О МИНИМАЛЬНОСТИ АКТИВНОГО ФРАГМЕНТА ТАБЛИЦЫ ХАРАКТЕРОВ КОНЕЧНОЙ ГРУППЫ

В. А. Белоногов

Аннотация: Для изучения строения конечной группы можно привлечь определенные подматрицы ее таблицы характеров, так называемые активные фрагменты группы (см. книгу автора «Представления и характеры в теории конечных групп». Свердловск: УрО АН СССР, 1990). В §1 доказано, что если A — активный фрагмент группы G и A записан в блочной форме A = (B|C) или $A = \begin{pmatrix} B \\ C \end{pmatrix}$, то B (и также C) — активный фрагмент группы G, если и только если $\mathbf{r}(A) = \mathbf{r}(B) + \mathbf{r}(C)$ ($\mathbf{r}(M)$ обозначает ранг матрицы M). Таким образом, разложимость активного фрагмента A на меньшие активные фрагменты зависит только от матрицы A, но не от A. В частности, никакая матрица не может быть минимальным активным фрагментом одной группы и неминимальным активным фрагментом другой. В §2 показывается, как информация о разложимости активного фрагмента A на меньшие активные фрагменты (полученная с помощью результатов §1) может быть использована для упрощения «централизаторного уравнения» $AXA^*A = A$, позволяющего получить информацию о порядках централизаторов элементов группы, связанных с A. Библиогр. 3.

Введение

Пусть G — конечная группа, D — ее нормальное подмножество и $\Phi \subseteq \operatorname{Irr}(G)$. Если X — таблица характеров группы G, то через $X(\Phi,D)$ обозначается подматрица из X, состоящая из значений характеров из Φ на элементах из D. Матрица $X(\Phi,D)$ называется активным фрагментом таблицы X, а также группы G, если D и Φ взаимодействуют. Говорят, что D и Φ взаимодействуют [1,2], если D-срезка $\varphi|_D^0$ любого характера φ из Φ есть линейная комбинация (с комплексными коэффициентами) характеров из Φ ($\varphi|_D^0$ совпадает с φ на D и обращается в нуль на $G\setminus D$). Минимальное (по включению) непустое подмножество из $\operatorname{Irr}(G)$, взаимодействующее с D, называется D-блоком, а минимальное непустое нормальное подмножество из G, взаимодействующее с Φ , — Φ -блоком группы G. (При D, равном множеству всех p'-элементов группы G, где p — простое число, понятие D-блока совпадает с классическим понятием p-блока [2]). Матрицу $X(\Phi,D)$ назовем минимальным активным фрагментом группы G, если Φ — D-блок, а D — Φ -блок группы G.

Пусть $A={\rm X}(\Phi,D)$ — непустой (т. е. с непустыми Φ и D) активный фрагмент группы G. Легко увидеть, что A не является минимальным, если и только если он может быть представлен в виде $\begin{pmatrix} A_1 \\ A_2 \end{pmatrix}$ (после подходящей перестановки

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (код проекта 99-01-00462).

строк) или в виде $(A_1|A_2)$ (после подходящей перестановки столбцов), где A_1 и A_2 — непустые активные фрагменты группы G.

В $\S 1$ дается ответ на вопрос: может ли какая-либо матрица A быть минимальным активным фрагментом одной группы и неминимальным активным фрагментом другой? Оказалось, что это невозможно. Более того, как показывается в теоремах 1 и 2, все представления активного фрагмента A в виде объединения двух меньших активных фрагментов (как в предыдущем абзаце) могут быть получены из знания одной лишь матрицы A.

В § 2 показывается, как информация о разложимости активного фрагмента группы G (полученная с помощью результатов § 1) может быть использована для упрощения так называемого «централизаторного уравнения» $AXA^*A = A$, где $X = \mathrm{diag}(x_1,\ldots,x_n)$ с неизвестными x_1,\ldots,x_n [2, § 8Б], позволяющего в ряде случаев вычислить порядки централизаторов элементов из D (быть может, не все) и даже |G|. Например, в [2, гл. 8] простые группы Судзуки $\mathrm{Sz}(q)$ (и некоторые другие) охарактеризованы довольно простым своим активным фрагментом и первый этап этой характеризации состоит в нахождении порядка группы с помощью централизаторного уравнения.

Используемые в статье обозначения стандартны (см., например, [2]). В частности, ${\rm Irr}(G)$ — множество всех неприводимых комплексных характеров группы $G,\ A^*$ — матрица, сопряженная к матрице A (комплексно сопряженная к матрице транспонированной к A), ${\rm r}(A)$ — ранг матрицы $A,\ O$ — нулевая матрица известных из контекста размеров.

Употребляя выражение « $X(\Phi,D)$ — активный фрагмент группы G», мы подразумеваем, что X — некоторая таблица характеров группы G, D — нормальное подмножество в G и $\Phi \subseteq Irr(G)$.

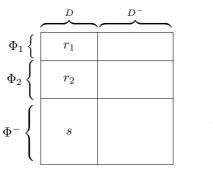
Если группа обозначена буквой G, D — ее нормальное подмножество и $\Phi \subseteq \operatorname{Irr}(G)$, то положим $D^- = G \setminus D$ и $\Phi^- = \operatorname{Irr}(G) \setminus \Phi$; $k_G(D)$ обозначает число классов сопряженных элементов группы G, содержащихся в D.

§ 1. Разложение активного фрагмента на минимальные

Теорема 1. Пусть $X(\Phi, D)$ — активный фрагмент конечной группы G и $\varnothing \subset \Phi_1 \subset \Phi$. Равносильны условия:

- $(1) X(\Phi_1, D)$ активный фрагмент группы G,
- $(2)\ \mathrm{r}(\mathrm{X}(\Phi,D))=\mathrm{r}(\mathrm{X}(\Phi_1,D))+\mathrm{r}(\mathrm{X}(\Phi\setminus\Phi_1,D)).$

Доказательство. Положим $\Phi_2 = \Phi \setminus \Phi_1$, $r = r(X(\Phi, D))$, $r_i = r(X(\Phi_i, D))$ для $i \in \{1,2\}$ и $s = r(X(\Phi^-, D))$. Для наглядности изобразим на рис. 1 разбиение (подходящей) таблицы характеров группы G на части (клетки), фигурирующие в последующих рассуждениях; в некоторых клетках запишем ранги соответствующих им матриц.



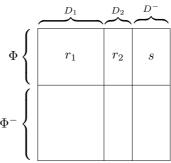


Рис. 1. Рис. 2.

Так как $X(\Phi, D)$ — активный фрагмент группы G, т. е. D взаимодействует с Φ , то по [2, теорема $3\text{Б}12\ ((1){\Rightarrow}(2))]$ никакая ненулевая линейная комбинация строк матрицы $X(\Phi, D)$ не является одновременно линейной комбинацией строк матрицы $X(\Phi^-, D)$. Отсюда следует, что

$$k_G(D) = r + s \tag{1.1}$$

(так как $k_G(D) = r(X(Irr(G), D)))$ и также

$$r(X(\Phi_i \cup \Phi^-, D)) = r_i + s$$
 при $i \in \{1, 2\}.$ (1.2)

Предположим теперь, что выполнено условие (1). Тогда по [2, теорема 8А6 $((4)\Rightarrow(2))]$ и (1.2)

$$k_G(D) = r_1 + r(X(\Phi_2 \cup \Phi^-, D)) = r_1 + r_2 + s.$$

Отсюда и из (1.1) следует, что $r = r_1 + r_2$, т. е. верно условие (2). Итак, из (1) вытекает (2).

Пусть выполнено условие (2). Тогда по (1.1) и (1.2)

$$k_G(D) = r + s = r_1 + r_2 + s = r_1 + r(X(\Phi_2 \cup \Phi^-, D)) = r(X(\Phi_1, D)) + r(X(\Phi_1^-, D)),$$

откуда по [2, теорема 8A6 $((2)\Rightarrow(4))$] получаем, что D взаимодействует с Φ_1 , т. е. верно (1). Таким образом, (2) влечет (1).

Теорема 1 доказана.

Теорема 2. Пусть $X(\Phi, D)$ — активный фрагмент конечной группы G и D_1 — нормальное подмножество из G такое, что $\varnothing \subset D_1 \subset D$. Равносильны условия:

- $(1) X(\Phi, D_1)$ активный фрагмент группы G,
- (2) $r(X(\Phi, D)) = r(X(\Phi, D_1)) + r(X(\Phi, D \setminus D_1)).$

ДОКАЗАТЕЛЬСТВО. Положим $D_2=D\setminus D_1,\ r=\mathrm{r}(\mathrm{X}(\Phi,D)),\ r_i=\mathrm{X}(\Phi,D_i))$ для $i\in\{1,2\}$ и $s=\mathrm{r}(\mathrm{X}(\Phi,D^-)).$ Интересующее нас здесь разбиение (подходящей) таблицы характеров группы G на части показано на рис. 2.

Так как по условию D взаимодействует с Φ , то согласно [2, теорема 3Б12 $((1)\Rightarrow(3))$] никакая ненулевая линейная комбинация столбцов матрицы $X(\Phi,D)$ не может быть одновременно линейной комбинацией столбцов матрицы $X(\Phi,D^-)$. Отсюда следует, что

$$|\Phi| = r + s \tag{1.3}$$

И

$$r(X(\Phi, D_i \cup D^-)) = r_i + s$$
 при $i \in \{1, 2\}.$ (1.4)

Предположим, что выполнено условие (1). Тогда согласно [2, теорема 8А6 $((4)\Rightarrow(1))$] и (1.4)

$$|\Phi| = r(X(\Phi, D_1)) + r(X(\Phi, D_1^-)) = r_1 + r_2 + s,$$

а отсюда и из (1.3) следует (2).

Если же выполнено условие (2), т. е. $r=r_1+r_2$, то с помощью (1.3) и (1.4) получаем

$$|\Phi| = r_1 + r_2 + s = r_1 + r(X(\Phi, D_2 \cup D^-)) = r(X(\Phi, D_1)) + r(X(\Phi, D_1^-)).$$

Отсюда по [2, теорема 8A6 $((1)\Rightarrow(4))$] следует (1).

Теорема 2 доказана.

ЗАМЕЧАНИЕ. Легко заметить, что в условиях теоремы 2 условиям (1) и (2) равносильно также условие $\Phi|_{D_1}^0\subseteq \mathbf{C}[\Phi|_D^0]$, т. е. при подходящем упорядочении столбцов в X строки матрицы $(\mathbf{X}(\Phi,D_1)|O)$, где O — нулевая матрица тех же размеров, что и $\mathbf{X}(\Phi,D\setminus D_1)$, суть линейные комбинации строк матрицы $\mathbf{X}(\Phi,D)=(\mathbf{X}(\Phi,D_1)|\mathbf{X}(\Phi,D\setminus D_1))$. Также с помощью [2, теорема $\mathbf{3}\Gamma \mathbf{7}$ $((0)\Leftrightarrow(1))]$ легко проверить, что условиям (1) и (2) теоремы 1 равносильно условие: при подходящем упорядочении строк в X столбцы матрицы $\mathbf{X}(\Phi_1,D)$, где O — нулевая матрица тех же размеров, что и $\mathbf{X}(\Phi\setminus \Phi_1,D)$, являются линейными комбинациями столбцов матрицы $\mathbf{X}(\Phi,D)=\begin{pmatrix} \mathbf{X}(\Phi_1,D)\\ \mathbf{X}(\Phi\setminus \Phi_1,D) \end{pmatrix}$.

§ 2. Упрощение централизаторного уравнения

Имеется большое число работ, посвященных характеризациям конечных групп их таблицами характеров (см. [3, \S 1.5]). В [2, гл. 8] некоторые конечные простые группы (в частности, группы Судзуки) охарактеризованы определенными их активными фрагментами, составляющими лишь малую часть полной таблицы характеров. Важным этапом такой характеризации является определение порядков централизаторов элементов из D и порядка группы.

Пусть $A = X(\Phi, D)$ — активный фрагмент группы G. Как показано в [2, § 8Б], уравнение

$$AXA^*A = A$$
, где $X = \operatorname{diag}(x_1, \dots, x_n)$, (2.1)

представляющее собой матричную форму системы линейных уравнений с неизвестными $x_1,\ldots,x_n,$ имеет решение

$$x_1 = \frac{1}{|C_G(d_1)|}, \dots, x_n = \frac{1}{|C_G(d_n)|},$$

где d_1, \ldots, d_n — представители всех классов сопряженных элементов группы G, содержащихся в D (n — число таких классов, $X(\Phi, d_i^G)$ — i-й столбец в A).

В следующих предложениях 1 и 2 показывается, как информация о разложимости A на меньшие активные фрагменты (полученная с помощью теорем 1 и 2) может быть использована для упрощения «централизаторного уравнения» (2.1).

Предложение 1. Пусть D — нормальное подмножество конечной группы G и $\varnothing \subset \Phi_1 \subset \Phi \subseteq {\rm Irr}(G)$. Положим $A = {\rm X}(\Phi,D), \ A_1 = {\rm X}(\Phi_1,D)$ и $A_2 = {\rm X}(\Phi \setminus \Phi_1,D)$. Предположим, что A и A_1 — активные фрагменты группы G. Тогда уравнение

$$AXA^*A = A, (2.2)$$

где $X = \operatorname{diag}(x_1, \ldots, x_t), t = k_G(D)$, равносильно системе уравнений

$$A_1 X A_1^* A_1 = A_1, \quad A_2 X A_2^* A_2 = A_2, \quad A_1 X A_2^* = O.$$
 (2.3)

Доказательство. Если в уравнении (2.2) матрицу A заменить матрицей, полученной из A перестановкой строк (или перестановкой столбцов), то получится уравнение, эквивалентное уравнению (2.2). Это следует из того, что (2.2) эквивалентно системе уравнений

$$\sum_{m=1}^{t} A_{im} \left(\sum_{n=1}^{|\Phi|} \overline{A_{nm}} A_{nj} \right) x_m = A_{ij} \quad (i = 1, \dots, |\Phi|; \ j = 1, \dots, t).$$

Поэтому мы можем считать, что $A=\begin{pmatrix}A_1\\A_2\end{pmatrix}$. Но теперь видно, что уравнение (2.2) равносильно системе

$$A_1X(A_1^*A_1 + A_2^*A_2) = A_1, \quad A_2X(A_1^*A_1 + A_2^*A_2) = A_2.$$
 (2.4)

Пусть

$$T = \operatorname{diag}\left(\frac{1}{|C_G(d_1)|}, \cdots, \frac{1}{|C_G(d_t)|}\right),\,$$

где d_i — элемент из D такой, что $\mathrm{X}(\Phi,d_i^G)$ есть i-й столбец в A. Так как A_1 — активный фрагмент группы G, то по [2, теорема $3\mathrm{E}1\ ((1) \Rightarrow (4)\ \mathrm{u}\ (1) \Rightarrow (2))]$

$$A_1 T A_1^* A_1 = A_1 \quad \text{if} \quad A_2 T A_1^* = O.$$
 (2.5)

Умножив первое равенство в (2.4) справа на $TA_1^*A_1$, получим

$$A_1X(A_1^*A_1TA_1^*A_1 + A_2^*A_2TA_1^*A_1) = A_1TA_1^*A_1.$$

Отсюда и из (2.5) выводится первое равенство системы (2.3).

Поскольку по [2, 3Б4] A_2 также активный фрагмент группы G, то (подобно предыдущему) из системы (2.4) выводится второе уравнение системы (2.3). Кроме того, из активности A_2 следует (по [2, 3Б1]), что $A_2TA_2^*A_2=A_2$ и, значит,

$$A_2^* A_2 T A_2^* = A_2^*. (2.6)$$

Из первых уравнений систем (2.3) и (2.4) выводим уравнение

$$A_1XA_2^*A_2 = O.$$

Умножив обе части его на TA_2^* и применив (2.6), получим третье уравнение системы (2.3).

Итак, из уравнения (2.2) выводится система (2.3). Обратно, из системы (2.3) выводятся, очевидно, система (2.4), а следовательно, и уравнение (2.2).

Предложение 1 доказано.

Предложение 2. Пусть D и D_1 — нормальные подмножества конечной группы G такие, что $\varnothing \subset D_1 \subset D$, и пусть $\Phi \subseteq \operatorname{Irr}(G)$, $A = \operatorname{X}(\Phi, D)$, $A_1 = \operatorname{X}(\Phi, D_1)$, $A_2 = \operatorname{X}(\Phi, D \setminus D_2)$. Предположим, что A и A_1 — активные фрагменты группы G. Тогда уравнение

$$A\begin{pmatrix} X & O \\ O & Y \end{pmatrix} A^* A = A, \tag{2.7}$$

где $X = \operatorname{diag}(x_1, \dots, x_t), \ t = k_G(D_1), \ \text{и} \ Y = \operatorname{diag}(y_1, \dots, y_s), \ s = k_G(D \setminus D_1),$ равносильно системе уравнений

$$A_1 X A_1^* A_1 = A_1, \quad A_2 Y A_2^* A_2 = A_2.$$
 (2.8)

Доказательство. Без ограничения общности (см. начало доказательства предложения 1) можно считать, что $A=(A_1|A_2)$. Поэтому уравнение (2.7) можно переписать в виде

$$(A_1X|A_2Y)\begin{pmatrix} A_1^* \\ A_2^* \end{pmatrix}(A_1|A_2) = (A_1|A_2),$$

что равносильно системе

$$(A_1XA_1^* + A_2YA_2^*)A_1 = A_1, \quad (A_1XA_1^* + A_2YA_2^*)A_2 = A_2. \tag{2.9}$$

Так как по условию D_1 взаимодействует с Φ , то по [2, теорема 3Б1 $((1)\Rightarrow(3))$] $A_2^*A_1 = O$ и, следовательно, $A_1^*A_2 = O$. Но эти равенства влекут равносильность систем уравнений (2.9) и (2.8).

Предложение 2 доказано.

ЛИТЕРАТУРА

- 1. Белоногов В. А. D-блоки характеров конечной группы // Исследования по теории групп. Свердловск: Изд-во УрО АН СССР, 1984. С. 3–31.
- **2.** *Белоногов В. А.* Представления и характеры в теории конечных групп. Свердловск: Изд-во УрО АН СССР, 1990.
- 3. Кострикин А. И., Чубаров И. А. Представления конечных групп // Алгебра. Топология. Геометрия. М.: ВИНИТИ, 1985. Т. 23. С. 119–195. (Итоги науки и техники).

Cтатья поступила 28 февраля 2000 г.

Белоногов Вячеслав Александрович Институт математики и механики УрО РАН, ул. С. Ковалевской, 16, Екатеринбург 620219 belonogov@imm.uran.ru