Surveys in Mathematics and its Applications
ISSN 1842-6298 (electronic), 1843-7265 (print)
Volume 14 (2019), 307 -- 325
This work is licensed under a Creative Commons Attribution 4.0 International License.NONLOCAL FRACTIONAL DIFFERENTIAL INCLUSIONS WITH IMPULSES AT VARIABLE TIMES
Abdelghani Ouahab and Sarah Seghiri
Abstract. In this paper, we study the existence of mild solutions for a fractional semi-linear differential inclusions posed in a Banach space with nonlocal conditions and impulses at variable times. The main existence result is obtained by using fractional calculus, measure of noncompactness, and multivalued fixed point theory. We study also the topological properties of the solution set.
2010 Mathematics Subject Classification: 47H10; 26A33; 34A60; 34B37; 14F45.
Keywords: Fixed point theorems; Fractional derivatives; Differential inclusions; Boundary value problems with impulses; Topological properties.
References
A. Ambrosetti, Un teorema di esistenza per le equazioni differenziali negli spazi di Banach (Italian), Rend. Sem. Mat. Univ. Padova 39 (1967), 349--361. MR0222426. Zbl 0174.46001.
N. Aronszajn, Le correspondant topologique de l'unicité dans la théorie des équations differentielles (French) Ann. of Math. (2) 43 (1942), 730--738. MR0007195. Zbl 0061.17106
R. P. Agarwal, M. Benchohra and B.A. Slimani, Existence results for differential equations with fractional order and impulses, Mem. Differential Equations Math. Phys. 44 (2008), 1--21. MR2527032. Zbl 1178.26006.
E. Ait Dads, M. Benchohra, and S. Hamani, Impulsive fractional differential inclusions involving the Caputo fractional derivative, Fract. Calc. Appl. Anal. 12 (2009), no. 1, 15--38. MR2494428. Zbl 1179.26012.
J.P. Aubin, H. Frankowska, Set-Valued Analysis, Reprint of the 1990 edition. Modern Birkhäuser Classics. Birkh?user Boston, Inc., Boston, MA, 2009. MR2458436. Zbl 1168.49014.
S. Aizicovici, Y. Gao, Functional-differential equations with nonlocal initial conditions, J. Appl. Math. Stochastic Anal. 10 (1997), no. 2, 145--156. MR1453467. Zbl 0883.34065.
S. Aizicovici, H. Lee, Nonlinear nonlocal Cauchy problems in Banach spaces, Appl. Math. Lett. 18 (2005), no. 4, 401--407. MR2124297. Zbl 1084.34002.
I. Bajo and E. Liz, Periodic boundary value problem for first order differential equations with impulses at variable times, J. Math. Anal. Appl. 204 (1996), no. 1, 65--73. MR1418522. Zbl 0876.34020.
J. Banas and K. Goebel, Measure of Noncompactness in Banach Spaces, Lect. Notes Pure Appl. Math., vol. 60. Dekker, New York, 1980. MR0591679. Zbl 0441.47056.
A. Belarbi and M. Benchohra, Existence theory for perturbed impulsive hyperbolic differential inclusions with variable times, J. Math. Anal. Appl. 327 (2007), no. 2, 1116--1129. MR2279992. Zbl 1122.35148.
M. Benchohra, F. Berhoun and J.J. Nieto, Fractional differential inclusions with impulses at variable times, Adv. Dyn. Syst. Appl. 7 (2012), no. 1, 1--15. MR2911988.
M. Benchohra, J.R. Graef, S.K. Ntouyas and A. Ouahab, Upper and lower solutions method for impulsive differential inclusions with nonlinear boundary conditions and variable times, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal. 12 (2005), no. 3-4, 383--396. MR2127026. Zbl 1085.34007.
M. Benchohra and B.A. Slimani, Existence and uniqueness of solutions to impulsive fractional differential equations, Electron. J. Differential Equations 2009, No. 10, 11 pp. MR2471119. Zbl 1178.34004.
H. Brezis, Functional analysis, Sobolev Spaces and Partial Differential Equations, Springer, 2011. MR2759829. Zbl 1220.46002.
L. Byszewski, Theorems about the existence and uniqueness of solutions of a semilinear evolution nonlocal Cauchy problem, J. Math. Anal. Appl. 162 (1991), no. 2, 494--505. MR1137634. Zbl 0748.34040.
L. Byszewski and V. Lakshmikantham, Theorem about the existence and uniqueness of a solution of a nonlocal abstract Cauchy problem in a Banach space, Appl. Anal. 40 (1991), no. 1, 11--19. MR1121321. Zbl 0694.34001.
T. Cardinali and P. Rubbioni, Impulsive mild solution for semilinear differential inclusions with nonlocal conditions in Banach spaces, Nonlinear Anal. 75 (2012), no. 2, 871--879. MR2847463. Zbl 1252.34068.
K. Deimling, Multivalued Differential Equations, De Gruyter Series in Nonlinear Analysis and Applications, 1. Walter de Gruyter & Co., Berlin, 1992. MR1189795. Zbl 0559.47040.
S. Djebali, L. Górniewicz and A. Ouahab, Solution Sets for Differential Equations and Inclusions, De Gruyter Series in Nonlinear Analysis and Applications, 18 Walter de Gruyter & Co., Berlin, 2013. MR2987468. Zbl 1258.34002.
M.M. El-Borai, Some probability densities and fundamental solutions of fractional evolution equations, Chaos Solitons Fractals 14 (2002), no. 3, 433--440. MR1903295. Zbl 1005.34051.
Z. Fan and G. Li, Existence results for semilinear differential equations with nonlocal and impulsive conditions, J. Funct. Anal. 258 (2010), no. 5, 1709--1727. MR2566317. Zbl 1193.35099.
A. Halanay and D. Wexler, Teoria calitativa a sistemelor cu impulsuri, Editura Republicii Socialiste Romania, Bucuresti, 1968.
H.P. Heinz, On the behaviour of measures of noncompactness with respect to differentiation and integration of vector-valued functions, Nonlinear Anal. TMA 7 (1983) 1351-1371. MR2726478. Zbl 0528.47046.
R. Hilfer, Applications of Fractional Calculus in Physics, World Scientific Publishing Co., Inc., River Edge, NJ, Singapore, 2000. MR1890104. Zbl 0998.26002.
S. Hu and N. S. Papageorgiou, On the topological regularity of the solution set of differential inclusions with constraints, J. Differential Equations 107 (1994), no. 2, 280--289. MR1264523. Zbl 0796.34017.
S. Hu and N. Papageorgiou, Handbook of Multivalued Analysis, Vol. I. Theory. Mathematics and its Applications, 419 Kluwer Academic Publishers, Dordrecht, (1997). MR1485775. Zbl 0887.47001.
S. Ji and G. Li, Solutions to nonlocal fractional differential equations using a noncompact semigroup, Electron. J. Differential Equations (2013), No. 240, 14 pp. MR3138815. Zbl 1295.34010.
M. Kamenskii, V. Obukhovskii and P. Zecca, Condensing Multivalued Maps and Semilinear Differential Inclusions in Banach Spaces, De Gruyter Series in Nonlinear Analysis and Applications, vol. 7 de Gruyter, Berlin (2001). MR1831201. Zbl 0988.34001.
A.A. Kilbas, H.M. Srivastava and J.J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, 204 Elsevier Science B.V., Amsterdam, (2006). MR2218073. Zbl 1092.450031.
A. Lasota and Z. Opial, An application of the Kakutani-Ky Fan theorem in the theory of ordinary differential equations, Bull. Acad. Pol. Sci., Sér. Sci. Math. Astron. Phys. 13 (1965), 781-786. MR2196178. Zbl 0151.10703.
V. Lakshmikantham and A.S. Vatsala, Basic theory of fractional differential equations, Nonlinear Anal. 69 (2008), no. 8, 2677--2682. MR2446361. Zbl 1161.340013.
T. Lian, C. Xue and S. Deng, Mild solutions to fractional differential inclusions with nonlocal conditions, Bound. Value Probl. 2016, Paper No. 219, 16 pp. MR3581676. Zbl 1361.35197.
J. Liang, J. Liu and T. Xiao, Nonlocal Cauchy problems governed by compact operator families, Nonlinear Anal. 57 (2004), no. 2, 183--189. RM2056425. Zbl 1083.34045
V.D. Milman and A.A. Myshkis, On the stability of motion in the presence of impulses (Russian), Sibirsk. Mat. Z. 1 (1960), 233--237 MR0126028. Zbl 1358.34022.
K.B. Oldham and J. Spanier, The Fractional Calculus. Theory and applications of differentiation and integration to arbitrary order, With an annotated chronological bibliography by Bertram Ross. Mathematics in Science and Engineering, Vol. 111 Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers], New York-London, 1974. MR0361633. Zbl 0292.26011.
S. Plaskacz, Periodic solutions of differential inclusions on compact subsets of ℝn, J. Math. Anal. Appl., 148 (1990), 202--212. MR1052055. Zbl 0705.34040.
I. Podlubny, Fractional differential equations. An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, Mathematics in Science and Engineering, 198 Academic Press, Inc., San Diego, CA, 1999. MR1658022. Zbl 0924.34008.
R. Skiba, Fixed points of multivalued weighted maps, Lecture Notes in Nonlinear Analysis, 9 Juliusz Schauder Center for Nonlinear Studies, Toruń, 2007. MR2361669. Zbl 1129.54029.
J. Wang and Y. Zhou, Existence and controllability results for fractional semilinear differential inclusions, Nonlinear Anal. Real World Appl. 12 (2011), no. 6, 3642--3653. MR2361669. Zbl 1231.34108.
Y. Zhou and L. Peng, Topological properties of solution sets for partial functional evolution inclusions, C. R. Math. Acad. Sci. Paris 355 (2017), no. 1, 45--64. MR3590286. Zbl 1418.341401.
Abdelghani Ouahab
Department of Mathematics and Informatics,
The African University Ahmed Draia of Adrar,
Adrar, Algeria.
e-mail: agh_ouahab@univ-adrar.dz
and
Laboratory of Mathematics,
Sidi-Bel-Abbès University,
PoBox 89, 22000 Sidi-Bel-Abbès, Algeria.
Sarah Seghiri
Departement of Mathematics,
Normal High School,
B.P N 92, Vieux Kouba, Algiers,
Algeria.
e-mail: saramer29@live.com
and
Laboratory of Fixed Point Theory and Its Applications,
Normal High School,
B.P N 92, Vieux Kouba, Algiers,
Algeria.