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c) Dipartimento di Matematica, Università di Cagliari, via Ospedale 72, 09124 Cagliari, Italy

E-mail: smignemi@unica.it

d) INFN, Sezione di Cagliari Cittadella Universitaria, 09042 Monserrato, Italy

Received March 12, 2024, in final form May 29, 2024; Published online June 10, 2024

https://doi.org/10.3842/SIGMA.2024.049

Abstract. We discuss the generalized Yang Poisson models. We construct generaliza-
tions of the Yang Poisson algebra related to o(1, 5) algebra discussed by Meljanac and
Mignemi (2023). The exact realizations of this generalized algebra on canonical phase space
are presented and the corresponding differential equations are solved in simple cases. Fur-
thermore, we discuss the Poisson algebras related to o(3, 3) and o(2, 4) algebras.
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1 Yang Poisson model

The Yang model of noncommutative geometry on a curved background spacetime was proposed
in [18] and is a generalization of the noncommutative geometry first introduced by Snyder [17].
This model is defined in terms of a 15-parameter algebra isomorphic to o(1, 5) containing the
generators of the Lorentz algebra with the coordinates of phase spaces, and was generalized
in [4]. Later, Snyder–de Sitter or triply special relativity model, where this symmetry is realized
nonlinearly, was proposed in [1, 3, 5, 14]. Realizations of the Yang model have been discussed in
[6, 8, 10, 11, 13]. They cannot be obtained in closed analytic form, but only as power series in
coupling constants. In the classical limit, where quantum commutators are replaced by Poisson
brackets, the algebra has a simpler structure and no ordering problems arise. The corresponding
realizations of this Yang Poisson model can be obtained in an exact form [12].

The Yang Poisson model is generated by a Poisson algebra containing the usual Lorentz
algebra of generators Mµν , with its standard action on phase space parametrized by x̂µ and p̂µ,{

Mµν ,Mρσ

}
=

(
ηµρMνσ − ηµσMνρ − ηνρMµσ + ηνσMµρ

)
, (1.1){

Mµν , x̂λ
}
=

(
ηµλx̂ν − ηνλx̂µ

)
,

{
Mµν , p̂λ

}
=

(
ηµλp̂ν − ηνλp̂µ

)
, (1.2){

x̂µ, x̂ν
}
= β2Mµν ,

{
p̂µ, p̂ν

}
= α2Mµν , (1.3){

x̂µ, p̂ν
}
= ηµνh, (1.4){

h, x̂µ
}
= β2p̂µ,

{
h, p̂µ

}
= −α2x̂µ, (1.5){

Mµν , h
}
= 0, (1.6)
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where {, } are classical Poisson brackets, µ, ν = 0, . . . , n − 1, ηµν = diag(−1, 1, . . . , 1) is the
Minkowski metric and α and β are real parameters. Generators denoted by A, B, C of this
Poisson algebra satisfy Jacobi relations of type

{A, {B,C}}+ {B, {C,A}}+ {C, {A,B}} = 0.

In the limit when α → 0 the algebra (1.1)–(1.6) becomes the Snyder Poisson algebra and in
the limit when β → 0, it becomes the dual Snyder Poisson algebra related to the de Sitter
algebra o(1, 5), for n = 4, and µ, ν = 0, 1, 2, 3.

We look for realizations of x̂µ and p̂µ on a phase space with coordinates xµ and momenta pµ
satisfying the canonical algebra{

xµ, xν
}
=

{
pµ, pν

}
= 0,

{
xµ, pν

}
= ηµν .

Realizations of the Yang Poisson algebra on a canonical phase space of coordinates xµ and pµ,
with the Lorentz algebra generators realized as Mµν = xµpν−xνpµ were analyzed and discussed
in [12]. Special solution for realizations of x̂µ and p̂µ are given by

x̂µ = xµ
√
1− β2p2 + ϕ1(z), (1.7)

p̂µ = pµ
√

1− α2x2 + ϕ2(z), (1.8)

where

ϕ1ϕ2 + ϕ1 + ϕ2 = z2, z = αβ(xp),

h =
√(

1− β2p2 + ϕ1(z)
)(
1− α2x2 + ϕ2(z)

)
. (1.9)

Generally, it holds that in terms of original variables x̂µ and p̂µ,

h =

√
1− α2x̂2 − β2p̂2 − α2β2

2
M2. (1.10)

This result for h is universal and generally valid in the Yang Poisson model [12]. The most general
realizations are obtained using the group of automorphisms applied to the special solution defined
with ϕ2(z) = 0 [12].

In the present paper, we shall consider generalized Yang Poisson models and their related
models, as well as their exact realizations. In Section 2, we define generalizations of the Yang
Poisson algebra (1.1)–(1.6) and construct realizations of this algebra solving the corresponding
differential equations, presenting the general results in Section 3. Furthermore, we discuss the
related Poisson algebras in Section 4.

2 Generalized Yang Poisson models

The most general new generators linear in x̂µ, p̂µ and Mµν are

X̃µ = A

(
cosφx̂µ +

β

α
sinφp̂µ

)
+ βaνMµν , (2.1)

P̃µ = B

(
cosψp̂µ +

α

β
sinψx̂µ

)
+ αbνMµν , (2.2)

where Mµν = xµpν − xνpµ is unchanged and A, B, φ, ψ, aµ, bµ are dimensionless parameters
with AB ̸= 0.
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The inverse transformations are

x̂µ =
A−1α cosψ

(
X̃µ − βaνMµν

)
−B−1β sinφ

(
P̃µ − αbνMµν

)
α cos(φ+ ψ)

,

p̂µ =
B−1β cosφ

(
P̃µ − αbνMµν

)
−A−1α sinψ

(
X̃µ − βaνMµν

)
β cos(φ+ ψ)

.

The new generators X̃µ and P̃µ generate a new class of Poisson algebras isomorphic to the initial
Yang Poisson algebra. The new algebra generated by X̃µ, P̃µ, Mµν and h̃ is given by{

X̃µ, X̃ν

}
=

(
β2ÃMµν + β

(
aµX̃ν − aνX̃µ

))
, (2.3){

P̃µ, P̃ν
}
=

(
α2B̃Mµν + α

(
bµP̃ν − bνP̃µ

))
, (2.4){

X̃µ, P̃ν
}
=

(
ηµν h̃+ αbµX̃ν − βaνP̃µ + αβABρ̃Mµν

)
, (2.5){

Mµν , X̃λ

}
=

(
ηµλX̃ν − ηνλX̃µ + β

(
aµMλν − aνMλµ

))
, (2.6){

Mµν , P̃λ
}
=

(
ηµλP̃ν − ηνλP̃µ + α

(
bµMλν − bνMλµ

))
, (2.7){

Mµν , h̃
}
= α

(
bνX̃µ − bµX̃ν

)
− β

(
aνP̃µ − aµP̃ν

)
, (2.8){

h̃, X̃µ

}
= β2ÃP̃µ − αβABρ̃X̃µ − βaµh̃, (2.9){

h̃, P̃µ
}
= −

(
α2B̃X̃µ − αβABρ̃P̃µ − αbµh̃

)
, (2.10)

where

h̃ = AB cos(φ+ ψ)h+ βaP̃ − αbX̃ − αβaµbνMµν , (2.11)

ρ̃ = sin(φ+ ψ) +
ab

AB
, Ã = A2 + a2 and B̃ = B2 + b2. (2.12)

The algebra (2.3)–(2.12) is invariant under Born duality [2], α↔ β, ai → −bi, bi → ai, Ã↔ B̃,
ρ̃↔ −ρ̃, X̃µ → −P̃µ, P̃µ → X̃µ, Mµν ↔Mµν , h̃↔ h̃.

In the following, we consider the case where aµ = bµ = 0. In this case, the Poisson alge-
bra (2.3)–(2.12) corresponds to the classical limit of the Khruschev–Leznov algebra [4], where
quantum commutators are replaced by Poisson brackets. Let us denote α̃2 = α2B̃ and β̃2 = β2Ã.
Then we have

h̃ = AB cos(φ+ ψ)

√
1− α̃2X̃2 − β̃2P̃ 2 + 2ρ̃α̃β̃X̃P̃ − α̃2β̃2

2A2B2
M2,

where

ρ̃ = sin(φ+ ψ), Ã = A2 and B̃ = B2.

Using the realizations (1.7) and (1.8) of x̂µ and p̂µ, we can write realization of X̃µ, P̃µ in terms
of xµ and pµ,

X̃µ = xµA cos(φ)

√
1− β̃2

A2
p2 + φ1(z) +

β̃

α̃
pµB sin(φ)

√
1− α̃2

B2
x2 + φ2(z), (2.13)

P̃µ = pµB cos(ψ)

√
1− α̃2

B2
x2 + φ2(z) +

α̃

β̃
xµA sin(φ)

√
1− β̃2

A2
p2 + φ1(z). (2.14)

Generalizing (2.13) and (2.14), we get the general ansatz for X̃µ and P̃µ

X̃µ = xµf +
β̃

α̃
pµg (2.15)
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and

P̃µ = pµf̃ +
α̃

β̃
xµg̃, (2.16)

where f , g, f̃ , g̃ are functions of u, v, z, with u = β̃2p2, v = α̃2x2, z = α̃β̃
AB (xp).

From
{
X̃µ, X̃ν

}
= β̃2Mµν , we get

− 2f
∂f

∂u
− 2g

∂g

∂v
+ 4z

(
∂f

∂v

∂g

∂u
− ∂f

∂u

∂g

∂v

)
+ 2v

(
∂f

∂v

∂g

∂z
− ∂f

∂z

∂g

∂v

)
+ 2u

(
∂f

∂z

∂g

∂u
− ∂f

∂u

∂g

∂z

)
+ f

∂g

∂z
+ g

∂f

∂z
= 1 (2.17)

and from
{
P̃µ, P̃ν

}
= α̃2Mµν it follows

− 2f̃
∂f̃

∂v
− 2g̃

∂g̃

∂u
+ 4z

(
∂f̃

∂u

∂g̃

∂v
− ∂f̃

∂v

∂g̃

∂u

)
+ 2v

(
∂f̃

∂z

∂g̃

∂v
− ∂f̃

∂v

∂g̃

∂z

)
+ 2u

(
∂f̃

∂u

∂g̃

∂z
− ∂f̃

∂z

∂g̃

∂u

)
+ f̃

∂g̃

∂z
+ g̃

∂f̃

∂z
= 1. (2.18)

The relation
{
X̃µ, P̃ν

}
= ηµν h̃+ α̃β̃ρ̃Mµν yields following five equations:

ff̃ − gg̃ = h̃, (2.19)

2f̃
∂f

∂v
− 2g

∂g̃

∂v
+ 4z

(
∂f

∂v

∂g̃

∂u
− ∂f

∂u

∂g̃

∂v

)
+ 2v

(
∂f

∂v

∂g̃

∂z
− ∂f

∂z

∂g̃

∂v

)
+ 2u

(
∂f

∂z

∂g̃

∂u
− ∂f

∂u

∂g̃

∂z

)
+ f

∂g̃

∂z
− g̃

∂f

∂z
= 0, (2.20)

− 2f
∂f̃

∂u
− 2g̃

∂g

∂u
+ 4z

(
∂f̃

∂u

∂g

∂v
− ∂f̃

∂v

∂g

∂u

)
+ 2v

(
∂f̃

∂z

∂g

∂v
− ∂f̃

∂v

∂g

∂z

)
+ 2u

(
∂f̃

∂u

∂g

∂z
− ∂f̃

∂z

∂g

∂u

)
+ f̃

∂g

∂z
− g

∂f̃

∂z
= 0, (2.21)

− 2g̃
∂f

∂u
− 2g

∂f̃

∂v
+ 4z

(
∂f

∂v

∂f̃

∂u
− ∂f

∂u

∂f̃

∂v

)
+ 2v

(
∂f

∂v

∂f̃

∂z
− ∂f

∂z

∂f̃

∂v

)
+ 2u

(
∂f

∂z

∂f̃

∂u
− ∂f

∂u

∂f̃

∂z

)
+ f

∂f̃

∂z
+ f̃

∂f

∂z
= ρ̃, (2.22)

2f
∂g̃

∂u
+ 2f̃

∂g

∂v
+ 4z

(
∂g

∂v

∂g̃

∂u
− ∂g

∂u

∂g̃

∂v

)
+ 2v

(
∂g

∂v

∂g̃

∂z
− ∂g

∂z

∂g̃

∂v

)
+ 2u

(
∂g

∂z

∂g̃

∂u
− ∂g

∂u

∂g̃

∂z

)
− g

∂g̃

∂z
− g̃

∂g

∂z
= −ρ̃. (2.23)

Note that comparing (2.13) and (2.14) with (2.15) and (2.16), it follows that

f = A cos(φ)

√
1− u

A2
+ φ1(z), g = B sin(φ)

√
1− v

B2
+ φ2(z) (2.24)

and

f̃ = B cos(ψ)

√
1− v

B2
+ φ2(z), g̃ = A sin(φ)

√
1− u

A2
+ φ1(z). (2.25)
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We have checked that functions f , g, f̃ , g̃ in (2.24) and (2.25) are solutions of the seven differential
equations (2.17)–(2.23). Also, it is easy to verify that the special solutions (1.7) and (1.8) satisfy
the differential equations (2.17)–(2.23).

In particular, for f̃ =
√
1− v, g̃ = 0 and g ≡ g(v), from equations (2.17)–(2.23) we find that

f =
√(

1− ρ̃2
)(
1− u+ z2

)
, g = ρ̃

√
1− v, h =

√(
1− ρ̃2

)(
1− u− v + uv + z2 − vz2

)
.

In the case, where h = h̃, we have

AB cos(φ+ ψ) = 1 and 1− ρ̃2 =
1

A2B2
,

which implies that

h̃ =

√
1− α̃2X̃2 − β̃2P̃ 2 + 2ρ̃α̃β̃X̃P̃ − 1− ρ̃2

2
α̃2β̃2M2.

In the case when ρ̃ = 1, we find that cos(φ+ψ) = 0, which implies h̃ = 0 and then from (2.9)

and (2.10) we have X̃µ = β̃
α̃ P̃µ. Similarly, in the case when ρ̃ = −1, we have h̃ = 0 and

X̃µ = − β̃
α̃ P̃µ.

3 General solution

Proposition 3.1. If L̂ is an operator acting on the deformed phase space spanned by x̂µ
and p̂µ as

L̂
(
x̂µ

)
=

{
1

αβ
h, x̂µ

}
=
β

α
p̂µ, L̂

(
p̂µ

)
=

{
1

αβ
h, p̂µ

}
= −α

β
x̂µ,

where h is defined in (1.9) and (1.10), then it holds(
eφL̂

)(
x̂µ

)
= x̂µ cosφ+

β

α
p̂µ sinφ, (3.1)(

e−ψL̂
)(
p̂µ

)
= p̂µ cosψ +

α

β
x̂µ sinψ. (3.2)

Proof. First, we have that

(
eφL̂

)(
x̂µ

)
= x̂µ +

φ

αβ

{
h, x̂µ

}
+

1

2!

(
φ

αβ

)2{
h,

{
h, x̂µ

}}
+ · · ·

+
1

n!

(
φ

αβ

)n{
h, . . . ,

{
h,

{
h, x̂µ

}}
. . .

}︸ ︷︷ ︸
n times

+ · · · . (3.3)

By induction on n and using (1.5), we prove the relations{
h, . . . ,

{
h,

{
h, x̂µ

}}
. . .

}︸ ︷︷ ︸
n=2k times

= (−1)kα2kβ2kx̂µ, k = 1, 2, . . . , (3.4)

{
h, . . . ,

{
h,

{
h, x̂µ

}}
. . .

}︸ ︷︷ ︸
n=2k+1 times

= (−1)kα2kβ2k+2p̂µ, k = 0, 1, . . . . (3.5)

For the case when n = 2k, it is easy to see, using (1.5) that for k = 1, we get{
h,

{
h, x̂µ

}}
= −α2β2x̂µ.
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Assume that the relation (3.4) holds for some k > 1. Then by the induction assumption and
using (1.5), we have{

h, . . . ,
{
h,

{
h, x̂µ

}}
. . .

}︸ ︷︷ ︸
n=2k+2 times

= (−1)kα2kβ2k
{
h,

{
h, x̂µ

}}
= (−1)k+1α2(k+1)β2(k+1)x̂µ.

Similarly, by induction on n and using (1.5), we prove that relation (3.5) holds. Now, inserting
relations (3.4) and (3.5) in (3.3), we finally prove that (3.1) holds. Also, in a similar way, we
prove (3.2). ■

Let us now define an operator LG acting on a canonical phase space spanned by xµ and pµ as

LG(f) = {G, f},

where G(x, p) and f(x, p) are functions on classical phase space. Furthermore, we define

x̂(0)µ =
√

1− β2p2xµ, p̂(0)µ =
√
1− α2x2pµ

and then construct an operator O such that{
O
(
x̂(0)µ

)
, p̂(0)ν

}
= ηµνh, (3.6)

where h is given in (1.9). The general structure of an operator O acting on x̂
(0)
µ is

O
(
x̂(0)µ

)
=

(
eLG

)(
x̂(0)µ

)
= x̂(0)µ +

{
G, x̂(0)µ

}
+

1

2!

{
G,

{
G, x̂(0)µ

}}
+

1

3!

{
G
{
G,

{
G, x̂(0)µ

}}}
+ · · · .

Solving perturbatively (3.6), a unique solution was found for G in [12],

G =
∞∑
n=1

α2nβ2ng2n, (3.7)

where

g2n =
(−1)n · (xp)2n+1

2n · (2n+ 1)
.

The summation of the equation (3.7) for G gives an exact result,

G =
1

αβ

(
z

(
1− 1

2
ln
(
1 + z2

))
− arctan z

)
.

If we fix P̃
(0)
µ = p̂

(0)
µ =

√
1− α2x2pµ, then we obtain the corresponding

X̃(1)
µ = A

(
eφL̂ ◦ eLG

)(
x̂(0)µ

)
= A

(
eφL̂ ◦ eLG

)(√
1− β2p2xµ

)
,

h(1,0) =
√

(1− β2p2 + z2) (1− α2x2)

with the property{
X̃(1)
µ , P̃ (0)

µ

}
= ηµνA cos(φ)h(1,0) +A sin(φ)αβMµν .

The composition of mappings eφL̂ ◦ eLG can be calculated perturbatively applying the BCH
formula.
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Proposition 3.2. Application of the BCH formula to a Poisson algebra with the classical Pois-
son brackets gives

eLA ◦ eLB = eLC , (3.8)

where C = A+B + 1
2{A,B}+ 1

12{A, {A,B}} − 1
12{B, {A,B}}+ · · · .

Proof. From the BCH formula, we have

eLA ◦ eLB = e(LA+LB+ 1
2
[LA,LB ]+ 1

12
[LA,[LA,LB ]]− 1

12
[LB ,[LA,LB ]]+··· ),

which implies that in order to prove (3.8) is sufficient to prove that the relation

[LA1 , . . . [LAn−1 , [LAn ,LB]] . . .] = L({A1,...{An−1,{An,B}}...}) (3.9)

holds. We prove (3.9) by induction on n. For n = 1, using the Jacobi identity, we get

([LA1 ,LB])(F (x, p)) = (LA1LB − LBLA1)(F (x, p)) = {A1, {B,F}} − {B, {A1, F}}
= {{A1, B}, F} = L({A1,B})(F (x, p)).

Let us assume that the relation (3.9) holds for some n > 1. Then by the induction assumption
and using the Jacobi identity, we have

([LA1 , . . . [LAn , [LAn+1 ,LB]] . . .])(F (x, p))
= (A1[LA2 , . . . [LAn , [LAn+1 ,LB]] . . .]− [LA2 , . . . [LAn , [LAn+1 ,LB]] . . .]A1)(F (x, p))

= {A1, {{A2, . . . {An, {An+1, B}} . . .}, F}}−{{A2, . . . {An, {An+1, B}} . . .}, {A1, F}}
= {{A1, {A2, . . . {An, {An+1, B}} . . .}}, F} = L({A1,...{An,{An+1,B}}...})(F (x, p)). ■

Let us denote eLG̃ = eφL̂◦eLG . Then in the first order we get LG̃ = φL̂+LG+ 1
2φ

{
L̂,LG

}
±· · · .

The most general realizations of X̃µ, P̃µ and h are obtained using the group of automorphisms

applied to the special solution X̃
(1)
µ , P̃

(0)
µ and h(1,0), namely X̃µ = OF

(
X̃

(1)
µ

)
, P̃µ = OF

(
P̃

(0)
µ

)
and

h = OF
(
h(1,0)

)
, where OF = eLF and F is arbitrary function of α2x2, β2p2 and z. Alternatively,

we can write

X̃µ = A
(
eφL̂ ◦ eLF

)(
x̂(1)µ

)
= A

(
eφL̂ ◦ eLF

)(√
1− β2p2 + z2xµ

)
,

P̃µ = B
(
e−ψL̂ ◦ eLF

)(
p̂(0)µ

)
= B

(
e−ψL̂ ◦ eLF

)(√
1− α2x2pµ

)
.

These solutions satisfy the above seven differential equations (2.17)–(2.23).

Remark 3.3. Note that the Poisson brackets are covariant under the action of eLF i.e. they
satisfy{(

eLF
)
(f),

(
eLF

)
(g)

}
=

(
eLF

)
({f, g})

for any function F , f , g. Also
(
eLF

)(
Mµν

)
=Mµν if

{
F,Mµν

}
= 0 and

(
eLF

)(
ηµν

)
= ηµν .

Remark 3.4. Using realizations of the Snyder model [7], we can write the corresponding real-
izations of the Snyder Poisson model. From the results that were found in [7], we get

x̂µ =
(
eLG

)(
xµ + β2(x · p)pµ

)
= xµφ1(u) + β2(x · p)pµφ2(u),

p̂µ =
(
eLG

)(
pµ

)
= pµ

1

φ1(u)
,

where

G = (x · p)F (u), φ2(u) =
1 + φ̇1(u)φ1(u)

φ1(u)− 2uφ̇1(u)
, φ̇1 =

dφ1(u)

du
and u = β2p2.
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4 Related Poisson models

In this section, we introduce related Poisson algebras generalizing (1.3), (1.4) and (1.5):{
x̂ν , x̂ν

}
= ϵ1β

2Mµν ,
{
p̂ν , p̂ν

}
= ϵ2α

2Mµν ,
{
x̂µ, p̂ν

}
= ηµνh,{

h, x̂µ
}
= ϵ1β

2p̂µ,
{
h, p̂µ

}
= −ϵ2α2x̂µ,

where ϵ21 = ϵ22 = 1. The Yang Poisson model in Section 1 corresponds to the ϵ1 = ϵ2 = 1 case
which is related to o(1, 5) algebra.

Now, let us consider the case when ϵ1 = ϵ2 = −1. A special solution for realizations of x̂µ
and p̂µ in this case is given as

x̂µ = xµ
√
1 + β2p2 + ϕ1(z), p̂µ = pµ

√
1 + α2x2 + ϕ2(z),

where

ϕ1ϕ2 + ϕ1 + ϕ2 = z2, z = αβ(xp), h =
√(

1 + β2p2 + ϕ1(z)
)(
1 + α2x2 + ϕ2(z)

)
.

The new generators X̃µ and P̃µ, linear in x̂µ, p̂µ and Mµν , are given in (2.1) and (2.2). Also,
a new algebra, related to o(3, 3) algebra, generated by X̃µ, P̃µ,Mµν and h̃ is given in (2.3)–(2.11),
where

ρ̃ = − sin(φ+ ψ) +
ab

AB
, Ã = −A2 + a2 and B̃ = −B2 + b2.

In the case when ϵ1 = 1 and ϵ2 = −1, a special solution is given by

x̂µ = xµ
√
1− β2p2 + ϕ1(z), p̂µ = pµ

√
1 + α2x2 + ϕ2(z),

where

ϕ1ϕ2 + ϕ1 + ϕ2 = −z2, z = αβ(xp), h =
√(

1− β2p2 + ϕ1(z)
)(
1 + α2x2 + ϕ2(z)

)
.

The new generators X̃µ and P̃µ are given by

X̃µ = A

(
coshφx̂µ +

β

α
sinhφp̂µ

)
+ βaνMµν , (4.1)

P̃µ = B

(
coshψp̂µ +

α

β
sinhψx̂µ

)
+ αbνMµν , (4.2)

where Mµν = xµpν − xνpµ and A, B, φ, ψ, aµ, bµ are dimensionless parameters with AB ̸= 0.
New generators X̃µ and P̃µ together with Mµν and h̃ generate a new algebra, isomorphic to the
initial Yang Poisson algebra, which is given in (2.3)–(2.10), where

h̃ = AB cosh(ψ − φ)h+ βaP̃ − αbX̃ − αβaµbνMµν ,

ρ̃ = sinh(ψ − φ) +
ab

AB
, Ã = A2 + a2 and B̃ = −B2 + b2.

Finally, in the last case when ϵ1 = −1 and ϵ2 = 1 a special solution is given by

x̂µ = xµ
√
1 + β2p2 + ϕ1(z), p̂µ = pµ

√
1− α2x2 + ϕ2(z),

where

ϕ1ϕ2 + ϕ1 + ϕ2 = −z2, z = αβ(xp), h =
√(

1 + β2p2 + ϕ1(z)
)(
1− α2x2 + ϕ2(z)

)
.
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The new generators X̃µ and P̃µ are given in (4.1) and (4.2) and a new algebra generated by
them together with Mµν and h̃ is given in (2.3)–(2.10), where

h̃ = AB cosh(ψ − φ)h+ βaP̃ − αbX̃ − αβaµbνMµν ,

ρ̃ = − sinh(ψ − φ) +
ab

AB
, Ã = −A2 + a2 and B̃ = B2 + b2.

Note that the algebras generated with cases when ϵ1 = 1, ϵ2 = −1 and ϵ1 = −1, ϵ2 = 1 are
related to o(2, 4) algebra.

5 Discussion

The generalized Yang models are examples of noncommutative geometry on a background space-
time of constant curvature that display a duality between position and momentum manifolds.

In this paper, we have obtained the exact realizations of a generalized Yang Poisson algebra
on a canonical phase space related to the o(1, 5) algebra. These realizations are simpler than in
the quantum case. The results we have obtained can be considered as a limit of the quantum
formalism for ℏ → 0, presenting a classical approximation of the quantum realizations.

Moreover, we have discussed the Poisson algebras related to o(3, 3) and o(2, 4) algebras.
These models correspond to different physical settings, namely, the case ϵ2 = −1 is related to the
symmetries of anti-de Sitter spacetime, while ϵ1 = −1 corresponds to the so-called anti-Snyder
algebra [15]. We recall that the anti-Snyder algebra enjoys rather different properties from the
Snyder algebra, in particular concerning the existence of a maximum allowable momentum.

Possible applications of our results are in cosmology, since the present model could be useful
in describing effects of noncommutativity in early stages of inflation, and in the investigation of
modifications of the dynamics of simple mechanical systems caused by the deformed symplectic
structure. The most elementary example is the harmonic oscillator, that has been studied in [12]
in the o(1, 5) case, exhibiting a modification with respect to the canonical solution, with the
period that becomes energy dependent. In the o(3, 3) and o(2, 4) cases, one expect similar
modifications, analogous to those found in [16] for the related TSR setting.

In the present paper, a canonical phase space is defined with coordinates xµ, momenta pµ
and Lorentz generators Mµν = xµpν − xνpµ. However, it is possible to define the extended
coordinates xµν with corresponding momenta pµν and to interpret the Lorentz generators Mµν

as extended coordinates xµν and h̃ as an additional scalar coordinate. In this framework, the
algebra (2.3)–(2.12) is generated by 15 coordinates. The corresponding realizations can be
obtained from the quantum realizations of the generalized Yang models, presented in [6, 9].
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