|
SIGMA 21 (2025), 082, 16 pages arXiv:2410.01765
https://doi.org/10.3842/SIGMA.2025.082
Killing Superalgebras in 2 Dimensions
Andrew D.K. Beckett
University of Edinburgh, UK
Received November 28, 2024, in final form September 15, 2025; Published online September 30, 2025
Abstract
We provide some examples of Killing superalgebras on 2-dimensional pseudo-Riemannian manifolds within the theoretical framework established in [SIGMA 21 (2025), 081, 61 pages]. We compute the Spencer cohomology group $\mathsf{H}^{2,2}(\mathfrak{s}_-;\mathfrak{s})$ and filtered deformations of the non-chiral flat model (Euclidean and Poincaré) superalgebra $\mathfrak{s}$ for various Dirac currents and show these arise as Killing superalgebras for (imaginary) geometric Killing and skew-Killing spinors in both Riemannian and Lorentzian signature.
Key words: Lie superalgebra; Killing superalgebra; Killing spinor; connection; superconnection; isometry; Spencer cohomology; filtration; deformation; homogeneous.
pdf (485 kb)
tex (30 kb)
References
- Alekseevsky D.V., Cortés V., Classification of $N$-(super)-extended Poincaré algebras and bilinear invariants of the spinor representation of ${\rm Spin}(p,q)$, Comm. Math. Phys. 183 (1997), 477-510, arXiv:math.RT/9511215.
- Beckett A., Generalised spencer cohomology and 5-dimensional supersymmetry, Master Thesis, University of Edinburgh, 2019, https://www.maths.ed.ac.uk/ jmf/SRG/papers/ABDiss.pdf.
- Beckett A., Spencer cohomology, supersymmetry and the structure of Killing superalgebras, Ph.D. Thesis, University of Edinburgh, 2024, https://doi.org/10.7488/era/4477.
- Beckett A., Killing (super)algebras associated to connections on spinors, SIGMA 21 (2025), 081, 61 pages, arXiv:2409.11306.
- Beckett A., Figueroa-O'Farrill J., Killing superalgebras for lorentzian five-manifolds, J. High Energy Phys. 2021 (2021), no. 7, 209, 40 pages, arXiv:2105.05775.
- Cheng S.-J., Kac V.G., Generalized Spencer cohomology and filtered deformations of $\mathbb{Z}$-graded Lie superalgebras, Adv. Theor. Math. Phys. 2 (1998), 1141-1182, arXiv:math.RT/9805039.
- Cortés V., Lazaroiu C., Shahbazi C.S., Spinors of real type as polyforms and the generalized Killing equation, Math. Z. 299 (2021), 1351-1419, arXiv:1911.08658.
- de Medeiros P., Figueroa-O'Farrill J., Santi A., Killing superalgebras for Lorentzian four-manifolds, J. High Energy Phys. 2016 (2016), no. 6, 106, 49 pages, arXiv:1605.00881.
- de Medeiros P., Figueroa-O'Farrill J., Santi A., Killing superalgebras for lorentzian six-manifolds, J. Geom. Phys. 132 (2018), 13-44, arXiv:1804.00319.
- Figueroa-O'Farrill J., A geometric construction of the exceptional Lie algebras $F_4$ and $E_8$, Comm. Math. Phys. 283 (2008), 663-674, arXiv:0706.2829.
- Figueroa-O'Farrill J., Hackett-Jones E., Moutsopoulos G., The Killing superalgebra of 10-dimensional supergravity backgrounds, Classical Quantum Gravity 24 (2007), 3291-3308, arXiv:hep-th/0703192.
- Figueroa-O'Farrill J., Santi A., Eleven-dimensional supergravity from filtered subdeformations of the Poincaré superalgebra, J. Phys. A 49 (2016), 295204, 7 pages, arXiv:1511.09264.
- Figueroa-O'Farrill J., Santi A., On the algebraic structure of Killing superalgebras, Adv. Theor. Math. Phys. 21 (2017), 1115-1160, arXiv:1608.05915.
- Figueroa-O'Farrill J., Santi A., Spencer cohomology and 11-dimensional supergravity, Comm. Math. Phys. 349 (2017), 627-660, arXiv:1511.08737.
- Habib G., Roth J., Skew Killing spinors, Cent. Eur. J. Math. 10 (2012), 844-856, arXiv:1110.2061.
- Hijazi O., A conformal lower bound for the smallest eigenvalue of the Dirac operator and Killing spinors, Comm. Math. Phys. 104 (1986), 151-162.
- Hijazi O., Spectral properties of the Dirac operator and geometrical structures, in Geometric Methods for Quantum Field Theory (Villa de Leyva, 1999), World Scientific Publishing, River Edge, NJ, 2001, 116-169.
- Kosmann Y., Dérivées de Lie des spineurs, Ann. Mat. Pura Appl. 91 (1972), 317-395.
- Lichnerowicz A., Spineurs harmoniques, C. R. Acad. Sci. Paris 257 (1963), 7-9.
- Lichnerowicz A., Spin manifolds, Killing spinors and universality of the Hijazi inequality, Lett. Math. Phys. 13 (1987), 331-344.
- Rademacher H.-B., Generalized Killing spinors with imaginary Killing function and conformal Killing fields, in Global Differential Geometry and Global Analysis (Berlin, 1990), Lecture Notes in Math., Vol. 1481, Springer, Berlin, 1991, 192-198.
- Santi A., Remarks on highly supersymmetric backgrounds of 11-dimensional supergravity, in Geometry, Lie Theory and Applications -- the Abel Symposium 2019, Abel Symp., Vol. 16, Springer, Cham, 2022, 253-277, arXiv:1912.10688.
- Strathdee J., Extended Poincaré supersymmetry, Internat. J. Modern Phys. A 2 (1987), 273-300.
- Van Proeyen A., Tools for supersymmetry, Ann. U. Craiova Phys. 9 (1999), 1-48, arXiv:hep-th/9910030.
|
|