional curvatures, e.g., unit spheres, flat tori and
Euclidean spaces are Sc

⋊↓
area,s̃p-extremal.

This follows from the ⋊-stabilized Llarull’s theorem (see [17] and references therein).
3.BR>0. A compact spin manifold X with non-negative curvature operator, R(X) ≥ 0, e.g.,

a compact symmetric space is Sc
⋊↓
area,s̃p-extremal, provided scalar curvature Sc(X) is constant22

and the Euler characteristic of the universal covering X̃ does not vanish.
This follows by an elaboration on the proof of the Goette–Semmelmann extremality theo-

rem [12]. (We say a few words about it in Section 5.)
Probably, the corresponding rigidity arguments (see [29] and references therein) also admit

⋊-stabilization, but I did not check this carefully.
Also the condition χ

(
X̃
)
̸= 0 seems redundant and ⋊↓

area,s̃p-extremality can be strengthened,

also conjecturally, to the ⋊↓
area-extremality.

3.B×[a1,bi]
. The rectangular solids ×n

1 [−ai, bi] are ⋊↓
sp-extremal and, if n ≤ 8, they are

⋊↓-extremal.
In fact, ⋊↓

sp-extremality follows by a slight generalization of the argument from [43], which,

probably, can be adapted for the proof of the ⋊↓
s̃p-extremality.

As for ⋊↓-extremality for n ≤ 8, this follows from the □∃∃(n,m,N)-inequality [18, §2.B].
Furthermore, the generic regularity theorem from [9] extended to µ-bubbles (I have not check

this extension) yields the □∃∃(n,m,N)-inequality and thus ⋊↓-extremality of solids for n ≤ 10.
Moreover, granted a µ-bubble generalization of Theorem 4.6 from [39], the ⋊↓-extremality

(but not the □∃∃(n,m,N)-inequality) would follow for all n.
3.B××. Riemannian products of the manifolds from the above examples, e.g.,

X =
(×n−k

1 [−ai, bi]
)
× Sk,

are ⋊↓
sp-extremal.

As above, this follows by a simple generalization of argument from [43] combined with the
basic (algebraic) inequality in [12] for twisted Dirac operators on manifolds with R ≥ 0.

But the ⋊↓
sp-extremality remains problematic even for n ≤ 8.

For instance, if k ≤ 4 and n ≤ 8 (probably n ≤ 10 will do), then the □∃∃(n,m,N)-inequality

combined with the warped product splitting argument in [17, §5.5] yield ⋊↓
sp-extremality of

X =
(×n−k

1 [−ai, bi]
)
× Sk.

Yet, there is no approach so far to non-spin extremality of the spheres Sk for k ≥ 5.23

3.Bwarp. There are several classes of log-concave warped product manifolds, e.g., Sn minus
a point, where the ⋊sp-extremality (and ⋊-extremality for n = 4) follow by ⋊-stabilization of

22There are lots of metrics with R > 0 on spheres Sn and if n ≥ 3 many of these have constant scalar curvatures.
On the other hand, it is possible that a closer look at the curvature term in the twisted Schrödinger–Lichnerowicz
formula (see Section 5) would allow one to drop the constancy of the scalar curvature condition.

23The warped product splitting argument (combined with a stable version of [12]) applies to S4, because
3-manifolds are spin.
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the arguments in [17, §§5.5–5.7] and [6]. In fact, the ⋊-extremality for warped manifolds is more
common then non-stabilized extremality.

For instance, geodesic balls in spheres and in Rn are not non-stably extremal: one can
increase their metrics without diminishing the scalar curvatures. But, probably, they are ⋊↓-
extremal.

3.C. Questions.

(i) Which convex subsets in Rn are ⋊↓-extremal?

(ii) Which surfaces are ⋊↓-extremal?

3.D. About rigidity. The proofs of extremality of the manifolds X in the above examples
can be upgraded to rigidity that says in the present case that if a smooth distance non-increasing
positive degree map f : Y → X satisfies Sc⋊∗ (Y ) ≥ Sc⋊↓

∗ (X) (where Sc⋊↓
∗ (X) = Sc⋊∗ (X) by

extremality), then f is homotopic to a local isometry, where one can drop “homotopic to” if X
has no local scalar flat factors.

This follows by combining the ⋊-stabilized rigidity arguments in [12] and [29] with those in
[17, §5.7] but to be honest, I did not check this in full generality.

4 Sc⋊↓-product inequalities, conjectures and problems

4.A. Additivity for cylinders. Since, obviously,

Sc⋊↓ [X1 ×X2] ≥ Sc⋊↓ [X1] + Sc⋊↓ [X2],

then, for all Riemannian manifolds X1 and X2, the inequality

Sc⋊↓ [X1 ×X2] ≤ Sc⋊↓ [X1] + Sc⋊↓ [X2],

is equivalent to the equality

Sc⋊↓ [X1 ×X2] = Sc⋊↓ [X1] + Sc⋊↓ [X2].

Thus, in particular, the □∃∃(n,m,N)-inequality from [18] and/or equivariant separation the-
orem for stable µ-bubbles24 along with the equality

Sc⋊[a, b] = 4λ1[a, b] =
4π2

(b− a)2
.

imply the following.
Proposition. The fundamental homology classes of oriented Riemannian cylindrical manifolds

X = Y × [a, b] of dimensions ≤ 8 satisfy

Sc⋊↓ [X] = Sc⋊↓ [Y ] + Sc⋊↓ [a, b].

(This generalizes Sc⋊↓ (×n
1 [ai, bi]) =

∑
i Sc

⋊↓[ai, bi], that is §3.B×[a1,bi] from the previous sec-
tion.)

4.B. The spin case. This additivity formula remains problematic for n ≥ 9,25 but the
spin cube inequality from [43] (proved with an index theorem for deformed Dirac operators on
manifolds with boundaries) implies, as we stated earlier, that

Sc⋊↓
sp (×n

1 [−ai, bi]) = Sc⋊(×n
1 [−ai, bi]) =

n∑
1

4π2

(bi − ai)2
=

n∑
1

Sc
⋊↓
sp [ai, bi]

for all n.
24See [17, §5.4] and compare with [22, 37] and with [18, the proof of §2.B].
25The dimensions n = 9, 10, probably, can be taken care by the argument in [9].
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Yet, as far as I can see, the present day Dirac theoretic argument does not yield the general
Scsp-inequality

Sc
⋊↓
sp [Y × [a, b]] ≤ Sc

⋊↓
sp [Y ] + Sc

⋊↓
sp [a, b].

However, this argument does apply, if Y is a special (extremal) manifold as in §3.B××, e.g.,
a product of spheres.

4.C. [sect.curv ≤ 0]-Remark. Let Y and Z be compact Riemannian manifolds, where Z
has no boundary and the sectional curvature sect.curv(Y ) ≤ 0. Then, similarly as above, one
can prove additivity in the following two cases:

(i) If dim(Y × Z) = n ≤ 8,26 then

Sc⋊↓ [Y × Z] = Sc⋊↓ [Y ] = Sc⋊↓ [Y ] + Sc⋊↓ [Z] = Sc⋊↓ [Y ].

(ii) If Y is as in §3.B××, then

Sc
⋊↓
sp [Y × Z] = Sc

⋊↓
sp [Y ] = Sc

⋊↓
sp [Y ] + Sc

⋊↓
sp [Z] = Sc⋊↓ [Y ]

for all n.

4.D. Riemannian additivity conjecture. Riemannian products of all oriented Rieman-
nian manifolds satisfy

Sc⋊↓ [X1 ×X2] = Sc⋊↓ [X1] + Sc⋊↓ [X2].

In fact, the following stronger inequality might be true.
4.E. Sup-metric product conjecture. Let Xi, i = 1, . . . , k, be metric spaces (e.g., closed

oriented Riemannian manifolds) and let

X =×supi
Xi = (X1 × · · · ×Xk,distsup)

be their product endowed with the sup-metric

dist((x1, . . . , xk), (x
′
1, . . . , x

′
k)) = max

i=1,...,k
dist(xi, x

′
i).

Then rational homology classes hi ∈ Hmi(Xi;Q) (e.g., the rational fundamental classes [Xi]
27)

satisfy

Sc⋊↓(⊗ihi) ≤
∑

i=1,...,k

Sc⋊↓(hi), e.g., Sc⋊↓ [×supi
Xi]Q ≤

∑
i=1,...,k

Sc⋊↓ [Xi]Q, (4.1)

where the opposite inequality

Sc⋊↓(⊗ihi) ≥
∑

i=1,...,k

Sc⋊↓(hi)

follows from additivity of the scalar curvature; hence, (4.1) implies the equality

Sc⋊↓(⊗ihi) =
∑

i=1,...,k

Sc⋊↓(hi).

26In view of [9], the inequality n ≤ 10 may suffice.
27“Rational” in the case of compact locally contractible spaces means “a non-zero integer multiple of”, that is,

Sc⋊↓(hQ)
def
= sup

N ̸=0
Sc⋊↓(N · hQ).
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4.F. ×supi
[ai, bi]-Example. The above indicated proofs of §4.A and §4.B actually show

that the rectangular solids×n
1 [ai, bi] with the Riemannian product and the sup-product metrics

have the same Sc⋊↓ for n ≤ 8 and have the same Sc
⋊↓
sp for all n. This confirms the validity of (4.1)

for rectangular solids.
4.F′. ×[0, di]-Sub-Example. Let Y ⊂ Rn be a diffeomorphic image of the n-cube and

let di, i = 1, . . . , n, be the distances between the images in Y of the pairs of the opposite (n−1)-
faces of the cube. Then the first Dirichlet eigenvalue of the Laplacian −∆Y is bounded by that
of the solid ×i[0, di],

λ1(−∆Y ) ≤
∑
i

π2

d2i
.

Exercise. Find a direct elementary proof of this inequality.28

Sup-distance, sup-area and Sc
⋊↓
sup.area. The Riemannian product metric, that is the

Pythagorean one

dist((x1, . . . , xk), (x
′
1, . . . , x

′
k)) =

√∑
i

dist(xi, x′i)
2,

is greater than the sup-metric but only by a factor
√
k,

1 ≤
dist((x1, . . . , xk), (x

′
1, . . . , x

′
k))

distsup((x1, . . . , xk), (x
′
1, . . . , x

′
k))

≤
√
k.

The situation is somewhat different with areas. Namely, let X = ×iXi be the product of
Riemannian manifolds and let supi-area(Σ) for a smooth surface Σ ⊂ X be the maximum of the
areas of the projections Σ → Xi. Here again

sup
i
-area(Σ) ≤ area(Σ)

but now, unlike to how it is with the distances, the ratio

area(Σ)

supi-area(Σ)

may be infinite. Accordingly, the corresponding Sc
⋊↓
sup.area(h), h ∈ Hm(×iXi), defined with

smooth maps f : Y m → ×iXi, f∗[Y ] = h such that the corresponding fi : Y
m → Xi are

area decreasing, can be significantly greater than Sc
⋊↓
sup.area(h), where the maps f must be area

decreasing themselves.
Thus, the area version of (4.1),

Sc
⋊↓
sup.area(⊗ihi) ≤

∑
i=1,...,k

Sc
⋊↓
area(hi), (4.2)

e.g.,

Sc
⋊↓
sup.area[×supi

Xi]Q ≤
∑

i=1,...,k

Sc
⋊↓
area[Xi]Q,

is qualitatively stronger than corresponding inequality for Sc
⋊↓
area(⊗ihi).

28To my shame, I could not solve it.
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Although we have no known means for bounding Sc
⋊↓
area and even less for Sc

⋊↓
sup.area in most

cases, we shall do this in the next section for Sc
⋊↓
sup.area,s̃p and thus prove the s̃p-version of (4.2)

in some cases.
4.G. Semiadditivity problem. Let X = Xn and Z = Zk, k ≤ n − 2, be compact

Riemannian manifolds, possibly with boundaries, and let f : X → Z be a smooth distance

decreasing map such that ∂X
f→ ∂Z, and let hm =

[
f−1(z)

]
∈ Hm(X), m = n − k, be the

homology class of the pullback of a generic z ∈ Z.
Identify the cases, where

Sc⋊↓(hm)Q ≥ Sc⋊↓[X]Q − Sc⋊↓[Y ]Q,

at least for “simple” manifolds Z, e.g., compact convex domains in Rk and in Sk and, in general,
evaluate the difference

Sc⋊↓[X]Q − Sc⋊↓[Y ]Q − Sc⋊↓(hm)Q

in terms of the geometry of Z, for instance, where Z is the product of balls Z =×iB
ki(Ri) or

product of spheres Ski(Ri).
If n = m + k ≤ 8, a satisfactory lower bound on Sc⋊↓(hm) for rectangular solids Z follows

from §4.A. Also [18, §2.B] yields similar bounds for products of 2-discs and 2-spheres (com-
pare [22]). But it is unclear, for instance, how large the difference Sc⋊↓[X]Q − Sc⋊↓[Y ]Q −
Sc⋊↓(hm)Q can be for the balls Bk ⊂ Rk and spheres Sk for large k.

5 Additivity of the twisted SLWB-formula and applications

Let Y be a Riemannian spin n-manifold and V → X be a complex vector bundle with a unitary
connection ∇ and let D⊗V denote the Dirac operator on spinors S on Y tensored with V .
Then the square of D⊗V satisfies the following Schrödinger–Lichnerowicz–Weitzenböck–Bochner
formula (see [27])

D2
⊗V = ∇2

⊗V +
1

4
Sc(Y ) +K⊗V ,

where K⊗V is an endomorphism S⊗ V → S⊗ V such that

K⊗V (s⊗ v) =
1

2

∑
i,j

(ei ◦ ej ◦ s)⊗RVei∧ej (v),

where ei ∈ Ty(Y ), i = 1, . . . ,m = dim(Y ), are orthonormal tangent vectors at y ∈ Y , where ◦ is
the Clifford multiplication and RVei∧ej : V → V is the curvature operator of ∇.

Next, recall that the curvature of the tensor product of two bundles with connections satisfies

RV1⊗V2 = 1V1 ⊗RV2 +RV1 ⊗ 1V2 ,

where 1V : L→ V is the identity operator, and observe that the operators on S⊗V1⊗V2 defined
by

s⊗ v1 ⊗ v2 7→
1

2

∑
i,j

(ei ◦ ej ◦ s)⊗RV1ei∧ej (v1)⊗ v2

and by

s⊗ v1 ⊗ v2 7→
1

2

∑
i,j

(ei ◦ ej ◦ s)⊗ v1 ⊗RV2ei∧ej (v2)
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have the same spectra up to multiplicity as

s⊗ v1 7→
1

2

∑
i,j

(ei ◦ ej ◦ s)⊗RV1ei∧ej (v1)

and

s⊗ v2 7→
1

2

∑
i,j

(ei ◦ ej ◦ s)⊗RV2ei∧ej (v2)

correspondingly. Therefore, the lowest eigenvalue λ⊗1⊗2 (often negative) of the (self-adjoint)
operator R⊗(V1⊗V2) is bounded from below by the sum of these for R⊗V1 and R⊗V2 ,

29

λ⊗1⊗2 ≥ λ⊗1 + λ⊗2.

This yields the following.

5.A. Theorem.30 Let X = ×kXk, k = 1, . . . , l, be an orientable Riemannian n-manifold
split into Riemannian product, where the factors Xk = (Xk, gk) are either

(a) compact nk-manifolds with non-negative curvature operators, RXk ≥ 0 (e.g., closed convex
hypersurfaces in Rnk+1) and with non-vanishing Euler characteristics χ(Xk) ̸= 0 (hence
of even dimensions nk), or

(b) spheres Snk with constant sectional curvatures (possibly of odd dimension nk).

Let g♮k = Sc(g
k
) · g

k
. Let Y = (Y, g) be a smooth complete orientable Riemannian (n+N)-

manifold with Sc(g) > 0, and let g♮ = Sc(g) · g. Let Z be an orientable enlargeable N -manifold,
e.g., Z = RN , and let f : Y → X × Z be a smooth proper (quasi-proper will do) map such that
the corresponding maps fk : Y → Xk are strictly sum-wise area decreasing with respect to g♮

in Y and g♮k in Xk.
31

This means that the norms of the exterior squares of the differentials of fk with respect the
♮-metrics satisfies∑

k

|| ∧2 dfk|| < 1. (5.1)

(Notice that
∑

k || ∧2 dfk|| = 1 if X = Y and f is the identity map.)

If either the map f is spin or the universal covering of Y is spin, then the topological degree
of f is zero.

Proof. First, let X and Y be spin, let f : Y → X be a smooth map and let V → Y be the
f -pullback of the spin bundle S(X) → X to Y . Then, if RX ≥ 0 and f : Y → X is ♮-area
decreasing at point y ∈ Y , i.e., ∥∧2df(y)∥ ≤ 1, then according to [12] (also see [29]) the lowest
eigenvalue of the operator R⊗V at y ∈ Y satisfies

λ⊗V ≥ −Sc(Y, y)

4
,

where this inequality is strict if f is strictly ♮-area decreasing at y.

Next, let Xk be spin, let X = ×kXk and let V → Y be the tensor product V =
⊗

k Vk of
the pullbacks Vk = f∗k (Sk) → Y of f∗k (Sk) = S(Xk) → Xk to Y for fk : Y → Xk.

29A referee pointed out to me that λ⊗1⊗2 = λ⊗1 + λ⊗2.
30This is a refinement of the Llarull–Goette–Semmelmann–Listing rigidity theorem.
31The quadratic forms g♮

k
on Xk may vanish but “area” makes sense anyway.
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Then, if the maps fk are ♮-area decreasing and at least one of fk is strictly ♮-area decreasing
at a point y ∈ Y then, assuming Y is connected and spin, the Dirac operator D⊗V on Y has
index zero.

On the other hand, if χ(Xk) ̸= 0, if dim(Y ) = dim(X) and deg(f) ̸= 0,32 then ind(D⊗V ) ̸= 0
by the Atiyah–Singer theorem (compare with [12, 29, 30]).

This proves §5.A in the case where the manifold X is spin and it contains neither a Z-factor,
nor an odd spherical factor.

To pass to the general case we argue as follows:
1. Odd dimensional spheres are suspended to even dimensional ones Snk ; Snk+1, where

these suspensions are accompanied by multiplying Y by a long circles and a suspending [fk : Y →
Snk ; [Y × S1 → Snk+1] as in [30], also see [17, §3.4.1] and [18].

2. If a Z, which may be assumed even-dimensional, is enlargeable, it supports an almost
flat bundle, say W → Z with non-zero top-dimensional Chern class and the above V → Y is
tensored by the pullback f∗Z(W ) → Y of W to Y .

3. If neither X nor Y are spin but the map f is spin, then the Dirac operator D⊗V is defined
(this is explained in the present context in [34] and in [12]) and the above applies.

5.B. Spherical trace and symplectic remarks. The || ∧2 dfk|| contribution of each
spherical factor Xk with constant sectional curvature can be replaced in the formula (5.1) by an

a priori smaller entity, that is, 2||∧2df ||trace
nk(nk−1) , where

|| ∧2 dfk(y)||trace =
∑

1≤i<j≤n+N
λi,k(y)λj,k(y),

and where the numbers λj,k(y) ≥ 0 are defined by diagonalizing the differential dfk : Ty(Y ) →
Tfk(Xk) with an orthonormal frame ei,k ∈ T (y)(Y ), which is sent by dfk to an orthogonal frame
in Tfk(Xk) with the vectors of lengths λj,k(y).

In fact, this follows from [30, formula (4.6)] (also [29] and [17, §3.4]).
The S2 factors in X contribute to complex line bundles as ⊗-factors in V → Y . This, in view

of Schrödinger–Hitchin (see [25]) formula for D⊗L allows one to replace the product of these S2

by a single (quasi)symplectic manifold (compare with [17, §2.7 and §3.4.4(4)]).

5.C. Sc
⋊↓
area,s̃p-additivity corollary. Let Xk be manifolds as in 5.A, where we addition-

ally assume that they are spin and have constant scalar curvatures. Then the fundamental
classes [Xk] satisfy the s̃p-version of the Sc

⋊↓
sup.area-additivity (4.2) in §4.F:

Sc
⋊↓
sup.area,s̃p(×kXk) =

∑
k

Sc
⋊↓
s̃p (Xk) =

∑
k

Sc⋊(Xk) =
∑
k

Sc(Xk).

Consequently,

Sc
⋊↓
s̃p (×supk

Xk) =
∑
k

Sc(Xk).

5.D. Questions. (i) Does vanishing of Sc⋊↓ [Xk]Q for closed manifoldsXk (this is a homotopy
invariant of X) implies vanishing of Sc⋊↓ [×kXk]Q?

There are examples of manifolds Xk, where Sc⋊↓ [Xi] = 0 and where their products admit
metrics with Sc > 0; hence, Sc⋊↓ [×iXi] > 0 for these Xi, see [19].

(ii) Do products of spheres X = Sn1 × Sn2 , n1, n2 ≥ 2, admit Riemannian metrics gε, for all
ε > 0, with Sc(gε) ≥ 1 and such that all non-zero homology classes h in Hn1(X) and in Hn2(X)

satisfy Sc
⋊↓
areagε (h) ≤ ε?

32If dim(Y ) = dim(X) + 4m, then instead of deg(f) ̸= 0 one assumes that the f -pullback of a generic point
x ∈ X has non-zero hat A-genus.
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The existence of such a gε, for n1 = n2 = 2, would imply the absence of the lower bounds on
the 2-systoles of manifolds (X, g) in terms of σ(g) = infx∈X Sc(X, g, x) > 0,33

sup
σ(g)≥1

syst2(X, g) = ∞.

Recall, that the 2-systole is the infimum of the areas of all non-zero classes h ∈ H2(X), for
area(h) = inf [c]∈h area(c) for the 2-cycles c ⊂ Y that represent h.34

(iii) Let X be a compact symmetric space. What is the minimal seminorm on the linear maps
λ2d: ∧2Rn → ∧2T (X), say ||λ2d||min such that the ♮-normalized inequality || ∧2 df ||min < 1 for
smooth equidimensional spin maps f : Y → X would imply that deg(f) = 0?35

(If X is the products of spheres, this seminorm is equal to the sum of the mean trace norms

(as in §5.B) for maps Rn dk→ Xk = Snk and for all symmetric spaces X of dimension ≥ 4
with χ(X) ̸= 0 this norm is, probably, strictly smaller then the sup-norm || ∧2 d|| from the
Goette–Semmelmann theorem.)

6 P -families of maps to product of spheres

Let Y = (Y, g) be an n-dimensional Riemannian manifold with Sc(X) > 0, where as earlier
g♮ = Sc(Y ) · g, let hm ∈ Hm(Y ) be a homology class and let P be a locally contractible
topological space, e.g., a manifold and hK ∈ HK(P ) be a homology class.

Let X be a product of spheres of variable radii,

X =×kS
nk(Rk),

where dim(X) =
∑

k nk = m +K, and where the spheres are endowed with the usual metrics
with sectional curvatures 1/R2

k.

Let F : Y ×P → X be a continuous map such that the maps Fp = F|Y×p : Y → X are smooth
and C1-continuous in p ∈ P .

Let the universal covering of Y be spin and let hm be equal to the homology class of the
pullback of a genetic point under a smooth map ϕ : Y → Z, where Z is a smooth enlargeable
manifold of dimension dim(Y )−m. For instance, m = n and hm = [Y ] or Y = Y m

0 ×Tn−m and
hm = [Y0].

6.A. Theorem. Let the norms of the exterior squares of the differentials of the maps
fk : Y → Snk(Rk) with respect to the ♮-metrics in Y and in Snk(Rk) satisfy∑

k

|| ∧2 dfk|| < 1.

Then, in the following two cases, the F -image F∗(hm ⊗ hK) ∈ Hm−K(X) = Z vanishes:

(1) The ranks of the (differentials of the) maps fp : Y → X are everywhere≤ m, e.g., dim(Y ) =
m and hm = [Y ].

(2) The dimension of Y is bounded by n ≤ 8.

33Such a counter example would undermine (but not disprove) the conjectural bound waist2(X) ≤ constn
σ

for
compact Riemannian n-manifolds with Sc(X) ≥ σ > 0. Thus, it may be safer to assume n1, n2 ≥ 3.

34There are bounds on the 2-systoles of manifolds X with Sc⋊(X) ≥ σ in terms of their □̃⊥-spreads (see
[37, 44]) which are proved as □∃∃(n,m)-inequality in §2.B with a use of minimal hypersurfaces and µ-bubbles.
Also there are similar bounds on the stable systoles of spin manifolds obtained with Dirac operators twisted with
line bundles, where, recall, st.syst2(X) = lim infN→∞

area(Nh)
N

.
35This norm must be invariant under isometries of X.
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Proof. Case 1. If ranks(fp) ≤ m, then the Llarull (Listing) trace inequality (4.6) in [30]
together withe the above λ⊗V -additivity show that index of the family of the Dirac operators
on Y , twisted with the pullbacks of

⊗
k Sk as in §5.A, vanishes and the Atiyah–Singer theorem

for families shows that F∗(hm ⊗ hK) = 0. (See in [17, §4] and references therein.)
Case 2. If dim(Y ) ≤ 8, then, at last generically, the homology class hm can be realized by

an m-submanifold Y0 ⊂ Y such that the product Y0 × Tdim(Y )−m admits a warped product
metric g⋊ such that Sc(g⋊, y) ≥ Sc(Y, y) for all y ∈ Y0 (see [18, §3] and references therein). Now
the case 1 applies to Y0 × Tdim(Y )−m and the proof follows.

Remarks/Problems. (a) For all we know, the spin and dim(Y ) ≤ 8 condition are redundant
and there is a fair chance that a further study of singularities of minimal hypersurfaces in he
spirit of [39] and/or [31, 32] will allow one to remove the latter. But removing the spin condition
needs a new idea.

The argument in Case 1 can be extended to maps of foliated manifolds to ×kS
nk as in [42],

but a foliated version of Case 2 is problematic.

7 Spinorial curvature

Given a closed orientable even dimensional Riemannian manifold Y let Sp.curv(Y ) be the infi-
mum of the numbers κ ≥ 0 such that there exist a complex vector bundle V → X with a unitary
connection such that(

Ch(V )⌣ Â
)
[Y ] ̸= 0

and the lowest eigenvalue of the operators K⊗V on (S ⊗ V )y (see Section 5) satisfies

λ⊗V ≥ −κ

at all points y ∈ Y .36

Observe that

Sp.curv(Y1 × Y2) ≤ Sp.curv(Y1) + Sp.curv(Y2)

by the inequality λ⊗1⊗2 ≥ λ⊗1 + λ⊗2 from Section 5, that

Sp.curv(Y ) = 0

for enlargeable manifolds Y and that if the universal coverings of Y is spin, then

Sc⋊(Y ) ≤ 4κ

by the (T⋊-stabilized) index theorem, SLWB-formula and Kato’s inequality.37

Remarks on λ1(X,β) for β < 1/4. (a) The refined Kato inequality strengthens the above to

λ1(X,β) ≤ 4κ for β = (n− 1)/4n,

where λ1(X,β) is the lowest eigenvalue of −∆+ β Sc(X) (see §1.D).
(b) The Kazdan–Warner conformal change theorem [26] and conformal invariance of harmonic

spinors [25] show that if λ1(X,β) > 0 for β = (n − 2)(4(n − 2), then X supports no non-zero
harmonic spinors.

36Although the spin bundle S → Y is defined only for spin manifolds, this definition, being local, makes sense
for all Y , since λ⊗V does not depend on the spin structure.

37Instead of the T⋊-stabilization and Kato’s inequality one may use Kazdan–Warner conformal change theo-
rem [26] and conformal invariance of harmonic spinors [25].
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However, it is unclear how to extract further geometric, rather than topological information
from the inequality λ1(X,β) > σ for β < (n− 1)/4n and σ > 0.

Next, let X be a Riemannian manifold, let hm ∈ Hm(X) be a homology class and let Y be
a class of smooth closed orientable m-manifolds Y along with maps f : Y → X.

Define Sp.curv↓Y(X) via smooth maps F : Y × TN → X × TN and Riemannian metrics G on

Y × TN as the infimum

Sp.curv↓Y(X)p inf
Y,N,G,F

Sp.curv
(
Y × TN , G

)
,

where the infimum is taken over N such that m + N is even, where F is area decreasing with
respect to the metric G and where

F∗
[
Y × TN

]
= hm ⊗

[
TN
]
∈ Hm+N

(
X × TN

)
and (Y, F|Y×0) ∈ Y.

Clearly, by the above, if the universal coverings of manifolds Y ∈ Y are spin,38 then

Sp.curv↓Y(hm) ≥
1

4

(
Sc

⋊↓
area,Y(hm)

)
.

Remark. If the universal coverings of the manifolds Y ∈ Y are spin, then the fundamental
classes [X] of compact symmetric spaces X with χ(X) ̸= 0, satisfy the equally

Sp.curv↓Y(X) =
1

4

(
Sc

⋊↓
area,Y(h)

)
by the T⋊-stabilized Goette–Semmelmann theorem and this equally applies to products X =

×Xi, where Xi are as in §5.A.
Possibly, (a version of) this equality holds true for all symmetric spaces but it seems unlikely

in general, even for rational homology classes h, that the Dirac operator is the only source of
bounds on Sc

⋊↓
area,Y(h).

Power stabilization. Let

XM = X ×X × · · · ×X︸ ︷︷ ︸
M

,

Sc
⋊↓
area,Y

(
⊗[∞/∞]hm

)
= sup

M=1,2,...

1

M
Sc

⋊↓
area,Y(hMm), hMm = ⊗Mhm ∈ HMm

(
XM

)
and

Sc.curv⋊↓
area,Y

(
⊗[∞/∞]hm

)
= inf

M=1,2,...

1

M
Sc.curv⋊↓

area,Y(hMm),

hMm = ⊗Mhm ∈ HMm

(
XM

)
.

Questions. I. What are further instances (besides the above h = [X]) of the equality

Sp.curv↓Y(⊗
[∞/∞]hm) =

1

4

(
Sc

⋊↓
area,Y

(
⊗[∞/∞]hm

))
,

and what are examples where this fails to be true?
II. Can one pass to the limit, setM = ∞ and prove scalar curvature bounds for “Riemannian

metrics” G on infinite dimensional manifolds X, e.g., where such a G differs from the infinite
sum of Riemannian metrics,

∑∞
1 gi, on X =×∞

1 (Xi, gi) (and/or on Y mapped to X) by a “fast
decaying in i” error term ∆?

38This condition is necessary but its Q-version may be redundant.
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Remarks. (a) If ∆ = ∆i,j decays very fast, for i and/or j tending to infinity, then finite

products XM =×M
1 Xi embed to X =×∞

1 (Xi, gi) with small relative curvatures and a bound
on “Sc(X)” may be derived in some cases from such a bound on XM , but it would be more
interesting to develop a truly infinite dimensional argument for bounds on “Sc(X)” and/or to
find applications of such bounds.

Test question. Let X = {xi}∑
i x

2
i≤∞ be the Hilbert space and G = Gij be a smooth Rieman-

nian metric on X, which is greater than the background Hilbertian metric,

G(τ, τ) ≥ ||τ ||2

for all tangent vectors τ ∈ T (X) and let M = 3, 4, . . . be an integer.
Can the M -scalar curvature of G (defined below) be strictly positive, say ScM (G) ≥ 1? Here

ScM is the function on the tangent M -planes PM ∈ Tx(X), x ∈ X, which is equal to the scalar
curvature at zero in PM

(
=RM

)
of the Riemannian metric induced by the exponential map

exp: PM → X from G. (It may be worthwhile to compare ScM with with the m-intermediate
curvature from [3].)

(b) A natural approach to these problems is by a finite-dimensional approximation as in (a)
but this seems that uncomfortably restrictive conditions on G are needed (compare with [14]).

(c) Basic features of positive scalar curvature have their counterparts for mean convex hyper-
surfaces (see [16]), where the infinite dimensional geometry is a bit more transparent than that
of the scalar curvature.
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[25] Hitchin N., Harmonic spinors, Adv. Math. 14 (1974), 1–55.

[26] Kazdan J.L., Warner F.W., Scalar curvature and conformal deformation of Riemannian structure, J. Dif-
ferential Geometry 10 (1975), 113–134.

[27] Lawson Jr. H.B., Michelsohn M.-L., Spin geometry, Princeton Math. Ser., Vol. 38, Princeton University
Press, Princeton, NJ, 1989.

[28] Liokumovich Y., Maximo D., Waist inequality for 3-manifolds with positive scalar curvature, in Perspectives
in Scalar Curvature. Vol. 2, World Scientific Publishing, Hackensack, NJ, 2023, 799–831, arXiv:2012.12478.

[29] Listing M., Scalar curvature on compact symmetric spaces, arXiv:1007.1832.

[30] Llarull M., Sharp estimates and the Dirac operator, Math. Ann. 310 (1998), 55–71.

[31] Lohkamp J., Minimal smoothings of area minimizing cones, arXiv:1810.03157.

[32] Lohkamp J., Contracting maps and scalar curvature, arXiv:1812.11839.

[33] Marques F.C., Neves A., Rigidity of min-max minimal spheres in three-manifolds, Duke Math. J. 161 (2012),
2725–2752, arXiv:1105.4632.

[34] Min-Oo M., Scalar curvature rigidity of certain symmetric spaces, in Geometry, Topology, and Dynamics
(Montreal, PQ, 1995), CRM Proc. Lecture Notes, Vol. 15, American Mathematical Society, Providence, RI,
1998, 127–136.

[35] O’Neill B., The fundamental equations of a submersion, Michigan Math. J. 13 (1966), 459–469.

[36] Qu C.K., Wong R., “Best possible” upper and lower bounds for the zeros of the Bessel function Jν(x),
Trans. Amer. Math. Soc. 351 (1999), 2833–2859.

[37] Richard T., On the 2-systole of stretched enough positive scalar curvature metrics on S2 × S2, SIGMA 16
(2020), 136, 7 pages, arXiv:2007.02705.

[38] Schoen R., Yau S.-T., Existence of incompressible minimal surfaces and the topology of three-dimensional
manifolds with non-negative scalar curvature, Ann. of Math. 110 (1979), 127–142.

[39] Schoen R., Yau S.-T., Positive scalar curvature and minimal hypersurface singularities, in Differential Ge-
ometry, Calabi–Yau Theory, and General Relativity. Part 2, Surv. Differ. Geom., Vol. 24, International
Press, Boston, MA, 2022, 441–480, arXiv:1704.05490.

[40] Smale N., Generic regularity of homologically area minimizing hypersurfaces in eight-dimensional manifolds,
Comm. Anal. Geom. 1 (1993), 217–228.

https://doi.org/10.1007/978-1-4612-4098-3_1
https://arxiv.org/abs/1811.04332
https://doi.org/10.5802/aif.3347
https://arxiv.org/abs/1812.09731
https://doi.org/10.1142/9789811273223_0001
https://doi.org/10.1142/9789811273223_0001
https://arxiv.org/abs/1902.10612
https://arxiv.org/abs/2203.14013
https://arxiv.org/abs/2112.04825
https://doi.org/10.2307/1971198
https://doi.org/10.2307/1971198
https://doi.org/10.1007/BF02953774
https://doi.org/10.4171/cmh/570
https://arxiv.org/abs/2112.07245
https://doi.org/10.24033/asens.2073
https://doi.org/10.24033/asens.2073
https://arxiv.org/abs/0707.1999
https://doi.org/10.1016/0001-8708(74)90021-8
https://doi.org/10.4310/jdg/1214432678
https://doi.org/10.4310/jdg/1214432678
https://doi.org/10.1515/9781400883912
https://doi.org/10.1515/9781400883912
https://doi.org/10.1142/9789811273230_0022
https://arxiv.org/abs/2012.12478
https://arxiv.org/abs/1007.1832
https://doi.org/10.1007/s002080050136
https://arxiv.org/abs/1810.03157
https://arxiv.org/abs/1812.11839
https://doi.org/10.1215/00127094-1813410
https://arxiv.org/abs/1105.4632
https://doi.org/10.1090/crmp/015/08
https://doi.org/10.1307/mmj/1028999604
https://doi.org/10.1090/S0002-9947-99-02165-0
https://doi.org/10.3842/SIGMA.2020.136
https://arxiv.org/abs/2007.02705
https://doi.org/10.2307/1971247
https://doi.org/10.4310/SDG.2019.v24.n1.a10
https://doi.org/10.4310/SDG.2019.v24.n1.a10
https://arxiv.org/abs/1704.05490
https://doi.org/10.4310/CAG.1993.v1.n2.a2


Product Inequalities for T⋊-Stabilized Scalar Curvature 25

[41] Stolz S., Simply connected manifolds of positive scalar curvature, Ann. of Math. 136 (1992), 511–540.

[42] Su G., Wang X., Zhang W., Nonnegative scalar curvature and area decreasing maps on complete foliated
manifolds, J. Reine Angew. Math. 790 (2022), 85–113, arXiv:2104.03472.

[43] Wang J., Xie Z., Yu G., A proof of Gromov’s cube inequality on scalar curvature, arXiv:2105.12054.

[44] Zeidler R., Width, largeness and index theory, SIGMA 16 (2020), 127, 15 pages, arXiv:2002.13754.

[45] Zeidler R., Band width estimates via the Dirac operator, J. Differential Geom. 122 (2022), 155–183,
arXiv:1905.08520.

[46] Zhu J., Rigidity of area-minimizing 2-spheres in n-manifolds with positive scalar curvature, Proc. Amer.
Math. Soc. 148 (2020), 3479–3489, arXiv:1903.05785.

[47] Zhu J., Rigidity results for complete manifolds with nonnegative scalar curvature, J. Differential Geom. 125
(2023), 623–644, arXiv:2008.07028.

https://doi.org/10.2307/2946598
https://doi.org/10.1515/crelle-2022-0038
https://arxiv.org/abs/2104.03472
https://arxiv.org/abs/2105.12054
https://doi.org/10.3842/SIGMA.2020.127
https://arxiv.org/abs/2002.13754
https://doi.org/10.4310/jdg/1668186790
https://arxiv.org/abs/1905.08520
https://doi.org/10.1090/proc/15033
https://doi.org/10.1090/proc/15033
https://arxiv.org/abs/1903.05785
https://doi.org/10.4310/jdg/1701804153
https://arxiv.org/abs/2008.07028

	1 T^{rtimes}-stabilization
	2 Sc^{rtimes downarrow}, Sc_{sp}^{rtimes downarrow}, ..., Sc^{rtimes downarrow}_{ast} on homology
	3 rtimes^{downarrow}-extremality and rtimes^{downarrow}-rigidity
	4 Sc^{rtimes downarrow}-product inequalities, conjectures and problems
	5 Additivity of the twisted SLWB-formula and applications
	6 P-families of maps to product of spheres
	7 Spinorial curvature
	References

