Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 21 (2025), 083, 19 pages      arXiv:2410.14068      https://doi.org/10.3842/SIGMA.2025.083

$q$-Hypergeometric Orthogonal Polynomials with $q=-1$

Luis Verde-Star
Department of Mathematics, Universidad Autónoma Metropolitana, Iztapalapa, Mexico City, Mexico

Received October 31, 2024, in final form September 18, 2025; Published online October 02, 2025

Abstract
We obtain some properties of a class $\mathcal{A}$ of $q$-hypergeometric orthogonal polynomials with $q=-1$, described by a uniform parametrization of the recurrence coefficients. We construct a class $\mathcal{C}$ of complementary $-1$ polynomials by means of the Darboux transformation with a shift. We show that our classes contain the Bannai-Ito polynomials and their complementary polynomials and other known $-1$ polynomials. We introduce some new examples of $-1$ polynomials and also obtain matrix realizations of the Bannai-Ito algebra.

Key words: hypergeometric orthogonal polynomials; recurrence coefficients; $-1$ orthogonal polynomials; Bannai-Ito polynomials; Bannai-Ito algebra.

pdf (392 kb)   tex (24 kb)  

References

  1. Brown G.M.F., Totally bipartite/abipartite Leonard pairs and Leonard triples of Bannai/Ito type, Electron. J. Linear Algebra 26 (2013), 258-299, arXiv:1112.4577.
  2. Bueno M.I., Marcellán F., Darboux transformation and perturbation of linear functionals, Linear Algebra Appl. 384 (2004), 215-242.
  3. Chihara T.S., An introduction to orthogonal polynomials, Math. Appl., Vol. 13, Gordon and Breach Science Publishers, New York, 1978.
  4. Cohl H.S., Costas-Santos R.S., Orthogonality of the big $-1$ Jacobi polynomials for non-standard parameters, in Applications and $q$-Extensions of Hypergeometric Functions, Contemp. Math., Vol. 819, American Mathematical Society, Providence, RI, 2025, 221-231, arXiv:2308.13583.
  5. Genest V.X., Vinet L., Yu G.-F., Zhedanov A., Supersymmetry of the quantum rotor, in Frontiers in Orthogonal Polynomials and $q$-Series, Contemp. Math. Appl. Monogr. Expo. Lect. Notes, Vol. 1, World Scientific Publishing, Hackensack, NJ, 2018, 291-305, arXiv:1607.06967.
  6. Genest V.X., Vinet L., Zhedanov A., Bispectrality of the complementary Bannai-Ito polynomials, SIGMA 9 (2013), 018, 20 pages, arXiv:1211.2461.
  7. Genest V.X., Vinet L., Zhedanov A., The non-symmetric Wilson polynomials are the Bannai-Ito polynomials, Proc. Amer. Math. Soc. 144 (2016), 5217-5226, arXiv:1507.02995.
  8. Geronimus J., The orthogonality of some systems of polynomials, Duke Math. J. 14 (1947), 503-510.
  9. Koekoek R., Lesky P.A., Swarttouw R.F., Hypergeometric orthogonal polynomials and their $q$-analogues, Springer Monogr. Math., Springer, Berlin, 2010.
  10. Koornwinder T.H., Charting the $q$-Askey scheme, in Hypergeometry, Integrability and Lie Theory, Contemp. Math., Vol. 780, American Mathematical Society, Providence, RI, 2022, 79-94, arXiv:2108.03858.
  11. Koornwinder T.H., Charting the $q$-Askey scheme. II. The $q$-Zhedanov scheme, Indag. Math. (N.S.) 34 (2023), 317-337, Errarum, Indag. Math. (N.S.) 34 (2023), 1419-1420.
  12. Koornwinder T.H., Charting the $q$-Askey scheme. III. Verde-Star scheme for $q=1$, in Orthogonal Polynomials and Special Functions, Coimbra Math. Texts, Vol. 3, Springer, Cham, 2024, 107-123, arXiv:2307.06668.
  13. Nikiforov A.F., Suslov S.K., Uvarov V.B., Classical orthogonal polynomials of a discrete variable, Springer Ser. Comput. Phys., Springer, Berlin, 1991.
  14. Pelletier J., Vinet L., Zhedanov A., Continuous $-1$ hypergeometric orthogonal polynomials, Stud. Appl. Math. 153 (2024), e12728, 41 pages, arXiv:2209.10727.
  15. Terwilliger P., Two linear transformations each tridiagonal with respect to an eigenbasis of the other, Linear Algebra Appl. 330 (2001), 149-203, arXiv:math.RA/0406555.
  16. Terwilliger P., Two linear transformations each tridiagonal with respect to an eigenbasis of the other; comments on the parameter array, Des. Codes Cryptogr. 34 (2005), 307-332, arXiv:math.RA/0306291.
  17. Terwilliger P., Two linear transformations each tridiagonal with respect to an eigenbasis of the other; the TD-D canonical form and the LB-UB canonical form, J. Algebra 291 (2005), 1-45, arXiv:math.RA/0304077.
  18. Tsujimoto S., Vinet L., Yu G.-F., Zhedanov A., Symmetric abstract hypergeometric polynomials, J. Math. Anal. Appl. 458 (2018), 742-754, arXiv:1701.04179.
  19. Tsujimoto S., Vinet L., Zhedanov A., Dunkl shift operators and Bannai-Ito polynomials, Adv. Math. 229 (2012), 2123-2158, arXiv:1106.3512.
  20. Tsujimoto S., Vinet L., Zhedanov A., Dual $-1$ Hahn polynomials: ''classical'' polynomials beyond the Leonard duality, Proc. Amer. Math. Soc. 141 (2013), 959-970, arXiv:1108.0132.
  21. Verde-Star L., Characterization and construction of classical orthogonal polynomials using a matrix approach, Linear Algebra Appl. 438 (2013), 3635-3648.
  22. Verde-Star L., Recurrence coefficients and difference equations of classical discrete orthogonal and $q$-orthogonal polynomial sequences, Linear Algebra Appl. 440 (2014), 293-306.
  23. Verde-Star L., Polynomial sequences generated by infinite Hessenberg matrices, Spec. Matrices 5 (2017), 64-72.
  24. Verde-Star L., A unified construction of all the hypergeometric and basic hypergeometric families of orthogonal polynomial sequences, Linear Algebra Appl. 627 (2021), 242-274, arXiv:2002.07932.
  25. Verde-Star L., Discrete orthogonality of the polynomial sequences in the $q$-Askey scheme, in Applications and $q$-extensions of Hypergeometric Functions, Contemp. Math., Vol. 819, American Mathematical Society, Providence, RI, 2025, 269-287, arXiv:2210.13731.
  26. Vinet L., Zhedanov A., A ''missing'' family of classical orthogonal polynomials, J. Phys. A 44 (2011), 085201, 16 pages, arXiv:1011.1669.
  27. Vinet L., Zhedanov A., A limit $q=-1$ for the big $q$-Jacobi polynomials, Trans. Amer. Math. Soc. 364 (2012), 5491-5507, arXiv:1011.1429.
  28. Vinet L., Zhedanov A., Hypergeometric orthogonal polynomials with respect to Newtonian bases, SIGMA 12 (2016), 048, 14 pages, arXiv:1602.02724.

Previous article  Next article  Contents of Volume 21 (2025)