ОЦЕНКА УГЛА ОБЗОРА КРИВОЙ В МЕТРИЧЕСКОМ ПРОСТРАНСТВЕ НЕПОЛОЖИТЕЛЬНОЙ КРИВИЗНЫ

Ю. Г. Решетняк

Аннотация: Дано элементарное доказательство неравенства, оценивающего некоторую характеристику кривой — угол обзора кривой из данной точки — через интегральную кривизну (поворот) кривой. Рассматривается случай кривых в метрическом пространстве неположительной кривизны в смысле А. Д. Александрова. Библиогр. 11.

1. Рассматриваются кривые в метрическом пространстве M с внутренней метрикой неположительной кривизны в смысле А. Д. Александрова [1]. (Такие пространства в литературе часто называются также *пространствами типа* CAT(0).)

Для всякой кривой K в пространстве неположительной кривизны M определена некоторая величина $\varkappa(K)$ — поворот или интегральная кривизна кривой. Для кривых в пространстве \mathbb{R}^n это понятие введено А. Д. Александровым (см. [1,2]). Для произвольных пространств неположительной кривизны оно введено в статье [3]. В случае, если M — риманово пространство и кривая K удовлетворяет принятым в дифференциальной геометрии условиям регулярности, величина $\varkappa(K)$ равна интегралу геодезической кривизны кривой относительно дуги (см. [4]).

Пусть K — кривая в пространстве неположительной кривизны. Всякой точке O, не лежащей на данной кривой, может быть сопоставлено число $\varphi(O,K)$, которое мы назовем углом обзора кривой из точки O. Величина $\varphi(O,K)$ в общем случае определяется следующим образом. Для точки O определено метрическое пространство $N_{M}(O)$ — пространство направлений в точке O. Для всякой точки X кривой K определена кратчайшая OX, соединяющая точку O с точкой X. Пусть $\xi(X)$ — направление кратчайшей OX в точке O. Тем самым в пространстве $N_{M}(O)$ определена некоторая кривая. Ее длину в метрическом пространстве $N_{M}(O)$ мы и называем углом обзора кривой K из точки O. В случае кривых в \mathbb{R}^{n} величина $\varphi(O,K)$ равна длине проекции кривой K на единичную сферу с центром O.

Цель настоящей статьи — доказать следующее утверждение.

Основная теорема. Пусть K — кривая конечного поворота в пространстве M неположительной кривизны, O — точка, не лежащая на кривой K, A и B — концевые точки кривой K. Пусть, кроме того, α и β — углы между кратчайшими OA и OB и кривой K в точках A и B соответственно. Тогда имеет место неравенство

$$\varphi(O, K) \le \varkappa(K) + \pi - \alpha - \beta.$$

Частный случай данного утверждения, когда пространство M — обычная евклидова плоскость \mathbb{E}^2 , установлен Радоном [5]. Неравенство, полученное Радоном, имеет приложения в теории потенциала. Оно находит применение также при исследовании геометрии двумерных многообразий ограниченной кривизны с помощью изотермической системы координат (см. [6–8]).

В работе А. Г. Хованского и С. Ю. Яковенко [9] устанавливается аналог неравенства Радона для кривых в пространстве \mathbb{R}^n . Доказательство, данное в [9], использует некоторые соотношения, известные из интегральной геометрии. В [9] обобщение неравенства Радона на случай кривых в пространстве \mathbb{R}^n названо пространственной теоремой Ролля. В этой работе указаны некоторые приложения полученного там неравенства к теории функций комплексной переменной.

Доказательство основной теоремы, которое приводится здесь, по существу, основано на соображениях, относящихся к элементарной геометрии. Полученный результат относится к ситуации, существенно более общей, чем та, которая рассматривается в работе [9].

2. Далее M означает произвольное метрическое пространство неположительной кривизны. Расстояние между произвольными точками $X, Y \in M$ далее обозначается символом |XY|.

Понятие кривой далее трактуется в смысле определения, данного М. Фреше, с той разницей, что оказывается удобным иметь дело с ориентированными кривыми в смысле Фреше. Необходимые определения могут быть найдены, например, в статье [1] и в монографии [2]. Мы предполагаем известным также понятие длины кривой. Длина кривой K в метрическом пространстве M далее обозначается символом s(K). Кривая K с началом в точке $X \in M$ и концом в точке $Y \in M$ называется produce (K) = |XY|.

Метрическое пространство называют *пространством с внутренней метрикой*, если для любых двух его точек расстояние между ними равно точной нижней границе длин кривых, соединяющих эти точки.

Треугольником в метрическом пространстве M называется множество T, состоящее из трех точек X, Y и Z этого пространства и трех кратчайших XY, YZ и ZX, соединяющих эти точки. Точки X, Y и Z называются вершинами треугольника T, кратчайшие XY, YZ и ZX — сторонами треугольника T. В этом случае применяется обозначение $T = \Delta(XYZ)$.

Пусть $T=\Delta(XYZ)$ — треугольник в метрическом пространстве с внутренней метрикой M. Символ $\widehat{\Delta}(XYZ)$ далее означает треугольник на плоскости \mathbb{E}^2 с вершинами в точках $X', \, Y'$ и Z' такой, что $|X'Y'|=|XY|, \, |Y'Z'|=|YZ|$ и, наконец, |Z'X'|=|XZ|. Треугольник $\widehat{\Delta}(XYZ)$ называется разверткой треугольника $\Delta(XYZ)$. Определим отображение φ границы треугольника $\widehat{\Delta}(XYZ)$ в пространство M такое, что

$$\varphi(X') = X, \quad \varphi(Y') = Y, \quad \varphi(Z') = Z$$

и стороны [X'Y'], [Y'Z'] и [Z'X'] изометрически отображаются на кратчайшие [XY], [YZ], [ZX] соответственно. Отображение φ этими условиями определено однозначно. Если P — точка на стороне треугольника $\Delta(XYZ)$, то будем говорить, что точка P' треугольника $\widehat{\Delta}(XYZ)$ отвечает точке P, если $P = \varphi(P')$.

Пусть O — произвольная точка метрического пространства M, K и L — кривые, исходящие из точки O. Зададим произвольно точки $X \in K$ и $Y \in K$,

отличные от точки O. Пусть x = |OX|, y = |OY|. Построим развертку $\widehat{\Delta}(OXY)$ треугольника $\Delta(OXY)$. Символом $\gamma(X,Y)$ обозначим угол при вершине O' плоского треугольника $\widehat{\Delta}(OXY)$. Предел

$$\lim_{X \to O, Y \to O} \gamma(X, Y) \tag{2.1}$$

в случае, если он существует, называется углом между кривыми K и L в точке O.

Пусть $T = \Delta(XYZ)$ — треугольник в пространстве M, и пусть α , β и γ — углы при вершинах этого треугольника. Величина $\delta(T) = \alpha + \beta + \gamma - \pi$ называется избытком треугольника XYZ.

Во всяком метрическом пространстве M неположительной кривизны для любых двух кратчайших, исходящих из некоторой точки X, существует угол между ними в этой точке. Для всякого треугольника T в пространстве M выполняется неравенство $\delta(T) < 0$.

Справедливо также более сильное утверждение, а именно

Лемма 2.1 [10]. Пусть XYZ — треугольник в пространстве M неположительной кривизны и α , β и γ — углы в его вершинах X, Y и Z соответственно. Пусть α' , β' и γ' — углы треугольника $\widehat{\Delta}(XYZ)$ при его вершинах, отвечающих точкам X, Y и Z соответственно. Тогда $\alpha \leq \alpha'$, $\beta \leq \beta'$, $\gamma \leq \gamma'$.

Далее нам понадобится также следующее предложение, доказательство которого может быть найдено в [10].

Лемма 2.2. Пусть K_1 , K_2 и K_3 — кривые в метрическом пространстве M, исходящие из точки O, и α_{ij} , $i,j=1,2,3,\ i\neq j,$ — угол в точке O между кривыми K_i и K_j . Тогда справедливо неравенство

$$\alpha_{13} \le \alpha_{12} + \alpha_{23} \tag{2.2}$$

(неравенство треугольника для углов).

Определение поворота кривой в нашем случае вполне аналогично определению, приведенному в [1,2] для кривых в пространстве \mathbb{R}^n . Случай кривых в пространстве неположительной кривизны рассмотрен в работе [3]. Дальнейшее представляет собой модификацию рассуждений, содержащихся в [1,2]. Единственное место, где возникает отличие в сравнении с [1,2], связано с леммой 3.1.

Пусть K — кривая в пространстве M. Будем говорить, что K — ломаная, если существует конечная последовательность X_0, X_1, \ldots, X_m точек этой кривой такая, что при каждом $i=1,2,\ldots,m$ точка X_{i-1} предшествует точке X_i , дуга $[X_{i-1}X_i]$ является кратчайшей, X_0 — начало, X_m — конец кривой K. Для $i=1,2,\ldots,m-1$ пусть θ_i — угол при вершине X_i треугольника $X_{i-1}X_iX_{i+1}$. Величина $\varkappa_i=\pi-\theta_i$ называется поворотом при вершине X_i ломаной K. Сумма $\sum_{i=1}^{m-1} \varkappa_i$ называется поворотом ломаной K и обозначается символом $\varkappa(K)$.

Пусть K — кривая в пространстве M, X_0, X_1, \ldots, X_m — последовательность точек кривой K такая, что при каждом $i=1,2,\ldots,m$ точка X_{i-1} предшествует точке X_i на кривой K. Соединяя последовательно кратчайшими точки X_0 и X_1, X_1 и X_2 и т. д., наконец, точку X_{i-1} с точкой X_i , получим некоторую ломаную. Ломаная L называется вписанной в кривую K, если она может быть построена таким путем.

Пусть даны ломаные L и K. Тогда если L вписана в K, то имеет место неравенство $\varkappa(L) \leq \varkappa(K)$. Это следствие лемм 2.1 и 2.2 (см. [3]). Отсюда, в

частности, следует, что $\varkappa(K)$ — точная верхняя граница поворотов ломаных вписанных в K. (В действительности $\varkappa(K) = \max_L \varkappa(L)$, где L вписана в K.)

Пусть K — произвольная кривая в пространстве M. Точная верхняя граница поворотов ломаных, вписанных в кривую K, называется ее *поворотом* и обозначается символом $\varkappa(K)$. В силу предыдущего замечания для случая ломаных данное определение дает то же значение поворота, что и исходное определение.

Лемма 3.1 [11]. Пусть X_{ν}, Y_{ν} и $Z_{\nu}, \nu=1,2,\ldots,-$ последовательности точек пространства M кривизны, не большей K, сходящиеся к точкам X_0, Y_0 и Z_0 соответственно. Пусть также $\alpha_{\nu}-$ угол при вершине X_{ν} треугольника $X_{\nu}Y_{\nu}Z_{\nu}, \alpha_0-$ угол при вершине X_0 треугольника $X_0Y_0Z_0$. Тогда справедливо неравенство $\overline{\lim_{\nu\to\infty}} \alpha_{\nu} \leq \alpha_0$.

Лемма 3.2. Пусть K_{ν} , $\nu=1,2,\ldots,-$ последовательность кривых в пространстве M, сходящаяся к кривой K. Имеет место неравенство

$$\varkappa(K) \leq \underline{\lim_{\nu \to \infty}} \varkappa(K_{\nu}).$$

Доказательство. Пусть выполнены все условия леммы. Если кривая K вырождается в точку, то по определению $\varkappa(K)=0$ и в этом случае неравенство леммы выполняется. Будем считать, что кривая K является невырожденной. Зададим произвольно ломаную L, вписанную в K. Пусть X_0, X_1, \ldots, X_m — последовательные вершины ломаной L. Зададим произвольно параметризацию $x(t), \ a \leq t \leq b,$ кривой K, и пусть $a \leq t_0 < t_1 < \cdots < t_m \leq b$ — значения параметра t такие, что $X_i = x(t_i)$ при каждом $i = 1, 2, \ldots, m$. Согласно определению сходимости кривых найдется последовательность $x_\nu(t), \ a \leq t \leq b,$ $\nu = 1, 2, \ldots$, параметризаций кривых K_ν такая, что $|x_\nu(t)x(t)| \to 0$ равномерно в промежутке [a,b] при $\nu \to \infty$. Положим $X_{i,\nu} = x_\nu(t_i)$, и пусть L_ν — вписанная в кривую K_ν ломаная с вершинами в точках $X_{i,\nu}, i = 0, 1, \ldots, m$. Для 0 < i < m обозначим через $\theta_{i,\nu}$ угол при вершине $X_{i,\nu}$ треугольника $X_{i-1,\nu}X_{i,\nu}X_{i+1,\nu}$. Положим $\varkappa_{i,\nu} = \pi - \theta_{i,\nu}$. Согласно лемме 3.1 при каждом $i = 1, 2, \ldots, m-1$ выполняется неравенство

$$\theta_i \ge \overline{\lim_{\nu \to \infty}} \, \theta_{i,\nu},$$

откуда следует, что

$$\varkappa_i \leq \underline{\lim}_{\nu \to \infty} \varkappa_{i,\nu}.$$

Это позволяет заключить, что

$$\underline{\lim_{\nu \to \infty}} \varkappa(K_{\nu}) \ge \underline{\lim_{\nu \to \infty}} \varkappa(L_{\nu})$$

$$= \varliminf_{\nu \to \infty} \left(\sum_{i=1}^{m-1} \varkappa_{i,\nu} \right) \geq \sum_{i=1}^{m-1} \varliminf_{\nu \to \infty} \varkappa_{i,\nu} \geq \sum_{i=1}^{m-1} \varkappa_i = \varkappa(L).$$

В силу произвольности ломаной L, вписанной в кривую K, лемма доказана.

Лемма 3.3. Пусть K — произвольная кривая в пространстве M, A и B — концевые точки кривой K, X — произвольная внутренняя точка кривой K. Тогда имеют место неравенства

$$\varkappa(K) \ge \varkappa([AX]) + \varkappa([XB]) \ge \varkappa(K) - \pi.$$

ДОКАЗАТЕЛЬСТВО осуществляется рассуждениями, аналогичными тем, которые для евклидова случая приведены в [1, 2], и мы его опускаем.

Следствие 1. Если кривая K в пространстве M является кривой конечного поворота, то и любая ее дуга будет кривой конечного поворота.

Если кривая K с началом A и концом B такова, что для некоторого X дуги [AX] и [XB] представляют собой кривые конечного поворота, то также и K — кривая конечного поворота.

Доказательство. Первое утверждение следствия вытекает из того, что всякая ломаная L, вписанная в произвольную дугу [XY] кривой K, вписана также и в кривую K.

Второе утверждение леммы следует из неравенства $\varkappa(K) \le \pi + \varkappa([AX]) + \varkappa([XB])$. \square

Следствие 2. Предположим, что K — кривая конечного поворота, A — начало, B — конец кривой K, X — внутренняя точка кривой K. Тогда если X стремится к A по кривой K, то $\varkappa([AX]) \to 0$. Аналогично при $X \to B$ по кривой K имеем $\varkappa([XB]) \to 0$.

ДОКАЗАТЕЛЬСТВО осуществляется аналогично случаю кривых в пространстве \mathbb{R}^n (см. [1,2]). \square

Пусть O — точка в пространстве неположительной кривизны M. Говорят, что кривая K, исходящая из точки O, имеет в точке O направление, если она образует сама с собой определенный угол, т. е. существует предел

$$\lim_{\substack{X \to O, Y \to O \\ X, Y \in K}} \gamma(X, Y).$$

Этот предел, очевидно, равен нулю. Множество всех кривых, исходящих из точки X и имеющих направление в этой точке, обозначим символом $\mathcal{K}_M(O)$.

Следствие 3. Пусть K — кривая в пространстве M, A — начало и B — конец кривой K. Тогда если $\varkappa(K) < \infty$, то кривая K имеет определенные направления в каждой из точек A и B.

Доказательство см. в [3]. \square

4. Если кривые K и L, исходящие из точки O, таковы, что каждая из них имеет в точке O определенное направление, то определен угол между этими кривыми в точке O. Будем обозначать его символом $\alpha(K,L)$. Для всякой кривой $K \in \mathcal{K}(O)$ имеем $\alpha(K,K) = 0$. Для любых $K, L \in \mathcal{K}(O)$, очевидно, $\alpha(K,L) = \alpha(L,K)$. Лемма 2.2 позволяет заключить, что для функции α выполняется неравенство треугольника: $\alpha(K_0,K_2) \leq \alpha(K_0,K_1) + \alpha(K_1,K_2)$ для любых трех кривых, принадлежащих $\mathcal{K}(O)$. Функция α , таким образом, является полуметрикой на множестве $\mathcal{K}(O)$. Из равенства $\alpha(K,L) = 0$, вообще говоря, не следует, что K = L.

Фактор-пространство пространства $\mathscr{K}(O)$ по отношению эквивалентности $K \sim L$, определенному условием $K \sim L \Leftrightarrow \alpha(K,L) = 0$, обозначается символом $N_M(O)$ и называется пространством направлений пространства M в точке O. Класс эквивалентности кривой $K \in \mathscr{K}(O)$ по отношению \sim называется направлением кривой K в точке X. Пусть $\xi, \eta \in N_M(O)$. Выберем произвольно кривые $K \in \xi$ и $L \in \eta$ и положим $\alpha(\xi, \eta) = \alpha(K, L)$. Функция α является метрикой на множестве $N_M(O)$.

Пусть K — произвольная кривая в пространстве M, O — точка, не лежащая на кривой K. Зададим произвольно параметризацию $x(t), a \le t \le b$, кривой K. Тогда $x(t) \ne O$ при каждом $t \in [a,b]$. Пусть K_t — кратчайшая, соединяющая

точку x(t) с точкой O, и $\xi(t)$ — касательное направление кратчайшей K_t в точке O. Для $t \in [a,b]$ положим r(t) = |Ox(t)|. Для всякой точки $t_0 \in [a,b]$ при $t \to t_0$ величина $|x(t)x(t_0)|$ стремится к нулю в силу непрерывности x(t). Так как $|r(t)-r(t_0)| \leq |x(t)x(t_0)|$, то и $r(t)\to r(t_0)$ при $t\to t_0$. Для треугольника $Ox(t)x(t_0)$ построим его развертку. Пусть $\hat{\alpha}(t,t_0)$ — угол при вершине развертки, соответствующей точке O. Очевидно, $\hat{\alpha}(t,t_0)\to 0$ при $t\to t_0$. Имеем $\alpha(\xi(t),\xi(t_0))\leq \hat{\alpha}(t,t_0)$, откуда согласно лемме 3.1 вытекает, что $\alpha(\xi(t),\xi(t_0))\to 0$ при $t\to t_0$. Получаем, следовательно, что $\xi(t)$, $t\in [a,b]$, — непрерывная параметризованная кривая в метрическом пространстве $(N_M(O),\alpha)$. Она определяет некоторую кривую $\Sigma(K)$ в N(O). Кривая $\Sigma(K)$ не зависит от выбора параметризации x(t), $a\leq t\leq b$, кривой K. Будем говорить, что $\xi(t)$ — параметризация кривой $\Sigma(K)$, порожденной параметризацией x(t) кривой x. Длина кривой x. В пространстве x0 обозначается символом x0 и называется x1 и называется x2 и обозора x3 и x4 и x4 и x5 и x5 и x6 и называется x6 обозора x6 и x7 и x8 и x9 и x9

Предложение 4.1. Если кривая K спрямляема, то для всякой точки O, не лежащей на кривой K, величина $\varphi(O,K)$ конечна. Если $\delta>0$ таково, что для всякой точки X кривой K выполняется неравенство $|OX|\geq \delta$, то имеет место неравенство

$$\varphi(O,K) \leq \frac{s(K)}{\delta}.$$

Доказательство элементарно. \square

ДОКАЗАТЕЛЬСТВО ОСНОВНОЙ ТЕОРЕМЫ. Предварительно докажем некоторое вспомогательное утверждение.

Пусть L — ломаная в пространстве M, не проходящая через точку O, и пусть X_0, X_1, \ldots, X_m — ее последовательные вершины. При каждом $i=1,2,\ldots,m$ рассмотрим треугольник $OX_{i-1}X_i$. Пусть α_i — угол при вершине O этого треугольника, β_{i-1} — угол при его вершине X_{i-1} и, наконец, γ_i — угол при вершине X_i треугольника $OX_{i-1}X_i$. Если 0 < i < m, то пусть θ_i — угол при вершине X_i треугольника $X_{i-1}X_iX_{i+1}$. Тогда поворот ломаной L в точке X_i равен $\varkappa_i = \pi - \theta_i$.

Положим $\widehat{\varphi}(L) = \sum\limits_{i}^{m} \alpha_{i}$. Докажем, что имеет место неравенство

$$\widehat{\varphi}(L) \le \pi - \beta_0 + \varkappa(L) - \gamma_m. \tag{4.1}$$

Доказательство будем вести индукцией по числу m звеньев ломаной. Для m=1 имеем $\varkappa(L)=0$. В этом случае $\widehat{\varphi}(L)=\alpha_1$. Избыток треугольника OX_0X_1 неположителен, так как по условию M — пространство неположительной кривизны, т. е. имеет место неравенство $\alpha_1+\beta_0+\gamma_1\leq\pi$. Отсюда $\widehat{\varphi}(L)=\alpha_1\leq\pi-\beta_0-\gamma_1$. Это, очевидно, и есть неравенство (4.1) для данного случая.

Предположим, что для ломаных, имеющих m звеньев, неравенство (4.1) доказано. Пусть L — ломаная, составленная из (m+1) кратчайших $[X_{i-1}X_i]$, $i=1,2,\ldots,m,m+1$. Обозначим через L' дугу X_0X_m этой ломаной. В силу предположения индукции

$$\widehat{\varphi}(L') \le \pi - \alpha_0 + \varkappa(L') - \gamma_m. \tag{4.2}$$

Далее, $\widehat{\varphi}(L)=\widehat{\varphi}(L')+\alpha_{m+1}$. Применяя неравенство $\delta(T)\leq\pi$ к треугольнику $T=OX_mX_{m+1}$, получим $\alpha_{m+1}+\beta_m+\gamma_{m+1}\leq\pi$, откуда

$$\alpha_{m+1} \le \pi - \beta_m - \gamma_{m+1}. \tag{4.3}$$

Складывая почленно неравенства (4.2) и (4.3), находим

$$\widehat{\varphi}(L) = \widehat{\varphi}(L') + \alpha_{m+1} \le \pi - \alpha_0 + \varkappa(L') - \gamma_m + \pi - \beta_m - \gamma_{m+1}. \tag{4.4}$$

Пусть θ_m — угол между кратчайшими $[X_m X_{m-1}]$ и $[X_m X_{m+1}]$ в точке X_m . Имеем неравенство $\beta_m + \gamma_m \geq \theta_m$. Отсюда $-\gamma_m + \pi - \beta_m \leq \pi - \theta_m = \varkappa_m$. С учетом последнего неравенства из (4.4) следует, что

$$\widehat{\varphi}(L) \le \pi - \alpha_0 + \varkappa(L') + \varkappa_m - \gamma_{m+1} = \pi - \alpha_0 + \varkappa(L) - \gamma_{m+1},$$

и тем самым показано, что если неравенство (4.1) выполняется для m-звенных ломаных, то оно верно также и для ломаных, которые имеют m+1 звеньев. По индукции заключаем, что неравенство (4.1) справедливо для всех ломаных, не проходящих через точку O.

Пусть K — произвольная кривая конечного поворота в пространстве M, $x(t),\ a\leq t\leq b,$ — произвольная ее параметризация, причем x(a)=A — начало, x(b)=B — конец кривой K. Для произвольного натурального ν пусть $t_0=a< t_1<\cdots< t_m=b$ — последовательность точек промежутка [a,b] такая, что при каждом $i=1,2,\ldots,m$ разность t_i-t_{i-1} меньше $1/\nu$, и пусть L_ν — вписанная в кривую K ломаная, образованная кратчайшими, последовательно соединяющими точки $X_{i-1}=x(t_{i-1})$ и $X_i=x(t_i),\ i=1,2,\ldots,m$. Полагая $\nu=1,2,\ldots$, получим последовательность ломаных L_ν , вписанных в кривую K и сходящуюся к ней при $\nu\to\infty$. При каждом ν имеем $\varkappa(L_\nu)\leq \varkappa(k)$. Так как согласно теореме $2.1\ \varkappa(K)\leq \underline{\lim}\ \varkappa(L_\nu)$, отсюда следует, что $\varkappa(K)=\lim_{\nu\to\infty}\ \varkappa(L_\nu)$.

Для $t\in [a,b]$ пусть $\xi(t)$ — направление в точке O кратчайшей [Ox(t)]. Функция $\xi(t)$ — параметризация кривой $\Sigma(K)$ в пространстве $\mathscr{N}(O)$.

Рассмотрим ломаную L_{ν} . Будем считать, что L_{ν} не проходит через точку O. (Для всех достаточно больших значений ν это условие, очевидно, выполняется.) Имеем

$$\widehat{\varphi}(L_{\nu}) = \sum_{i=1}^{m} \alpha(t_{i-1}, t_i).$$

Отсюда вытекает, что при $\nu \to \infty$ величина $\widehat{\varphi}(L_{\nu})$ имеет пределом длину кривой $\Sigma(K)$ в пространстве $\mathcal{N}(O)$, т. е. $\widehat{\varphi}(L_{\nu}) \to \varphi(O,K)$ при $\nu \to \infty$.

Пусть $[AX_{\nu}]$ — первое, а $[Y_{\nu}B]$ — последнее звенья ломаной L_{ν} . При $\nu\to\infty$ будет $X_{\nu}\to A$, а $Y_{\nu}\to B$. По доказанному при каждом ν справедливо неравенство

$$\widehat{\varphi}(L_{\nu}) \le \varkappa(L_{\nu}) + \pi - \alpha_{\nu} - \beta_{\nu},\tag{4.5}$$

где α_{ν} — угол между кратчайшими [OA] и $[AX_{\nu}]$ в точке A и аналогично β_{ν} — угол в точке B между кратчайшими OB и $[Y_{\nu}B]$. При $\nu \to \infty$ имеем $\alpha_{\nu} \to \alpha$, $\beta_{\nu} \to \beta$ и, наконец, $\varkappa(L_{\nu}) \to \varkappa(K)$. Переходя в неравенстве (4.5) к пределу при $\nu \to \infty$, получим требуемое неравенство. \square

ЛИТЕРАТУРА

- 1. Александров А. Д., Решетняк Ю. Г. Поворот кривой в n-мерном евклидовом пространстве // Сиб. мат. журн. 1988. Т. 29, № 1. С. 3–23.
- Alexandrov A. D., Reshetnyak Yu.G. General theory of irregular curves. New York: Kluwer Acad. Publ., 1989.
- Alexander S. B., Bishop R. The Fary Milnor theorem in Hadamard manifolds // Proc. Amer. Math. Soc. 1998. V. 126. P. 3427–3436.
- 4. Bishop R. L. The total curvature of a Riemannian curve. Urbana Shampaign Univ., 2002. Preprint, 1-2.

- Radon J. Über Randwertaufgaben beim logarithmischen Potential // Sitzber Akad. Wiss. Wien. 1919. V. 128. P. 1123–1167.
- Решетняк Ю. Г. Исследование многообразий ограниченной кривизны посредством изотермических координат // Изв. СО АН СССР. 1959. Т. 10, № 1. С. 15–28.
- Решетняк Ю. Г. Изотермические координаты в многообразиях ограниченной кривизны. І // Сиб. мат. журн. 1960. Т. 1, № 1. С. 88–116.
- 8. Решетняк Ю. Г. Изотермические координаты в многообразиях ограниченной кривизны. II // Сиб. мат. журн. 1960. Т. 1, № 2. С. 248–276.
- **9.** Khovanski A. G., Yakovenko S. Yu. Generalized Rolle theorem in \mathbb{R}^n and \mathbb{C} // J. Dynamic. Control. Systems. 1996. V. 2, N 1. P. 101–123.
- Alexandrov A. D. On a generalization of Riemannian geometry. Berlin: Jahresberichte Humb. Univ., 1955, P. 3–65. (См. также Alexandrov A. D. Selected works. Gordon and Breach Publ., 1996. P. 187–249.)
- 11. Ballmann W. Lectures on Spaces of Nonpositive Curvature. Basel: Birkhäuser, 1995.

Статья поступила 4 февраля 2002 г.

Решетняк Юрий Григорьевич Институт математики им. С. Л. Соболева СО РАН, Новосибирск 630090 ugresh@math.nsc.ru