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Abstract. We develop a reduction scheme for the L∞-algebra of observables on a premul-
tisymplectic manifold (M,ω) in the presence of a compatible Lie algebra action g ↷M and
subset N ⊆M . This reproduces in the symplectic setting the Poisson algebra of observables
on the Marsden–Weinstein–Meyer symplectic reduced space, whenever the reduced space
exists, but is otherwise distinct from the Dirac, Śniatycki–Weinstein, and Arms–Cushman–
Gotay observable reduction schemes. We examine various examples, including multicotan-
gent bundles and multiphase spaces, and we conclude with a discussion of applications to
classical field theories and quantization.
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1 Introduction

Reduction has its origins in mechanics, specifically in the problem of reducing the degrees of
freedom of a mechanical system with symmetries. In this regard, it is rooted in the work of Euler
and Lagrange on motions of the rigid body. We refer to [17, 48] for a historical review. The
manifestation of these ideas in symplectic geometry is the celebrated Marsden–Weinstein–Meyer
theorem [45, 49]. The underlying ideas of symplectic reduction have been extended throughout
differential geometry. Indeed, the range of adaptations includes Poisson manifolds [47, 74],
contact structures [20, 74], cosymplectic manifolds [2], polysymplectic manifolds [44], higher
Poisson structures [14], Courant algebroids and generalized complex structures [13, 69, 72], and
quasi-Hamiltonian G-spaces [3].

It is possible to formally extend the symplectic formalism to continuous physical systems by
defining a presymplectic structure on the infinite-dimensional space of solutions of the field equa-
tions. However, this procedure encounters several technicalities, for instance, those arising from
introducing suitably weaker notions of smooth structures apt to deal with infinite-dimensional
manifolds. The covariant formalism avoids these issues by working not with a space of solutions,
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but rather on a finite-dimensional multiphase space, a multisymplectic manifold associated to the
configuration bundle. We refer to [32, 33, 36, 38] for background on the mathematical physics
that precipitated much of the development of the multisymplectic formalism.

The question of multisymplectic reduction is first addressed in [64], where an extension of the
Marsden–Weinstein quotient is defined for multiphase spaces associated to classical field theories.
The prospect of a general multisymplectic reduction procedure is given in [48, 51] and a more
thorough examination in [27]. Building on this work, a reduction for general multisymplectic
Hamiltonian G-spaces is proposed in [12]. We note that an interesting alternative perspective,
reflecting a mechanical notion of reduction and distinct from the Marsden–Weinstein quotient
in the symplectic setting, appears in [21, Definition 4.2].

The Marsden–Weinstein–Meyer theorem [45, 49] states that under suitable regularity condi-
tions a symplectic Hamiltonian action G ↷ (M,ω) with moment map µ : M → g∗ determines
a canonical symplectic structure on the reduced space M0 = µ−1(0)/G. Instead, we could
consider the Poisson algebra C∞(M,ω) and try to reduce it directly to an algebra C∞(M,ω)0
isomorphic to C∞(M0, ω0), without passing through the reduced space (M0, ω0). It turns out
that the conditions under which the existence of (M0, ω0) is ensured are more restrictive than
those admitting a natural algebraic reduction C∞(M,ω)0. A symplectic observable reduction
scheme is a procedure for defining a reduced algebra of observables C∞(M,ω)0 without assuming
the existence of (M0, ω0).

In this paper, we explore observable reduction in the multisymplectic framework, that is,
to the setting of a smooth manifold M equipped with a closed and nondegenerate (n + 1)-
form ω ∈ Ωn+1(M). In particular, given a multisymplectic Hamiltonian action G ↷ (M,ω)
and an associated covariant moment map µ ∈ Ωn−1(M, g∗), we reduce the L∞-algebra of ob-
servables Ham∞(M,ω) to obtain a reduced space Ham∞(M,ω)0 that canonically includes in
Ham∞(M0, ω0) whenever the geometric reduced space (M0, ω0) exists. In fact, our construction
is rather more general than this. We define a reduction of Ham∞(M,ω) with respect to any Lie
algebra action g ↷M and subset N ⊆M satisfying mild compatibility conditions.

The main difficulty in the construction stems from the fact that the space of observables
Ham∞(M,ω) on an n-plectic manifold (M,ω) exhibits the rather technical structure of an L∞-
algebra, or homotopy Lie algebra and not the structure of a Poisson algebra as in the classical
symplectic setting. The L∞-algebra structure of Ham∞(M,ω) was first identified in [54]. Cur-
rently, the commutative multiplication of the observable algebra in symplectic geometry has no
analogue in the multisymplectic world, and the search for it is an open problem in multisym-
plectic geometry. However, the L∞-structure alone has many interesting consequences and has
since become an object of interest in its own right, for example, in its role in the construction of
homotopy moment maps [15, 31, 37, 59], conserved quantities [56], and prequantizations [29, 58].

In the symplectic (i.e., 1-plectic) setting, our construction agrees with the Dirac, Śniatycki–
Weinstein, and Arms–Cushman–Gotay reduction schemes whenever the Marsden–Weinstein re-
duced space (M0, ω0) exists and, in this situation, returns the Poisson algebra C∞(M0, ω0).
We review these reduction schemes in Appendix A, and emphasize that even in the symplectic
case our construction is distinct from each of them.

Types of reduction

We now review a few terminological conventions of symplectic reduction that carry over in
a natural way to the multisymplectic setting:

� A reduction scheme is said to be geometric when it produces a reduced symplectic mani-
fold (M0, ω0).

� It is said to be algebraic, or observable, when it returns a reduced space of observables
C∞(M,ω)0, without necessarily exhibiting an underlying reduced symplectic manifold.
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In mechanical terms, the former is a reduction of states, while the latter is a reduction of
observables.

Every reduction scheme we consider involves in an essential way a subset N ⊆M . Tradition-
ally, N is the vanishing locus of a family of constraint functions φa ∈ C∞(M). Such a scheme
may additionally utilize an action G ↷ M , historically encoding a group of symmetries of
a generalized momentum phase space. This brings us to a second distinction:

� We call a reduction scheme constraints-based when it takes as input a subset N ⊆M .

� We call a constraints-based reduction scheme symmetry-based if it additionally takes as
input a compatible Lie group action G↷ (M,ω).

Finally, we make a distinction based on the smoothness conditions imposed on the constraint
set N ⊆M :

� A reduction scheme is regular when the constraint set N ⊆M is required to be a smoothly
embedded submanifold.

� Otherwise, it is singular.

For example, the Marsden–Weinstein reduction [45] is a regular symmetry-based geomet-
ric reduction scheme, while the Arms–Cushman–Gotay [5] reduction is a singular geometric
symmetry-based scheme. In Table 1, we indicate a few instances of symplectic reduction schemes,
arranged according to the classification above, we provide a survey of these approaches in Ap-
pendix A.

Table 1. Some well-known symplectic reduction schemes.

constraints-based symmetry-based

geometric

reduction
Arms–Gotay–Jennings [6]

Marsden–Weinstein [45]

Arms–Cushman–Gotay [5]

observable

reduction
Dirac [26]

Śniatycki–Weinstein [66]

L∞ [Section 3]

Summary and results

We define a symmetry-based observable reduction scheme in the multisymplectic setting. The
parameters of the reduction consist of a suitably compatible (pre-)multisymplectic manifold
(M,ω), constraint set N ⊆ M , and Lie algebra action g ↷ M . The result is an L∞-algebra
Ham∞(M,ω)N .

Key features of this reduction include:

� The reduction is applicable for any subset N ⊆ M , without conditions on smoothness or
type of singularity.

� The action g ↷ M is required to preserve N in a weak sense: It is the ideal of functions
vanishing on N , rather than N itself, that must be preserved.

� The action need not preserve ω: It suffices for ω to satisfy a strictly weaker condition of
reducibility.

The reduction naturally applies to constraint sets N ⊆ M induced by covariant moment
maps, and hence also induces a symmetry-based observable reduction scheme that interacts
with geometric multisymplectic reduction. It may come as a surprise that our construction
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showcases a novel behavior even in the symplectic setting. Namely, it produces a reduced
Poisson algebra that is not isomorphic to the observable algebras obtained by other singular
reduction schemes, for a non regular constraint set N . We emphasize that the proposed L∞
observable reduction scheme does not rely on the non-degeneracy of the closed form, however,
since many relevant cases of interest involve non-degenerate differential forms, we refer to the
scheme as multisymplectic even though it is valid in larger generality.

The paper is organized as follows. We begin in Section 2 providing a brief review of mul-
tisymplectic geometry, including (pre-)multisymplectic manifolds (M,ω), and their observable
L∞-algebras Ham∞(M,ω). We conclude this section by reviewing covariant moment maps and
geometric multisymplectic reduction.

In Section 3, we present our main construction. Here we introduce the notions of reducibility
for differential forms, vector fields, and multisymplectic observables. We prove that the space of
reducible observables Ham∞(M,ω)[N ] is an L∞-algebra and show that the space of observables
IHam∞(N) that should vanish after reduction is an L∞-ideal. Hence their quotient is a well-
defined L∞-algebra:

Definition 2.21. The reduction of Ham∞(M,ω) with respect to g ↷ (N ⊆ M) is the L∞-
algebra

Ham∞(M,ω)N =
Ham∞(M,ω)[N ]

IHam∞(N)
.

We then turn to symmetry-based multisymplectic observable reduction. We specialize our
reduction procedure to the case where N ⊆M is a level set of a covariant moment map, and we
compare the reduced space of observables with the geometric reduction (MN , ωN ). Whenever
the latter exists, we have:

Theorem 2.38. The geometric reduction map

rN : Ham∞(M,ω)[N ] → Ham∞(MN , ωN ),

(v, α) 7→ (vN , αN ),

α 7→ αN

is a strict L∞-morphism with kernel IHam∞(N). In particular, there is a natural inclusion of
L∞-algebras

Ham∞(M,ω)N =
Ham∞(M,ω)[N ]

IHam∞(N)

r̄N
↪−−→ Ham∞(MN , ωN ).

In Section 4, we turn to interesting and illuminating classes of examples of reduction. We first
look at the important special case of symplectic manifolds. First, we show that our reduction
scheme applied to the Poisson algebra C∞(M,ω) is canonically Poisson.

Theorem 3.1. If g ↷ M is tangent to N ⊆ M , and if the symplectic structure ω ∈ Ω2(M)
is reducible, then the reduction L∞(M,ω)N inherits a natural Poisson algebra structure from
C∞(M,ω).

We then establish that, while the L∞-reduction procedure is distinct from the Dirac, Śnia-
tycki–Weinstein, and Arms–Cushman–Gotay schemes, they all coincide whenever the Marsden–
Weinstein quotient exists:

Theorem 3.17. Let G↷(M,ω) be a symplectic Hamiltonian action and suppose that 0 ∈ g∗ is
a regular value of the moment map µ : M → g∗. If G ↷ M is free and proper, then the [L∞],
[ŚW], [D], and [ACG] reductions are equal. In particular, each is isomorphic to the Poisson
algebra C∞(M0, ω0) of smooth functions on the Marsden–Weinstein reduced space.
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In Section 4.2, we compute the L∞-reduction for a simple but illustrative example in which
the symplectic form is merely reducible but not invariant.

In Sections 4.3 and 4.4, we consider the celebrated examples of multicotangent bundles and
multiphase spaces, which underlie the covariant Hamiltonian approach to classical field theories.
Even in this natural and motivating setting, a complete description of the reduced space appears
to be highly nontrivial. In spite of this, we show that a particular natural class of observables
associated to the underlying covariant configuration bundle is always reducible:

Theorem 3.21. If v ∈ X(M) preserves Xg(E), the C∞(M)-module generated by the fundamen-
tal distribution g, and if v ∈ X(E) is (E → Σ)-projectable, then (ṽ, ιṽθ) ∈ Ham0

∞
(
Λn
1T

∗E,ω
)
is

reducible.

Our theoretical development is supplemented in Section 4.5 with explicit computations of
reducible observables for a particular scalar field theory.

We conclude in Section 5 with a discussion of three topics for future development. First,
we consider the setting of spaces of connections under the action of a gauge group, follow-
ing [15, Section 10]. Second, we consider the application of our work to the historical source
for multisymplectic geometry, classical field theory. Finally, we consider the extension of our
methods and results to multisymplectic quantization.

In Appendix A, we review classical symplectic reduction with respect to a moment map, and
a survey of three approaches to the observable reduction of symplectic manifolds (cf. Table 1).
In addition to contextualizing our reduction scheme in terms of symplectic predecessors, this
exposition will serve as a reference in Section 4.1 for comparison with our new multisymplectic
reduction scheme.

Notation and conventions

Our sign conventions are chosen to be broadly consistent with [15].
All manifolds are assumed to be C∞ and paracompact. We denote by G↷M the smooth

action of a Lie group on a manifold. Except where explicitly stated otherwise, all actions are
on the left. Induced actions on spaces of forms G ↷ Ω(M) are given in the usual manner by
inverse pullback. The induced infinitesimal action g ↷ M is the assignment of fundamental
vector fields

· : g X(M),

ξ ξ,

where

ξ
x
=

d

dt
exp (−tξ)x

∣∣∣
t=0

∀x ∈M.

Consequently, ξ 7→ ξ is a Lie algebra homomorphism. We write Lξ and ιξ for Lξ and ιξ
throughout.

On a pre-n-plectic manifold (M,ω), a Hamiltonian form α ∈ Ωn−1(M) and any associated
Hamiltonian vector field vα ∈ X(M) are related by the identity dα = −ιvαω. The relation
between a ω and a premultisymplectic potential θ ∈ Ωn(M) is ω = dθ.

The Leibniz bracket on Ωn−1
ham(M,ω) is given by {α, β} = Lvαβ. In particular, in the symplec-

tic setting the Poisson bracket is {f, h} = ω(vf , vh). Consequently, the assignment of Hamilto-
nian vector fields C∞(M,ω)→ X(M) is a Lie algebra homomorphism.

We denote by αξ = ⟨α, ξ⟩ the contraction of a g∗-valued form α ∈ Ω(M, g∗) with an element
ξ ∈ g. Consequently, ad∗ξαζ = −α[ξ,ζ] where ad∗ : g ↷ g∗ is the coadjoint action.

A comprehensive glossary of symbols is provided in Table 2.
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Table 2. Index of notation.

symbol meaning reference

ω (pre)multisymplectic form Definition 2.1

µ covariant moment map Definitions 2.13 and A.1

µ̃ comoment map Definitions 2.14 and A.2

X(M,ω) multisymplectic vector fields Definition 2.3

Xham(M,ω) Hamiltonian vector fields Definition 2.4

L∞(M,ω) associated L∞-algebra Definition 2.7

ς(k) total Koszul sign Definition 2.7

lk k-th multibracket of L∞(M,ω) Definition 2.7

Ham∞(M,ω) L∞-algebra of observables Definition 2.8

l̃k k-th multibracket of Ham∞(M,ω) Definition 2.8

{ , } Leibniz bracket on Ωn−1
ham(M,ω) Definition 2.11

θ multisymplectic potential Lemma 2.15, Section 4.3

(Mϕ, ωϕ) reduction of (M,ω) at level ϕ Theorem 2.16

IN constraints ideal in C∞(M) Definition 3.1

XN (M) vector fields tangent to N Definition 3.3

IX(N) vanishing ideal in X(M) Definition 3.3

g ↷ (N ⊆M) action tangent to N Definition 3.4

IΩ(N) vanishing de Rham ideal Definition 3.10

Ω(M)[N ] reducible forms Definition 3.12

X(M)[N ] reducible vector fields Definition 3.14

Xg(M) fundamental submodule Definition 3.14

Ham∞(M,ω)[N ] reducible observables Definition 3.18

IHam∞(N) vanishing observable ideal Definition 3.21

Ham∞(M,ω)N L∞-reduction along N Definition 3.23

Ham∞(M,ω)ϕ L∞-reduction at level ϕ Definition 3.28

g fundamental distribution Lemma 3.32, Remark 3.15

rN geometric reduction map Definition 3.34

(MN , ωN ) reduction of (M,ω) along N Theorem 3.36

[Ham∞, R] residue defect Definition 3.44

FN first-class function set Definition 4.3

Q Casimir functions Definition 4.4

Iµ momentum ideal Definition 4.6

Λk
1T

∗E multiphase space Section 4.4

C∞(M,ω) Poisson algebra of observables Appendix A

N (S) normalizer of S ⊆ C∞(M,ω) Theorem A.10

O(N) Dirac observables Definition A.14

SG fixed-point set of G↷ S Appendix A.4
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2 Review of multisymplectic geometry

In this section, we provide relevant background on multisymplectic geometry. Our aim is to
define the associated L∞-algebra L∞(M,ω) and the L∞-algebra of observables Ham∞(M,ω),
and to recall the geometric multisymplectic reduction procedure of Theorem 2.16.

2.1 Multisymplectic manifolds and the L∞-algebra of observables

Fix a smooth manifold M .

Definition 2.1 (multisymplectic manifold [16]). A pre-n-plectic structure on M is a closed
(n+ 1)-form ω ∈ Ωn+1(M). Without reference to the degree n+ 1, we say that ω is a premulti-
symplectic structure on M . If additionally ω is nondegenerate in the sense that

ω♭ : TM ΛnT ∗M,
v ιvω

is an inclusion of vector bundles, then we call ω an n-plectic or a multisymplectic structure onM .

Symplectic manifolds, manifolds equipped with volume forms, multicotangent bundles, and
multiphase spaces, which we will discuss in the sequel, are all examples of multisymplectic
manifolds.

Multisymplectic manifolds form a category with morphisms given as follows.

Definition 2.2. A multisymplectic map is a smooth map of multisymplectic manifolds

Ψ: (M,ω)→ (M ′, ω′)

such that Ψ∗ω′ = ω. A multisymplectomorphism is a multisymplectic diffeomorphism.

The multisymplectomorphisms thus comprise the global symmetry group of (M,ω). The
infinitesimal symmetries are given as follows.

Definition 2.3. We say that v ∈ X(M) is a multisymplectic vector field when Lvω = 0. We
denote the space of multisymplectic vector fields by X(M,ω).

Observe that v is multisymplectic precisely when dιvω = Lvω = 0, that is, precisely when ιvω
is closed. As in the symplectic setting, we distinguish those vector fields v for which ιvω is exact.

Definition 2.4. Consider a pre-n-plectic manifold (M,ω). We say that v ∈ X(M) is a Hamil-
tonian vector field when dα = −ιvω for some α ∈ Ωn−1(M). In this case, we say that α is
a Hamiltonian form associated to v, and we write Xham(M,ω) and Ωn−1

ham(M,ω) for the spaces
of Hamiltonian vector fields and forms, respectively.

Remark 2.5. The identity dα+ ιvω = 0 is known as the Hamilton–De Donder–Weyl (HDDW)
equation (see, e.g., [35, 55] and references therein).

Remark 2.6. When ω is multisymplectic, the vector field v associated to α is unique. In this
case, we say that v is the Hamiltonian vector field associated to α.

Observe that

X(M,ω) =
{
v ∈ X(M) | ιvω ∈ Ωn

cl(M)
}
,

Xham(M,ω) =
{
v ∈ X(M) | ιvω ∈ Ωn

ex(M)
}
,

from which it follows that Hamiltonian vector fields are multisymplectic. Given v ∈ Xham(M,ω),
an associated Hamiltonian form α is determined up to closed forms.

The space Ωn−1
ham(M,ω) is not generally a Poisson algebra. However, it can be extended to

Ωn−1
ham(M,ω) ⊕ Ω≤n−2(M)[n−1], which possesses a natural L∞-algebra structure. When ω is

degenerate there are in fact two distinct constructions, L∞(M,ω) and Ham∞(M,ω).
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Definition 2.7 ([54, Theorem 5.2], see also [9]). Given a pre-n-plectic manifold (M,ω), the
associated L∞-algebra L∞(M,ω) =

(
L, {lk}k≥1

)
comprises

� the underlying graded vector space L, where

Li =


Ωn−1
ham(M,ω) if i = 0,

Ωn−1+i(M) if 1− n ≤ i ≤ −1,
0 otherwise,

� n+ 1 nontrivial multibrackets
{
lk : L

∧k → L
}
1≤k≤n+1

, given by

l1(α) =

{
0 if |α| = 0,

dα if |α| ≤ −1,

and, for 2 ≤ k ≤ n+ 1, as

lk(α1, . . . , αk) =

{
ς(k)ι(vα1 ∧ · · · ∧ vαk

) ω if |αi| = 0 for 1 ≤ i ≤ k,
0 otherwise.

In the above equation, vαk
denotes any Hamiltonian vector field associated to αk ∈ Ωn−1

ham(M,ω)
and ς(k) = −(−1)

k(k+1)
2 is the total Koszul sign. Note that we contract multivector fields ac-

cording to the rule

ι(vα1 ∧ · · · ∧ vαk
)ω = ιvαk

· · · ιvα1
ω = ω(vα1 , . . . , vαk

, · , . . . , · ).

Definition 2.8 (L∞-algebra of observables [15, Theorem 4.7]). The L∞-algebra of observables
Ham∞(M,ω) =

(
Ham,

{
l̃k
}
k≥1

)
associated to the pre-n-plectic manifold (M,ω) consists of

� the underlying graded vector space Ham, where

Hami =


{(v, α) | dα = −ιvω} ⊆ Xham(M,ω)⊕ Ωn−1

ham(M,ω) if i = 0,

Ωn−1+i(M) if 1− n ≤ i ≤ −1,
0 otherwise,

� n + 1 multibrackets
{
l̃k : Ham

∧k → Ham
}
1≤k≤n+1

, where all non trivial components are
given, in the unary case, by

l̃1(α) =

{
(0, dα) if |α| = −1,
dα if |α| < −1,

in the binary case by

l̃2((v1, α1), (v2, α2)) = ([v1, v2], ς(k)ι(v1 ∧ v2) ω),

and for each k-ary multibracket with 3 ≤ k ≤ n+ 1 are given by

l̃k((v1, α1), . . . , (vk, αk)) = ς(k)ι(v1 ∧ · · · ∧ vk) ω

with (v1, α1), . . . , (vk, αk) ∈ Ham0.
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Remark 2.9. We briefly outline some basic definitions in homotopy algebras, tailoring the
exposition to our purposes and referring to [40] and [41, Section 3] for further background
material.

Recall that a L∞-algebra consists of a graded vector space L together with homogeneous,
graded skew-symmetric, multilinear maps λk : L

⊗k → L (with k ≥ 1) satisfying the so-called
higher Jacobi relations, see [40, Definition 2.1]. We denote collectively as λ the collection {λk}k≥1

of all multilinear maps, also called multibrackets.
Given two L∞-algebras (L, λ) and (M,µ), a strict L∞-morphism ψ : (L, λ) → (M,µ) is

a graded map from L to M such that µk ◦ ψ⊗k = ψ ◦ λk for each k ≥ 1. In particular, L∞-
subalgebra of (L, λ) is a graded vector subspace V such that the injection map j : V ↪→ L is
a strict L∞-morphism

(
V,

{
λk ◦ j⊗k

}
k≥1

)
→ (L, λ). Both the kernel and the image of a strict

L∞-morphism are the kernel and the image of the underlying graded map endowed with the
L∞-algebra structure inherited from its domain and codomain.

A (strict) L∞-ideal of (L, λ) is a graded vector subspace I ⊆ L for which λk(x, y1, . . . , yk−1)∈I
for every x ∈ I, yi ∈ L, and k ≥ 1. In particular, I ⊆ L is an L∞-subalgebra. Moreover, there
is a natural correspondence between strict L∞-ideals I ⊆ L and kernels of strict L∞-morphisms
ψI : L → L/I. It is readily shown that the linear quotient L/I inherits the multibrackets
λL/I,k([y1], . . . , [yk]) = [λk(y1, . . . , yk)] for any [yi] ∈ L/I.

Expanding on this, given a short exact sequence in the category of L∞-algebras with strict
L∞-morphisms,

0→ N →M
π−→ L→ 0,

we have that N ∼= kerπ is an ideal and that π induces an isomorphism π̄ : M/N ∼= L. That is,
the first isomorphism theorem for Lie algebras generalizes in a straightforward manner to the
setting of strict L∞-morphisms.

We emphasize here that this discussion applies only to the case of strict L∞-morphisms. We
do not consider non-strict L∞-morphisms – including, prominently, homotopy moment maps –
at any point in this paper.

2.2 Covariant moment maps and multisymplectic reduction

In addition to extending to an L∞-algebra, the space Ωn−1
ham(M,ω) possesses a natural Leibniz al-

gebra structure. Compatibility conditions in terms of this structure are invoked in the geometric
multisymplectic reduction procedure.

Definition 2.10 (Leibniz algebra [43]). A (left) Leibniz algebra comprises a vector space V and
a bilinear map { , } : V × V → V satisfying the Leibniz equation

{α, {β, γ}} = {{α, β}, γ}+ {β, {α, γ}}

for any α, β, γ ∈ V .

Definition 2.11 (Leibniz algebra of observables). The space Ωn−1
ham(M,ω) of Hamiltonian forms

on a multisymplectic manifold (M,ω) possesses a natural Leibniz bracket { , }, given by

{α, β} = Lvαβ

for α, β ∈ Ωn−1
ham(M,ω).

When (M,ω) is premultisymplectic, there is no Leibniz algebra structure on Ωn−1
ham(M,ω),

however there still is one on Ham0(M,ω), given by

{(u, α), (v, β)} = ([u, v],Luβ).
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Remark 2.12 (on the two notions of higher observables). It is shown in [24, Proposition 5.2]
that a certain natural extension of the Leibniz algebra of Definition 2.11, incorporating all forms
of degree strictly less than n− 1, and the construction of Definition 2.7 are equivalent as weak
L∞-algebras at least up to the 3-plectic case. The 2-plectic case was previously established
in [8].

Definition 2.13. A covariant moment map for G↷(M,ω) is a differential form µ∈Ωn−1(M, g∗)
such that

(i) dµξ = −ιξω for all ξ ∈ g,

(ii) µ : Λn−1TM → g∗ is G-equivariant,

where µξ = ⟨µ, ξ⟩ is the contraction on g∗ ⊗ g and where G↷ g∗ is the coadjoint action.

As in the symplectic case, there is an attendant notion of a comoment map.

Definition 2.14. A (covariant) comoment map for G↷(M,ω) is a linear map

µ̃ : g→ Ωn−1
ham(M,ω)

satisfying

(i) d µ̃(ξ) = −ιξω,
(ii) µ̃([ξ, ζ]) = {µ̃(ξ), µ̃(η)}

for all ξ, ζ ∈ g.

In parallel with the symplectic case, µ̃ is a lift in the category of Leibniz algebras of the action
g ↷M by the assignment of Hamiltonian vector fields:

g X(M)

Ωn−1
ham(M)

ξ ξ

α

vα

ξ 7→ µξ

To each moment map µ ∈ Ωn−1(M,ω) there is an associated comoment map

µ̃ : g Ωn−1
ham(M),

ξ µξ,

and conversely when G is connected.
We identify one class of covariant moment map, to which we return in Section 4.3.

Lemma 2.15 ([15, Section 8.1]). If θ ∈ Ωn(M) is a G-invariant potential for ω, then ξ 7→ µξ =
ιξθ defines a covariant moment map for G↷ (M,ω).

The main result we wish to recall in this subsection is as follows.

Theorem 2.16 (geometric multisymplectic reduction [12, Theorem 1]). Let (M,ω,G, µ) be
a n-plectic Hamiltonian G-space with covariant moment map µ, let ϕ ∈ Ωn−1(M, g∗) be a closed
form, and let Mϕ = µ−1(ϕ)/Gϕ. If µ−1(ϕ) ⊆ M is an embedded submanifold and G acts
freely on µ−1(ϕ), then there is a unique, closed ωϕ ∈ Ωn+1(Mϕ) satisfying j∗ω = π∗ωϕ, where
j : µ−1(ϕ)→M is the inclusion and π : µ−1(ϕ)→Mϕ is the quotient.
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Ideal of functions vanishing on N
IN

Vector fields tangent to N
XN (M)

Forms vanishing along N
IΩ(N)

Reducible forms
Ω(M)[N ]

Fundamental C∞-module plus
vector fields vanishing along N

Xg(M) + IX(N)

Reducible vector fields
X(M)[N ]

Reducible observables
Ham∞(M,ω)[N ]

Vanishing ideal of observables
IHam∞(N)

Observable reduced space
Ham∞(M,ω)N

used to define

⊆⊆

⊆

associative ideal

Lie algebra

differential ideal

differential graded subalgebraLie subalgebra

Lie ideal

L∞-subalgebra

L∞-ideal

L∞-algebra

Figure 1. Auxiliary spaces in the construction of Ham∞(M,ω)N .

In the above theorem, we write µ−1(ϕ) for the equalizer {x ∈ M | µx = ϕx} of µ and ϕ.
Note that if ϕ is identified with its image in Λn−1T ∗M ⊗ g∗, then µ−1(ϕ) is indeed the pre-
image.

The notion of covariant moment map turns out to be the right prerequisite for geometric
reduction in the multisymplectic setting. Perhaps unexpectedly, this is also the case for L∞-
reduction, as we will see in the following section.

3 Reduction of L∞(M,ω) and Ham∞(M,ω)

In this section, we present our main construction: The reduction of the L∞-algebra of observables
Ham∞(M,ω) along a subset N ⊆M by a compatible Lie algebra action g ↷M , in the sense of
Definition 3.4. We define this L∞-algebra in terms of a network of auxiliary spaces, as indicated
in Figure 1. As we aim for maximal generality, with the mildest possible geometric conditions,
these intermediate spaces possess a rather algebraic character. Lemma 3.32 recharacterizes these
spaces in a sufficiently regular setting.

In Section 4.1, we show that in the 1-plectic setting our reduced L∞-algebra Ham∞(M,ω)ϕ
coincides with the Poisson algebra of observables C∞(Mϕ, ωϕ) on the symplectic reduced space
when the conditions of the Marsden–Weinstein reduction theorem are met.
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3.1 Smooth structures on singular sets

Let M be a smooth manifold and N ⊆ M an arbitrary subset. To avoid the technicalities of
making sense of smoothness in the singular setting, is convenient to adopt a more algebraic
viewpoint. The algebra of smooth functions that vanish on N is instrumental in giving an
algebraic characterization of the arbitrary subset N .

Definition 3.1 (constraints ideal). We define a constraint to be a smooth function vanishing on
the constraint set N . The space of such functions defines an associative algebra ideal in C∞(M),

IN = {f ∈ C∞(M) | f |N = 0}.

An application of a smooth version of Urysohn’s lemma provides that IN determines the
closure of the subset N ⊆ M . Specifically, p ∈ N̄ if and only if h(p) = 0 for every h ∈ IN . In
particular, denoting by N̄ the closure of N , we have that IN = IN̄ .

Finally, observe that when M is endowed with a symplectic structure ω, the associative ideal
IN ⊆ C∞(M) is not generally a Lie subalgebra of C∞(M,ω).

Remark 3.2. There are several ways to specify a notion of smoothness for a possibly singular
subset N of the manifold M . For instance, arbitrary constraint sets could be framed as smooth
varieties [5, Section 6], as Sikorski’s differential spaces [60, 61] (see [18, Section 3] for a quick
review and [67] for a more comprehensive account), or as stratified spaces [62]. All of these
frameworks pass by prescribing what is the algebra of smooth functions on the subset N ⊆M ,
namely given by the algebra of Whitney [73] smooth function

C∞(N) = C∞(M)/IN .

Note that, when N ⊆ M is closed and smoothly embedded, C∞(N) can be interpreted as the
algebra of smooth functions in the usual sense thus the above identification can be interpreted
as the isomorphism induced by restriction map C∞(M)→ C∞(N) (with kernel given by IN ).

Similarly, given a smooth action G↷M , the algebra of smooth functions on the orbit spaces
M/G and N/G can be given as

C∞(M/G) = C∞(M)G, C∞(N/G) = C∞(M)G/IGN .

We will extend this reasoning to differential forms and fields as a way to introduce the notion
of tangency along the singular set N .

Definition 3.3. We say that a vector field u ∈ X(M) is tangent to N when u IN ⊆ IN . The
space of vector fields tangent to N is denoted

XN (M) = {u ∈ X(M) | uIN ⊆ IN}

and the space of vector fields vanishing along N is written

IX(N) = {u ∈ X(M) | uC∞(M) ⊆ IN}.

We say that u, v ∈ X(M) are equal along N whenever u− v ∈ IX(N).

Definition 3.4. We say that the Lie algebra action g ↷M is tangent to N when ξ ∈ X(M) is
tangent to N for all ξ. In this case, we write g ↷ (N ⊆M).

Remark 3.5. If g ↷ M is induced by an action G ↷ M preserving N ⊆ M , then g ↷ M is
tangent to N . Indeed, G ↷ (N ⊆ M) implies that every integral curve γ of ξ ∈ X(M) that
meets N at any point remains on N . In particular, each f ∈ IN vanishes along γ so that ξf = 0
along N .
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Lemma 3.6. XN (M) ⊆ X(M) is a Lie subalgebra and IX(N) ⊆ XN (M) is a Lie ideal.

Proof. If u, v ∈ XN (M), then vIN ⊆ IN yields u(vIN ) ⊆ IN . Likewise v(uIN ) ⊆ IN , and we
conclude that [u, v] IN ⊆ IN .

If additionally v ∈ IX(N), then a similar argument yields [u, v]C∞(M) ⊆ IN . ■

Note that our characterization of tangency is distinctly algebraic. In general, any vector field
whose flow preserves N is tangent to N , however, there can be vector fields tangent to N that
do not preserve N . Let us illustrate this with a few examples.

Remark 3.7. Let N ⊆ M be any subset. Since IN = IN̄ , any vector field tangent to the
closure N̄ is tangent to N . In particular, when N ⊆ M is dense (e.g., N = Q ⊆ R = M),
IN = {0} and all vector fields on M are tangent to N .

Example 3.8. Even when N is closed, there can be vector fields which are tangent to N but
whose flows do not preserve N . Let N = (−∞, 0] ⊆ R = M . Then IN is the space of functions
whose support is in N . Applying a vector field to a function cannot increase the support, so
any vector field is tangent to N . In particular, the vector field ∂x, the flow of which does not
preserve N .

Remark 3.9. We have chosen the algebraic notion of tangency since it is better adapted for the
context of observable reduction. We could alternatively work with vector fields v ∈ X(M) that
are geometrically tangent to N in the sense that the flow of v locally preserves N . However, this
space is less convenient from a technical standpoint. Indeed, merely to see that the commutator
of two geometrically tangent vector fields is again geometrically tangent is far from obvious and
follows from [70]. This said, we note that both notions of tangency coincide when N ⊆ M is
a closed embedded submanifold.

Definition 3.10. Define the vanishing de Rham ideal of N to be the differential ideal IΩ(N) ⊆
Ω(M) generated by all α ∈ Ωk(M), k ≥ 0, for which

α(u1, . . . , uk) ∈ IN

whenever u1, . . . , uk ∈ XN (M).

As with the case for vector fields, we say that α ∈ Ω(M) vanishes along N whenever
α ∈ IΩ(N), and that α, β ∈ Ω(M) are equal along N whenever α− β ∈ IΩ(N).

It is easy to show that IΩ(N) ⊆ Ω(M) is an ideal with respect to the wedge product. We
now show that it is closed under the exterior derivative.

Lemma 3.11. For all v ∈ XN (M), the space IΩ(N) is closed under (i) ιv, (ii) d and (iii) Lv.

Proof. Fix a homogeneous element α ∈ IΩ(N) of degree k, and suppose that u0, . . . , uk ∈ X(M)
are tangent to N .

(i) The identity ιuk
· · · ιu2ιv α = 0 on N is immediate.

(ii) We have

dα(u0, . . . , uk) =
∑
i

(−1)iui α(u0, . . . , ûi, . . . , uk)

+
∑
i<j

(−1)i+jα([ui, uj ], u0, . . . , ûi, . . . , ûj , . . . , uk),

where each term in the first sum vanishes on N as α(u0, . . . , ûi, . . . , uk) ∈ IN and the same
happens for each term in the second sum by Lemma 3.6.

(iii) This follows from (i), (ii) and the identity Lv = dιv + ιvd. ■
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With the notation of Definition 3.4, consider a Lie algebra action g ↷ (N ⊆M).

Definition 3.12. We call α ∈ Ω(M) a reducible form with respect to g ↷ (N ⊆M) when

(i) Lξα ∈ IΩ(N), and

(ii) ιξα ∈ IΩ(N)

for every ξ ∈ g. We write Ω(M)[N ] for the space of reducible forms.

Lemma 3.13. Ω(M)[N ] is closed under d.

Proof. Fix a reducible form α ∈ Ωk(M). Since IΩ(N) is closed under d by Lemma 3.11, it
follows that

Lξdα = dLξα and ιξdα = Lξα− dιξα

both lie in IΩ(N). ■

Definition 3.14. We say that v ∈ X(M) is a reducible vector field with respect to g ↷ (N ⊆M)
when

(i) v is tangent to N , and

(ii) [v, ξ] ∈ Xg(M) + IX(N) for all ξ ∈ g,

where Xg(M) denotes the C∞(M)-submodule of X(M) generated by the fundamental vector
fields ξ for all ξ ∈ g. We denote the space of reducible vector fields by X(M)[N ].

We note that condition (ii) of Definition 3.14 is equivalent to

(ii′) [v, ξ] ∈ Xg(M) along N for all ξ ∈ g.

Remark 3.15. More algebraically, v is reducible when it preserves both IN and Xg(M)+IX(N).
The latter space may be understood as a generalization of the space of vector fields tangent to
the fundamental distribution g =

{
ξ
x
| ξ ∈ g, x ∈ M

}
along N . Indeed, in the setting of free

actions, Γ(g) and Xg(M) coincide.

Lemma 3.16. X(M)[N ] ⊆ X(M) is a Lie subalgebra.

Proof. Let u, v ∈ X(M)[N ]. Lemma 3.6 asserts that [u, v] is tangent to N , and it remains
only to establish condition (ii) of Definition 3.16. Thus fix ξ ∈ g and consider the identity
[[u, v], ξ] = [[u, ξ], v] + [u, [v, ξ]]. Condition (ii) now follows if u satisfies

[u,Xg(M) + IX(N)] ⊆ Xg(M) + IX(N),

and similarly for v. We proceed in two steps:

� First we establish [u,Xg(M)] ⊆ Xg(M) + IX(N). Let w =
∑k

i=1 fiξi for some ξi ∈ g. We
have

[u,w] =
[
u,

∑
ifiξi

]
=

k∑
i=1

[
u, fiξi

]
=

k∑
i=1

fi
[
u, ξ

i

]
+ (uf)ξ

i
.

Terms of the form fi
[
u, ξ

i

]
evidently lie in the C∞(M)-module Xg(M) + IX(N), while

those of type (uf)ξ
i
lie in Xg(M).
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� Now we show [u, IX(N)] ⊆ Xg(M)+IX(N). Here we apply the fact that [XN (M), IX(N)] ⊆
IX(N). This follows as for any f ∈ C∞(M), u ∈ XN (M), and w ∈ IX(N), we have
[u,w]f = uwf − wuf ∈ u In − wC∞(M) ⊆ IN . ■

Lemma 3.17. Xg(M) + IX(N) ⊆ X(M)[N ] is a Lie ideal.

Proof. Since Lemmas 3.6 and 3.16 imply that IX(N) ⊆ X(M)[N ] is a Lie ideal, it suffices to
show that

[
X(M)[N ],Xg(M)

]
⊆ Xg(M)+ IX(N). Thus let v ∈ X(M)[N ], f ∈ C∞(M), and ξ ∈ g.

We have

[v, fξ] = f [v, ξ] + (vf)ξ ∈ Xg(M) + IX(N)

since [v, ξ] ∈ Xg(M) + IX(N) by Definition 3.16, since Xg(M) + IX(N) is closed under multi-
plication by C∞(M), and since (vf)ξ ∈ Xg(M). The result follows as this inclusion extends to
arbitrary terms

∑
i fiξi ∈ Xg(M) by linearity. ■

3.2 Reducible observables

Fix an action g ↷ (N ⊆ M) and suppose that the premultisymplectic form ω ∈ Ωn+1(M) is
g-invariant along N in the sense that Lξω ∈ IΩ(N) for all ξ ∈ g,

Definition 3.18. We will say that α ∈ Ham<0
∞ (M,ω) is a reducible observable with respect to

g ↷ (N ⊆ M) whenever α is a reducible form, and that (v, α) ∈ Ham0
∞(M,ω) is a reducible

observable whenever

(i) v is a reducible vector field, and

(ii) α is a reducible form.

We denote the space of reducible observables by Ham∞(M,ω)[N ].

Even when the form is multisymplectic, conditions (i) and (ii) are independent.

Example 3.19. Let M = R3, ω = dx ∧ dy ∧ dz. Let N = {z = 0}. Let g be the 1-dimensional
abelian Lie algebra acting by ξ = ∂y. The vector fields tangent to N are C∞(R3)-generated
by z∂z, ∂x, ∂y. The form α = yz dy is reducible, since L∂yα and ι∂yα are multiples of z.
However, its Hamiltonian vector field vα = y∂x is not reducible, since [∂y, vα] = ∂x which does
not lie in Xg(M).

Lemma 3.20. Ham∞(M,ω)[N ] is an L∞-subalgebra of Ham∞(M,ω).

Proof. Lemma 3.13 implies that Ham∞(M,ω)[N ] is closed under l̃1.

Now suppose that (v1, α1), . . . , (vk, αk) ∈ Ham0
∞(M,ω)[N ] for k ≥ 2, that uk+1, . . . , un+1 ∈

XN (M), and that ξ ∈ g. We have

ιun+1 · · · ιuk+1
Lξιvk · · · ιv1ω = (Lξω)(v1, . . . , vk, uk+1, . . . , un+1)

+ ω
(
[ξ, v1], v2, . . . , vk, uk+1, . . . , un+1

)
+ · · ·

+ ω
(
v1, . . . , [ξ, vk], uk+1, . . . , un+1

)
= (Lξω)(v1, . . . , vk, uk+1, . . . , un+1)

+ (dα2)
(
[ξ, v1], v3, . . . , vk, uk+1, . . . , un+1

)
− (dα1)

(
[ξ, v2], v3, . . . , vk, uk+1, . . . , un+1

)
− (dα1)

(
v2, [ξ, v3], . . . , vk, uk+1, . . . , un+1

)
− · · ·

− (dα1)
(
v2, . . . , [ξ, vk], uk+1, . . . , un+1

)
∈ IN ,
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since Lξω ∈ IΩ(N), since [ξ, vi] ⊆ Xg(M) + IX(N), and since dαi ∈ Ω(M)[N ] by Lemma 3.13.
Similarly,

ιun+1 · · · ιuk+2
ιξ ιvk · · · ιv1ω = −ιun+1 · · · ιuk+2

ιξ ιvk · · · ιv2dα1 ∈ IN

since dα1 ∈ Ω(M)[N ]. Thus, Ham∞(M,ω)[N ] is closed under l̃k for k ≥ 3.

Finally, as [v1, v2] is a Hamiltonian vector field for ιv1∧v2ω, and as [v1, v2] is reducible by
Lemma 3.16, we conclude that Ham∞(M,ω)[N ] is closed under l̃2. ■

3.3 L∞-reduction of the space of observables

Again suppose that g ↷ (N ⊆ M) and that the premultisymplectic form ω ∈ Ωn+1(M) is
g-invariant along N .

Definition 3.21. The vanishing observable ideal IHam∞(N) ⊆ Ham∞(M,ω)[N ] is linearly gen-
erated by the subspace

IΩ(N) ∩ Ω<n−1(M) ⊆ Ham<0
∞ (M,ω)

and all pairs (v, α) ∈ Ham0
∞(M,ω)[N ] for which

(i) v ∈ Xg(M) + IX(N),

(ii) α ∈ IΩ(N).

Lemma 3.22. IHam∞(N) is an L∞-ideal of Ham∞(M,ω)[N ].

Proof. As Lemma 3.6 asserts that IΩ(N) is closed under d, it follows that IHam∞(N) is closed
under l̃1.

Fix k ≥ 3. If σ1, . . . , σk ∈ Ham0
∞(M,ω)[N ] with σi = (vi, αi), if σ1 ∈ IHam∞(N), and if

uk+1, . . . , un+1 ∈ XN (M), then

ιun+1 · · · ιuk+1
l̃k(σ1, . . . , σk) = −ς(k) ιun+1 · · · ιuk+1

ιvk · · · ιv2 dα1 ∈ IN

since v1, . . . , vk ∈ XN (M) and since dα1 ∈ IΩ(N) by Lemma 3.11.

Now take k = 2. For any σ1, σ2 ∈ Ham0
∞(M,ω) with σ1 ∈ IHam∞(N), Lemma 3.17 provides

[v1, v2] ∈ Xg(M) + IX(N) from which l̃2(σ1, σ2) ∈ IHam∞(N), as required. ■

Thus we arrive at the following commutative diagram of graded vector spaces, where for
a graded vector space V we write V [k] for the k-th desuspension,

IHam∞(N) Ham∞(M,ω)[N ] Ham∞(M,ω)

(IΩ(N))[n−1]⊕(Xg(M)+IX(N))
(
Ω(M)[N ]

)
[n−1]⊕X(M)[N ] (Ω(M))[n−1]⊕X(M).

L∞-ideal L∞-morph.

We now present our main construction.

Definition 3.23. The reduction of Ham∞(M,ω) with respect to g ↷ (N ⊆ M) is the L∞-
algebra

Ham∞(M,ω)N =
Ham∞(M,ω)[N ]

IHam∞(N)
.



Reduction of L∞-Algebras of Observables on Multisymplectic Manifolds 17

Consolidating the foregoing development, the graded vector space underlying the reduced
L∞-algebra Ham∞(M,ω)N is explicitly given in degree 0 by

Ham0
∞(M,ω)N =

(α, v) ∈ Ωn−1(M)⊕ X(M)

∣∣∣∣∣∣∣∣∣∣
ιvω = −dα
ιξα ∈ IΩ(N)
Lξα ∈ IΩ(N)
Lξv ∈ Xg + IX(N) ∀ξ ∈ g
v ∈ XN (M)

(α, v) ∈ Ωn−1(M)⊕ X(M)

∣∣∣∣∣∣
ιvω = −dα
α ∈ IΩ(N)
v ∈ Xg + IX(N)


.

An analogous procedure applies in the setting of the associated L∞-algebra L∞(M,ω).

Definition 3.24. We define L∞(M,ω)[N ] ⊆ L∞(M,ω) and IL∞(N) ⊆ L∞(M,ω) to be the
respective images of Ham∞(M,ω)[N ] and IHam∞(N) under the natural projection

Ham∞(M,ω)→ L∞(M,ω),

(v, α) 7→ α,

β 7→ β

for |(v, α)| = 0 and |β| < 0. That is, α ∈ L0
∞(M,ω)[N ] precisely when there exists a v ∈ X(M)

for which (v, α) ∈ Ham∞(M,ω)[N ], and similarly for IHam∞(N). Straightforward adaptations of
the results above show that L∞(M,ω)[N ] ⊆ L∞(M,ω) is an L∞-subalgebra and that IL∞(N) ⊆
L∞(M,ω)[N ] is an L∞-ideal. The reduction of L∞(M,ω) with respect to g ↷ (N ⊆ M) is the
L∞-algebra

L∞(M,ω)N =
L∞(M,ω)[N ]

IL∞(N)
.

Remark 3.25. We note that Lemmas 3.11 and 3.13 yield a reduced complex of forms

Ω(M)N =
Ω(M)[N ]

IΩ(N)
,

while Lemmas 3.16 and 3.17 provide a reduced space of vector fields

X(M)N =
X(M)[N ]

Xg(M) + IX(N)
.

Remark 3.26. When ω is multisymplectic, the strict L∞-morphism

L∞(M,ω)→ Ham∞(M,ω),

α 7→ (vα, α),

β 7→ β

for |α| = 0 and |β| < 0, is inverse to the natural projection of Definition 3.24 and exhibits the iso-
morphism L∞(M,ω) ∼= Ham∞(M,ω), and in particular induces an identification L∞(M,ω)[N ]

∼=
Ham∞(M,ω)[N ].

But even if ω is multisymplectic, it is not generally true that L∞(M,ω)N ∼= Ham∞(M,ω)N .
This results follow from the fact that the differential form components of distinct elements
(vα, α), (vβ, β) ∈ Ham0

∞(M,ω)[N ] may be identified in Ham∞(M,ω)N , while the vector field
components remain distinct. That is, [α] = [β] ∈ Ω(M)N while [vα] ̸= [vβ] ∈ X(M)N , so that
[α] = [β] ∈ L∞(M,ω)N while [(vα, α)] ̸= [(vβ, β)] ∈ Ham∞(M,ω)N .

We return to this topic in Remark 3.43.
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Remark 3.27. When g = 0 andN ⊆M is any subset, our reduction scheme defines a restriction
of Ham∞(M,ω) to an arbitrary subset N ⊆ M . Indeed, in this setting the conditions that
g ↷ (N ⊆ M) and that ω is reducible are trivially satisfied. We note that the details of this
multisymplectic restriction are prefigured in [59, Lemma 3.2].

As another boundary case, when N = M and g ↷ M is any action with g ⊆ kerω, where
we recall that g =

{
ξ
x
| ξ ∈ g, x ∈ M

}
, we obtain a quotient of Ham∞(M,ω). Note that this

boundary case is only interesting in the strictly premultisymplectic setting, i.e., when kerω is
non-trivial.

3.4 L∞-reduction with respect to a covariant moment map

In Section 2.2, we considered the geometric reduction of an n-plectic manifold (M,ω) with
respect to a Hamiltonian action G ↷ (M,ω) with moment map µ ∈ Ωn−1(M, g∗) and a closed
form ϕ ∈ Ωn−1(M, g∗). Our aim in this subsection is to apply our observable reduction scheme
to this setting.

We approach the problem in slightly greater generality. Fix a pre-n-plectic manifold (M,ω),
a premultisymplectic action g ↷ (M,ω), a form µ ∈ Ωn−1(M, g∗) satisfying

(i) dµξ = −ιξω,
(ii) Lξµζ = µ[ξ,ζ]

for all ξ, ζ ∈ g, and a closed form ϕ ∈ Ωn−1(M, g∗). Consider the action g ↷ Ωn−1(M, g∗) given
by

ξ · α = Lξα+Ad∗ξα

and write

gϕ =
{
ξ ∈ g | Lξϕζ = ϕ[ξ,ζ] ∀ζ ∈ g

}
for the isotropy subalgebra of ϕ.

Definition 3.28. The reduction of Ham∞(M,ω) with respect to the Hamiltonian action g ↷
(M,ω), moment map µ ∈ Ω(M, g∗), and level ϕ ∈ Ωcl(M, g∗), is the reduction of Ham∞(M,ω)
with respect to gϕ↷

(
µ−1(ϕ) ⊆M

)
. We write Ham∞(M,ω)ϕ = Ham∞(M,ω)µ−1(ϕ).

Our task is now to show that this construction is well defined.

Lemma 3.29. The action gϕ ↷M is tangent to µ−1(ϕ).

Proof. When gϕ ↷ M is induced by the action of a connected Lie group Gϕ ↷ M , the
equivariance condition

Lξ(µ− ϕ)ζ = (µ− ϕ)[ξ,ζ]

for all ξ, ζ ∈ gϕ implies(
g−1

)∗
(µ− ϕ)ζ = (µ− ϕ)Adgζ

for all g ∈ Gϕ. In particular, Gϕ preserves µ−1(ϕ) = {x ∈ M | (µ − ϕ)x = 0} and the result
follows by Remark 3.5.

When there is no group action, the above argument still holds since Lie’s second fundamental
theorem (see, e.g., [42, Theorem 20.22]) provides that we may always integrate gα ↷M to a local
Lie group action, and this is sufficient for our purposes here. ■
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Lemma 3.30. The presymplectic form ω is reducible with respect to gϕ ↷
(
µ−1(ϕ) ⊆M

)
.

Proof. Fix ξ ∈ gα. Since g ↷M is premultisymplectic, the equality Lξω = 0 trivially implies
Lξω ∈ IΩ

(
µ−1(ϕ)

)
.

It remains to show that ιξω ∈ IΩ
(
µ−1(ϕ)

)
. By construction, µ − ϕ = 0 at every point

of µ−1(ϕ) and thus, in particular, (µ− ϕ)ξ ∈ IΩ(N). As Lemma 3.11 provides that IΩ
(
µ−1(ϕ)

)
is closed under d, it follows that

ιξω = dµξ = d(µ− ϕ)ξ ∈ IΩ
(
µ−1(ϕ)

)
. ■

In particular, it follows that Lξω ∈ IΩ(N) for all ξ ∈ g, and we conclude from Lemmas 3.29
and 3.30 that Definition 3.28 is indeed well defined.

Proposition 3.31. For every ξ ∈ gϕ, we have µξ − ϕξ ∈ IΩ
(
µ−1(ϕ)

)
and

(
ξ, µξ − ϕξ

)
∈

IHam∞

(
µ−1(ϕ)

)
.

Proof. First note that ξ and µξ − ϕξ comprise a Hamiltonian pair as d(µ− ϕ)ξ = dµξ = ιξω.

We showed that (µ− ϕ)ξ ∈ IΩ
(
µ−1(ϕ)

)
in the proof of Lemma 3.30, and that ξ is tangent to

µ−1(ϕ) in Lemma 3.29. The result follows as ξ is clearly an element of Xg(M) + IX
(
µ−1(ϕ)

)
. ■

3.5 Comparing geometric and L∞-reduction

The aim of this section is to compare the L∞-reduction procedure to the multisymplectic reduc-
tion scheme of Theorem 2.16. In particular, we exhibit a natural inclusion of the L∞-reduction
Ham∞(M,ω)ϕ into the L∞-algebra of observables Ham∞(Mϕ, ωϕ) associated to the reduced
space (Mϕ, ωϕ).

In fact, we will work in greater generality than the setting of Theorem 2.16. For the extent of
this subsection, fix a pre-n-plectic manifold (M,ω), a connected Lie group G, a smooth action
G ↷ M , and a G-invariant closed embedded submanifold j : N ↪→ M such that ω is reducible
and G↷ N is free and proper.

The inclusion j : N ↪→M and the projection π : N ↠ N/G each induce maps on the de Rham
complex as depicted below:

N M, Ω(N) Ω(M).

N/G Ω(N/G)

j

π

j∗

π∗

We are now in a position to recast the auxiliary spaces of Figure 1 in a more geometric
fashion.

Lemma 3.32. We have

(i) XN (M) = {v ∈ X(M) | v|N ∈ X(N)},
(ii) IX(N) = {v ∈ X(M) | v|N = 0},
(iii) IΩ(N) = {α ∈ Ω(M) | j∗α = 0},
(iv) Xg(N) = Γ

(
g
)
,

where v|N = v ◦ j ∈ Γ(j∗TM) is the restriction of v ∈ X(M) to N , and where

g =
{
ξ
x
| ξ ∈ g, x ∈ N

}
⊆ TN

is the fundamental distribution.
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Proof. (i)–(iii) As N ⊆M is an embedded submanifold, it suffices to consider RdimN ⊆ RdimM

and the result now follows by a direct computation.
(iv) Since the action is free, the fundamental vector fields associated to a basis of g are linearly

independent at every point. This implies that Xg is a regular foliation and hence generated by
its associated distribution. ■

Recall that α ∈ Ω(N) is said to be g-basic when it is both g-invariant and g-horizontal.
That is,

Ωbas(N) =
{
α ∈ Ω(N) | ιξα = 0, Lξα = 0∀ξ ∈ g

}
.

We now show that, since G is connected, the g-basic forms on N are precisely those induced
by π : N → N/G.

Lemma 3.33. For free and proper actions G ↷ N , there is an isomorphism of de Rham
complexes π∗ : Ω(N/G)

∼−→ Ωbas(N).

Proof. An application of [71, Theorem 31.12] to the surjective submersion π : N → N/G pro-
vided by the quotient manifold theorem, yields imπ∗ = Ωbas(N). ■

In particular, given α ∈ Ω(M)[N ], we have that j∗α is g-basic, and hence there corresponds
a unique αN ∈ Ω(N/G) for which j∗α = π∗αN . Likewise, the connectedness of G provides that
reducible vector fields are projectable along π : N → N/G, and thus we may assign to each
v ∈ X(M)[N ] a unique vN = π∗(v|N ) ∈ X(N/G).

Definition 3.34. Put MN = N/G. The geometric reduction map on forms is

rN : Ω(M)[N ] Ω(MN ),

α αN

and on vector fields is

rN : X(M)[N ] X(MN ),

v vN .

Remark 3.35. As the equality j∗α = π∗αN implies j∗dα = π∗d(αN ), it follows that d(αN ) =
(dα)N , and consequently that rN : α 7→ αN is a map of chain complexes. Similarly, as vNf =
v|N (π∗f) for all f ∈ C∞(MN ), the map rN : v 7→ π∗(v|N ) is easily seen to be a Lie algebra
homomorphism.

As π∗ preserves d, the form ωN ∈ Ωn+1(MN ) is closed, and the following definition arises
naturally. This will be our generalization of the geometric reduced spaces (Mϕ, ωϕ) of Theo-
rem 2.16.

Definition 3.36. The geometric reduction of the n-plectic manifold (M,ω) is the premultisym-
plectic manifold (MN , ωN ).

Our aim now is to construct a strict L∞-morphism rN : Ham∞(M,ω)[N ] → Ham∞(MN , ωN )
on the level of observables in such a way that ker rN = IHam∞(N), so that rN descends to an
inclusion

r̄N : Ham∞(M,ω)N ↪→ Ham∞(MN , ωN ).

Lemma 3.37. There is a short exact sequence of chain complexes

0→ IΩ(N) ↪→ Ω(M)[N ]
rN−−→ Ω(MN )→ 0.
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Proof. If α ∈ Ω(M)[N ], then αN = 0 precisely when j∗α = π∗αN = 0 by Lemma 3.33, and
j∗α = 0 precisely when α ∈ IΩ(N) by Lemma 3.32. Thus ker rN = IΩ(N).

The surjectivity of rN is follows from the isomorphism π∗ : Ω(N/G)
∼−→ Ωbas(M) and the

surjectivity of j∗ : Ω(M) ↠ Ω(N). ■

Lemma 3.38. There is a short exact sequence of Lie algebras

0→ Xg(M) + IX(N) ↪→ X(M)[N ]
rN−−→ X(MN )→ 0.

Proof. Lemma 3.32 yields

ker rN = {v ∈ X(M) | v|N is vertical w.r.t. N → N/G} = Xg(M) + IX(N)

and surjectivity obtains as any vector field on N/G may be lifted to N and extended to M . ■

We now show that the reduction maps rN of Lemmas 3.37 and 3.38 preserve Hamiltonian
pairs.

Lemma 3.39. If (α, v) is a reducible Hamiltonian pair on (M,ω), then (αN , vN ) is a Hamilto-
nian pair on (MN , ωN ).

Proof. This follows from the identity

π∗(ιvNωN ) = ιv|N j
∗ω = j∗(ιvω) = j∗(−dα) = π∗(−dαN )

and the injectivity of π∗ : Ω(N/G)
∼−→ Ωbas(N). ■

We thus obtain our desired geometric reduction map on observables.

Theorem 3.40. The geometric reduction map

rN : Ham∞(M,ω)[N ] → Ham∞(MN , ωN ),

(v, α) 7→ (vN , αN ),

α 7→ αN

is a strict L∞-morphism with kernel IHam∞(N). In particular, there is a natural inclusion of
L∞-algebras

Ham∞(M,ω)N =
Ham∞(M,ω)[N ]

IHam∞(N)

r̄N
↪−−→ Ham∞(MN , ωN ).

Proof. Lemmas 3.37 and 3.38 together yield ker rN = IHam∞(N), and it remains to show that
rN is a strict L∞-morphism.

For k ≥ 3 and σ1, . . . , σk ∈ Ham0
∞(M,ω)[N ], with σ

i =
(
αi, vi

)
, we have

π∗ l̃k
(
σ1N , . . . , σ

k
N

)
= ς(k)ιvkN

· · · ιv1NωN

= ς(k)ιvk|N · · · ιv1|N j
∗ω

= j∗(ς(k)ιvk · · · ιv1ω)
= π∗ l̃k

(
σ1, . . . , σk

)
N
,

from which we obtain

l̃k
(
σ1N , . . . , σ

k
N

)
= l̃k

(
σ1, . . . , σk

)
N



22 C. Blacker, A.M. Miti and L. Ryvkin

by the injectivity of π∗ : Ω(N/G)
∼−→ Ωbas(N). The case k = 2 follows similarly, with the

additional observation that
[
v1N , v

2
N

]
=

[
v1, v2

]
N
.

For k = 1 and α ∈ Ham<0
∞ (M,ω)[N ], we have

π∗ l̃1(αN ) = dj∗α = j∗dα = π∗ l̃1(α)N

and we conclude that rN is a strict L∞-morphism. ■

Remark 3.41. In this regular setting, we may define the reduced space Ham∞(M,ω)N to be
the quotient Ham∞(M,ω)[N ]/ ker rN or, equivalently, to be the image of rN in Ham∞(MN , ωN ).
The merit of Definition 3.23 is that it applies even in the singular case in which the geometric
reduction map rN of smooth manifolds fails to exist.

We will call r̄N : Ham∞(M,ω)N ↪→ Ham∞(MN , ωN ) the canonical embedding. The following
corollary is immediate.

Corollary 3.42. Let (M,ω,G, µ) be a n-plectic Hamiltonian G-space with covariant moment
map µ, let ϕ ∈ Ωn−1(M, g∗) be a closed form, and let Mϕ = µ−1(ϕ)/Gϕ. If µ−1(ϕ) ⊆ M is an
embedded submanifold, and if G acts freely on µ−1(ϕ), then there is a natural inclusion

r̄ϕ : Ham∞(M,ω)ϕ ↪−→ Ham∞
(
Mϕ, ωϕ

)
,

[σ] 7−→ σϕ

of L∞-algebras of observables.

Remark 3.43. A similar argument to that of Theorem 3.40 yields a natural inclusion

r̄N : L∞(M,ω)N → L∞(MN , ωN ).

Recalling the discussion of Remark 3.26, we see that when both (M,ω) and (MN , ωN ) are
multisymplectic, the strict L∞-morphism

r̄N [L∞(M,ω)N ]
∼−−→ r̄N [Ham∞(M,ω)N ],

αN 7−−→
(
vαN , αN

)
,

βN 7−−→ βN

for |αN | = 0 and |βN | < 0, provides the natural identification L∞(M,ω)N ∼= Ham∞(M,ω)N .

Lemmas 3.37 and 3.38 yield isomorphisms

r̄N : Ω(M)N
∼−→ Ω(MN )

and

r̄N : X(M)N
∼−→ X(MN ),

respectively, where Ω(M)N and X(M)N are the reduced spaces of Remark 3.25.
As no such isomorphism is guaranteed on the level of observables, it is natural to inquire into

the relation between L∞-reduction and the association of observables functor

Ham∞ : (M,ω) 7→ Ham∞(M,ω).

This question motivates the following definition, which heuristically measures the extent to
which these procedures fail to commute.
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Definition 3.44. The residue defect [Ham∞, R] of G ↷ (M,ω) with respect to N ⊆ M is the
cokernel

coker rN =
Ham∞(MN , ωN )

im rN

of the geometric reduction map rN : Ham∞(M,ω)[N ] → Ham∞(MN , ωN ).

As Lemmas 3.37 and 3.38 ensure that r<0
N surjects onto Ham<0

∞ (MN , ωN ), we may identify the
residue defect with the component coker r0N = Ham0

∞(MN , ωN )/ im r0N on Hamiltonian pairs.
The residue defect of G↷ (M,ω) with respect to N ⊆M measures the extent to which the

reduced space (MN , ωN ) exhibits observables that are not induced from (M,ω).
We will establish in Theorem 4.17 that in the suitably regular symplectic setting coker rN = 0.

In the n-plectic case with n > 1, the determination of it appears to be highly nontrivial.

4 Applications and examples

In this section, we investigate our reduction formalism in the setting of various natural examples.

4.1 L∞-reduction in the 1-plectic case

In this subsection, we discuss how definition the L∞-reduction scheme manifests in the 1-plectic,
i.e., symplectic, setting.

Let (M,ω) be a symplectic manifold, be N ⊆ M be a closed subset, and consider a Lie
algebra action g↷(N ⊆M). The auxiliary spaces of the L∞-reduction scheme are

L∞(M,ω) C∞(M),

L∞(M,ω)[N ]

f ∈ C∞(M)

∣∣∣∣∣∣
ξf ∈ IN ∀ξ ∈ g

vfh ∈ IN ∀h ∈ IN
[vf , ξ] ∈ Xg(M) along N, ∀ξ ∈ g

 ,

IL∞(N)

f ∈ C∞(M)

∣∣∣∣∣∣∣∣
ξf ∈ IN ∀ξ ∈ g

vf h ∈ IN ∀h ∈ IN
f ∈ IN
vf ⊆ Xg(M) along N

 .

=

=

=

(4.1)

A particular feature of the symplectic setting is that the space L∞(M,ω) = C∞(M) naturally
possesses the structure of an associative algebra with respect to which the l2 bracket is a Poisson
structure. We now show that this structure descends to the reduced space L∞(M,ω)N .

Theorem 4.1. If g ↷ M is tangent to N ⊆ M , and if the symplectic structure ω ∈ Ω2(M)
is reducible, then the reduction L∞(M,ω)N inherits a natural Poisson algebra structure from
C∞(M,ω).

Proof. Since IN is an associative ideal in C∞(M), it follows that IL∞(N) = L∞(M,ω)[N ] ∩ IN
is an associative ideal in L∞(M,ω)[N ]. Moreover, we have previously established that IL∞(N) ⊆
L∞(M,ω)[N ] is an L∞-ideal (see Definition 3.24 and Lemma 3.22), and thus, in particular, an
ideal with respect to the l2 bracket. The result follows as these two facts together imply that
IL∞(N) ⊆ L∞(M,ω)[N ] is a Poisson ideal. ■

Thus, in the presence of the additional hypothesis that g ↷ (N ⊆ M) and ω is a reducible
2-form, diagram (4.1) is in the category of Poisson algebras.
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Remark 4.2. Observe that if v ∈ Xham(M,ω), then vf ∈ IX(N) precisely when {f, C∞(M)} =
vf C

∞(M) ⊆ IN .

In order to better understand the algebra defined above, it is helpful to consider certain
subclasses of well-behaved functions.

Definition 4.3 (first class function). The function f ∈ C∞(M) is said to be first class if its
Poisson bracket with any constraint vanishes on N . That is, the set of first class functions is

FN = {f ∈ C∞(M) | {f, IN} ⊆ IN},

where IN denotes the ideal of functions vanishing on N .

Equivalently, FN is the Lie algebra normalizer of the subspace IN ⊆ C∞(M). By virtue of
the Jacobi identity, it follows that FN is a Poisson subalgebra of C∞(M,ω).

Definition 4.4. We define the space of Casimir functions along N to be

Q = {f ∈ C∞(M) | {f, C∞(M)} ⊆ IN}. (4.2)

That is, in light of Remark 4.2,

f ∈ Q ⇐⇒ vf ∈ IX(N).

Lemma 4.5 (properties of Q). The subspace Q enjoys the following properties:

(i) Q ⊆ C∞(M,ω) is a Poisson subalgebra (but not an associative or Lie ideal),

(ii) Q ⊆ FN is a Lie ideal,

(iii) Q∩ IN is an associative ideal in C∞(M) and a Poisson ideal in FN .

Proof. This follows from an easy verification that

{fh,C∞(M)} = f{h,C∞(M)}+ h{f, C∞(M)}

and

{{f, h}, C∞(M)} = {{h,C∞(M)}, f} − {{f, C∞(M)}, h}

lie in IN whenever f ∈ Q or Q∩ IN and h ∈ C∞(M), FN or Q, depending on the statement to
be proved. ■

We now specialize to the case where the action G↷(M,ω) is Hamiltonian, with moment
map µ : M → g∗. Consider as the constraints set the preimage of the ensuing moment map
N = µ−1(0). Momenta yields a relevant subset of vanishing functions.

Definition 4.6 (momentum ideal). The momentum ideal is the associative ideal Iµ ⊆ C∞(M)
generated by the momenta µξ for any ξ ∈ g. Namely

Iµ = ⟨µξ⟩assoξ∈g =

{
n∑

i=1

fi µξi

∣∣∣∣∣n ≥ 0, fi ∈ C∞(M), ξi ∈ g, 1 ≤ i ≤ n

}
.
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Theorem 4.7. Fix a symplectic Hamiltonian action G↷(M,ω) with moment map µ : M → g∗

and put N = µ−1(0). Then

L∞(M,ω)[N ] = FN ∩Q′,

IL∞(N) = Iµ + (IN ∩Q),

where Iµ, FN are given by Definitions 4.6 and 4.3, respectively, N
(
Iµ
)
is the Lie algebra nor-

malizer of Iµ inside of C∞(M) (see equation (A.1)), Q is given in equation (4.2), and

Q′ = {f ∈ C∞(M) | {f, µξ} ∈ Iµ +Q ∀ξ ∈ g}. (4.3)

Furthermore, the reduced Poisson algebra is

L∞(M,ω)[N ]

IL∞(N)
=

FN ∩Q′

Iµ + IN ∩Q
. (4.4)

Proof. Consider f ∈ L∞(M,ω)[N ]. By the very definition of Poisson bracket, the first condition
(see diagram (4.1)) in the definition of L∞(M,ω)[N ] reads as Lξf = {µξ, f} ∈ IN for any ξ ∈ g.
Hence the Jacobi identity implies that {Iµ, f} ⊆ IN . Similarly the second condition implies
that Lvfh = {f, h} ∈ IN for any h ∈ IN , hence {f, IN} ⊆ IN , i.e., f is a first class function.
In particular, since Iµ ⊆ IN , the latter condition implies the former one. The third condition
implies that for any ξ ∈ g there exist two families gi ∈ C∞(M) and ξi ∈ g such that

[vf , ξ] =
∑
i

giξi along N .

The left-hand side can be recast as [vf , ξ] =
[
vf , vµξ

]
= v{f,µξ} since according to our conventions

the comoment map, the assignment of Hamiltonian vector fields, and the infinitesimal action are
each Lie algebra morphism (see Remark A.4). From the expression of the Hamiltonian vector
of the product of two functions, we have∑

i

giξi =
∑
i

givµξi
= v∑

i giξi
−
∑
i

µivgi ,

where the last term vanishes along N = µ−1(0). According to Remark 4.2, equality along N
implies

v{f,µξ} − v∑i giξi
∈ IX(N),

from which {f, µξ} −
∑

i giξi ∈ Q and so

{f, µξ} ⊆ Iµ +Q ∀ξ ∈ g.

Introducing Q′ as in equation (4.3), the latter implies that

L∞(M,ω)[N ] = FN ∩Q′.

Consider now f ∈ IL∞(N). The fourth condition in diagram (4.1) implies the existence of two
families gi ∈ C∞(M) and ξi ∈ g such that, along N ,

vf =
∑
i

givµi = v∑
i giµi

−
∑
i

��µivgi ,

where µi = µξi . By a similar argument as that of Remark 4.2, we obtain f ∈ Iµ +Q. In other
terms,

IL∞(N) = L∞(M,ω)[N ] ∩ (Iµ + IN ∩Q).

The last claim follows by noting that both Iµ and IN ∩ Q lie inside FN ∩ IN ∩ Q′ (see Lem-
ma 4.8). ■
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Lemma 4.8 (properties of Q′). The subspace Q′ enjoys the following properties:

(i) Q′ is an associative subalgebra of C∞(M),

(ii) FN ∩Q′ = {f ∈ FN | {f, Iµ} ⊆ Iµ +Q∩ IN} and it is a Poisson subalgebra of C∞(M,ω),

(iii) Iµ ↪→ N
(
Iµ
)
↪→ Q′ as associative algebras,

(iv) IN ∩Q ↪→ FN ∩ IN ∩Q′ ↪→ Q′ as associative algebras,

(v) Iµ + IN ∩Q is a Poisson ideal inside of Q′ ∩ FN .

Proof. (i) Consider f , g in Q′. By the distributive property of the Poisson bracket, we have
for any ξ ∈ g that

{fg, µξ} ∈ Q′ ·
{
Q′, µξ

}
⊆ Q′ · Iµ + (IN ∩Q) · Q′ ⊆ Iµ + IN ∩Q,

where in the last inclusion we employed Lemma 4.5.

(ii) The equality expresses the fact that the defining condition for Q′ may be given in terms
of Iµ. This follows from the fact that f ∈ FN implies {f, µξ} ⊆ IN , and from the fact that
Q∩ IN ⊆ C∞(M) is an associative ideal by statement (iii) of Lemma 4.5. As the intersection of
the associative algebra Q′ and the Poisson algebra FN it is, in particular, a Poisson algebra.

(iii) The inclusion is immediate as N
(
Iµ
)
is a Lie algebra normalizer.

(iv) Clearly IN ∩ Q includes in IN ∩ FN . To prove the inclusion in Q′ notice first that
{(IN ∩Q), Iµ} ⊆ IN . The Jacobi identity implies that {(IN ∩Q), Iµ} lies in Q since

{{IN ∩Q, Iµ}, C∞(M)} ⊆ {{IN ∩Q, C∞(M)}, Iµ}+ {{Iµ, C∞(M)}, IN ∩Q} ⊆ IN

by the definition of Q and the inclusion Iµ ⊆ FN (see [6, Proposition 5.1]). ■

Remark 4.9. Observe that FN comprises precisely those functions with Hamiltonian vector
field tangent to N . Thus we see from statement (ii) of Lemma 4.8 that the reducible observables
in the symplectic case consists of those functions in FN that satisfy a slightly stronger condition
of being preserved along N . Specifically, for any f ∈ Q′ ∩ FN and ξ ∈ g, the Lie derivative
Lξf ∈ IN is a linear combination of an element Iµ and a constraint with Hamiltonian vector
field vanishing along N .

Remark 4.10. The above formula (4.4) for L∞-reduction can be applied to any triple (P, I, J),
where P is a Poisson algebra, I ⊆ J are associative ideals in P and I is stable under the
Poisson bracket (i.e., also a Poisson subalgebra). In our setting P = C∞(M), I = Iµ, J = IN ,
however the proof of Lemma 4.8 assuring that the quotient (4.4) is a Poisson algebra carries
over directly to general triples (P, I, J). In particular, we get a reduction procedure for moment
maps on Poisson manifolds and actions of connected Poisson–Lie groups on Poisson manifolds
(cf., e.g., [28]).

We proceed now to compare the L∞-reduction procedure with the symplectic reduction
schemes surveyed in Appendix A. We denote by MW, SW, D, ACG, and AGJ the reduction
procedures introduced by Marsden–Weinstein [45], Śniatycki–Weinstein [66], Dirac [26], Arms–
Cushman–Gotay [5], and Arms–Gotay–Jennings [6] respectively. The hypotheses required by
these constructions are summarized in Table 3.

Let us focus on the symmetry-based observable reductions, that is, we assume N = µ−1(0)
for a moment map µ. In this case, both the [ŚW], the [ACG], and the L∞-reduction schemes
apply. In particular, we have the following morphisms of Poisson algebra.

1For example, strongly coisotropic and locally conical, see [6, Proposition 3.3].
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Table 3. Reduction scheme hypotheses.

reduction hypothesis

scheme action G↷M constraint set N ω ∈ Ω2(M)

AGJ none “well behaved”1 symplectic

D none first class symplectic

L∞ any g-stable
presymplectic

reducible

ŚW Hamiltonian N = µ−1(0) symplectic

ACG Hamiltonian N = µ−1(0) symplectic

MW
Hamiltonian

free and proper on µ−1(0)

N = µ−1(0)

0 regular value for µ
symplectic

Proposition 4.11 ([L∞] vs. [ŚW]). Fix a symplectic Hamiltonian action G↷(M,ω) with mo-
ment map µ : M → g∗, and put N = µ−1(0). When N

(
Iµ
)
↪→ FN we have a canonical Poisson

morphism from the [ŚW] reduction to the L∞-reduction. When IN ∩ Q ↪→ Iµ the L∞-reduction
embeds into the [ŚW] reduction. When Iµ = IN , the [ŚW] and [L∞] reduced spaces are isomor-
phic.

Proof. According to Section 3.4, N = µ−1(0) implies that ω is reducible. First observe that
under the above hypothesis the [ŚW] and [L∞] reductions are well-defined. We exhibit all
pertinent relations between the considered spaces in the following diagram commutative diagram
in the category of Poisson algebra:

Iµ N
(
Iµ
) N

(
Iµ
)

Iµ

Iµ N
(
Iµ
)
∩ FN

N
(
Iµ
)
∩ FN

Iµ

Iµ + IN ∩Q ∩N
(
Iµ
)

N
(
Iµ
)
∩ FN

N
(
Iµ
)
∩ FN

Iµ + IN ∩Q ∩N
(
Iµ
)

Iµ + IN ∩Q Q′ ∩ FN
Q′ ∩ FN

Iµ + IN ∩Q
,

(Lie.) ideal

(Lie.) ideal

(Lie.) ideal

(Lie.) ideal

where the rightmost bottom arrow is given by the second isomorphism theorem of Lie algebras.
This induces the following diagram at the level of quotient spaces, where dashed arrow denotes
morphisms of associative algebras – not Poisson – (cf. Lemma A.18),

N
(
Iµ
)
∩ FN

Iµ

N
(
Iµ
)

Iµ

Q′

Iµ

N
(
Iµ
)
∩ FN

Iµ + IN ∩Q ∩N
(
Iµ
) Q′ ∩ FN

Iµ + IN ∩Q
Q′

Iµ + IN ∩Q
,
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where we identify the [ŚW] reduction in the middle of the first row (see Theorem A.10) and
the [L∞] reduction in the middle of the second row (see Theorem 4.7). The latter diagram
means that the two considered reduction schemes yield different Poisson algebras in general and
they posses a nontrivial intersection inside of the associative algebra Q′/(Iµ + IN ∩Q).

When FN ↪→ N
(
Iµ
)
, the top left horizontal arrow in the previous diagram is an isomorphism

and we obtain the sought map. Similarly, when IN∩Q ↪→ Iµ we have that FN∩Q′ ∼= N
(
Iµ
)
∩FN ,

hence the two bottom Poisson map are indeed identifications. Finally, the condition Iµ = IN
implies the previous two; hence, the two reduced Poisson algebras coincide. ■

Remark 4.12. The BFV-BRST approach to symplectic reduction leads to a differential graded
algebra, whose zero-th homology coincides with the [ŚW]-reduction, cf., e.g., [68]. Hence, in the
setting of Proposition 4.11, the [L∞]-reduction also coincides with this homology group.

Proposition 4.13 ([L∞] vs. [ACG]). Consider a symplectic Hamiltonian action G↷(M,ω)
with moment map µ : M → g∗. Assume that N = µ−1(0) where µ is a moment map associated
to the action. If Iµ = IN , then the [ACG] reduction naturally embeds in the [L∞] reduced algebra.
If moreover FN

∼= C∞(M)G + IN , then the [ACG] and [L∞] reductions are isomorphic.

Proof. We indicate the relevant relations between all spaces in the following commutative
diagram in the category of Poisson algebras:

IGN C∞(M)G
C∞(M)G

IGN

IGN ∩ FN C∞(M)G ∩ FN
C∞(M)G ∩ FN

IGN ∩ FN

IGµ + IGN ∩Q C∞(M)G ∩ FN
C∞(M)G ∩ FN

IGµ + IGN ∩Q

Iµ + IN ∩Q Q′ ∩ FN
Q′ ∩ FN

Iµ + IN ∩Q
,

(Lie.) ideal

(Lie.) ideal

⌝

(Lie.) ideal

⌟

(Lie.) ideal

where the top and bottom squares encode the second Lie algebra isomorphism theorem. The
inclusion of C∞(M)G in Q′ follows from C∞(M)G ⊆ N

(
Iµ
)
. The inclusion of Iµ

G + IN
G ∩Q ⊆

IN
G ∩ FN follows from the inclusion of Iµ and Q in FN ([6, Proposition 5.1] and Lemma 4.5).

Note that the bottom right object coincides with the [L∞] reduction (see Theorem 4.7), and the
top right object corresponds to the [ACG] reduction as recalled in Definition A.21. The first
claim follows by noticing that the rightmost two top vertical arrows are indeed identifications
whenever Iµ = IN . If, moreover, FN

∼= C∞(M)G + IN , the bottom right vertical arrow yields
an isomorphism. ■

Remark 4.14. Note that the inclusion from Proposition 4.13 follows also when C∞(M)G ↪→ Q,
i.e., if the Hamiltonian vector field associated to any G-invariant smooth function vanishes
along N .

When the constraint set N = µ−1(0) is also first class, it is possible to compare the [L∞]
and [D] reduction schemes.



Reduction of L∞-Algebras of Observables on Multisymplectic Manifolds 29

Proposition 4.15 ([L∞] vs. [D]). Let G ↷ (M,ω) be a symplectic Hamiltonian action with
moment map µ : M → g∗. Further assume that N = µ−1(0) is first class. There is a natural
mapping from the L∞-reduced Poisson algebra to the [D] reduction. If IN = Iµ + IN ∩ Q, then
the [D] and [L∞] reduced spaces coincide.

Proof. The relevant mappings are indicated in the following commutative diagram in the cat-
egory of Poisson algebras:

Iµ + IN ∩Q Q′ ∩ FN
Q′ ∩ FN

Iµ + IN ∩Q

IN ∩Q Q′ ∩ FN
Q′ ∩ FN

IN ∩Q

IN FN
FN

IN
.

(Lie.) ideal

(Lie.) ideal

⌟

(Lie.) ideal

The top and the bottom embody the [L∞] and [D] reductions. The two bottom squares encode
the second isomorphism theorem of Lie algebras. In the case that IN = Iµ + IN ∩ Q, we have
in particular that Q′ ∩ FN = FN , hence the three Poisson algebras in the rightmost column are
identified. ■

Remark 4.16. Albeit the L∞-reduction procedure draws its original inspiration from the [SW]
scheme, from the proof of Proposition 4.15 and the simple observation that O(N) ⊇ FN ∩ Q′

transpires how the L∞-reduction is rather a refinement of the [D] reduction. More specifically,
such a refinement is obtained by considering the subset of Dirac’s observables consisting of
suitably locally preserved first-class functions and dividing out by a subset of functions vanish-
ing on N . These choices, in particular, imply that this construction yields a Poisson algebra
regardless of the condition of being N a first-class constraint.

The laxer relationship with the [SW] reduction is unsurprising as that scheme relies fundamen-
tally on the associative structure of C∞(M) which, in principle, does not carry to Ham∞(M,ω).

An observable reduction scheme cannot be considered entirely satisfactory if it were not to
agree with the [MW] reduction in the presence of a regular constraint set. Crucially, all the
reduction schemes mentioned in Appendix A satisfy this compatibility property (see [66, Theo-
rem 1] and [6, Proposition 3.6] for further details). More formally, under the hypotheses of the
Marsden–Weinstein reduction theorem, the reduced Poisson algebra C∞(M,ω)0 is isomorphic
to the Poisson algebra C∞(M0, ω0) on the reduced symplectic manifold.

Theorem 4.17. Let G↷(M,ω) be a symplectic Hamiltonian action and suppose that 0 ∈ g∗ is
a regular value of the moment map µ : M → g∗. If G ↷ M is free and proper, then the [L∞],
[ŚW], [D], and [ACG] reductions are equal. In particular, each is isomorphic to the Poisson
algebra C∞(M0, ω0) of smooth functions on the Marsden–Weinstein reduced space.

Proof. First observe that the above hypothesis coincide with those of Theorem A.5, hence the
[MW] geometric reduction is well defined. Let us denote by (M0, ω0) the symplectic manifold
obtained by the Marsden–Weinstein reduction procedure. The regular value condition guaran-
tees that µ−1(0) is an embedded submanifold of M . In particular, we have Iµ = IN (see [66,
Theorem 1] and [6, Proposition 5.12] for details). According to Propositions 4.11 and 4.15 the
latter condition implies that the [L∞], [ŚW] and [D] reduction schemes yield the same Poisson
algebra. In particular, all of them coincide with C∞(M0, ω0) in virtue of [66, Theorem 1]. The
isomorphism between the latter and the [ACG] reduction is given in [65, Theorem 1]. ■
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The following diagram subsumes the relationship between the considered reduction schemes:

FN ∩Q′

Iµ + IN ∩Q
FN ∩N

(
Iµ
)

Iµ

C∞(M)G

IGµ

(
C∞(M)

Iµ

)G

C∞(M)G ∩ FN

IGµ + IGN ∩Q
C∞(M)G

IGN

(
C∞

IN

)G

.

[ŚW] reduction

[L∞] reduction

[ACG] reduction

As before, the dashed (resp. solid) arrows indicate morphisms of associative (resp. Poisson)
algebras.

4.2 The coordinate cross in R2

Let us consider an elementary example in which the L∞-reduction of a symplectic manifold is
possible even though the action fails to preserve the symplectic form.

Consider the plane M = R2 and the union of the coordinate axes N = {(x, y) | xy = 0}. The
vanishing ideal is IN = xy · C∞(M). We consider the vector field ξ = x∂x + y∂y as the action
of a one-dimensional abelian Lie algebra on M . The vector fields tangent to N are generated
by x∂x and y∂y. In particular, ω = dx ∧ dy is reducible, as it is closed and as ιξω = xdy − ydx
vanishes on N when contracted with x∂x or y∂y.

As described in the preceding section, the reduction is the quotient{
f | vf ∈ XN (M), Lξf ∈ IN , [ξ, vf ] ∈ Xg(M) + IX(N)

}
{f | f ∈ IN , vf ∈ Xg(M) + IX(N)}

.

We first consider the denominator. Since f ∈ IN , we have f = xyh for some smooth
function h. Thus df = y

(
h + x∂h

∂x

)
dx + x

(
h + y ∂h

∂y

)
dy, from which vf = y

(
h + x∂h

∂x

)
∂y −

x
(
h+ y ∂h

∂y

)
∂x. Such expressions are required to lie in Xg(M) + IX(N). Now, the equality of

ideals IX(N) = INX(M) in this example yields vf = h(y∂y − x∂x) up to an element of IX(N).
As multiples of xy in h are redundant, we arrive at a decomposition h(x, y) = h0 + xhx(x) +
yhy(y) + xyhres. Then vf =

(
h0 + xhx(x) + yhy(y)

)
(y∂y − x∂x). Multiplying and removing all

multiples of xy, we obtain

vf = h0(y∂y − x∂x) + y2hy(y)∂y − x2hx(x)∂x.

Since x and y are fully decoupled, there are no terms in IX(N). It remains to check when this
lies in Xg(M). This requires that h0, hx and hy be identically zero, so that h(x, y) = xyhres(x, y)
and thus f = (xy)2hres(x, y) for some smooth function hres(x, y).

Now for the numerator. Since multiples of (xy)2 vanish in the quotient, we introduce the
ansatz

f(x, y) = f0 + xfx(x) + yfy(y) + xyfxy|x(x) + xyfxy|y(y).
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Taking exterior derivatives gives

df =
(
fx(x) + x(fx)′(x) + yfxy|x(x) + xy

(
fxy|x

)′
(x) + yfxy|y(y)

)
dx

+
(
fy(y) + y(fy)′(y) + xfxy|y(y) + xy

(
fxy|y

)′
(y) + xfxy|x(x)

)
dy.

Before calculating vf , let us look at Lξf = df(ξ),

df(ξ) = xfx(x) + x2(fx)′(x) + xyfxy|x(x) + x2y
(
fxy|x

)′
(x) + xyfxy|y(y)

+ yfy(y) + y2(fy)′(y) + xyfxy|y(y) + xy2
(
fxy|y

)′
(y) + xyfxy|x(x).

As this function lies in IN , it follows that fx and fy must vanish. In terms of our expression
for f ,

vf =
(
yfxy|x(x) + xy

(
fxy|x

)′
(x) + yfxy|y(y)

)
∂y −

(
xfxy|y(y) + xy

(
fxy|y

)′
(y) + xfxy|x(x)

)
∂x.

Since XN (M) is generated by x∂x and y∂y, it follows that vf ∈ XN (M). We now turn to the
commutator [ξ, vf ]. Since ξ preserves IN , it also preserves IX(N) = INX(M). We may thus
disregard all terms which are multiples of xy and write

[ξ, vf ] ≡ y2
(
fxy|y

)′
(y)∂y − x2

(
fxy|x(x)

)′
∂x.

This is a multiple of ξ precisely when
(
fxy|y

)′
=

(
fxy|x

)′
= 0, that is, precisely when fxy|y

and fxy|x are constant. Thus, up to elements in the denominator, f takes the form

f = f0 + xyfxy

for arbitrary constants f0, fxy ∈ R. In particular, the reduced L∞-algebra is isomorphic to the
abelian Lie algebra R2.

4.3 Multicotangent bundles

As a precursor to the primary example of multiphase spaces, let us examine the intermediate
construction of multicotangent bundles.

Fix a manifold E. The n-th multicotangent bundle of E is the manifold ΛnT ∗E. As T ∗E
carries a canonical 1-form, so ΛnT ∗E carries a canonical n-form θ ∈ Ωn(ΛnT ∗E). Explicitly,

θη(v1, . . . , vn) = η(π∗v1, . . . , π∗vn),

where η ∈ ΛnT ∗E, v1, . . . , vn ∈ TηΛ
nT ∗E, and π : ΛnT ∗E → E is the projection. Local

coordinates (ei)i≤n on U ⊆ E, induce local coordinates
(
ei, p

I
)
on π∗U ⊆ ΛnT ∗E, where

I = 1 ≤ i1 < · · · < in ≤ n is a multiindex of length n, and where pI represents the coeffi-
cient of deI = dei1 ∧ · · · ∧ dein . In these terms,

θ =
∑
pI deI =

∑
pI dei1 ∧ · · · ∧ dein .

The canonical multisymplectic structure on ΛnT ∗E is ω = dθ. Note that any diffeomorphism ψ
of E naturally extends to a diffeomorphism Ψ =

(
ψ−1

)∗
of ΛnT ∗E. On the infinitesimal level,

this induces an inclusion of Lie algebras

X(E) ↪→ X(ΛnT ∗E),

v 7→ ṽ

called the prolongation map along π : ΛnT ∗E → E. From Ψ∗θ = θ for all diffeomorphisms
ψ : E → E, we easily derive Lṽθ = 0 for all vector fields v ∈ X(E), whence ιṽω + dιṽθ = 0 so
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that ṽ is a Hamiltonian vector field for ιṽθ ∈ Ωn−1(ΛnT ∗E). In particular, any smooth action
g ↷ E prolongs to a θ-preserving action g ↷ ΛnT ∗E and thus Lemma 2.15 provides a canonical
moment map µ ∈ Ωn−1(ΛnT ∗E, g∗) according to µξ = ιξθ.

From

α ∈ µ−1(0) ⇐⇒ ιgθα = 0 ⇐⇒ ιg
E
α = 0,

we obtain the 0-level set µ−1(0) ⊆ ΛnT ∗E as the annihilator

N = µ−1(0) =
{
α ∈ ΛnT ∗E | ιg

E
α = 0

}
.

Notwithstanding the apparent difficulty of computing the full reduced space of observables,
certain elements are always present.

Proposition 4.18. If v ∈ X(E) preserves Xg(E), then (ṽ, ιṽθ) ∈ Ham0
∞(ΛnT ∗E,ω) is reducible.

Proof. More formally, our condition on v is that [v,Xg(E)] ⊆ Xg(E). For the reducibility of
ṽ ∈ X(ΛnT ∗E), we must check two conditions.

First, we show that [ṽ, ξ] ∈ Xg(Λ
nT ∗E) + IX(N) for all ξ ∈ g. We will use the fact that [ṽ, ξ]

is the Hamiltonian vector field of ι[ṽ,ξ]θ, and that [ṽ, ξ] is the prolongation of the vector field

[v, ξ
E
] ∈ X(E). By hypothesis, [v, ξ

E
] =

∑
i fiζEi

for some fi ∈ C∞(E) and ζi ∈ g, from which
ι[ṽ,ξ]θ =

∑
fiιζ

i
θ. We have

d
(∑

fiιζ
i
θ
)
=

∑
fidιζiθi + dfi ∧ ιζiθ.

At every point x ∈ E, each term fidιζiθi is related by the injective map v 7→ ιvω to fiζi; while,
at every point x ∈ N = {x | ιζθ = 0 ∀ζ}, each term dfi∧ ιζiθ vanishes. Therefore, the injectivity
of v 7→ ιvω yields [ṽ, ξ] ∈ Xg(Λ

nT ∗E) + IX(N).
Second, we establish that ṽ is tangent to N . In fact, this is true even in the stronger sense

that the flow Ψt of ṽ preserves N , that is, that η ∈ N implies Ψt(η) ∈ N . We will show that
(ιζθ)Ψtη = 0 if and only if Ψ∗

t (ιζθ)η = 0. Since Ψt preserves θ this is equivalent to
(
ι(Ψt)∗ζθ

)
η
= 0.

Denote by ψ the flow of v on E and observe that θ depends only on (ψt)∗ζ = π∗(Ψt)∗ζ. Invoking
our hypothesis that [v,Xg(E)] ⊆ Xg(E), we note that ψt preserves Xg(E), and hence that
(ψt)∗ζπ(η) is a linear combination of fundamental vectors of g. This provides

(
ι(Ψt)∗ζθ

)
η
, from

which we obtain (ιζθ)Ψtη.
For the reducibility of ιṽθ, we require that ιξιṽθ ∈ IΩ(N) and that Lξιṽθ = [Lξ, ιṽ] θ =

ι[ξ,ṽ]θ ∈ IΩ(N) for all ξ ∈ g. The first containment is an immediate consequence of the equality

N =
{
α ∈ ΛnT ∗E | ιg

E
α = 0

}
. The second follows from this characterization of N and the

from the property that [ξ, ṽ] ∈ Xg(Λ
nT ∗E) + IX(N). ■

4.4 Multiphase spaces

We now consider multiphase spaces, arguably the foremost class of examples of multisymplec-
tic manifolds, playing an essential role in the covariant Hamiltonian description of first-order
classical field theories. See [36, 38] for a shorter exposition and [32, 33] for a comprehensive
treatment.

The multiphase space associated to a surjective submersion π : E → Σ is

Λn
1T

∗E = {η ∈ ΛnT ∗E | ιuιvη = 0 ∀u, v ∈ TvertE}.

Traditionally, we consider Σ to embody the independent variables of a classical field theory, and
the fiber directions of E the dependent variables.
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When the dimension of Σ is sufficiently great, Λn
1T

∗E is a multisymplectic submanifold of
ΛnT ∗E and inherits the constructions of Section 4.3.

We begin with the extension of vector fields. As it is not generally true that the prolongation
of v ∈ X(E) to ΛnT ∗E is tangent to Λn

1T
∗E, our first task is to identify those v ∈ X(E) that do

prolong to Λn
1T

∗E.

Lemma 4.19. If v ∈ X(E) is (E → Σ)-projectable, then the prolongation ṽ ∈ X(ΛnT ∗E) is
tangent to Λn

1T
∗E.

Proof. Suppose v ∈ X(E) projects along π : E → Σ to some w ∈ X(Σ). Then there are smooth
families of diffeomorphisms (Ψt)t and (ψt)t such that v = d

dtΨt|t=0, w = d
dtψt|t=0, and

π ◦Ψt = ψt ◦ π.

Since ṽ = d
dtΨ

∗
−t|t=0 it suffices to show that each Ψ∗

t preserves Λn
1T

∗E. To see this is so, fix
t ∈ R, put Ψ = Ψt, let α ∈ Λn

1T
∗E and u, u′ ∈ TvertE, and observe that

ιuιu′(Ψ∗α) = Ψ∗(ιΨ∗uιΨ∗u′α) = 0.

Note that the last equality follows as α ∈ Λn
1T

∗E, and as π∗Ψ∗u = ψ∗(π∗u) = 0 provides
Ψ∗u,Ψ∗u

′ ∈ TvertE. ■

Lemma 4.20. If v ∈ X(E) is (E → Σ)-projectable, then ṽ ∈ X
(
Λn
1T

∗E
)
is a Hamiltonian vector

field for ιṽθ ∈ Ωn−1
(
Λn
1T

∗E
)
.

Proof. This is a straightforward consequence of Lemma 4.19 and the expository review of
Section 4.3. ■

We now again turn our attention to the canonical moment map induced by θ = θ|Λn
1T

∗E ∈
Ωn(Λn

1T
∗E) for the action G ↷ Λn

1T
∗E lifted from G ↷ (E → Σ). If G ↷ Λn

1T
∗E lifts the

action G↷ (E → Σ), then it is easy to show that G preserves θ.

For the zero level set of the moment map, the same argument as with the multicotangent
bundles applies and we obtain

N = µ−1(0) =
{
α ∈ Λn

1T
∗E | ιg

E
α = 0

}
.

We thus arrive at a natural class of reducible observables on Λn
1T

∗E.

Theorem 4.21. If v ∈ X(E) preserves Xg(E), the C∞(E)-module generated by the fundamental
distribution g, and if v ∈ X(E) is (E → Σ)-projectable, then (ṽ, ιṽθ) ∈ Ham0

∞
(
Λn
1T

∗E,ω
)
is

reducible.

Proof. In light of Lemma 4.20, this follows by similar argument as Proposition 4.18. ■

4.5 2-dimensional scalar fields

Let us consider a concrete example of a multiphase space for a field theory with configuration
bundle E = R3 → Σ = R2 possessing two independent variables (σ1, σ2) and one dependent
variable q. In this setting, a general element of the multicotangent bundle Λ2T ∗E has the form

p dσ1 ∧ dσ2 + p1 dσ1 ∧ dq + p2 dσ2 ∧ dq

and we take
(
σ1, σ2, q, p, p

1, p2
)
as our preferred coordinates on Λ2T ∗E. The multiphase space

Λ2
1T

∗E in this setting is equal to the multicotangent bundle.
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The canonical 2-form on the multiphase space is given by

θ = pdσ1 ∧ dσ2 + p1dσ1dq + p2dσ2dq

and the multisymplectic form by ω = dθ.
Let us now fix an infinitesimal action by g = R on E, generated by the vector field v = (q)2∂q ∈

X(E). Via natural prolongation, this action induces a multisymplectic action on M = Λ2
1T

∗E,
given by V = (q)2∂q−2q

(
p1∂p1 +p

2∂p2
)
. By construction, θ is an invariant potential of ω, hence

it induces a covariant moment map.
Let us now apply the reduction procedure. Since g is one-dimensional and the action on M

is generated by V , we can set N = {x | (ιV θ)x = 0}. Since ιV θ = q2
(
p1dσ1 + p2dσ2

)
, this

means that N = {q = 0} ∪
{
p1 = p2 = 0

}
is the intersection of two vector spaces of unequal

dimensions. Let us describe the spaces relevant for reduction, where we use ⟨· · · ⟩ to denote the
C∞(M)-span of a collection of elements:

� IN =
〈
qp1qp2

〉
,

� XN (M) =
〈
q∂q, p

i∂pj , ∂σ1 , ∂σ2 , ∂p
〉
,

� IX(N) = IN · X(M),

� IΩ(N)1 = IN · ⟨dσ1, dσ2, dp⟩+
〈
p1, p2

〉
dq + q ·

〈
dp1,dp2

〉
.

Using this, we can try to determine the reduction. In degree 0, the reduction is given by
{f |LV (f)∈IN}

IN
. The condition in the numerator means that

q2
∂f

∂q
− qp1 ∂f

∂p1
− qp2∂f

∂q
∈ IN .(

To avoid possible confusion, note that here q2 denotes the square of q, rather than an index.
)

The second and third term are always in IN , so we can concentrate on the first one. There the
condition implies that f has to take the form

f = f0
(
σi, p

i, p
)
+ qp1f1 + qp2f2,

where f1, f2 are arbitrary functions and f0 is a function of σi, p
i, p. Since the second and third

term lie in the denominator, the reduction in degree 0 will be isomorphic to the space of possible
functions f0.

Even in this relatively elementary case, calculating the full reduction is very difficult. There
is, however, a class of observables for which the calculations are tractable: namely, 1-forms of
the type θ(v) for v ∈ X(E). All such forms are observables by the construction of the multiphase
space, and their Hamiltonian vector fields are prolongations w̃ ∈ X(M) of w. A general vector
field w on E has the form w = w1∂σ1 + w2∂σ2 + wq∂q for arbitrary functions w1, w2, wq of σ1,
σ2, q. Since the multiphase space here is equal to the multicotangent bundle, we need only to
check the condition [v, w] ∈ Xg(E). We obtain

[v, w] =
[
q2∂q, v

]
= q2

∂w1

∂q
∂σ1 +

∂w2

∂q
∂σ2 +

(
∂w1

∂q
− 2qwq

)
∂q.

For this to lie in Xg(E), w1, w2 must be independent of q and wq must be a multiple of q.
A lengthy calculation shows that an observable of the form (ιw̃θ, w̃) reduces to zero, if and only
if w1 = w2 = 0 and wq is a multiple of q2. So we have a subspace in the reduction that is
isomorphic to{

(ιw̃θ, w̃) | w = w1(σ1, σ2)∂σ1 + w2∂σ2(σ1, σ2) + qŵq(σ1, σ2)∂q
}
.
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5 Outlook

We briefly consider several natural directions in which to extend our research.

5.1 Interpretation in terms of the constraint algebraic formalism

One way to interpret the L∞ reduction scheme presented in this article, is by the constraint
triple formalism introduced in [25]. Recasting the above result in the setting of constraint triples
is part of the ongoing work [50], but we will outline the idea here: Heuristically, a constraint
triple is a triple of objects intended to describe subquotients, i.e., the quotient of a subspace of
some initial space. This is exactly what happens in Marsden–Weinstein–Meyer reduction, in the
setting of which a subset µ−1(0) ⊆ M is quotiented by the action of a Lie group. A constraint
algebra is a triple A = (At, An, A0), where At is an algebra, An a subalgebra and A0 an ideal
in An. The idea of the constraint triple approach is working with A instead of An

A0
in order to

avoid the appearance of singularities. The constraint formalism allows us to talk about constraint
modules, constraint derivations, constraint tensor products, constraint duals and so on. With
respect to this formalism, the above reduction procedure of L∞-algebras naturally appears as
the L∞-algebra associated to a constraint Lie–Rinehart algebra acting via Cartan calculus on
a constraint differential graded algebra of differential forms.

Going further, it would be interesting to apply a BFV-BRST-type formalism to resolve sin-
gular properties of the L∞-reduced observables. However, we expect such a procedure to be
combinatorially more intricate, since in our case already the unreduced space of observables is
graded and homotopical in nature.

5.2 Moduli spaces of flat connections

Let P →M be G-principal bundle over an (n+ 1)-dimensional compact manifold M admitting
a flat connection, let G = AdP be the gauge group, let A be the space of connections on P , let

N = {A ∈ A | FA = 0}

be the subspace of flat connections, and letM = N/G be the moduli space of flat connections.
Given any invariant polynomial q ∈ Sn+1(g∗)G, it is shown in [15, Section 10] that the assignment

ωq(v1, . . . , vn+1) 7→
∫
M
q(v1, . . . , vn+1), v1, . . . , vn+1 ∈ Ω1(M, adP ) ∼= TAA

defines a presymplectic form on A, where we identify X(A) with a space of suitably smooth
maps v : A → Ω1(M, adP ) as A is an Ω1(M, adP )-affine space, and moreover thatM arises as
the geometric multisymplectic reduction of G ↷ (N ⊆ A). This extends a classic observation
of Atiyah–Bott [7, Section 9] in the case in which M is a surface. In each case, the there is an
associated moment map derived from the curvature F : A → Ω2(M, adP ).

It would be interesting to rigorously adapt our framework to this infinite-dimensional setting.
In particular, it would be interesting to identify suitable analogues of the auxiliary spaces of
Section 3 and to examine the reduced L∞-algebra in particular examples.

5.3 Classical field theories

One of the original motivations behind the development of multisymplectic geometry was the
search for a rigorous mathematical framework for prequantum field theories. The driving prin-
ciple was to look for a suitable extension of the geometric mechanics’ framework, based on
symplectic geometry (see [1]), from point-like particles with a finite set of configuration coordi-
nates to systems with infinite denumerable degrees of freedom.



36 C. Blacker, A.M. Miti and L. Ryvkin

Cornerstones of the former are the philosophy of encoding phase spaces as cotangent bun-
dles of configuration manifolds and the fact that cotangent bundles are canonically symplectic.
Extending such ideas to classical field theories led to the introduction of multiphase spaces, as
touched on in Section 4.4.

At present, the application of recent developments in the theory of multisymplectic observ-
ables, moment maps, and reduction to its motivating subject of classical mechanics remains
broadly underdeveloped.

A natural next step that could follow from the present work would be to provide a more
explicit characterization of the reducible observables in the specific case of multiphase spaces.
In other terms, the latter would imply the displaying a multisymplectic analogue of the so-called
cotangent bundle reduction, see [46, 52]. Although it is essentially a matter of restricting general
constructions to a peculiar class, essentially comprising fibered spaces with an exact multisym-
plectic form as sketched in Sections 4.3 and 4.4, such results could foster new applications of
multisymplectic methods to the realm of the mathematical physics of continuous and field-like
systems.

However, it should be clear from the example given in Section 4.5 that carrying out all compu-
tations required to display all reducible observables explicitly is a daunting task. Accomplishing
this merely for the prototypical model of the free scalar field on the Minkowski space-time would
be a nontrivial result, particularly if it were to enable to retrieve geometrically the mechanical
momenta usually introduced through variational methods in the physics literature.

5.4 Quantization

In the symplectic setting, a quantization procedure is an assignment to certain symplectic man-
ifolds (M,ω), equipped with additional structure, of a Hilbert space H(M,ω). When (M,ω)
comes equipped with a compatible G-action, the H(M,ω) inherits the structure of a G-repre-
sentation.

Unsurprisingly, multisymplectic setting is more exotic. We refer to [57] for a general exposi-
tion and present below the prequantization construction of [29, 30].

Definition 5.1 ([29]). The cochain complex of sheaves

C∞(−;U(1))
dlog−−→ Ω1(−) d−→ Ω2(−) d−→ · · · → Ωn(−)→ Ωn+1(−)→ · · · ,

with C∞(−;U(1)) in degree 0, will be called the Deligne complex and will be denoted by the
symbol U(1)Del.

Definition 5.2 ([29]). The n-stack of principal U(1)-n-bundles (or (n− 1)-bundle gerbes) with
connection BnU(1)conn is the n-stack presented via the Dold–Kan construction to the presheaf
U(1)≤n

Del[n] regarded as a presheaf of chain complexes concentrated in nonnegative degree.

Definition 5.3 ([29]). Let (M,ω) be a pre-n-plectic manifold. A prequantization of (M,ω) is
a lift

M Ωn+1(−)cl.

BnU(1)conn

ω

F
∇

The key observation is that this prequantization construction is given purely in terms of
differential forms onM , a class of spaces for which we have just proposed a very general reduction
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scheme (see Remark 3.25). Consequently, given a subset N ⊆M and compatible action g ↷M ,
a candidate construction for a reduced prequantization that immediately suggests itself is the
termwise reduction Ω 7→ ΩN of the Deligne complex with respect to g ↷M along N.

Specializing to the 2-plectic setting, in [58] the prequantization of (M,ω) is realized in the
framework of bundle gerbes, and in [53] in terms of Courant algebroids. In each case, it would
be interesting to adapt our reduction apparatus to reduce these prequantizations along a subset
N ⊆ M by an action g ↷ (N ⊆ M). A rich field, further quantization schemes are proposed
by Barron and Seralejahi [10], Barron and Shafiee [11], Krepski and Vaughan [39], and by de
Bellis, Samann, and Szabo [22, 23].

Several natural questions arise. For example, it would be interesting to identify and investi-
gate a [Q,R] = 0 “quantization commutes with reduction” conjecture. Additionally, it is shown
in [29] that Ham∞(M,ω) is suitably equivalent to the infinitesimal symmetries of a prequantiza-
tion of (M,ω). It would be interesting to compare the reduction of a prequantization of (M,ω)
with the L∞-reduction of its space of infinitesimal symmetries Ham∞(M,ω).

A Brief survey of symplectic observable reduction

Fix a smooth manifold M and an arbitrary closed subset N ⊆ M . We often refer to N as
a constraint set since, in the context of time-evolving mechanical systems, it can be interpreted as
the subspace of the phase space consisting of Cauchy data admissible by the physical constraints.

A (constraints-based) reduction scheme of (M,ω) with respect to N is a procedure yielding
a symplectic structure on a certain smooth quotient of N (geometric reduction) or a certain
Poisson algebra (observable reduction). The latter could be eventually interpreted as represent-
ing the algebra of “smooth functions” over a certain topological space; however, it can happen
that the reduced Poisson algebra does not arise from a symplectic structure on the reduced
space. Hence, while a geometric reduction always implies an observable reduction, the converse
is not true in general.

Our main interest will be the reduction with respect to symmetries (i.e., symmetry-based).
In this case, we will be concerned with constraint sets induced by Hamiltonian group actions,
namely N = µ−1(0) with µ : M → g∗ a moment map associated to the action.

When µ−1(0) ⊆M is not a submanifold, or when the action G↷ µ−1(0) fails to be free and
proper, the reduced space (M0, ω0) prescribed by the Marsden–Weinstein reduction theorem
may not exist. One approach to addressing this pathology is to turn our attention from the
underlying symplectic space (M,ω) to the Poisson algebra of observables C∞(M,ω). As we
shall see, there are various natural constructions of a reduced space of observables even in the
absence of a reduced space of points. We will designate such constructions observable reduction
schemes.

This section reviews some well-known approaches to reduction in the symplectic (1-plectic)
setting, namely the Marsden–Weinstein [45], Śniatycki–Weinstein [66], Dirac [26], Arms–Cush-
man–Gotay [5], and Arms–Gotay–Jennings [6] reduction schemes.

Throughout this section, (M,ω) denotes a symplectic manifold and C∞(M,ω) the associ-
ated Poisson algebra, that is the (unital, associative, commutative) algebra of smooth func-
tions C∞(M) endowed with the Lie bracket {·, ·} given by

{f1, f2} = ω(vf1 , vf2) = Lvf1
(f2)

for any fi ∈ C∞(M) with associated Hamiltonian vector field vfi . We note that this bracket is
indeed Poisson: in addition to the Jacobi identity it satisfies the Leibniz rule,

{h, f1 f2} = {h, f1}f2 + f1{h, f2}

for all h, f1, f2 ∈ C∞(M).
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A.1 Reduction of symplectic manifolds

Before turning to observable reduction schemes, we first recall the original Marsden–Weinstein
reduction theorem for symplectic Hamiltonian actions [45].

Let G↷M be the action of a Lie group on a symplectic manifold (M,ω). We call this
a symplectic action when ω is preserved by G, and it is in this setting that the action may
additionally admit a moment map.

Definition A.1. A moment map for G↷(M,ω) is a smooth map µ : M → g∗ such that

(i) dµξ = −ιξω for all ξ ∈ g,

(ii) µ : M → g∗ is G-equivariant,

where µξ = ⟨µ, ξ⟩ is the contraction on g∗ ⊗ g and where G↷ g∗ is the coadjoint action.

By inverting the order of arguments, the moment map induces a Lie algebra homomorphism

µ̃ : g C∞(M,ω),

ξ µξ.

Thus, every moment map encodes a comoment map, defined as follows.

Definition A.2. A comoment map for G↷(M,ω) is a linear map µ̃ : g→ C∞(M,ω) satisfying

(i) d µ̃(ξ) = −ιξω,
(ii) µ̃([ξ, ζ]) = {µ̃(ξ), µ̃(ζ)}

for all ξ, ζ ∈ g.

Remark A.3. Condition (ii) of Definition A.1 expresses the equivariance of µ with respect to
G↷M and the coadjoint action G↷ g∗. This property implies that µ̃ is a Lie algebra homo-
morphism (condition (ii) of Definition A.2). The converse is true when G is a connected group.

Remark A.4 (comoment maps as lifts). An action admitting a moment map acts infinitesimally
by Hamiltonian vector fields. The comoment map assigns to each ξ ∈ g a Hamiltonian function
µξ ∈ C∞(M) associated to the fundamental field ξ. In this setting, G ↷ M is said to be
a Hamiltonian action.

More algebraically, µ̃ is a lift in the category of Lie algebras of the fundamental action ξ 7→ ξ
by the assignment of Hamiltonian vector fields f 7→ vf ,

g X(M)

C∞(M,ω)

ξ ξ

α

vα

µ̃

The Marsden–Weinstein symplectic reduction scheme is a rule that associates to each suitably
compatible

(i) symplectic Hamiltonian action G↷ (M,ω),

(ii) moment map µ : M → g∗, and

(iii) element λ ∈ g∗,

a reduced symplectic manifold (Mλ, ωλ).
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Theorem A.5 (Marsden–Weinstein symplectic reduction [45], see also [49]). Consider a sym-
plectic action on the symplectic manifold (M,ω), with moment map µ : M → g∗. Let λ ∈ g∗

be a regular value of µ, denote by N = µ−1(λ) the corresponding smoothly embedded level set.
Assume also the action of the isotropy subgroup Gλ restricted to N to be free and proper, denote
as Mλ = µ−1(λ)/Gλ the corresponding quotient manifold. Then there is a unique symplectic
form ωλ ∈ Ω2(Mλ) satisfying j∗ω = π∗ωλ, where j : µ

−1(λ) → M is the embedding of N in M
and π : µ−1(λ)→Mλ is the canonical quotient.

Definition A.6. The symplectic manifold (Mλ, ωλ) provided by Theorem A.5 is called the
Marsden–Weinstein symplectic reduction of (M,ω) with respect to the Hamiltonian action
G↷(M,ω).

Remark A.7. In rough strokes, the Marsden–Weinstein reduction is a two-step process:

(i) first, we restrict to a constraint set N ⊆M ,

(ii) then, we descend to the quotient N/G.

At each stage, we rely on the assumption that N ⊆M is a smoothly embedded submanifold.
Several alternative reduction procedures have been introduced to account for the less well-

behaved situation where N is not smooth but is, for example, the preimage of a singular value
of a moment map (hence the name singular reductions).

A.2 [ŚW] reduction

The Śniatycki–Weinstein reduction is a symmetry-based observable reduction scheme defined
for any singular constraint set [66].

Such a procedure is guaranteed to produce a reduced Poisson algebra out of the regular
Poisson structure naturally associated with the symplectic manifold on which the group acts.
Furthermore, in the case in which a geometric reduction does exist, such reduced Poisson al-
gebra coincides with the canonical Poisson structure associated with the geometrically reduced
symplectic manifold.

Let (M,ω) be a symplectic manifold and G a connected Lie group with Lie algebra g and
dual g∗. Consider a Hamiltonian action G↷(M,ω) with moment map µ : M → g∗.

The [ŚW] reduction procedure is based on the ideal generated by the momenta µξ introduced
in definition 4.6. We call N = µ−1(0) the constraints locus of the moment map µ. This is
a subset of M , in general not a smooth submanifold, defined as the zero-level set of all possible
momenta (regarded as constraints). In general, Iµ is included in the ideal IN ⊆ C∞(M) of
smooth functions vanishing along N , see Lemma A.18 below.

Lemma A.8. Iµ ⊆ C∞(M,ω) is a G-stable Poisson subalgebra.

Proof. Every element of Iµ is a linear combination of products fµξ for f ∈ C∞(M) and ξ ∈ g.
Two applications of the Leibniz rule yield

{fµξ, hµζ} = fh {µξ, µζ}+ q

for some q ∈ Iµ. Since the equivariance of µ is equivalent to the condition {µξ, µζ} = µ[ξ,ζ], see,
e.g., [19, Section 22.1], we conclude that the Poisson bracket lies in Iµ.

For x ∈M , we have

(g · µξ)(x) = µξ
(
g−1 · x

)
= µg−1·ξ(x),

where the second equality follows from the equivariance of µ. Therefore, G preserves Iµ. ■
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Remark A.9. Observe that the G-invariant Poisson subalgebra Iµ need not be a Lie algebra
ideal with respect to the Poisson bracket. On the other hand, if we restrict to the Poisson
subalgebra of G-invariant functions C∞(M)G, it follows that IGµ = Iµ ∩ C∞(M)G is a Poisson
ideal since{

µξi , h
}
= Lξih = 0 ∀h ∈ C∞(M)G.

From Lemma A.8, it follows that the action of G on C∞(M) induces an action on the quotient
algebra C∞(M)/Iµ such that the projection algebra morphism ρ : C∞(M) ↠ C∞(M)/Iµ is G-
equivariant.

Theorem A.10 (Śniatycki–Weinstein reduction [66]). Consider a Hamiltonian action on the
symplectic manifold (M,ω) and let µ : M → g∗ be the corresponding moment map. Denote
by N = µ−1(0) the constraint set given as the zero locus of the moment map. The space
of G-invariant elements of the quotient algebra C∞(M)/Iµ, denoted as

(
C∞(M)/Iµ

)G
, forms

a Poisson algebra together with the binary operator obtained by pushing forward the Poisson
structure of C∞(M,ω) by the canonical projection ρ : C∞(M,ω) → C∞(M)/Iµ. Furthermore,
we have an isomorphism of Poisson algebras2(

C∞(M)

Iµ

)G
∼=
N
(
Iµ
)

Iµ
,

where N
(
Iµ
)
is the Lie algebra normalizer of Iµ in C∞(M,ω), that is,

N
(
Iµ
)
=

{
f ∈ C∞(M) |

{
f, Iµ

}
⊆ Iµ

}
. (A.1)

Definition A.11. The Poisson algebra
(
C∞(M)/Iµ

)G
of Theorem A.10 is called the Śniatycki–

Weinstein reduction of C∞(M,ω) with respect to the Hamiltonian action G↷(M,ω).

Remark A.12 (observable reduction at nonzero orbits). In the case of the [MW] reduction,
the shifting trick of Guillemin and Sternberg [34] establishes the equivalence of the geometric
reduction at any λ ∈ g∗ with the reduction at 0 for a suitably modified symplectic Hamiltonian
action constructed out of the coadjoint orbit of λ. A similar equivalence has been extended
in [4] to the case of not necessarily free and proper actions. We thus restrict our attention to
the observable reduction at 0 ∈ g without loss of meaningful generality.

A.3 [D] reduction

The Dirac reduction is a constraints-based observable reduction scheme defined on singular
constraint sets satisfying a so-called first class condition.

Recall that we denote by FN the set of first class function (see Definition 4.3) Elements of
FN ∩ IN are called first class constraints; those constraints that not are first class are said to be
second class.

Definition A.13 (first class constraint set). A closed subset N ⊆ M is said to be a first class
set if every associated constraint is first class, i.e., if IN ⊆ FN .

According to the Dirac’s theory of constraints [26] (see also [63]), it is useful to consider
a certain subclass of well behaved functions.

2Observe that the quotient on the left-hand side is meant in the sense of associative algebras while the one on
the right-hand side is a quotient in the category of Lie algebras.
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Definition A.14 (Dirac observable). We call a function f ∈ C∞(M) a Dirac observable if
its Poisson bracket with any first class constraint vanishes on N . Formally, the set of Dirac
observables is

O(N) = {f ∈ C∞(M) | {f, FN ∩ IN} ⊆ IN}.

Remark A.15. In general, FN ⊆ O(N) and O(N) is not a Lie subalgebra of C∞(M). When N
is first class, O(N) = FN , in particular Dirac observables form a Poisson subalgebra of C∞(M).

Theorem A.16 (Dirac reduction, [26] and [6, Proposition 3.1]). Consider a first class constraint
set N . The quotient associative algebra O(N)/IN forms a Poisson algebra together with the
binary operator

{[h], [k]} = [{h, k}] ∀h, k ∈ O(N),

obtained by pushing-forward the Poisson structure of O(N) along the canonical projection

[ · ] : O(N)→ O(N)/IN .

Definition A.17. The Poisson algebra O(N)/IN obtained by Theorem A.16 is called the Dirac
reduction of C∞(M,ω) with respect to N .

Such a reduction can be interpreted geometrically regarding the above Poisson algebra as
the set of “smooth” functions on the reduced topological space N/∼, where q ∼ p if and only if
h(q) = h(p) for all Dirac observables h. That means that states q, p ∈ N are identified whenever
they cannot be distinguished by means of the measurable quantities of O(N).

Assume that N is the zero locus of a moment map µ associated to a certain group action
G↷M . We can consider at the same time the associative ideal generated by momenta Iµ =
⟨µξ⟩assoξ∈g and the ideal of vanishing functions on N . In general Iµ ̸= IN , more precisely we have
the following chain of inclusions.

Lemma A.18. Let µ : M → g∗ be a moment map for the symplectic action G↷(M,ω). Denote
by N = µ−1(0) the zero locus of the moment map and by Iµ and IN the ideals of Definitions 4.6
and 3.1 respectively. We have the following diagram in the category of vector spaces

IN

C∞(M)G ∩ Iµ Iµ FN ∩ IN O(N)

C∞(M)G N
(
Iµ
)

N (IN ) = FN

C∞(M,ω) C∞(M),

(asso.)
ideal

(Pois.) ideal

(Pois.)ideal

where solid (resp. dashed) arrows denote Poisson (resp. associative) algebra morphisms.

Proof. According to Lemma A.8, Iµ ⊆ C∞(M,ω) is a Poisson subalgebra. By the definition
of the normalizer, N

(
Iµ
)
is the largest Lie subalgebra of C∞(M,ω) such that Iµ ⊆ N

(
Iµ
)
is

a Lie algebra ideal. The Jacobi identity yields {FN , FN} ⊆ FN , from which it follows that FN

is a Poisson subalgebra. Similarly, FN ∩ IN is a Lie ideal in FN = N (IN ). The assumption
N = µ−1(0) provides that Iµ is a Poisson subalgebra of first order constraints. By construction,
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IN is an associative ideal and both FN and IN lie in O(N). The proof that Iµ ⊆ FN is an
inclusion of Poisson algebras can be found in [6, Proposition 5.1]. The property of C∞(M)G to
be a Lie subalgebra follows from the Jacobi identity for the Poisson bracket of C∞(M). The
commutation of the uppermost square is the trivial pullback given by the intersection operation
in the category of vector spaces. ■

We remark that some of the above inclusions are generally strict, for example, it is possible
that Iµ ̸= FN ∩ IN ̸= IN (see [6, Section 7]).

Proposition A.19 ([ŚW] vs. [D]). If the hypotheses of Theorems A.10 and A.16 hold, and if
Iµ = IN , then the Śniatycki–Weinstein and Dirac reduced Poisson algebras coincide.

Proof. Consider a Hamiltonian group action G↷(M,ω) with moment map µ. When N =
µ−1(0) is first class, the diagram of Lemma A.18 condenses to the following open square in the
category of Poisson algebras:

Iµ N
(
Iµ
) N

(
Iµ
)

Iµ

IN FN = O(N)
O(N)

IN
.

In light of the equality FN = N (IN ), the rows above are identical when Iµ = IN . ■

Remark A.20 (on the technical condition Iµ = IN ). As discussed in [66, Theorem 1] and [6,
Corollary 6.2], when 0 is a weakly regular point, the momentum ideal and the constraint ideal
with respect to N = µ−1(0) coincide. In particular, when N ⊆ M is a smoothly embedded
submanifold we have that Iµ = IN .

Understanding the relationship between IN and Iµ in general is a nontrivial problem in C∞

algebraic geometry. The special case of compact group actions is discussed in [6, Sections 5
and 6]. The case of free actions on paracompact manifolds is discussed in [65, Lemma 2].

A.4 [ACG] reduction

The Arms–Cushman–Gotay reduction is another symmetry-based observable reduction scheme
defined on singular constraint sets [5]. For any subset S ⊆ C∞(M), we denote by SG the
subspace of G-fixed elements.

Definition A.21. The Poisson algebra C∞(M)G/IGN is called the Arms–Cushman–Gotay re-
duction of C∞(M,ω) with respect to the Hamiltonian action G↷(M,ω).

Remark A.22. Despite introducing the ACG reduction exclusively in terms of observables, this
scheme also admits a suitable interpretation as a geometric reduction of the symplectic space.
Namely, the ACG reduction is isomorphic to the unique Poisson structure induced on the space
of smooth functions on the variety N/G, interpreting C∞(N/G) as in Remark 3.2, from C∞(M)
by the following commutative diagram of suitably smooth mappings:

N M

N/G M/G,
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see [5, Theorem 1] for further details. In the case of proper action, the latter Poisson structure is
proved to be non degenerate [5, Theorem 2]. Hence, according to this interpretation, the ACG
reduction scheme has been introduced as the universal symplectic reduction of the symplectic
manifold (M,ω).

Proposition A.23 ([ACG] vs. [ŚW], [6, Theorem 6.1]). Consider an Hamiltonian group action
G↷(M,ω). When IGµ

∼= IGN , there is a natural embedding of the ACG reduced Poisson algebra

into the SW reduction. When N
(
Iµ
) ∼= C∞(M)G+Iµ, there is a natural surjection from the ŚW

reduced Poisson algebra to the ACG reduction. If both conditions applies, the two reduced Poisson
algebras are isomorphic.

Proof. When we consider a Hamiltonian group action G↷(M,ω) and a constraint set N =
µ−1(0), i.e., when Theorem A.10 applies, we have the following commutative diagram in the
category of Poisson algebras, where the dashed arrows indicate morphisms of associative algebras
only,

Iµ C∞(M)
C∞(M)

Iµ

Iµ N
(
Iµ
) (

C∞(M)

Iµ

)G N (Iµ)

Iµ

IGµ C∞(M)G
C∞(M)G

IGµ

C∞(M)G + Iµ
Iµ

IGN C∞(M)G
C∞(M)G

IGN
.

(asso.) ideal

ρ

(Lie) ideal

ρ ∼

(Lie) ideal

⌝ ρ ∼

(Lie) ideal

ρ

The top two squares encode the definition of the [ŚW] reduced Poisson algebra and the observa-
tion that Iµ is a normal Lie subalgebra of ρ−1

[
(C∞(M)/Iµ)G

]
, where ρ is the canonical projection

on the quotient (see [66, Lemma 2] or Theorem A.10 above). The preimage

N
(
Iµ
)
=

{
f ∈ C∞(M) |

{
f, Iµ

}
⊆ Iµ

}
is the Lie algebra normalizer of Iµ in C∞(M,ω). We denoted by IGµ the intersection of the mo-

mentum ideal with the vector space of G-invariant smooth functions. Observe that C∞(M)G ⊆
N
(
Iµ
)
. The middle two squares encode the second isomorphism theorem for Lie algebras. Fi-

nally, the bottom two squares express the relation between the two quotients computed with
respect to an ideal I and a certain smaller ideal I ′ ⊆ I.

Overall, we end up with the following morphisms of Poisson algebras:

[ŚW]←↩ C
∞(M)G

IGµ
↠ [ACG],

where the left (resp. right) mapping is an isomorphism when N
(
Iµ
) ∼= C∞(M)G + Iµ (resp.

IGµ = IGN ). ■

Remark A.24. When the acting group G is compact, we can make use of the averaging trick
to conclude that

(
C∞(M)/Iµ

)G ∼= C∞(M)G/IGµ (see [6, Proposition 5.12] or [65, Proposition 5]
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for details) hence N
(
Iµ
)
= C∞(M)G+ Iµ and Proposition A.23 applies. In the case of compact

group action the ACG reduction coincide with the Arms–Gotay–Jennings reduction [6, Theo-
rem 6.1] with respect to the zero-level set of a moment map. The latter, in its more general
incarnation, is a purely constraints-based reduction scheme defined on singular sets that satisfy
mild technical conditions. For example, the constraint set N must be strongly isotropic and
locally conical (see [6, Section 3] for further details).

Remark A.25. In [65] can be found a more general account of symplectic observable reduction
schemes by framing them as two-steps procedures akin to the Marsden–Weinstein theorem. In
particular, taking N = µ−1(λ) for a possibly nonzero λ ∈ g∗, and denoting by Iµ the associative
ideal generated by {µξ − λ}ξ∈g, we obtain the commutative square

C∞(M)G

IGµ

(
C∞(M)

Iµ

)Gλ

C∞(M)G

IGN

(
C∞(M)

IN

)Gλ

,

where the solid (resp. dashed) arrows denote Poisson (resp. associative) morphisms, the top-
right node encodes the SW reduction, and the bottom-left node gives the ACG reduction (see
[65, Remarks 1 to 3 and equation (11)] for complete details).
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[27] Echeverŕıa-Enŕıquez A., Muñoz Lecanda M.C., Román-Roy N., Remarks on multisymplectic reduction, Rep.
Math. Phys. 81 (2018), 415–424, arXiv:1712.09901.

[28] Esposito C., Poisson reduction, in Geometric Methods in Physics, Trends Math., Birkhäuser, Cham, 2013,
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[49] Meyer K.R., Symmetries and integrals in mechanics, in Dynamical Systems (Proc. Sympos., Univ. Bahia,
Salvador, 1971), Academic Press, New York, 1973, 259–272.

[50] Miti A., Ryvkin L., Multisymplectic observable reduction from the viewpoint of constraint triples, in prepa-
ration.

[51] Ortega J.-P., Ratiu T.S., Momentum maps and Hamiltonian reduction, Progr. Math., Vol. 222, Birkhäuser,
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