|
SIGMA 21 (2025), 080, 19 pages arXiv:2504.08293
https://doi.org/10.3842/SIGMA.2025.080
Skew Plücker Relations
Kazuya Aokage a, Eriko Shinkawa b and Hiro-Fumi Yamada c
a) Department of Mathematics, National Institute of Technology, Ariake College, Fukuoka 836-8585, Japan
b) Mathematical Science Center for Co-creative Society, Tohoku University, Sendai 980-8577, Japan
c) Department of Mathematics, Rikkyo University, Tokyo 171-8501, Japan
Received April 14, 2025, in final form September 17, 2025; Published online September 30, 2025
Abstract
Schur functions satisfy the relative Plücker relations which describe the projective embedding of the flag varieties and the Hirota bilinear equations for the modified KP hierarchies. These relative Plücker relations are generalized to the skew Schur functions.
Key words: Plücker relations; skew Schur functions.
pdf (365 kb)
tex (15 kb)
References
- Aokage K., Shinkawa E., Yamada H.F., Pfaffian identities and Virasoro operators, Lett. Math. Phys. 110 (2020), 1381-1389.
- Aokage K., Shinkawa E., Yamada H.F., Virasoro action on the $Q$-functions, SIGMA 17 (2021), 089, 12 pages, arXiv:2106.04773.
- Aokage K., Shinkawa E., Yamada H.F., Differential Plücker relations, in preparation.
- Babelon O., Bernard D., Talon M., Introduction to classical integrable systems, Cambridge Monogr. Math. Phys., Cambridge University Press, Cambridge, 2003.
- Goulden I.P., Quadratic forms of skew Schur functions, European J. Combin. 9 (1988), 161-168.
- Griffiths P., Harris J., Principles of algebraic geometry, Wiley Classics Lib., John Wiley & Sons, New York, 1994.
- Harnad J., Balogh F., Tau functions and their applications, Cambridge Monogr. Math. Phys., Cambridge University Press, Cambridge, 2021.
- Macdonald I.G., Symmetric functions and Hall polynomials, 2nd ed., Oxford Math. Monogr., The Clarendon Press, New York, 1995.
- Ohta Y., Satsuma J., Takahashi D., Tokihiro T., An elementary introduction to Sato theory, Progr. Theoret. Phys. Suppl. 94 (1988), 210-241.
|
|