Surveys in Mathematics and its Applications
ISSN 1842-6298 (electronic), 1843-7265 (print)
Volume 15 (2020), 473 -- 523
This work is licensed under a Creative Commons Attribution 4.0 International License.A BRIEF SURVEY ON THE GENERALIZED LEBESGUE-RAMANUJAN-NAGELL EQUATION
Maohua Le and Gökhan Soydan
Abstract. The generalized Lebesgue-Ramanujan-Nagell equation is an important type of polynomial-exponential Diophantine equation in number theory. In this survey, the recent results and some unsolved problems of this equation are given.
2020 Mathematics Subject Classification: 11D61
Keywords: polynomial-exponential Diophantine equation; generalized Lebesgue-Ramanujan-Nagell equation
References
M. Abouzaid. Les nombres de Lucas et Lehmer sans diviseur primitif. J. Théorie Nombres Bordeaux, 18(2), (2006), 299-313. MR2289425. Zbl 1139.11011.
F. S. Abu Muriefah. On the Diophantine equation px2+3n=yp. Tamkang J. Math., 31(1), (2000), 79-84. MR1746091. Zbl 0995.11026.
F. S. Abu Muriefah. On the Diophantine equation Ax2+22m=yn. Int. J. Math. Math. Sci., 25(6), (2001), 373-381. MR1812404. Zbl 0981.11010.
F. S Abu Muriefah. On the Diophantine equation d1x2+4d2=yn. Arab. J. Math. Sci., 12(1), (2006), 1-6. MR2349525. Zbl 1243.11044.
F. S. Abu Muriefah. On the Diophantine equation x2+52k=yn. Demonstr. Math., 39(2), (2006), 285-289. MR2245727. Zbl 1100.11013.
F. S. Abu Muriefah. On the Diophantine equation px2+q2m=yp. J. Number Theory, 128(6),(2008), 1670-1675. MR2419187. Zbl 1165.11033.
F.S. Abu Muriefah, S. A. Arif. The Diophantine equation x2+52k+1=yn. Indian J. Pure Appl. Math., 30(3), (1999), 229-231. MR1686079. Zbl 0940.11017.
F. S. Abu Muriefah, A. Al-Rashed. On the Diophantine equation x2-4pm=yn. Arab. J. Math. Sci., 18(2), (2012), 97-103. MR2922671. Zbl 1271.11036.
F. S. Abu Muriefah, Y. Bugeaud. The Diophantine equation x2+C=yn: a brief overview. Rev. Colomb. Math., 40(1), (2006), 31-37. MR2286850. Zbl 1189.11019.
F. S. Abu Muriefah, F. Luca, S. Siksek, Sz. Tengely. On the Diophantine equation x2+C=2yn. Int. J. Number Theory, 5(6), (2009), 1117-1128. MR2569748. Zbl 1233.11037.
F. S. Abu Muriefah, F. Luca, A. Togbé. On the Diophantine equation x2+5a13b=yn. Glasgow Math. J., 50(1), (2008), 175-181. MR2381741 Zbl 1186.11016.
N. C. Ankeny, S. Chowla. On the divisiblity of the class number of quadratic fields. Pacific J. Math., 5(2), (1955), 321-324. MR0085301. Zbl 0065.02402.
R. Apéry. Sur une équation diophantienne. C. R. Acad. Sci. Paris Ser. A, 251, (1960), 1451-1452. MR0120194. Zbl 0093.04703.
S. A. Arif, F. S. Abu Muriefah. On the Diophantine equation x2+2k=yn. Int. J. Math. Math. Sci., 20(5), (1997), 299-304. MR1444731. Zbl 0881.11038.
S. A. Arif, F. S. Abu Muriefah. The Diophantine equation x2+3m=yn. Int. J. Math. Math. Sci., 21(9), (1998), 619-620. MR1620327. Zbl 0905.11017.
S. A. Arif, F. S. Abu Muriefah. The Diophantine equation x2+q2k=yn. Arab. J. Sci. Eng. Sect., A Sci., 26(1), (2001) 53-62. MR1829921.
S. A. Arif, F. S.Abu Muriefah. On the Diophantine equation x2+q2k+1=yn. J. Number Theory, 95(1), (2002), 95-100. MR1916082. Zbl 1037.11021.
S. A. Arif, S. A. Al-Ali. On the Diophantine equation ax2+bm=4yn. Acta Arith., 103(4), (2002), 343-346. MR1904929. Zbl 1009.11024.
S. A. Arif, S. A. Al-Ali. On the Diophantine equation x2+p2k+1=4yn. Int. J. Math. Math. Sci., 31(11), (2002), 695-699. MR1928911. Zbl 1064.11029.
A. Baker. Linear forms in the logarithms of algebraic numbers I. Mathematika, 13(2), (1966), 204-216. MR0220680. Zbl 0161.05201.
A. Baker. Transcendental number theory. Cambridge Univ. Press, Cambridge (1975) MR0422171. Zbl 0297.10013.
A. Baker, D. M. Masser. Transcendence theory: advances and applications. Academic Press, London (1977). Zbl 0357.00010
C. F. Barros. On the Lebesgue-Nagell equation and related subjects, PhD thesis, Warwick Univ. (2010)
M. Bauer, M. A. Bennett. Application of the hypergeometric method to the generalized Ramanujan-Nagell equation. Ramanujan J., 6(2), (2002), 209-270. MR1908198. Zbl 1010.11020.
M. Bauer, M. A. Bennett. Squares from sums of fixed powers. Glas. Math., III Ser., 50(2), (2015), 279-288. MR3437491. Zbl 1371.11080.
E. A. Bender, N. P. Herzberg. Some Diophantine equations related to quadratic form ax2+by2, in: G.-C. Rota (ed.) et al., Studies in algebra and number theory. Academic Press, San Diego, (1979), 219-272. MR0535767. Zbl 0451.10010.
M. A. Bennett. Powers in recurrence sequences: Pell equation. Trans. Amer. Math. Soc., 357(4), (2005), 1675-1691. MR2115381. Zbl 1125.11019.
M. A. Bennett, M. Filaseta, O. Trifonov. Yet another generalization of the Ramanujan-Nagell equation. Acta Arith., 134(3), (2008), 211-217. MR2438846. Zbl 1177.11030.
M. A. Bennett, C. M. Skinner. Ternary Diophantine equations via Galois representations and modular forms. Canad. J. Math., 56(1), (2004), 23-54. MR2031121. Zbl 1053.11025.
A. Bérczes, I. Pink. On the Diophantine equation x2+p2k=yn. Arch. Math. (Basel), 91(4), (2008), 505-517. MR2465869. Zbl 1175.11018.
A. Bérczes, I. Pink. On the Diophantine equation x2+d2l+1=yn. Glasgow Math. J., 54(3), (2012), 415-428. MR2911379. Zbl 1266.11059
A. Bérczes, I. Pink. On generalized Lebesgue-Ramanujan-Nagell equations. An. St. Univ. Ovidius Constanta, 22(1), (2014), 51-71. MR3187736. Zbl 1340.11039.
F. Beukers. The multiplicity of binary recurrences. Compos. Math., 40(2), (1980), 251-267. MR0563543. Zbl 0396.10005.
F. Beukers. On the generalized Ramanujan-Nagell equation I. Acta Arith., 38(3), (1980/1981), 389-410. MR0621008. Zbl 0371.10014.
F. Beukers. On the generalized Ramanujan-Nagell equation II. Acta Arith., 39(1), (1981), 113-123. MR0639621. Zbl 0377.10012.
Y. F. Bilu. On Le's and Bugeaud's papers about the equation ax2+b2m-1=4cp. Monatsh. Math., 137(1), (2002), 1-3. MR1930991. Zbl 1012.11023.
Y. F. Bilu, G. Hanrot, P. M. Voutier. Existence of primitive divisors of Lucas and Lehmer numbers (with an appendix by M. Mignotte). J. Reine Angew. Math., 539, (2001), 75-122. MR1863855. Zbl 0995.11010.
A. Bremner, R. Calderbank, P. Hanlon, P. Morton, J. Wolfskill. Two weight ternary codes and the equation y2=4dot 3a+13. J. Number Theory, 16(2), (1983), 212-234. MR0698166. Zbl 0517.94012.
Y. Bugeaud. On the Diophantine equation x2-pm=± yn. Acta Arith., 80(3), (1997), 213-223. MR1451409. Zbl 0877.11022.
Y. Bugeaud. On the Diophantine equation x2-2m=± yn. Proc. Amer. Math. Soc., 125(11), (1997), 3203-3208. MR1422850. Zbl 0893.11012.
Y. Bugeaud. On the exponential Diophantine equations. Monatsh. Math., 132(1), (2001), 93-97. MR1838399. Zbl 1014.11023.
Y. Bugeaud. Linear forms in logarithms and applications. European Math. Soc., Zürich (2018). MR3791777. Zbl 1394.11001.
Y. Bugeaud, M. Mignotte, S. Siksek. Classical and modular approaches to exponential Diophantine equations, I: Fibonacci and Lucas perfect powers. Ann. Math., 163(3), (2006), 969-1018. MR2215137. Zbl 1113.11021.
Y. Bugeaud, M. Mignotte, S. Siksek. Classical and modular approaches to exponential Diophantine equations, II: The Lebesgue-Nagell equation. Compos. Math., 142(1), (2006), 31-62. MR2196761. Zbl 1128.11013.
Y. Bugeaud, T. N. Shorey. On the number of solutions of the generalized Ramanujan-Nagell equation. J. Reine Angew. Math., 539, (2001), 55-74. MR1863854. Zbl 0995.11027.
R. Calderbank. On uniformly packer [n,n-k,4] codes over GF(q) and a class of caps in PG(k-1,q). J. London Math. Soc., 26(2), (1982), 365-384. MR0675179. Zbl 0545.94014.
I. N. Cangul., M. Demirci, I. Inam, F. Luca, G. Soydan. On the Diophantine equation x2+2a3b11c=yn. Math. Slovaca, 63(3), (2013), 647-659. MR3071982. Zbl 1349.11069.
I. N. Cangul., M. Demirci, F. Luca, Á. Pintér, G. Soydan. On the Diophantine equation x2+2a11b=yn. Fibonacci Quart., 48(1), (2010), 39-46. MR2663418. Zbl 1219.11056.
I. N. Cangul, M. Demirci, G. Soydan, N. Tzanakis. On the Diophantine equation x2+5a11b=yn. Funct. Approx., 43(2), (2010), 209-225. MR2767170. Zbl 1237.11019.
I. N. Cangul, G. Soydan, Y. Simsek. On the Diophantine equation x2+112k=yn. in: T.F. Simos (ed.) et al., Numerical analysis and applied mathematics, New York: AIP Conf. Proc., 1168, (2009), 275-277. Zbl 1229.11054.
Z.-F. Cao. On the Diophantine equation 7x2+1=yp, xy≠ 0. J. Southwest China Normal Univ. Nat. Sci., 20(2), (1985), 69-73 . (in Chinese)
Z.-F. Cao. On the Diophantine equation x2n-Dy2=1. Proc. Amer. Math. Soc., 98(1), (1986), 11-16. MR0848864. Zbl 0596.10016.
Z.-F. Cao. On the Diophantine equation Cx2+2mD=yn. Chinese Sci. Bull., 37(22), (1992), 2106 . (in Chinese)
Z.-F. Cao. On the Diophantine equation Cx2+22mD=kn. Chinese Math. Ann., 15A(2), (1994), 235-240. (in Chinese) MR1298937. Zbl 0809.11018.
Z.-F. Cao. On the divisibility of class numbers of imaginary quadratic fields. Acta Math. Sinica, Chinese Ser., 37 (1), (1994), 50-56. (in Chinese) MR1272504. Zbl 0791.11057.
Z.-F. Cao. Diophantine equations and divisibility of class numbers of real quadratic fields. Acta Math. Sinica, Chinese Ser., 37(5), (1994), 625-631. (in Chinese) MR1311520. Zbl 0823.11061.
Z.-F. Cao. On the Diophantine equation xp+22m=py2. Proc. Amer. Math. Soc., 128(7), (2000), 1927-1931. MR1694856. Zbl 1050.11037.
Z.-F. Cao. The divisibility of class numbers of imaginary quadratic fields. Chinese Math. Ann., Ser. A,25(3), (2004), 397-406. (in Chinese) MR2081181. Zbl 1062.11069.
Z.-F. Cao, C. L. Chu, W. C. Chiu. The exponential Diophantine equation AX2+BY2=λ kz. Taiwanese J. Math., 12(5), (2008), 1015-1034. MR2431876. Zbl 1162.11019.
Z.-F. Cao, X.-L. Dong. On the Diophantine equation Ax2+B=yn. Chinese Sci. Bull., 43(7), (1998), 783. (in Chinese)
Z.-F. Cao, X.-L. Dong. Diophantine equations and class numbers of imaginary quadraic fields. Discuss Math. Gen. Algebra Appl., 20(2), (2000), 199-206. MR1815104. Zbl 0979.11020.
Z.-F. Cao, X.-L. Dong. The Diophantine equation x2+by=cz. Proc. Japan Acad. Ser.A, 77(1), (2001), 1-4. MR1812738. Zbl 0987.11020.
Z.-F. Cao, X.-L. Dong. A new conjecture concerning the Diophantine equation x2+by=cz. Proc. Japan Acad. Ser.A, 78(10), (2002), 199-202. MR1950170. Zbl 1093.11022.
E. Catalan. Note extraite d'une lettre adressée à l'éditeur. J. Reine Angew. Math., 27, (1844), 192. Zbl 027.0790cj.
S. Cenberci, H. Senay. The Diophantine equation x2+qm=pn. Int. J. Contemp. Math. Sci., 4(21-24), (2009), 1181-1191. MR2603650. Zbl 1205.11041.
H.-Y. Chen. A conjecture concerning the generalized Ramanujan-Nagell equation. J. Math. Wuhan, 30(3), (2010), 567-570. (in Chinese) MR2677455.
J.-R. Chen. On Jesmanowicz' conjecture. J. Sichuan Univ. Nat. Sci., 8(2), (1962), 19-25. (in Chinese)
K.-Y. Chen. The exponential Diophantine equation x2+(3a2+1)m=(4a2+1)n. J. Wenzhou Univ. Nat. Sci., 29(1), (2008), 32-36. (in Chinese)
K.-Y. Chen. Terai's conjecture on Pythagorean numbers. J. Wenzhou Univ. Nat. Sci., 30(6), (2009), 1-7. (in Chinese)
X.-G. Chen, Y.-D. Guo, M.-H. Le. The number of solutions of the generalized Ramanujan-Nagell equation x2+D=kn. Acta Math. Sinica, Chinese Ser., 41(6), (1998), 1249-1254. (in Chinese) MR1685439. Zbl 1005.11010.
X.-G. Chen, M.-H. Le. On the number of solutions of the generalized Ramanujan-Nagell equation x2-D=kn. Publ. Math. Debrecen, 49(1-2), (1996), 85-92. MR1416308. Zbl 0887.11017.
X.-G. Chen, M.-H. Le. A note on Terai's conjecture concerning Pythagorean numbers. Proc. Japan Acad. Ser. A, 74(5), (1998), 80-81. MR1645049. Zbl 0919.11026.
M. Cipu. A bound for the solutions of the Diophantine equation D1x2+D2m=4yn. Proc. Japan Acad. Ser. A, 78(10), (2002), 179-180. MR1950165. Zbl 1028.11018.
M. Cipu. Complete solution of the Diophantine equation xy+yx=zz. Czech. Math. J., 69(2), (2019), 479-484. MR3959960. Zbl 07088800.
E. L. Cohen. On the Ramanujan-Nagell equation and its generalizations, in: Number theory. Bannf, AB, de Gruyter, Berlin, (1990), 81-92. MR1106652. Zbl 0695.10015.
H. Cohen. Number Theory, Vol.II. Analytic and modern tools. Springer, New York (2007) MR2312338. Zbl 1119.11002.
J. H. E. Cohn. Lucas and Fibonacci numbers and some Diophantine equations. Proc. Glasgow Math. Assoc., 7(1), (1965), 24-28. MR0177944. Zbl 0127.01902.
J. H. E. Cohn. The Diophantine equation x3=Ny2± 1. Quart. J. Math. Oxford, 42(1), (1991), 27-30. MR1094339. Zbl 0722.11019.
J. H. E. Cohn. The Diophantine equation x2+2k=yn. Arch. Math. (Basel), 59(4), (1992), 341-344. MR1179459. Zbl 0770.11019.
J. H. E. Cohn. The Diophantine equation x2+C=yn. Acta Arith., 65(3), (1993), 367-381. MR1259344. Zbl 0795.11016.
J. H. E. Cohn. The Diophantine equation x2+2k=yn II. Int. J. Math. Math. Sci., 22(3), (1999), 459-462. MR1717165. Zbl 0960.11025.
J. H. E. Cohn. The Diophantine equation (an-1)(bn-1)=x2. Period. Math. Hung., 44(2), (2002), 169-175. MR1918683. Zbl 1012.11024.
J. H. E. Cohn. The Diophantine equation x2+C=yn II. Acta Arith., 109(2), 2003), 205-206. MR1980647. Zbl 1058.11024.
J. H. E. Cohn. The Diophantine equation xn=Dy2+1. Acta Arith., 106(1), (2003), 73-83. MR1956976. Zbl 1028.11017.
J. H. E. Cohn. The Diophantine equation Dx2+22m+1=yn. Colloq. Math., 98(2), (2003), 147-154. MR2033103. Zbl 1053.11030.
J. H. E. Cohn. The Diophantine equation xp+1=py2. Proc. Amer. Math. Soc., 131(1), (2003), 13-15. MR1929016. Zbl 1050.11038.
M. J. Cowles. On the divisibility of the class number of imaginary quadratic fields. J. Number Theory, 12(2), (1980), 113-115. MR0566877. Zbl 0427.12001.
A. D\kabrowski. On the Lebesgue-Nagell equation. Colloq. Math., 125(2), (2011), 245-253. MR2871317. Zbl 1260.11020.
M.-J. Deng. A note on the Diophantine equation x2+qm=c2n. Proc. Japan Acad. Ser. A, 91(2), (2015), 15-18. MR3310965. Zbl 1395.11061.
M.-J. Deng, J. Guo, A.-J. Xu. A note on the Diophantine equation x2+(2c-1)m=cn. Bull. Aust. Math. Soc., 98(2), (2018), 188-195. MR3849578. Zbl 06945095.
X.-L. Dong, Z.-F. Cao. Diophantine equations and class numbers of real quadratic fields. Acta Arith., 97(4), (2001), 313-328. MR1823550. Zbl 1014.11069.
X.-L. Dong, Z.-F. Cao. A new and brief proof of the divisibility of class numbers of a kind of imaginary quadratic fields. J. Heilongjiang Univ. Nat. Sci., 18(1), (2001), 8-11,16. (in Chinese) MR1839270. Zbl 1076.11514.
X.-L. Dong, Z.-F. Cao. Generalization of a Diophantine equation in difference sets. J. Heilongjiang Univ. Nat. Sci., 19(2), (2002), 1-4. (in Chinese) MR1934716. Zbl 1076.11509.
X.-Y. Du. On the exponential Diophantine equation xy+yx=zz. Czech. Math. J. 67(3),(2017), 645-653. MR3697908. Zbl 06770122.
Y. Deng, W.-P. Zhang. On the odd prime solutions of the Diophantine equation xy+yx=zz. Abstract Appl. Anal. Article ID 186416, (2014), 4 pages. MR3240527. Zbl 07021895.
G. Faltings. Diophantine equations. in: B. Engquist (ed.) et al., Mathematics unlimited-2001 and beyond, Springer, Berlin, (2001), 449-454. MR1852170. Zbl 1008.11008.
G. Frey. Links between stable elliptic curves and certain Diophantine equations. Ann. Univ. Saraviensis, Ser. Math., 1, (1986), 1-40. MR0853387. Zbl 0586.10010.
R.-Q. Fu, H. Yang. On the solvability of the generalized Ramanujan-Nagell equation x2+(2k-1)m=kn. J. Xiamen Univ. Nat. Sci., 56(1), (2017), 102-105. (in Chinese) MR3643600. Zbl 1389.11086.
Y.-H. Gao. The solution of two type Diophantine equations with the form x2+C=yn. Master's thesis, Nanjing: Nanjing Univ. (2011). (in Chinese)
H. Godinho, D. Marques, A. Togbé. On the Diophantine equation x2+2α 5β 17γ=yn. Commun. Math., 20(2), (2012), 81-88. MR3032806. Zbl 1332.11041.
H. Godinho, D. Marques, A. Togbé. On the Diophantine equation x2+C=yn, C=2a3b17c and C=2a13b17c. Math. Slovaca, 66(3), (2016), 1-10. MR3543720. Zbl 1389.11087.
E. G. Goedhart, H. G. Grundman. On the Diophantine NX2+2L3M=YN. J. Number Theory, 141(2), (2014), 214-224. MR3195397. Zbl 1309.11027.
E. G. Goedhart, H. G. Grundman. Diophantine approximation and the equation (a2cxk-1)(b2cyk-1)=(abczk-1)2. J. Number Theory, 154(1), (2015), 74-81. MR3339565. Zbl 1360.11059.
E. Goins, F. Luca, A. Togbé. On the Diophantine x2+2α 5β 13γ=yn. in: A. J. van der Poorten (ed.) et al., Algorithmic number theory, Springer, Berlin, (2008),430-442. MR2467863. Zbl 1232.11130.
R. Goormaghtigh. L'intermédiaire des Mathématiciens. 24(1), (1917), 88.
D. Goss. Note on ``On the Diophantine equation px2+q2m=yp." J. Number Theory, 130(10), (2010), 2393. MR2660900. Zbl 1211.11044.
S. Gou, T.-T. Wang. The Diophantine equation x2+2a17b=yn. Czech. Math. J., 62(3), (2012), 645-654. MR2984625. Zbl 1265.11062.
B. H. Gross, D. E. Rohrlich. Some results on the Mordell-Weil group of the Jacobian of the Fermat curve. Invent. Math., 44(2), (1978), 201-224. MR0491708. Zbl 0369.14011.
L.-C. Gu. On the Diophantine equation x2+by=cz. J. Shaoxing Univ., 23(7), (2003), 21-24. (in Chinese)
W.-J., Guan. A note on Terai's conjecture. J. Inner Mongolia Normal Univ. Nat. Sci., 41(3), (2012), 247-249. (in Chinese) MR2978749.
X.-G., Guan. An exponential hyperelliptic equation concerning difference sets. J. Zhoukou Normal Univ., 31(5), (2014), 14-1 . (in Chinese)
K. Gueth, L. Szalay. The Diophantine equation 2n± 3dot 2m+9=x2. Acta Math. Univ. Comen. New Ser., 87(2), (2018), 199-204. MR3847350. Zbl 06924531.
X.-Y. Guo. A note on the Diophantine equation (an-1)(bn-1)=x2. Period. Math. Hung., 66(1), (2013), 87-93. MR3018202. Zbl 1274.11089.
Y.-D. Guo, M.-H. Le. A note on the exponential Diophantine equation x2-2m=yn. Proc. Amer. Math. Soc., 123(12), (1995), 3627-3629. MR1291786. Zbl 0852.11016.
R. K. Guy. Unsolved problems in number theory. third edition, Science Press, Beijing (2007) MR2076335. Zbl 1058.11001.
L. Hajdu, L. Szalay. On the Diophantine equation (2n-1)(6n-1)=x2 and (an-1)(akn-1)=x2. Period. Math. Hung., 40(2), (2000), 141-145. MR1805312. Zbl 0973.11015.
B. He. A remark on the Diophantine equation (x3-1)/(x-1)=(yn-1)/(y-1). Glas. Math., III Ser., 44(1), (2009), 1-6. MR2525653. Zbl 1222.11047.
B. He, A. Togbé. A remark on the generalized Ramanujan-Nagell equation x2-D=kn. Ann. Sci. Math. Quèbec, 33(2), (2009), 165-169. MR2729808. Zbl 1215.11034.
G.-R. He. A note on the Diophantine equation (am-1)(bn-1)=x2. Pure and Appl. Math., 27(5), (2011), 581-585. MR2906439. Zbl 1249.11056.
G.-R. He. The Diophantine equation x2+Uny=Vnz concerning Pell numbers. J. Inner Mongolia Normal Univ., Nat. Sci., 40(3), (2011), 235-238. (in Chinese) MR2849439.
Y.-F. He. On the exponential Diophantine equation x2=D2m-Dmpn+p2n. J. Math. Wuhan, to appear (2018). (in Chinese)
Y.-F. He, Q. Tian. A condition for the integer solutions of the exponential Diophantine equation x2=22a+2p2m-2a+2pm+n+1. J. Heilongjiang Univ. Nat. Sci., 31(1), (2014), 57-60. (in Chinese) Zbl 1313.11065.
E. Herrmann, I. Járási, A. Peth\Ho. Note on J.H.E. Cohn's paper ``The Diophantine equation xn=Dy2+1''. Acta Arith., 113(1), (2004), 69-76. MR2046969. Zbl 1046.11016.
C. Heuberger, M.-H. Le. On the generalized Ramanujan-Nagell equation x2+D=pz. J. Number Theory, 78(3), (1999), 312-331. MR1713461. Zbl 0971.11018.
J.-Y. Hu, X.-X. Li. All solutions of the Diophantine equation x2+2m=yn. Math. Pract. Theory, 45(24), (2015), 291-296. (in Chinese) MR3497853. Zbl 1349.11075.
J.-Y. Hu, X.-X. Li. On the generalized Ramanujan-nagell equation x2+qm=cn with qr+1=2c2. Bull. Math. Soc. Sci. Math. Roum. Nouv. Sér., 60 (108)(3), (2017), 257-265. MR3701888. Zbl 1399.11100.
J.-Y. Hu, H. Zhang. A conjecture concerning primitive Pythagorean triple. Int. J. Appl. Math. Stat., 52(7), (2014), 38-42. MR3256466. Zbl 1339.11048.
Y.-Z. Hu. On the exponential Diophantine equation x2+(3a2-1)y=(4a2-1)z. J. Math. Res. Expos., 27(2), (2007), 235-240. Zbl 1131.11328.
Y.-Z. Hu. A note on the exponential Diophantine equation x2+Dm=pn. J. Foshan Univ. Nat. Sci., 25(3), (2007), 6-10. (in Chinese) Zbl 1131.11332.
Y.-Z. Hu. On the exponential Diophantine equation x2+3m=yn. J. Foshan Univ. Nat. Sci., 26(3), (2008), 3-5. (in Chinese)
Y.-Z. Hu. A note on the Diophantine equation x2+by=cz. Adv. Math. Beijing, 38(4), (2009), 449-452. (in Chinese) MR2599059.
Y.-Z. Hu, M.-H. Le. A note on the Diophantine system a2+b2=cr and x2+by=cz. Acta Math. Sinica, Chinese Ser., 54(4), (2011), 677-686. (in Chinese) MR2882954. Zbl 1265.11063.
Y.-Z. Hu, M.-H. Le. On the number of solutions of the generalized Ramanujan-Nagell equation D1x2+D2m=pn. Bull. Math. Soc. Sci. Math. Roum., 55(3), (2012), 279-293. MR2987064. Zbl 1274.11090.
Y.-Z. Hu, R.-X. Liu. On the solutions of the exponential Diophantine equation x2+(3a2+1)y=(4a2+1)z. J. Sichuan Univ. Nat. Sci., 43(1), (2006), 41-46. Zbl 1099.11013.
K. Ishii. On the divisibility of the class number of imaginary quadratic fields. Proc. Japan Acad. Ser. A, 87(8), (2011), 142-143. MR2843095. Zbl 1262.11093.
K. Ishii. On the exponential Diophantine equation (an-1)(bn-1)=x2. Publ. Math. Debrecen, 89(1-2), (2016), 253-256. MR3529275. Zbl 1389.11082.
A. Ito. Remarks on the divisibility of the class number of imaginary quadratic field #&8474;(\sqrt22k-qn). Glasgow Math. J., 53(2), (2011), 379-389. MR2783167. Zbl 1259.11102.
A. Ito. A note on the divisibility of class number of imaginary quadratic field #&8474;(\sqrta2-kn). Proc. Japan Acad. Ser. A, 87(9), (2011), 151-155. MR2863357. Zbl 1247.11139.
A. Ito. Notes on the divisibility of the class number of imaginary quadratic field #&8474;(\sqrt32e-4kn). Abh. Math. Sem. Univ. Hamb., 85(1), (2015), 1-21. MR3334456. Zbl 1400.11145.
L. Jesmanowicz. Several remarks on Pythagorean numbers. Wiadom. Math., 1(2), (1955-1956), 196-202. (in Polish) MR0110662 . Zbl 0074.27205.
Z. Ke, Q. Sun. On the Diophantine equation x3± 1=Dy2. Sin. Sci., 12, (1981), 1453-1457. (in Chinese)
Z. Ke, Q. Sun. On the Diophantine equation x3± 1=3Dy2. J. Sichuan Univ. Nat. Sci., 18(2), (1981), 1-6. (in Chinese) Zbl 0476.10011.
Y. Kishi. Note on the divisibility of the class number of certain imaginary quadratic fields. Glasgow Math. J., 51 (1), (2009), 187-191. Corrigendum, ibid., 52(1), (2010), 207-208 MR2471686; MR2587831. Zbl 1211.11124; Zbl 1211.11125.
M. Kutsuna On the Diophantine equation x2+Dm=pn. Mem. Gifu Nat. Coll. Teach., 20(1), (1985), 61-62. (in Japanese)
A. Larajdi, M. Mignotte, N. Tzanakis. On px2+q2n=yp and related Diophantine equations. J. Number Theory, 131(9), (2011), 1575-1596. MR2802136. Zbl 1229.11055.
M.-H. Le. On the generalized Ramanujan-Nagell equation I. Chinese Sci. Bull., 29(5), (1984), 268-271. (in Chinese)
M.-H. Le. On the generalized Ramanujan-Nagell equation II. Chinese Sci. Bull., 30(5), (1985), 396. (in Chinese)
M.-H. Le. On the representation of integers by binary quadratic forms I. J. Changchun Teachers College, Nat. Sci., 3(2), (1986), 3-12. (in Chinese)
M.-H. Le. The divisibility of class numbers of certain imaginary quadratic fields. Chinese Sci. Bull., 32(10), (1987), 724-727. (in Chinese)
M.-H. Le. On the generalized Ramanujan-Nagell equation III. J. Northeast Math., 4(2), 1988), 180-184. (in Chinese) MR0987533. Zbl 0669.10033.
M.-H. Le. On the Diophantine equation xp± 1=Dy2. J. Northeast Math., 4(3), (1988), 309-315. (in Chinese) MR0987780. Zbl 0669.10032.
M.-H. Le. The Diophantine equation x2+Dm=pn. Acta Arith., 52(3), (1989), 255-265. MR1031338. Zbl 0629.10014.
M.-H. Le. On the divisibility of the class number of the imaginary quadratic field #&8474;(\sqrta2-4km). Acta Math. Sinica, English Ser., 5(1), (1989), 80-86. MR0998390. Zbl 0779.11053.
M.-H. Le. The Diophantine equation x2=4qn+4qm+1. Proc. Amer. Math. Soc., 106(3), (1989) 599-604. MR0968624. Zbl 0681.10014.
M.-H. Le. A note on the Diophantine equation x2p-Dy2=1. Proc. Amer. Math. Soc., 107(1), (1989), 27-34. MR0965245. Zbl 0681.10012.
M.-H. Le. On the representation of integers by binary quadratic forms II. J. Changsa Railway Institute, 7(2), (1989), 6-18. (in Chinese)
M.-H. Le. The divisibilty of the class number of the real quadratic field #&8474;(\sqrt(1+4k2n)/a2). Acta Math. Sinica, Chinese Ser., 33(4), (1990), 365-374. (in Chinese) MR1081808. Zbl 0757.11034.
M.-H. Le. On the generalized Ramanujan-Nagell equation x2-D=pn. Acta Arith., 58(3), (1991), 289-298. MR1121088. Zbl 0736.11020.
M.-H. Le. On the number of solutions of the generalized Ramanujan-Nagell equation x2-D=2n+2. Acta Arith., 60(2), (1991), 149-167. MR1139052. Zbl 0747.11016.
M.-H. Le. On the number of solutions of the Diophantine equation x2-D=pn. Acta Math. Sinica, Chinese Ser., 34(3), (1991), 378-387. (in Chinese) MR1127245. Zbl 0736.11021.
M.-H. Le. The multiplicity for a class of second order recurrences. Chinese Sci. Bull., 37(7), (1992), 538-540. Zbl 0756.11004.
M.-H. Le. On the Diophantine equation x2+D=4pn. J. Number Theory, 41(1), (1992), 87-97. MR1161147. Zbl 0756.11007.
M.-H. Le. On the Diophantine equation x2-D=4pn. J. Number Theory, 41(3), (1992), 257-271. MR1168986. Zbl 0765.11017.
M.-H. Le. On the generalized Ramanujan-Nagell equation x2-D=2n+2. Trans. Amer. Math. Soc., 334(2), (1992), 809-825. MR1070350. Zbl 0769.11018.
M.-H. Le. The Diophantine equation D1x2+D2=2n+2. Acta Arith., 64(1), (1993), 29-41. MR1220483. Zbl 0783.11014.
M.-H. Le. Sur le nombre de solutions de l'équation diophantinne x2+D=pn. C. R. Acad. Sci. Paris, Sér. I, 317(2), (1993), 135-138. (in English) MR1231409. Zbl 0788.11013.
M.-H. Le. A Diophantine equation concerning the divisibility of class number for some imaginary quadratic fields. Indag. Math., New Ser., 4(1), (1993), 67-70. MR1213323. Zbl 0783.11011.
M.-H. Le. A note on the Diophantine equation x2+4D=yp. Monathsh. Math., 116(3), (1993), 283-285. MR1253688. Zbl 0790.11023.
M.-H. Le. On the Diophantine equations d1x2+22md2=yn and d1x2+d2=4yn. Proc. Amer. Math. Soc., 118(1), (1993), 67-70. MR1152282. Zbl 0791.11012.
M.-H. Le. On the Diophantine equation x2+Dm=2n. Commen. Math. Univ. St. Pauli, 43(2), (1994), 127-133. Zbl 0824.11016.
M.-H. Le. On the number of solutions of the generalized Ramanujan-Nagell equation x2-D=pn. Publ. Math. Debrecen, 45(3-4), (1994), 239-254. MR1315938. Zbl 0820.11022.
M.-H. Le. On the integer solutions of exponential Diophantine equations. Adv. Math. Beijing, 23(5), (1994), 385-395. (in Chinese) MR1302737.
M.-H. Le. A note on the Diophantine equation x2+by=cz. Acta Arith., 71(3), (1995), 253-257. MR1339129. Zbl 0820.11023.
M.-H. Le. A note on the generalized Ramanujan-Nagell equation. J. Number Theory, 50(2), (1995), 193-201. MR1316814. Zbl 0821.11020.
M.-H. Le. Some exponential Diophantine equation I: The equation D1x2-D2y2=λ kz. J. Number Theory, 55(2), (1995), 209-221. MR1366571. Zbl 0852.11015.
M.-H. Le. On the Diophantine equation D1x2+D2m=4yn. Monaths. Math., 120(2), (1995), 121-125. MR1348364. Zbl 0877.11020.
M.-H. Le. On the Diophantine equation 2n+px2=yp. Proc. Amer. Math. Soc., 123(2), (1995), 321-326. MR1215203. Zbl 0835.11014.
M.-H. Le. A note on the number of solutions of the generalized Ramanujan-Nagell equation x2-D=kn. Acta Arith., 78(1), (1996), 11-18. MR1424998. Zbl 0869.11028.
M.-H. Le. On the Diophantine equation x2 ± 2m=yn. Adv. Math. Beijing, 25(4), (1996), 328-333. (in Chinese) MR1451181. Zbl 0893.11014.
M.-H. Le. The number of integral points on a class of hyperelliptic curves. Acta Math. Sinica, Chinese Ser., 39(3), (1996), 289-293. (in Chinese) MR1413348. Zbl 0865.11026.
M.-H. Le. On the Diophantine equation (xm+1)(xn+1)=y2. Acta Arith., 82(1), (1997), 17-26. MR1475763. Zbl 0893.11013
M.-H. Le. Diophantine equation x2+2m=yn. Chinese Sci. Bull., 42(18), (1997), 1515-1517. MR1641030. Zbl 1044.11566.
M.-H. Le. A note on the Diophantine equation x2+7=yn. Glasgow J. Math., 39(1), (1997), 59-63. MR1439604. Zbl 0874.11033.
M.-H. Le. A note on the number of solutions of the generalized Ramanujan-Nagell equation D1x2+D2=4pn. J. Number Theory, 62(1), (1997), 100-106. MR1430003. Zbl 0869.11029.
M.-H. Le. A note on the Diophantine equation D1x2+D2=2yn. Publ. Math. Debrecen, 51(1-2), (1997), 191-198. MR1468226. Zbl 0886.11017.
M.-H. Le. On the Diophantine equation D1x2+2mD2=yn. Adv. Math. Beijing, 26(1), (1997), 43-49. (in Chinese) MR1457607. Zbl 0881.11042.
M.-H. Le. On the Diophantine equation x2+D=yn. Acta Math. Sinica, Chinese Ser., 40(6), (1997), 839-844. (in Chinese) MR1612593. Zbl 0918.11021.
M.-H. Le. A class of exponential Diophantine equations concerning the ideal class groups of imaginary quadratic fields. J. Math. Wuhan, 17(1), (1997), 69-71. (in Chinese) MR1453494. Zbl 0963.11502.
M.-H. Le. Applications of the Gel'fond-Baker method to Diophantine equations. Science Press, Beijing, (1998). (in Chinese)
M.-H. Le. On the Diophantine equation (x3-1)/(x-1)=(yn-1)/(y-1). Trans. Amer. Math. Soc., 351(3), (1999), 1063-1074. MR1443198. Zbl 0927.11014
M.-H. Le. On Terai's conjecture concerning Pythagorean numbers. Acta Arith., 101(1), (2001), 41-45. MR1864624. Zbl 1006.11014.
M.-H. Le. An exponential Diophantine equation. Bull. Aust. Math. Soc., 64(1), (2001), 99-105. MR1848082. Zbl 0981.11013.
M.-H. Le. On Cohn's conjecture concerning Diophantine equation x2+2m=yn. Arch. Math. (Basel), 78(1), (2002), 26-35. MR1887313. Zbl 1006.11013.
M.-H. Le. Exceptional solutions of the exponential Diophantine equation (x3-1)/(x-1)=(yn-1)/(y-1). J. Reine Angew. Math., 543, (2002), 187-192. MR1887883. Zbl 1033.11013.
M.-H. Le. The number of solutions of the Diophantine equation |(ε MR1926586. Zbl 1046.11020.
M.-H. Le. On the Diophantine equation x2+p2=yn. Publ. Math. Debrecen, 63(1-2), (2003), 67-78. MR1990864. Zbl 1027.11025.
M.-H. Le. The number of solutions of the generalized Ramanujan-Nagell equation x2+Dm=pn. Acta Math. Sinica, Chinese Ser., 48(1), (2005), 153-156. (in Chinese) MR2128663. Zbl 1137.11308.
M.-H. Le. A note on the Diophantine equation x2+by=cz. Czech. Math. J., 56(131), (2006), 1109-1116. MR2280797. Zbl 1164.11319.
M.-H. Le. On the Diophantine equation yx-xy=z2. Rocky Mountain J. Math., 37(4), (2007), 1181-1185. MR2360292. Zbl 1146.11019.
M.-H. Le. A note on the generalized Ramanujan-Nagell equation. J. Math. Wuhan, 27(2), (2007), 219-221. (in Chinese) MR2301802. Zbl 1125.11023.
M.-H. Le. On a conjecture concerning the generalized Ramanujan-Nagell equation. Adv. Math. Beijing, 37(4), (2008), 483-488. (in Chinese) MR2463241.
M.-H. Le. A note on the exponential Diophantine equation (2n-1)(bn-1)=x2. Publ. Math. Debrecen, 74(3-4), (2009), 401-403. MR2521383. Zbl 1197.11040
M.-H. Le. The Diophantine equation (a-1)x2+f(a)=4an. Acta Math. Sinica, Chinese Ser., 54(1), (2011), 111-114. (in Chinese) MR2829742. Zbl 1240.11061.
M.-H. Le, Y.-Z. Hu. New advances on the generalized Lebesgue-Ramanujan-Nagell equation. Adv. Math. Beijing, 41(4), (2012), 385-397. (in Chinese) MR2963359. Zbl 1274.11091.
M.-H. Le, Q. Xiang. A result on Ma's conjecture. J. Combin. Theory, Ser. A, 73(1), (1996), 181-184. MR1367619. Zbl 0866.05014.
V. A. Lebesgue. Sur l'impossibilité, en nombres entiers, de l'équation xm=y2+1. Nouv. Ann. de Math., 9(1), (1850), 178-181.
J.-L. Lesage. Différence entre puissances et carrés d'entiers. J. Number Theory, 73(2), (1998), 390-425. MR1657988. Zbl 0923.11055.
M.-G. Leu, G.-W. Li. The Diophantine equation 2x2+1=3n. Proc. Amer. Math. Soc., 131(12), (2003), 3643-3645. MR1998169. Zbl 1090.11022.
J.-H. Li. On the number of solutions of the generalized Ramanujan-Nagell equation D1x2+D2m=2n+2. Quaest. Math., 41(2), (2018), 149-163. MR3777878. Zbl 1390.11070.
L. Li, L. Szalay. On the exponential Diophantine equation (an-1)(bn-1)=x2. Publ. Math. Debrecen, 77(3-4), (2010), 465-470. MR2741861. Zbl 1240.11059.
Z.-G. Li, P.-Z. Yuan. On the Diophantine equation (a-1)x2+(91a+9)=4an. Acta Math. Sinica, Chinese Ser., 53(1), (2010), 37-44. (in Chinese) MR2666249. Zbl 1224.11058.
Z.-J. Li. Research for the solution of the Diophantine equation (an-1)(bn-1)=x2. Master's thesis, Wuhu Anhui Normal Univ., (2011). (in Chinese)
Z.-J. Li, M. Tang. On the Diophantine equation (2n-1)(an-1)=x2. J. Anhui Normal Univ. Nat. Sci., 33(6), 2010), 515-517. (in Chinese) Zbl 1240.11050.
Z.-J. Li, M. Tang. A remark on a paper of Luca and Walsh. Integers, 11(6), (2011), 827-832. MR3054260. Zbl 1241.11035.
M. Liang. On the Diophantine equation (an-1)((a+1)n-1)=x2. J. Math. Wuhan, 32(3), (2012), 511-514. (in Chinese) MR2963913.
M. Liang. The number of solutions of the Diophantine equation x2+p2=yn. Adv. Math. Beijing, 42(3), (2013), 315-319. MR3144136. Zbl 1299.11033.
M.-Y. Lin. On the exponential Diophantine equation x2+by=cz. J. Liaoning Normal Univ. Nat. Sci., 29(3), (2006), 292-295. (in Chinese) MR2260098. Zbl 1160.11319.
M.-Y. Lin. On the S-unit equation x2+y=zn. J. Math. Wuhan, 28(5), (2008), 519-522. (in Chinese) MR2464491. Zbl 1199.11083.
M.-Y. Lin. On the Lebesgue-Nagell equation x2+a2=yn. J. Math. Wuhan, 30(4), (2010), 754-760. MR2682021. Zbl 1240.11062.
Y.-Y. Liu. On the upper bound estimate of the number of solutions of the exponential Diophantine equation 2x+py=z2. Mat. Pract. Theory, 46(10), (2016), 254-257. (in Chinese) Zbl 1363.11060.
Z.-W. Liu. The generalized Ramanujan-Nagell equation x2+Dm=pn. Acta Math. Sinica, Chinese Ser., 51(4), (2008), 809-814. (in Chinese) MR2454020. Zbl 1174.11042.
Z.-W. Liu.On the exponential Diophantine equation x2-p2m=yn. Far East J. Math. Sci., 86(2), (2014), 129-138. Zbl 1297.11016.
W. Ljunggren. Über die Gleichungen 1+Dx2=2yn und 1+Dx2=4yn. Norske Vid. Selsk. Forh. Trodhjem, 15(30), (1942), 115-118. MR0019646. Zbl 0028.34604
W. Ljunggren. Noen setninger om ubstemte likninger av formen (xn-1)/(x-1)=yq. Norsk Mat. Tidsskr., 25(1), (1943), 17-20. MR0018674. Zbl 0028.00901.
W. Ljunggren. Oppgave nr 2. Norsk Mat. Tidsskr., 27(1), (1945), 29.
S. R. Louboutin. On the divisibility of the class number of imaginary quadratic fields. Proc. Amer. Math. Soc., 137(12), (2009), 4025--4028 MR2538563. Zbl 1269.11111.
H.-W. Lu. Continued fraction, class numbers and others. Sin. Sci., Ser. A, 26(8), (1983), 1275-1284. (in Chinese) Zbl 0534.12003.
H.-W. Lu. The divisibility of class numbers for a class of real quadratic fields. Acta Math. Sinica, Chinese Ser., 28(6), (1985), 756-762. (in Chinese) MR0813328. Zbl 0619.12002.
F. Luca. On a Diophantine equation. Bull. Aust. Math. Soc., 61(2), (2000), 241-246. MR1748703. Zbl 0997.11027.
F. Luca. On the Diophantine equation x2+2a.3b=yn. Int. J. Math. Math. Sci., 29(3), (2002), 239-244. MR1897992. Zbl 1085.11021.
F. Luca. The Diophantine x2=pa ± pb+1. Acta Arith., 112(1), 2004, 87-101. MR2040594. Zbl 1067.11016.
F. Luca, A. Togbé. On the Diophantine equation x2+72k=yn. Fibonacci Quart., 45(4), (2007), 322-326. MR2478616. Zbl 1221.11091.
F. Luca, M. Mignotte. On the equation yx± xy=z2. Rocky Mountain J. Math., 30(2), (2000), 651-661. MR1787004. Zbl 1014.11024.
F. Luca, G. Soydan. On the Diophantine equation 2m+nx2=yn. J. Number Theory, 132(11), (2012), 2604-2609. MR2954994. Zbl 1276.11049.
F. Luca, P. Stanica. On a conjecture of Ma. Result. Math., 48 (2005), (1-2), 109-123. MR2181242. Zbl 1092.05007.
F. Luca, Sz. Tengely, A. Togbé. On the Diophantine equation x2+C=4yn. Ann. Sci. Math. Qué., 33(2), (2009), 171-184. MR2729809. Zbl 1215.11035.
F. Luca, A. Togbé. On the Diophantine equation x2+2a5b=yn. Int. J. Number Theory, 4(6), (2008), 973-979. MR2483306. Zbl 1231.11041.
F. Luca, A. Togbé. On the Diophantine equation x2+2α 13β=yn. Colloq. Math., 116(1), (2009), 139-146. MR2504836 Zbl 1221.11090.
F. Luca, P. G. Walsh. The product of like-indexed terms in binary recurrences. J. Number Theory, 96(1), (2002), 152-173. MR1931198. Zbl 1018.11015.
J.-G. Luo, A. Togbé, P.-Z. Yuan. On some equations related to Ma's conjecture. Integers, A27(11), (2011), 683-694. MR2798632. Zbl 1250.11035.
S.-L. Ma. McFarland's conjecture on abelian difference sets with multiplier-1. Designs, Codes and Cryptography, 1(4), (1991), 321-332. MR1154415.
Y.-G. Ma. On the Diophantine equation x2+3a.11b=yn. J. Southwest National Univ. Nat. Sci., 36(2), (2010), 182-184. (in Chinese)
D. Masser. Alan Baker 1939-2018. Notices Amer. Math. Soc., 66(1), (2019), 32-35. MR3840073. Zbl 1414.01039.
M. Mignotte. On the Diophantine equation D1x2+D2m=4yn. Port. Math., 54(4), (1997), 457-460. MR1489984. Zbl 1028.11019.
M. Mignotte, B.M.M. De Weger. On the Diophantine equation x2+74=y5 and x2+86=y5. Glasgow Math. J., 38(1), (1996), 77-85. MR1373962. Zbl 0847.11011.
P. Mihℑu. Primary cyclotomic units and a proof of Catalan's conjecture. J. Reine Angew. Math., 572, (2004), 167-195. MR2076124. Zbl 1067.11017.
T. Miyazaki. A polynomial-exponential equation related to Ramanujan-Nagell equation. Ramanujan J., 45(3), (2018), 601-613. MR3776427. Zbl 06859748.
R. A. Mollin. Diophantine equations and class numbers. J. Number Theory, 24(1), (1986), 7-19. MR0852186. Zbl 0591.12006.
R. A. Mollin. Solutions of the Diophantine equations and divisibility of class numbers of complex quadratic fields. Glasgow Math. J., 38(2), (1996), 195-197. MR1397175. Zbl 0859.11058.
R. A. Mollin. A note on the Diophantine equation D1x2+D2=akn. Acta Math. Acad. Paedagog. Nyházi, New Ser., 21(1), (2005), 21-24. MR2133186. Zbl 1102.11019.
R. A. Mollin. Quadratic Diophantine equations x2-Dy2=cn. Ir. Math. Soc. Bull., 58(1), (2006), 55-68. MR2303470. Zbl 1144.11025.
R. A. Mollin, H. C. Williams. Quadratic residue covers for certain real quadratic fields. Math. Comp., 62(206), (1994), 885-897. MR1218346. Zbl 0805.11080.
T. Nagell. Sur l'impossibilité de quelques equations à deux indéterminées. Norsk Mat. Forenings Skr. 13, 65--82 (1923)
T. Nagell. Løsning til oppgave nr 2, 1943, s.29. Norsk Mat. Tidsskr., 30(1), (1948), 62-64.
T. Nagell. Contributions to the theory of a category of Diophantine equations of the second degree with two unknowns. Nova Acta Regiae soc. Sci. Upsaliensis, 16(2), (1954), 1-38. Zbl 0057.28304.
X.-W. Pan. The exponential Lebesgue-Nagell equation x2+p2m=yn. Period. Math. Hung., 67(2), (2013), 231-242. MR3118294. Zbl 1324.11037.
X.-W. Pan. An upper bound for solutions of the Lebesgue-Nagell equation x2+a2=yn. J. Inequal. Appl., no. 209, (2016), 5pp. MR3544134. Zbl 1357.11040.
B. Peker, S. Cenberci. On the solutions of the equation x2+19m=yn. Notes on Number Theory, Discrete Math., 18(2), (2012), 34-41. Zbl 1281.11028.
I. Pink. On the Diophantine equation x2+(p1z1...pkzk)2=2yn. Publ. Math. Debrecen, 65(1-2), (2004), 205-213. MR2075263. Zbl 1064.11027.
I. Pink. On the Diophantine equation x2+2α 3β 5γ 7δ=yn. Publ. Math. Debrecen, 70(1-2), (2007), 149-166. MR2288472. Zbl 1121.11028.
I. Pink, Z. Rábai. On the Diophantine x2+5k17l=yn. Commun. Math., 19(1), (2011), 1-9. MR2855388. Zbl 1264.11026.
I. Pink, Sz. Tengely. Full powers in arithmetic progressions. Publ. Math. Debrecen, 57(3-4), (2000), 535-545. MR1798732. Zbl 0973.11045.
G. Pólya. Zur arithmetischen Untersuchung der Polynome. Math. Z., 1(2), (1918), 143-148.
Y.-Y. Qu, H. Cao, Q.-W. Mu. On the number of solutions of generalized Ramanujan-nagell equation x2-D=3n. J. Northeast Normal Univ. Nat. Sci., 46(4), (2014), 4-12. (in Chinese) Zbl 1324.11038.
S. Rabinowitz. The solution of y2± 2n=x3. Proc. Amer. Math. Soc., 62(1), (1977), 1-6. MR0424678. Zbl 0348.10009.
S. Rabinowitz. The solution of 3y2± 2n=x3. Proc. Amer. Math. Soc., 69(3), (1978), 213-218. MR0480326. Zbl 0389.10016.
S. Ramanujan. Question 464. J. Indian Math. Soc., 5(1), (1913), 120.
A.M.S. Ramasamy. Ramanujan's equation. J. Ramanujan Math. Soc., 7(2), (1992), 133-153. MR1201527. Zbl 0772.11007.
R. Ratat. L'intermediare des Mathématiciens. 23(1), (1916), 150.
N. Saradha, A. Srinivasan. Solutions of some generalized Ramanujan-Nagell equation. Indag. Math. New Ser., 17(1), (2006), 103-114. MR2337167. Zbl 1110.11012.
N. Saradha, A. Srinivasan. Generalized Lebesgue-Nagell equations. in: N. Saradha (ed.) et al., Diophantine equations. New Delhi: Narosa Pub. House, (2008) 207-223. MR1500228. Zbl 1198.11033.
T. N. Shorey, R. Tijdeman. Exponential Diophantine equations. Cambridge Univ. Press, Cambridge (1986) MR0891406. Zbl 0606.10011.
S. Siksek. Diophantine equations after Fermat's last theorem. J. Théor. Nombres Bordx., 21(2), (2009), 425-436. MR2541434. Zbl 1222.11045.
S. Siksek. The modular approach to Diophantine equations, in: K. Belabas (ed.) et al., Explicit methods in number theory. Paris: Soc. Math. France, (2012), 151-179. MR3098134. Zbl 1343.11042.
S. Siksek, J. E. Cremona. On the Diophantine equation x2+7=yn. Acta Arith., 109(2), (2003), 143-149. MR1980642. Zbl 1026.11043.
G. Soydan. On the Diophantine equation x2+7α11β=yn. Miskolc Math. Notes 13 (2), 515--527 (2012). Corrigendum: ibid., 15(1), 217 (2014) MR3002648; MR3259683. Zbl 1260.11021; Zbl 1313.11068.
G. Soydan, M. Demirci, I. N. Cangul. The Diophantine equation x2+11m=yn. Advanced Studied in Contemp. Math., 19, (2009), 183-188. MR2566916. Zbl 1197.11041.
G. Soydan, I.N. Cangul. Note on ``On the Diophantine equation nx2+22m=yn. J. Number Theory, 140, (2014), 425-426 MR3181663. Zbl 1316.11023.
G. Soydan, N. Tzanakis. Complete solution of the Diophantine equation x2+5a11b=yn. Bull. Hellenic Math. Soc., 60(1), (2016), 125-151. MR3622880. Zbl 1425.11059.
G. Soydan, M. Ulas, H.-L. Zhu. On the Diophantine equation x2+2a19b=yn. Indian J. Pure and Appl. Math., 43(3), (2012), 251-261. MR2955592. Zbl 1291.11069.
J. Stiller. The Diophantine equation x2+119=15dot 2n has six solutions. Rocky Mountain J. Math., 26 (1), (1996), 295-298. MR1386166. Zbl 0851.11021.
C. Störmer. L'équation mdot arctan(1/x)+ndot arctan(1/y)=kπ /4. Bull. Math. France, 27(2), (1899), 160-170. Zbl JFM 30.0188.01.
Q. Sun. On the Diophantine equation Dx2+1=yp. J. Sichuan Univ., Nat. Sci., 24 (1), (1987), 19-24. (in Chinese) MR0894003. Zbl 0637.10013.
Q. Sun, Z.-F. Cao. On the equations x2+Dm=pn and x2+2m=yn. J. Sichuan Univ. Nat. Sci., 25(2), (1988), 164-169. MR0967502. Zbl 0685.10012.
L. Szalay. On the Diophantine equation (2n-1)(3n-1)=x2. Publ. Math. Debrecen, 57(1-2), (2000), 1-9. MR1771666. Zbl 0961.11013.
M. Tang. A note on the exponential Diophantine equation (am-1)(bn-1)=x2. J. Math. Res. Expos., 31(6), (2011), 1064-1066. Zbl 1265.11065.
L.-Q. Tao. On the Diophantine equation x2+3m=yn. Integers, 8(1), (2008), 1-7. MR2472073. Zbl 1210.11048.
L.-Q. Tao. On the Diophantine equation x2+5m=yn. Ramanujan J., 19(3), (2009), 325-338. MR2529713. Zbl 1191.11008.
R. L. Taylor, A. Wiles. Ring theoretic properties of certain Hecke algebras. Ann. Math., 141 (2), (1995), 553-572. MR1333036. Zbl 0823.11030.
Sz. Tengely. On the Diophantine equation x2+a2=2yn. Indag. Math., New. Ser., 15(2), (2004), 291-304. MR2071862. Zbl 1088.11021.
Sz. Tengely. Effective methods for Diophantine equations. PhD thesis, Leiden Univ., Netherlands (2005)
Sz. Tengely. On the Diophantine equation x2+q2m=2yp. Acta Arith., 127(1), (2007), 71-86. MR2289974. Zbl 1117.11022.
N. Terai. The Diophantine equation x2+qm=pn. Acta Arith., 63 (4), (1993), 351-358. MR1218462. Zbl 0770.11020.
N. Terai. A note on the Diophantine equation x2+qm=cn. Bull. Aust. Math. Soc., 90(1), (2014), 20-27. MR3227126. Zbl 1334.11020.
R.-Z. Tong. On the Diophantine equation P2z-PzDm+D2m=X2 I. J. Shenyang Agric. Univ. Nat. Sci., 35(3), (2004), 283-285. (in Chinese)
R.-Z. Tong. Solutions of a Diophantine equation. J. Shenyang Normal Univ. Nat. Sci., 23(2), (2005), 133-136. (in Chinese) Zbl 1095.11016.
M. Toyoizumi. On the Diophantine equation y2+Dm=pn. Acta Arith., 42(4), (1983), 303-309. MR0729739. Zbl 0554.10008.
N. Tzanakis, J. Wolfskill. On the Diophantine equation y2=4qn+4q+1. J. Number Theory, 23(2), (1986), 219-237. MR0845904. Zbl 0586.10011.
N. Tzanakis, J. Wolfskill. On the Diophantine equation y2=4qa/2+4q+1 with an application to coding theory. J. Number Theory, 26(1), (1987), 96-116. MR0883537. Zbl 0612.10013.
M. Ulas. Some experiments with Ramanujan-Nagell type Diophantine equations. Glas. Mat. III Ser., 49(2), (2014), 287-302. MR3287057. Zbl 1371.11083.
P. M. Voutier. Primitive divisors of Lucas and Lehmer sequences. Math. Comp., 64(210), (1995), 869-888. MR1284673. Zbl 0832.11009.
P. G. Walsh. On the Diophantine equation of the form (xn-1)(ym-1)=z2. Tatra Mt. Math. Publ., 20(1), (2000), 87-89. MR1845448. Zbl 0992.11029.
P. G. Walsh. On a very particular class of Ramanujan-Nagell type equations. Far East J. Math. Sci., 24(1), (2007), 55-58. MR2281854. Zbl 1111.11020.
J.-P. Wang, T.-T. Wang, W.-P. Zhang. The exponential Diophantine equation x2+(3n2+1)y=(4n2+1)z. Math. Slovaca, 64(5), (2014), 1145-1152. MR3277843. Zbl 1349.11076.
T.-T. Wang, Y.-Z. Jiang. On the number of positive integer solutions (x,n) of the generalized Ramanujan-Nagell equation x2-2r=pn. Period. Math. Hung., 75(2), (2017), 150-154. MR3718507. Zbl 1399.11106.
X.-Y. Wang. The exponential Diophantine equation xy+yx=z2 with xy odd. Period. Math. Hung., 66(2), (2013), 193-200. MR3090816. Zbl 1313.11075.
X.-Y. Wang, H. Zhang. A note on the Diophantine equation px2+q2n=yp. Bull. Math. Soc. Sci. Math. Roum. Nouv. Sér., 60 (108), (2017), 51-57. MR3645285. Zbl 1389.11089.
Y.-X. Wang, T.-T. Wang. On the Diophantine equation nx2+22m=yn. J. Number Theory, 131(8), (2011), 1486-1491. MR2793889. Zbl 1216.11040.
P. J. Weinberger. Real quadratic fields with class numbers divisible by n. J. Number Theory, 5(2), (1973), 237-241. MR0335471. Zbl 0287.12007.
A. Wiles. Modular elliptic curves and Fermat's last theorem. Ann. Math., 141 (3), (1995), 443-551. MR1333035. Zbl 0823.11029.
H.-M. Wu. The Diophantine equation nx2+2m=yn. Adv. Math. Beijing, 40(3), (2011), 365-369. (in Chinese) MR2867410.
H.-M. Wu. An application of the BHV theorem to Diophantine equation xy+yx=zz. Acta Math. Sinica, Chinese Ser., 58(4), (2015), 679-684. (in Chinese) MR3443204. Zbl 1349.11077.
Q.-C. Xiao. On the Diophantine equation xp-1=Dy2. J. Biomath., 15(3), (2000), 286-291. (in Chinese) MR1803677.
T.-J. Xu, M.-H. Le. On the Diophantine equation D1x2+D2=kn. Publ. Math. Debrecen, 47(3-4), (1995), 293-297. MR1362291. Zbl 0857.11013.
M. Yamabe. On the Diophantine equation x2+Dm=pn. Rep. Fac. Sci. Tech., Meijo Univ., 21, (1981), 205-207. (in Japanese) Zbl 0548.10011.
M. Yamabe. On the Diophantine equation x2+Dm=pn II. Rep. Fac. Sci. Tech., Meijo Univ., 24, (1984), 1-5. (in Japanese) Zbl 0548.10012.
M. Yamabe. On the Diophantine equation x2+Dm=89n. Rep. Fac. Sci. Tech., Meijo Univ., 38, (1998), 36-39. (in Japanese) Zbl 1115.11304.
T. Yamada. A generalized of Ramanujan-Nagell equation. Glasgow Math. J., 61(3), (2019), 535-544. MR3991355. Zbl 07093777.
H. Yang, R.-Q. Fu. An upper bound for least solutions of exponential Diophantine equation D1x2-D2y2=λ kz. Int. J. Number Theory, 11(4), (2015), 1107-1114. MR3340685. Zbl 1353.11064.
H. Yang, R.-Q. Fu. The exponential Diophantine equation xy+yx=z2 via a generalization of the Ankeny-Artin-Chowla conjecture. Int. J. Number Theory, 14(5), (2018), 1223-1228. MR3806301. Zbl 06875668.
H. Yang, Y.-T. Pei, R.-Q. Fu. The solvability of the Diophantine equation (an-1)((a+1)n-1)=x2. J. Xiamen Univ., Nat. Sci., 55(1), (2016), 91-93. (in Chinese) MR3494801. Zbl 1363.11061.
J.-M. Yang. The number of solutions of the generalized Ramanujan-Nagell equation x2-D=3n. Acta Math. Sinica, Chinese Ser., 51(2), (2008), 351-356 . (in Chinese) MR2436300. Zbl 1174.11043.
L.-Y. Yang, J.-H. Chen, J.-L. Sun. Solutions to Diophantine equation x2+a2=2yn. J. Math. Wuhan,31 (1), (2011), 147-151. (in Chinese) MR2789570. Zbl 1240.11056.
S.-C. Yang. On the solutions of the Diophantine equation x2+b2y1=c2z1. J. Beihua Univ. Nat. Sci., 4(5), (2003), 372-374. (in Chinese)
S.-C. Yang. Some non-uncommon cases of the Diophantine equation x2-D=2n. J. Sichuan Normal Univ. Nat. Sci., 27(4), (2004), 373-377. (in Chinese) Zbl 1085.11022.
S.-C. Yang. A note on the solutions of the generalized Ramanujan-Nagell equation x2+Dm=pn. Acta Math. Sinica, Chinese Ser., 50(4), (2007), 943-948. (in Chinese) MR2355942. Zbl 1131.11338.
S.-C. Yang, W.-Q. Wu, H. Zheng. The solution of the Diophantine equation (an-1)(bn-1)=x2. J. Southwest National Univ., Nat. Sci., 37(1), (2011), 31-34. (in Chinese)
P.-Z. Yuan. The divisibility of class numbers of real quadratic fields. Acta Math. Sinica, Chinese Ser., 41(3), (1998), 525-530. (in Chinese) MR1640610. Zbl 1005.11058.
P.-Z. Yuan. The Diophantine equation x2+by=cz. J. Sichuan Univ. Nat. Sci., 35(1), (1998), 5-7. (in Chinese) MR1617869. Zbl 0908.11019.
P.-Z. Yuan. On the number of the solutions of x2-D=pn. J. Sichuan Univ. Nat. Sci., 35(3),(1998), 311-316. (in Chinese) MR1656096. Zbl 0923.11057.
P.-Z. Yuan. On the Diophantine equation ax2+by2=cpn. Chinese Ann. Math., Ser. A, 20(2), (1999), 183-186. (in Chinese) MR1695615. Zbl 1002.11035.
P.-Z. Yuan. Multiplicity of generalized Lucas sequences and the number of solutions of the related Diophantine equations. Appl. Math. Ser. A, 15(3), (2000), 253-259. MR1780944. Zbl 0987.11022.
P.-Z. Yuan. On the Diophantine equation Dx2+1=can. J. Heilongjiang Univ. Nat. Sci., 22(2), (2005), 195-197. (in Chinese) MR2160100. Zbl 1134.11321.
P.-Z. Yuan. On the Diophantine equation ax2+by2=ckn. Indag. Math., New Ser., 16(2), (2005), 301-320. MR2319301. Zbl 1088.11024.
P.-Z. Yuan. On the Diophantine equation (x3-1)/(x-1)=(yn-1)/(y-1). J. Number Theory, 112(1), (2005), 20-25. MR2131139. Zbl 1063.11009.
P.-Z. Yuan, Y.-Z. Hu. On the Diophantine equation x2+Dm=pn. J. Number Theory, 111(2), (2005), 144-153. MR2124046. Zbl 1076.11021.
P.-Z. Yuan, Y.-Z. Hu. On the Diophantine equation ax2+(3a+1)m=(4a+1)n. Bull. Math. Soc. Sci. Math. Roum., 53(1), (2010), 51-59. MR2641695. Zbl 1212.11054.
P.-Z. Yuan, J.-B. Wang. On the Diophantine equation x2+by=cz. Acta Arith., 84(2), (1998), 145-147. MR1614255. Zbl 0895.11016.
P.-Z. Yuan, Z.-F. Zhang. On the Diophantine equation (an-1)(bn-1)=x2. Publ. Math. Debrecen, 80(3-4), (2012), 327-331. MR2943006. Zbl 1263.11045.
X. Zhang. On Terai's conjecture. Kodai Math. J., 41(2), (2018), 413-420. MR3824859. Zbl 06936461.
X.-B. Zhang, X.-X. Li. The exceptional cases of the divisibility of the class number of imaginary quadratic field #&8474;(\sqrt1-4kn). Math. Pract. Theory, 46(8), (2016), 263-266. (in Chinese) Zbl 1363.11097.
X.-K. Zhang. Solutions of the Diophantine equations related to real quadratic fields. Chinese Sci. Bull., 37(11), (1992), 885-888. Zbl 0762.11036
X.-K. Zhang. The determination of subgroup in ideal class groups of real quadratic fields. Chinese Sci. Bull., 37(11), (1992), 890-893. Zbl 0762.11037
X.-K. Zhang. Ideal class groups and their subgroups of real quadratic field. Sin. Sci., Ser. A, 40(9), (1997), 909-916. Zbl 0907.11039.
Z.-F. Zhang. The Diophantine equation (axk-1)(byk-1)=abzk-1. J. Number Theory, 136(2), (2014), 252-260. MR3145333. Zbl 1360.11060.
Z.-F. Zhang, J.-G. Luo, P.-Z. Yuan. On the Diophantine equation xy-yx=cz. Colloq. Math., 128(2), (2012), 277-285. MR3002356. Zbl 1297.11017.
Z.-F. Zhang, J.-G. Luo, P.-Z. Yuan. On the Diophantine equation xy+yx=zz. Chinese Ann. Math., Ser. A, 34(3), (2014), 279-284. (in Chinese) Zbl 1299.11037.
Z.-F. Zhang, A. Togbé. On two Diophantine equations of Ramanujan-Nagell type. Glas. Math., III Ser., 51(1), (2016), 17-22. MR3516182. Zbl 1392.11019.
Z.-F. Zhang, P.-Z. Yuan. On the Diophantine equation axy+byz+czx=0. Int. J. Number Theory, 8(3), (2012), 813-821. MR2904932. Zbl 1271.11040.
Y.-E. Zhao, T.-T.Wang. A note on the number of solutions of the generalized Ramanujan-Nagell equation x2-D=pn. Czech Math. J., 62(2), (2012), 381-389. Zbl 1265.11066.
Y.-E. Zhao, X.-Q. Zhao. On the solvability of exponential Diophantine equation x2+qm=pn. J. Ningxia Univ. Nat. Sci., 32(3), (2011), 205-207. (in Chinese)
H.-L. Zhu. A note on the Diophantine equation x2+qm=y3. Acta Arith., 146 (2), (2011), 195-202. Corrigendum: ibid., 152(4), (2012), 425-426. MR2747027; MR2890549. Zbl 1219.11058.
H.-L. Zhu, M.-H. Le. On some generalized Lebesgue-Nagell equations. J. Number Theory, 131(3), (2011), 458-469. MR2739046. Zbl 1219.11059.
H.-L. Zhu, M.-H. Le, G. Soydan. The classification of the solutions of the Diophantine equation x2+2apb=y4. Math. Rep., Buchar., 17(67), (2015), 255-263. MR3417766. Zbl 1374.11060.
H.-L. Zhu, M.-H. Le, G. Soydan, A. Togbé. On the exponential Diophantine equation x2+2apb=yn. Period. Math. Hung., 70(2), (2015), 233-247. MR3344003. Zbl 1349.11078.
H.-L. Zhu, M.-H. Le, A. Togbé. On the exponential Diophantine equation x2+p2m=2yn. Bull. Aust. Math. Soc., 86(3), (2012), 303-314. MR2979990. Zbl 1267.11033.
H.-L. Zhu, G. Soydan, W. Qin. A note on two Diophantine equations x2± 2apb=y4. Miskolc Math. Notes, 14(3), (2013), 1105-1111. MR3153993. Zbl 1286.11040.
M.-H. Zhu, T. Cheng. On a conjecture concerning abelian difference sets. J. Heilongjiang Univ. Nat. Sci., 29(1), (2012), 39-41. (in Chinese) Zbl 1265.05074.
M.-H. Zhu, T.-T. Wang. The divisibility of class number of the imaginary quadratic field #&8474;(\sqrt22m-kn). Glasgow Math. J., 54(1), (2012), 149-154. MR2862392. Zbl 1269.11107.
Maohua Le
Institute of Mathematics, Lingnan Normal College
Zhangjiang, Guangdong, 524048 China.
e-mail: lemaohua2008@163.com
Gökhan Soydan
Department of Mathematics,
Bursa Uludag University, 16059 Bursa, Turkey.
e-mail: gsoydan@uludag.edu.tr
http://gsoydan.home.uludag.edu.tr