Surveys in Mathematics and its Applications


ISSN 1842-6298 (electronic), 1843-7265 (print)
Volume 7 (2012), 125 -- 136

STUDY ABOUT INCLUSION RELATIONSHIPS AND INTEGRAL PRESERVING PROPERTIES

Imran Faisal and Maslina Darus

Abstract. The object of the present paper is to investigate a family of integral operators defined on the space of meromorphic functions. By making use of these novel integral operators, we introduce and investigate several new subclasses of starlike, convex, close-to-convex, and quasi-convex meromorphic functions. In particular, we establish some inclusion relationships associated with the aforementioned integral operators. Several interesting integral-preserving properties are also considered.

2010 Mathematics Subject Classification: 30C45.
Keywords: Meromorphic functions; Meromorphic starlike functions; Meromorphic convex functions; Integral operators; Integral-preserving properties.

Full text

References

  1. H.S. Al-Amiri, On Ruscheweyh derivatives, Ann. Polon. Math. 38(1980), 88--94. MR0595351. Zbl 0452.30008.

  2. M.K. Aouf and H.M. Hossen, New criteria for meromorphic p-valent starlike functions, Tsukuba J. Math. 17(1993), 481--486. MR1255485. Zbl 0804.30012.

  3. N.E. Cho, O.S. Kwon and H.M. Srivastava, Inclusion and argument properties for certain subclasses of meromorphic functions associated with a family of multiplier transformations, J. Math. Anal. Appl. 300(2004), 505--520. MR2100067. Zbl 1058.30012.

  4. N.E. Cho, O.S. Kwon and H.M. Srivastava, Inclusion relationships for certain subclasses of meromorphic functions associted with a family of multiplier transformations, Integral Transforms Special Functions, 16(18)(2005), 647--659. MR2184272. Zbl 1096.30008.

  5. P.L. Duren, Univalent Functions, Grundlehren der Mathematischen Wissenschaften, Band 259, Springer-Verlag, New York. (1983). MR0708494. Zbl 0514.30001.

  6. R.M. El-Ashwah and M.K. Aouf, Differential Subordination and Superordination on p-Valent Meromorphic Functions Defined by Extended Multiplier Transformations, European J. pure Appl. Math. 6(3)(2010), 1070--1085. MR2749552. Zbl 1213.30022.

  7. J.L. Liu, Note on Ruscheweyh derivatives, J. Math. Anal. Appl. 199(1996), 936--940. MR1386614. Zbl 0858.30019.

  8. S.K. Lee and S.B. Joshi, A certain class of analytic functions defined by Ruscheweyh derivatives, Commun. Korean Math. Soc. 14(1999), 147--156. MR1674828.

  9. J.L. Liu and S. Owa, On certain meromorphic p-valent functions, Taiwanese J. Math. 2(1)(1998) 107--110. MR1609488. Zbl 0909.30012.

  10. J.L. Liu and H.M. Srivastava, Subclasses of meromorphiclly multivalent functions associated with certain linear operator, Math. Comput. Modelling 39(1)(2004), 35--44. MR2032906. Zbl 1049.30009.

  11. S.S. Miller, Differential inequalities and Carathodory function, Bull. Amer. Math. Soc. 8(1975), 79--81. MR0355056.

  12. S.S. Miller and P.T. Mocanu, Second differential inequalities in the complex plane, J. Math. Anal. Appl., 65(1978), 289--305. MR0506307. Zbl 0367.34005.

  13. H.M. Srivastava and J. Patel, Applications of differential subordination to certain classes of meromorphicaly multivalent functions, J. Ineq. Pure Appl. Math. 6(3) Art. 88, pp.15. (2005). MR2164329.

  14. H.M. Srivastava and S. Owa (Eds.), Current Topics in Analytic Function Theory, World Scientific, Singapore, (1992). MR1232424.

  15. H.M. Srivastava and S. Owa, Some characterization and distortion theorems involving fractional calculus, generalized hypergeometric functions, Hadamard products, linear operators, and certain subclasses of analytic functions, Nagoya Math. J. 106(1987), 1--28. MR0894409. Zbl 0607.30014.

  16. S. Ruscheweyh, New criteria for univalent functions, Proc. Amer. Math. Soc. 49(1975), 109--115. MR0367176. Zbl 0303.30006.

  17. B.A. Uralegaddi and C. Somanatha, New criteria for memorphic starlike univalent functions, Bull. Austral. Math. Soc. 43 (1991), 137--140. MR1086726.



Imran Faisal Maslina Darus
School of Mathematical Sciences, School of Mathematical Sciences,
Faculty of Science and Technology, Faculty of Science and Technology,
Universiti Kebangsaan Malaysia, Universiti Kebangsaan Malaysia,
Bangi 43600 Selangor D. Ehsan, Bangi 43600 Selangor D. Ehsan,
Malaysia. Malaysia.
e-mail: faisalmath@gmail.com e-mail: maslina@ukm.my


http://www.utgjiu.ro/math/sma