Surveys in Mathematics and its Applications


ISSN 1842-6298 (electronic), 1843-7265 (print)
Volume 15 (2020), 459 -- 470

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

ON SOME SPECIAL CURVES IN LORENTZ-MINKOWSKI PLANE

Ali Uçum, Kazım İlarslan and Ivaïlo M. Mladenov

Abstract. Here we consider the plane curves whose curvature κ depends on the distance from the origin in Lorentz-Minkowski plane 𝔼12. We obtain their explicit parameterizations in the cases when the plane curves have curvatures which are linear or quadratic functions of the distance of their points from the origin in 𝔼12 up to a real positive multiplier σ ∈ ℝ+.
We have derived also the algebraic equations which are uniformized by these parameterziations.

2020 Mathematics Subject Classification: 53C40; 53C50
Keywords: Curvature, plane curves, Lorentz-Minkowski plane

Full text

References

  1. M. Berger and B. Gostiaux, Differential Geometry\rm : Manifolds, Curves and Surfaces, Springer, New York 1988. MR0917479(88h:53001). Zbl 0629.53001.

  2. I. Castro, I. Castro-Infantes, and J. Castro-Infantes, Curves in the Lorentz-Minkowski Plane\rm: Elasticae, Catenaries and Grim-Reapers, Open Math 16 (2018), 747-766, doi: 10.1515/math-2018-0069 MR3830191. Zbl 1426.53019.

  3. I. Castro, I. Castro-Infantes, and J. Castro-Infantes, Curves in Lorentz-Minkowski Plane with Curvature Depending on their Position, arXiv:1806.09187v1 [math.DG].

  4. M. Hadzhilazova and I. Mladenov, On Bernoulli's Lemniscate and Co-Lemniscate, Comptes rendus de l'Academie bulgare des Sciences 63(2010), 843-848. MR2683035. Zbl 1224.14005.

  5. K. Ilarslan, A. Ucum and I.M. Mladenov Sturmian Spirals in Lorentz-Minkowski Plane, J. Geom. Symmetry Phys. 37 (2015), 25-42, doi:10.7546/jgsp-37-2015-25-42. MR3362494. Zbl 1320.53018.

  6. K. \.Ilarslan, Some Special Curves on Non-Euclidian Manifolds, PhD Thesis, Graduate School of Natural and Applied Sciences, Ankara University 2002.

  7. W. Kuhnel, Differential Geometry: Curves-Surfaces-Manifolds, Braunschweig, Wiesbaden, 1999. MR1713517(2000h:53001). Zbl 1381.53001.

  8. R. Lopez, Differential Geometry of Curves and Surfaces in Lorentz-Minkowski Space, Int. Electron. J. Geom. 1(2014), 44-107. MR3198740. Zbl 1312.53022.

  9. I. Mladenov, M. Hadzhilazova, The Many Faces of Elastica, Springer, Cham 2017. MR3699576. Zbl 1398.53008.

  10. I. Mladenov, M. Hadzhilazova, P. Djondjorov and V. Vassilev, On the Plane Curves whose Curvature Depends on the Distance from the Origin, AIP Conf. Proc. 1307 (2010), 112-118 MR2767994(2012m:53003). Zbl1260.53012.

  11. I. Mladenov, M. Hadzhilazova, P. Djondjorov and V. Vassilev, On the Generalized Sturmian Spirals, Comptes Rendus de l'Academie Bulgare des Sciences 64(2011), 633-640. MR2866201(2012i:53006). Zbl 1290.53004.

  12. B. O'Neill, Semi-Riemannian Geometry with Applications to Relativity, Academic Press, New York 1983. MR0719023(85f:53002). Zbl 0531.53051.

  13. A. Singer, Curves Whose Curvature Depends on Distance From the Origin, Am. Math. Montly 106(1999), 835-541. MR1732664(2000j:53005). Zbl 1037.53500.

  14. A. Ucum, K. Ilarslan and I.M. Mladenov, Elastic Sturmian Spirals in the Lorentz-Minkowski Plane, Open Math 14 (2016), 1149--1156, doi:10.1515/math-2016-0103. MR3592619. Zbl 1356.53020.



Ali Uçum
Kırıkkale University, Faculty of Sciences and Arts
Department of Mathematics,
Kırıkkale, Turkey.
e-mail: aliucum05@gmail.com


Kazım İlarslan
Kırıkkale University, Faculty of Sciences and Arts
Department of Mathematics,
Kirıkkale, Turkey.
e-mail: kilarslan@yahoo.com


Ivaïlo M. Mladenov
Institute of Biophysics & Biomedical Engineering
Bulgarian Academy of Sciences, Sofia, Bulgaria.
e-mail: mladenov@bio21.bas.bg


http://www.utgjiu.ro/math/sma