ОТОБРАЖЕНИЯ ОБЛАСТЕЙ ПРОСТРАНСТВА \mathbb{R}^n И ИХ МЕТРИЧЕСКИЕ ТЕНЗОРЫ

Ю. Г. Решетняк

Аннотация: Рассматриваются квазиизометрические отображения областей в многомерных евклидовых пространствах. Устанавливается, что с точностью до изометрии пространства отображение зависит непрерывно в смысле топологии классов Соболева от своего метрического тензора. В пространстве метрических тензоров берется топология, определяемая посредством сходимости почти всюду. Показано, что если метрический тензор отображения непрерывен, то длина образа спрямляемой кривой определяется той же формулой, что и в случае отображений с непрерывными производными. (Непрерывность метрического тензора отображения не влечет непрерывность его производных.)

Ключевые слова: квазиизометрическое отображение, метрический тензор, локально слабая сходимость якобианов, полунепрерывность функционалов вариаци-

Пусть U — открытое множество в n-мерном евклидовом пространстве \mathbb{R}^n . Предположим, что отображение $f:U\to\mathbb{R}^n$ принадлежит какому-либо соболевскому классу $W^1_{p,\mathrm{loc}}$, и пусть $\nabla f(x)=f'(x)$ — матрица Якоби отображения f. Эта матрица определена для почти всех $x\in U$. Для произвольной $n\times n$ -матрицы A пусть A^* — транспонированная матрица A. Матричная функция $G_f(x)=[\nabla f(x)]^*\nabla f(x)$ называется метрическим тензором или тензором Коши — Грина отображения f.

Если функция f принадлежит классу \mathscr{C}^3 , т. е. такова, что все ее частные производные не выше третьего порядка определены и непрерывны в U, то метрический тензор отображения f принадлежит классу \mathscr{C}^2 . В работе [1] показано, что если для отображений f и g класса \mathscr{C}^3 области U пространства \mathbb{R}^n метрические тензоры этих отображений близки, то с точностью до изометрии и сами отображения близки друг к другу, т. е. существует изометрическое отображение φ пространства \mathbb{R}^n такое, что разность $\varphi \circ f - g$ близка к нулю. При этом близость в [1] определяется посредством норм, включающих производные второго порядка для метрических тензоров и третьего порядка для самих отображений. Возникает вопрос: можно ли утверждать, что отображения f и g, с точностью до изометрии, близки одна к другой, если G_f и G_q близки в смысле топологии пространства L_p , а близость отображений определяется в топологии соответствующих соболевских пространств? В настоящей статье дается положительный ответ на этот вопрос для случая, когда рассматриваемые отображения являются квазиизометрическими. Необходимые определения и точные формулировки приводятся ниже. Основной результат настоящей статьи содержится в

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (код проекта 02-01-01009) и программы «Университеты России» (код проекта 04.01.0590).

теореме 1. Доказательство использует некоторые известные результаты вариационного исчисления, в частности, теорему о слабой непрерывности интеграла от якобиана, доказанную в работе [2], и теорему о полунепрерывности функционалов вариационного исчисления, установленную в статье [3]. Применяются также некоторые известные результаты метрической теории пространственных отображений, доказательства которых приводятся в [4, 5].

Заключительная часть данной статьи посвящена изучению отображений, у которых метрический тензор $G_f(x)$ есть непрерывная функция. Этому условию удовлетворяет любое отображение класса \mathscr{C}^1 , но, вообще говоря, из непрерывности $G_f(x)$ не следует, что $f \in \mathscr{C}^1$. Отображения с непрерывным метрическим тензором мы называем СМТ-отображениями. Доказывается, что для произвольного СМТ-отображения длина образа спрямляемой кривой может вычисляться с помощью метрического тензора по той же формуле, что и в случае отображений класса \mathscr{C}^1 . Этот результат представляет собой часть некоторого первоначального плана, которая в дальнейшем оказалась невостребованной. Автор счел возможным включить данное утверждение в эту статью, поскольку в рассматриваемой здесь общей ситуации оно, по-видимому, не может быть получено простой ссылкой на классические теоремы математического анализа, как это имеет место в случае отображений класса \mathscr{C}^1 .

§ 1. Обозначения и терминология

1. Далее \mathbb{R}^n-n -мерное евклидово пространство точек $x=(x_1,x_2,\dots,x_n)$, где $x_i,\ i=1,2,\dots,n$, — вещественные числа. Для произвольных векторов $x=(x_1,x_2,\dots,x_n)\in\mathbb{R}^n$ и $y=(y_1,y_2,\dots,y_n)$ символ $\langle x,y\rangle$ означает их скалярное произведение, $\langle x,y\rangle=\sum\limits_{i=1}^n x_iy_i,\ |x|=\sqrt{\langle x,x\rangle}$ — длина вектора $x\in\mathbb{R}^n$.

Множество всех квадратных матриц $X=(x_{ij})_{i,j=1,2,...,n}$ порядка n, элементы которых суть вещественные числа, будем обозначать символом $\mathbb{R}^{n,n}$, $\det X$ — определитель матрицы $X \in \mathbb{R}^{n,n}$. Выражение Xt, где $X \in \mathbb{R}^{n,n}$ а $t \in \mathbb{R}^n$, означает произведение матрицы X на вектор t, определяемое обычным образом. Единичная матрица порядка n обозначается символом I_n , $I_n=(\delta_{ij})_{i,j=1,2,...,n}$, где

$$\delta_{ij} = \left\{egin{array}{ll} 1 & ext{при } i=j, \ 0 & ext{при } i
eq j. \end{array}
ight.$$

Если $X\in\mathbb{R}^{n,n},$ то X^* — транспонированная матрица X. Для любых $t,u\in\mathbb{R}^n$ имеем

$$\langle Xt, u \rangle = \langle t, X^*u \rangle.$$

Множество всех симметрических матриц $X \in \mathbb{R}^{n,n}$ обозначим символом $\mathbb{S}(n)$. Выражение $\mathbb{S}^+(n)$ далее означает множество всех положительно определенных симметрических матриц $X \in \mathbb{R}^{n,n}$.

Обозначим через $\mathbb{O}(n)$ совокупность всех ортогональных матриц порядка n. Группа изометрических преобразований пространства \mathbb{R}^n обозначается символом \mathbb{D}_n . Если $\varphi \in \mathbb{D}_n$, то $\varphi(x) = a + Px$, где $a \in \mathbb{R}^n$, а $P \in \mathbb{O}(n)$.

Для $X \in \mathbb{R}^{n,n}$ пусть $\|X\|$ — операторная норма матрицы X, т. е. $\|X\| = \sup_{|t| < 1} |Xt|$. Для всякого вектора $t \in \mathbb{R}^n$ имеем $|Xt| \le \|X\| |t|$. Для любых $X, Y \in |t| < 1$

 $\mathbb{R}^{n,n}$ выполняется неравенство $\|XY\| \leq \|X\| \|Y\|$. Если $X \in \mathbb{R}^{n,n}$ и $\det X \neq 0$, то полагаем $K(x) = \frac{\|X\|^n}{|\det X|}$. Из определения следует, что

$$|X|^n < K(X)|\det X|$$
.

2. Пусть даны точка $a \in \mathbb{R}^n$ и число r > 0. Тогда выражения B(a,r), $\overline{B}(a,r)$, S(a,r) означают соответственно открытый шар, замкнутый шар и сферу в пространстве \mathbb{R}^n с центром a и радиусом r.

Пусть U — открытое множество в \mathbb{R}^n . Будем говорить, что множество E лежит строго внутри U, если его замыкание \overline{E} компактно и содержится в U. Если эти условия выполнены, то будем писать $E \in U$.

Символ $\operatorname{mes}_n(E)$ далее означает n-мерную меру Лебега измеримого множества $E\subset\mathbb{R}^n$.

Множество $U\subset\mathbb{R}^n$ называется областью, если U — связное открытое множество пространства \mathbb{R}^n .

3. Мы будем рассматривать функции со значениями в некотором конечномерном нормированном векторном пространстве \mathbb{X} . Приведем определения классов L_p для данного общего случая. (Далее потребуются только случаи, когда \mathbb{X} есть одно из пространств \mathbb{R} , \mathbb{R}^n или $\mathbb{R}^{n,n}$, но, чтобы не рассматривать каждый из этих случаев отдельно, целесообразно вести рассуждения в общей форме.)

Символом |x| будем обозначать норму вектора $x \in \mathbb{X}$. Предположим, что $\mathbf{u}_1, \mathbf{u}_2, \ldots, \mathbf{u}_N$ — базис пространства \mathbb{X} . Всякое отображение $f: U \to \mathbb{X}$ допускает представление $f(x) = \sum\limits_{i=1}^N f_i(x)\mathbf{u}_i$, где f_i — вещественные функции. Будем говорить, что отображение f измеримо, если каждая из вещественных функций f_i измерима. Пусть $A \subset U$ — измеримое множество. Для $p \geq 1$ полагаем

$$\|f\|_{L_p(A)} = \left\{ \int\limits_A |f(x)|^p \, dx
ight\}^{rac{1}{p}}.$$

Будем говорить, что функция $f:U\to \mathbb{X}$ интегрируема по измеримому множеству $A\subset U$, если каждая из функций f_i интегрируема по A. В этом случае мы полагаем

$$\int_{A} f(x) dx = \sum_{i=1}^{N} \left\{ \int_{A} f_i(x) dx \right\} \mathbf{u}_i.$$

Класс измеримых функций со значениями в пространстве \mathbb{X} , как и класс интегрируемых по $A\subset U$ функций, и значение интеграла функции по множеству A не зависят от выбора базиса $\mathbf{u}_1,\mathbf{u}_2,\ldots,\mathbf{u}_N$ пространства \mathbb{X} .

Если для всякого измеримого множества $E \in U$ величина $\|f\|_{L_p(E)}$ конечна, то будем говорить, что $f-\phi y$ нкция класса $L_{p,\mathrm{loc}}(U)$.

4. Говорят, что функция $f:U\to \mathbb{R}$ принадлежит классу $\mathscr{C}^r(U)$, где $r\geq 1$ — целое число, если f имеет в U все частные производные порядка не выше r, причем эти производные непрерывны в U. Если $f\in \mathscr{C}^r(U)$ для всех r, то говорят, что $f\in \mathscr{C}^\infty(U)$.

Функция $\varphi: U \to \mathbb{R}$ называется финитной в U, если существует компактное множество $A \subset U$ такое, что $\varphi(x) = 0$ при $x \notin A$. Совокупность всех непрерывных финитных относительно области U вещественных функций обозначается символом $\mathscr{C}_0(U)$. Полагаем также $\mathscr{C}_0^r(U) = \mathscr{C}^r(U) \cap \mathscr{C}_0(U)$, $\mathscr{C}_0^\infty(U) = \mathscr{C}^\infty(U) \cap \mathscr{C}_0(U)$.

Будем говорить, что отображение

$$f: x \in U \mapsto (f_1(x), f_2(x), \dots, f_n(x)) \in \mathbb{R}^n$$

принадлежит классу $W^1_{p,\text{loc}}(U)$, где $p\geq 1$, если каждая из компонент f_i векторфункции f имеет в U обобщенные в смысле C. Л. Соболева первые производные $\frac{\partial f_i}{\partial x_j}$ для всех $j=1,2,\ldots,n$, причем все эти производные принадлежат классу $L_{p,\text{loc}}(U)$. Если $f\in W^1_{p,\text{loc}}(U)$, то для почти всех $x\in U$ определена матрица f'(x) — матрица Якоби отображения f. Определитель матрицы f'(x) обозначается здесь символом J(x,f). Естественно называть J(x,f) якобианом отображения f в точке f в общем случае мы можем утверждать только, что функция f ночти всюду.

Будем говорить, что функция f принадлежит классу $W^1_p(U)$, где $p \ge 1$, если элементы матричной функции f'(x) суть вещественные функции класса $L_p(U)$. В множестве $W^1_p(U)$ определим некоторую норму следующим способом.

Зададим произвольно неотрицательную функцию w(x) класса $\mathscr{C}_0^\infty(U)$ такую, что

$$\int\limits_{U}w(x)\,dx=1.$$

Для отображения $f:U\to\mathbb{R}^n$ класса $W^1_p(U)$ полагаем

$$\|f\|_{L^1_p(U)} = \left\{\int\limits_U |f'(x)|^p\,dx
ight\}^{rac{1}{p}}, \quad \|f\|_{W^1_p(U)} = \left|\int\limits_U f(x)w(x)\,dx
ight| + \|f\|_{L^1_p(U)}.$$

Множество $W^1_p(U)$ с нормой, введенной указанным способом, представляет собой банахово пространство. Нормы, получаемые при различном выборе функции w(x), эквивалентны.

5. Пусть $E \subset \mathbb{R}^n$ — измеримое множество, $\Phi: E \to \mathbb{R}^n$ — измеримая функция. Будем говорить, что Φ неотрицательна на множестве E, если $\Phi(x) \geq 0$ для почти всех $x \in E$. Если $\Phi(x) \leq 0$ для почти всех $x \in E$, то будем говорить, что Φ неположительна на множестве E. Будем говорить, что Φ — функция постоянного знака на множестве E, если Φ либо неотрицательна, либо неположительна на множестве E.

Если $f: U \to \mathbb{R}^n$ — отображение класса $W^1_{p,\text{loc}}(U)$, то для почти всех $x \in U$ определена матрица $G_f(x) = [f'(x)]^* f'(x)$, которую будем называть метрическим тензором отображения f. Имеем $\det G_f(x) = [J(x,f)]^2$.

Опишем некоторые классы отображений областей пространства \mathbb{R}^n . Пусть U — открытое множество в пространстве \mathbb{R}^n . Отображение $f:U\to\mathbb{R}^n$ называется *отображением* c ограниченным искажением, если f непрерывно и принадлежит классу $W^1_{n,\mathrm{loc}}(U)$, якобиан J(x,f) отображения f имеет постоянный знак (т. е. либо $J(x,f)\geq 0$ почти всюду в U, либо $J(x,f)\leq 0$ почти всюду в U) и существует постоянная $K<\infty$ такая, что для почти всех $x\in U$ выполняется неравенство

$$|f'(x)|^n \le K|J(x,f)|.$$
 (1.1).

Символ K(f,U) (или просто K(f)) означает наименьшую из таких постоянных K. Всякое отображение с ограниченным искажением является открытым дискретным отображением. При этом существует множество $B_f \subset U$ меры нуль такое, что всякая точка $x \notin B_f$ имеет окрестность, на которой f взаимно однозначно.

Если $f:U\to\mathbb{R}^n$ — отображение с ограниченным искажением, не являющееся тождественно постоянным, то для почти всех $x\in U$ якобиан J(x,f) отличен

от нуля [5]. В этом случае метрический тензор $G_f(x)$ принадлежит $\mathbb{S}^+(n)$ для почти всех $x\in U$. Пусть $0<\lambda_1^2\leq \lambda_2^2\leq \cdots \leq \lambda_n^2$ — собственные числа матрицы $G_f(x)$. Имеем $\det G_f(x)=|J(x,f)|^2=\prod_{i=1}^n\lambda_i$.

Отображение $f:U\to\mathbb{R}^n$ называется *квазиизометрическим*, если f принадлежит классу $W^1_{1,\mathrm{loc}}(U)$, якобиан отображения f имеет в U постоянный знак и существует такое конечное число $L\geq 1$, что матрица f'(x) для почти всех $x\in U$ удовлетворяет условию: для всякого вектора $\xi\in\mathbb{R}^n$ выполняется неравенство

$$\frac{1}{L}|\xi| \le |f'(x)\xi| \le L|\xi|. \tag{1.2}$$

Наименьшее из таких чисел L далее обозначается одним из символов L(f, U), L(f) или просто L_f и называется коэффициентом квазиизометричности f.

Всякое квазиизометрическое отображение является отображением с ограниченным искажением [4,5]. Пусть $f:U\to\mathbb{R}^n$ — квазиизометрическое отображение. Тогда если $L_f<2^{1/2n-2}$, то f является локально топологическим отображением. Справедливость этого утверждения установлена в работе [6]. (Доказательство приводится также и в монографии [4].)

Отображение $f:U\to \mathbb{R}^n$ назовем *отображением* с непрерывным метрическим тензором или, короче, СМТ-отображением, если f удовлетворяет следующим условиям:

- 1) f непрерывно и принадлежит классу $f \in W^1_{1,loc}(U)$;
- 2) якобиан отображения f имеет постоянный знак на всякой связной компоненте множества U;
 - 3) существует непрерывная матричная функция $G_f: U \in \mathbb{S}^+(n)$ такая, что

$$[f'(x)]^* f'(x) = G_f(x)$$
 (1.3)

для почти всех $x \in U$.

Если $f:U\to\mathbb{R}^n$ — СМТ-отображение, то его метрическим тензором мы будем называть всегда именно ту определенную всюду непрерывную матричную функцию $G_f(x)$, которая указана в данном определении.

Если вектор-функция $f: U \to \mathbb{R}^n$ принадлежит классу \mathscr{C}^1 и $J(x,f) \neq 0$ для всех $x \in U$, то f есть СМТ-отображение. Обратное, однако, неверно. Соответствующий пример приводится в $\S 3$.

§ 2. Устойчивость квазиизометрических отображений относительно вариации метрического тензора

Лемма 1. Пусть U — выпуклое открытое множество в пространстве \mathbb{R}^n и $f:U\to\mathbb{R}^k$ — непрерывное отображение класса $W^1_{1,\mathrm{loc}}(U)$. Предположим, что существует постоянная $L<\infty$ такая, что для почти всех $x\in U$ выполняется неравенство $|f'(x)|\leq L$. Тогда для любых $x,y\in U$ выполняется неравенство

$$|f(x) - f(y)| \le L|x - y|.$$
 (2.1)

Доказательство этого простого утверждения приводится, например, в [4]. Пусть $(f_{\nu}:U\to\mathbb{R})_{\nu\in\mathbb{N}}$ — последовательность функций класса $W^1_{p,\mathrm{loc}}(U)$. Будем говорить, что данная последовательность *ограничена в* $W^1_{p,\mathrm{loc}}(U)$, если для всякого компактного множества $A\subset U$ существует постоянная $R(A)<\infty$ такая, что при каждом $\nu\in\mathbb{N}$ имеет место неравенство

$$||f_{\nu}||_{L_1(A)} + ||f_{\nu}'||_{L_n(A)} < R(A).$$

Предположим, что последовательность функций $(f_{\nu}:U\to\mathbb{R})_{\nu\in\mathbb{N}}$ класса $L_{1,\mathrm{loc}}(U)$ ограничена в $W^1_{p,\mathrm{loc}}(U)$ и функция $f_0:U\to\mathbb{R}$ класса $L_{1,\mathrm{loc}}(U)$ такова, что для всякого компактного $A\subset U$ величина $\|f_{\nu}-f_0\|_{L_1(A)}$ стремится к нулю при $\nu\to\infty$. Тогда предельная функция f_0 принадлежит классу $W^1_{p,\mathrm{loc}}(U)$. (Доказательство см., например, в [6, гл. 1, теорема 2.4].) Производные $\frac{\partial f_{\nu}}{\partial x_i}$ сходятся локально слабо к производным предельной функции f_0 в том смысле, что для всякой функции $\varphi\in\mathscr{C}_0^\infty(U)$ при каждом $i=1,2,\ldots,n$ имеет место равенство

$$\int_{U} \frac{\partial f_0}{\partial x_i}(x)\varphi(x) dx = \lim_{\nu \to \infty} \int_{U} \frac{\partial f_\nu}{\partial x_i}(x)\varphi(x) dx.$$
 (2.2)

Действительно, при $\nu \to \infty$ имеем

$$\int_{U} \frac{\partial f_{\nu}}{\partial x_{i}}(x)\varphi(x) dx = -\int_{U} f_{\nu}(x) \frac{\partial \varphi}{\partial x_{i}}(x) dx \to -\int_{U} f_{0}(x) \frac{\partial \varphi}{\partial x_{i}}(x) dx$$

$$= \int_{U} \frac{\partial f_{\nu}}{\partial x_{i}}(x)\varphi(x) dx,$$

что и требовалось доказать.

Равенство (2.2) выполняется для всякой функции $\varphi \in \mathscr{C}_0(U)$, но это более сильное утверждение далее не потребуется.

Основная лемма. Пусть $(f_{\nu}:U\to\mathbb{R}^n)_{\nu\in\mathbb{N}}$ — последовательность отображений класса $W^1_{p,\mathrm{loc}}$, где p>n, области U пространства \mathbb{R}^n , локально ограниченная в $W^1_{p,\mathrm{loc}}$, причем якобиан каждого из отображений f_{ν} неотрицателен в области U. Предположим, что при $\nu\to\infty$ функции f_{ν} сходятся в $L_{1,\mathrm{loc}}(U)$ к некоторой вектор-функции $f_0:U\to\mathbb{R}^n$, а их метрические тензоры $G_{f_{\nu}}(x)$ сходятся почти всюду в U к некоторой матричной функции $G_0(x)$. Тогда если $\det G_0(x)>0$ для почти всех $x\in U$, то матричная функция $G_0(x)$ является метрическим тензором предельного отображения f_0 , т. е. для почти всех $x\in U$ имеет место равенство $G_0(x)=G_{f_0}(x)=[f_0'(x)]^*f_0'(x)$.

Доказательство. Пусть выполнены условия леммы. Тогда $f \in W^1_{p,\text{loc}}(U)$ и для почти всех $x \in U$ определены неотрицательные квадратичные формы $Q_x(\xi)$ и $\widetilde{Q}_x(\xi)$, где $Q_x(\xi) = |f_0'(x)\xi|^2 = \langle G_{f_0}(x)\xi,\xi \rangle$ и $\widetilde{Q}_x(\xi) = \langle G_0(x)\xi,\xi \rangle$.

Матрица квадратичной формы Q_x является метрическим тензором отображения f_0 в точке x, матрица квадратичной формы \widetilde{Q}_x — предел $G_0(x)$ метрических тензоров отображений f_{ν} . Лемма будет доказана, если мы установим, что квадратичные формы Q_x и \widetilde{Q}_x совпадают для почти всех $x \in U$.

Согласно теореме о локально слабой сходимости якобианов [2, теорема 2] для всякой функции $\varphi \in \mathscr{C}^\infty_0(U)$ имеет место равенство

$$\int\limits_{U} J(x,f_0) arphi(x) \, dx = \lim_{m o \infty} \int\limits_{U} J(x,f_
u) arphi(x) \, dx.$$

При каждом m имеем $J(x,f_{\nu})=\sqrt{\det G_{f_{\nu}}}$. Согласно условию леммы $G_{f_{\nu}}(x)\to G_0(x)$ для почти всех $x\in U$. Функция $\sqrt{\det G_{f_{\nu}}}(x)$ при каждом m мажорируется суммой n! слагаемых вида $\sqrt{\left|g_{1i_1}^{(m)}(x)g_{2i_2}^{(m)}(x)\dots g_{mi_{\nu}}^{(m)}(x)\right|}$. Из условий леммы

следует, что каждая из функций $\sqrt{|g_{ki_k}^{(m)}(x)|}$ интегрируема в степени p>n, причем для всякого компактного множества $A\subset U$ последовательность интегралов

$$\int\limits_{A}\left[\sqrt{\left|g_{ki_{k}}^{(m)}(x)
ight|}
ight]^{p}dx,\quad m=1,2,\ldots,$$

является ограниченной. Если $A\subset U$ — компактное множество такое, что $\varphi(x)=0$ при $x\notin A$, то из сказанного вытекает, что ограничена сверху также и последовательность интегралов

$$\int_{A} \left[\sqrt{\det G_{f_{\nu}}} \right]^{p/n} |\varphi(x)|^{p/n} dx = \int_{U} \left[\sqrt{\det G_{f_{\nu}}} \right]^{p/n} |\varphi(x)|^{p/n} dx,$$

 $m=1,2,\ldots$ Так как p/n>1 и при $m\to\infty$

$$\sqrt{\det G_{f_{\nu}}}(x) \to \sqrt{\det G_0}(x)$$

для почти всех $x \in U$, отсюда следует, что при $m \to \infty$

$$\int\limits_{U} J(x,f_{
u}) arphi(x) \, dx = \int\limits_{U} \sqrt{\det G_{
u}} arphi(x) \, dx
ightarrow \int\limits_{U} \sqrt{\det G_{0}} arphi(x) \, dx.$$

Значит, для всякой функции $\varphi \in \mathscr{C}_0^\infty(U)$ выполняется равенство

$$\int\limits_{U} \sqrt{\det G_0(x)} arphi(x) \, dx = \int\limits_{U} J(x,f_0) arphi(x) \, dx = \int\limits_{U} \sqrt{\det G_{f_0}(x)} arphi(x) \, dx.$$

Отсюда

$$\det G_0(x) = \det G_{f_0}(x) \tag{2.3}$$

для почти всех $x \in U$. Обозначим через E_0' множество тех $x \in U$, для которых либо левая, либо правая часть равенства (2.3) не определена, либо они обе определены, но равенство не выполняется. Пусть E_0'' — множество тех $x \in U$, для которых не выполняется неравенство $\det G_0(x) > 0$. Тогда $E_0 = E' \cup E''$ — множество меры нуль.

Зададим произвольно единичный вектор $\xi \in \mathbb{R}^n$ и неотрицательную функцию $\varphi(x)$ класса $\mathscr{C}_0(U)$. Пусть

$$G_{f_{
u}}(x) = \left(g_{ij}^{(
u)}(x)\right)_{i,j=1,2,\dots,n}$$
 и $G_0(x) = (g_{ij}(x))_{i,j=1,2,\dots,n}.$

Функции $g_{ij}^{(\nu)}(x),\ \nu=1,2,\ldots$, принадлежат классу $L_{p/2,\mathrm{loc}}$ и при $\nu\to\infty$ сходятся почти всюду к функции $g_{ij}(x)$. Последовательность $g_{ij}^{(\nu)}(x),\ \nu=1,2,\ldots$, является ограниченной в $L_{p/2,\mathrm{loc}}(U)$. Отсюда вытекает, что для всякой функции $\varphi\in\mathscr{C}_0^\infty(U)$ при $\nu\to\infty$ имеет место сходимость

$$\int_{U} \sum_{i=1}^{n} \sum_{j=1}^{n} g_{ij}^{(\nu)}(x) \xi_{i} \xi_{j} \varphi(x) dx \to \int_{U} \sum_{i=1}^{n} \sum_{j=1}^{n} g_{ij}(x) \xi_{i} \xi_{j} \varphi(x) dx.$$

Теперь заметим, что в первом интеграле здесь подынтегральное выражение равно $\langle G_{f_{\nu}}(x)\xi,\xi\rangle\varphi(x)=|f'_{\nu}(x)\xi|^2\varphi(x)$, а во втором оно равно $\langle G_{0}(x)\xi,\xi\rangle\varphi(x)$. Функция $X\in\mathbb{R}^{n,n}\mapsto |X\xi|^2$, как легко проверяется, является выпуклой в пространстве матриц $\mathbb{R}^{n,n}$. При $\nu\to\infty$ матричные функции $f'_{\nu}(x)$, как показано

выше, локально слабо сходятся к $f'_0(x)$. Применяя теорему о полунепрерывности функционалов вариационного исчисления, доказанную в работе [3], получим, что имеет место неравенство

$$\int_{U} |f'_0(x)\xi|^2 \varphi(x) \, dx \le \lim_{\nu \to \infty} \int_{U} |f'_\nu(x)\xi|^2 \varphi(x) \, dx.$$

Интеграл в правой части этого неравенства равен

$$\int_{U} \langle G_{f_{\nu}}(x)\xi, \xi \rangle \varphi(x) \, dx$$

и при $\nu \to \infty$ стремится к пределу, равному

$$\int_{U} \langle G_0(x)\xi, \xi \rangle \varphi(x) \, dx.$$

Следовательно, имеет место неравенство

$$\int_{U} |f'_0(x)\xi|^2 \varphi(x) \, dx \le \int_{U} \langle G_0(x)\xi, \xi \rangle \varphi(x) \, dx.$$

Так как неотрицательная функция $\varphi(x)$ здесь выбрана произвольно, то для всякого единичного вектора $\xi \in \mathbb{R}^n$ для почти всех $x \in U$ выполняется неравенство

$$|f_0'(x)\xi|^2 \le \langle G_0(x)\xi, \xi \rangle. \tag{2.4}$$

Пусть R — счетное множество точек единичной сферы S(0,1) пространства \mathbb{R}^n , всюду плотное в S(0,1), и $r\mapsto \xi_r$ — биективное отображение \mathbb{N} на R. Обозначим через $E_r\subset U$ множество тех точек $x\in U$, для которых либо одна из величин $|f_0'(x)\xi|^2$ и $\langle G_0(x)\xi,\xi\rangle$ не определена, либо они обе определены, но неравенство (2.4) для $\xi=\xi_r$ не выполняется. По доказанному E_r — множество меры нуль. Пусть $E=\bigcup_{r=0}^\infty E_r$. Мера множества E равна нулю. Возьмем произвольно $x\in U\setminus E$. Определены квадратичные формы $Q_x(\xi)=\langle G_{f_0}(x)\xi,\xi\rangle$ и $\widetilde{Q}_x(\xi)=\langle G_0(x)\xi,\xi\rangle$. Так как $x\notin E_0$, то для данного x выполняется равенство

$$[J(x, f_0)]^2 = \det G_0(x).$$

С другой стороны, для этого x для всякого $\xi \in R$ имеет место неравенство $Q_x(\xi) \leq \widetilde{Q}_x(\xi)$. Так как левая и правая части этого неравенства суть непрерывные функции ξ и множество R всюду плотно на сфере S(0,1), то для данного $x \in U$ имеем

$$Q_x(\xi) \le \widetilde{Q}_x(\xi) \tag{2.5}$$

для любого единичного вектора ξ . Согласно условию $\det G_0(x) \neq 0$ и, значит, квадратичная форма $\widetilde{Q}_x(\xi)$ является положительно определенной. Так как определители форм \widetilde{Q}_x и Q_x совпадают, из соотношения (2.5) следует, что эти формы совпадают. Лемма доказана. \square

Пусть U — область в пространстве \mathbb{R}^n . Будем говорить, что U удовлетворяет условию достижимости, если существуют точка $a \in U$ и число $D < \infty$ такое, что для любой точки $x \in U$ существует спрямляемая кривая, содержащаяся в области U, соединяющая точку a с точкой x и такая, что длина этой кривой не превосходит D.

Теорема 1. Пусть область U в пространстве \mathbb{R}^n удовлетворяет условию достижимости.

Предположим, что дана последовательность $(f_{\nu}:U\to\mathbb{R}^n)_{\nu\in\mathbb{N}}$ квазиизометрических отображений области U, удовлетворяющая следующим условиям:

- а) существует постоянная $L<\infty$ такая, что $L(f_{\nu})\leq L$ при каждом $\nu\in\mathbb{N};$
- б) метрические тензоры $G_{f_{\nu}}(x)$ сходятся почти всюду в U к некоторой матричной функции $G_0(x)$.

Тогда найдется квазиизометрическое отображение $f_0:U\to\mathbb{R}^n$ такое, что матричная функция G_0 является метрическим тензором отображения f_0 и существует последовательность $(\varphi_{\nu})_{\nu\in\mathbb{N}}$ изометрических отображений пространства \mathbb{R}^n , для которой для всякого p>1 выполняется соотношение

$$\|\varphi_{\nu}^{-1} \circ f_{\nu} - f_{0}\|_{W_{n}^{1}(U)} \to 0$$
 (2.6)

при $\nu \to \infty$.

ДОКАЗАТЕЛЬСТВО. Будем считать функции f_{ν} такими, что $J(x,f_{\nu})\geq 0$ при каждом $\nu\in\mathbb{N}$ почти всюду в U и $f_{\nu}(a)=0$, где a — центр данной области $U\in J(d,D)$. Общий случай, очевидно, сводится к этому заменой f_{ν} на функцию $\tau_{\nu}\circ f_{\nu}$, где $\tau_{\nu}(y)=Q(y-f_{\nu}(a))$ и Q — ортогональная матрица такая, что $\det Q=-1$, если якобиан f_{ν} неположителен в U, и $\det Q=1$, если этот якобиан в U неотрицателен.

Отображения f_{ν} непрерывны. Из условия теоремы вытекает, что при каждом ν для почти всех $x\in U$ имеет место неравенство $\|f'_{\nu}(x)\|\leq L$. В силу леммы 1 отсюда вытекает, что для всякой точки $x\in U$ выполняется неравенство $|f_{\nu}(x)|\leq LD$. На каждом компактном множестве $A\subset U$ последовательность f_{ν} равностепенно равномерно непрерывна, как следует из леммы 1.

Пусть $(U_m)_{m\in\mathbb{N}}$ — последовательность открытых множеств такая, что $U_m \in U_{m+1}$ при каждом m и справедливо равенство $U = \bigcup_{m=1}^{\infty} U_m$. Положим $V_m = U \setminus \overline{U}_m$. Последовательность множеств $(V_m)_{m\in\mathbb{N}}$ убывает, и их пересечение пусто. Отсюда $\operatorname{mes}_n(V_m) \to 0$ при $m \to \infty$.

Так как при каждом ν для почти всех $x \in U$ выполняется неравенство $\|f_{\nu}'(x)\| \leq L$, для всякого $p \geq 1$ имеем

$$||f_{\nu}'||_{L_p(U)} \le L\{\operatorname{mes}_n(U)\}^{1/p}.$$
 (2.7)

Последовательность $(f'_{\nu})_{\nu\in\mathbb{N}}$, таким образом, ограничена в $L_p(U)$, и, значит, последовательность вектор-функций $(f_{\nu})_{\nu\in\mathbb{N}}$ является ограниченной в $W^1_p(U)$ для всякого p>1.

При каждом $m \in \mathbb{N}$ замыкание множества U_m компактно и содержится в U. В силу леммы 1 отсюда вытекает, что последовательность функций f_{ν} равностепенно равномерно непрерывна на каждом из множеств U_m . Применяя теорему Арцела в сочетании с классической диагональной конструкцией, получим, что из последовательности $(f_{\nu})_{\nu \in \mathbb{N}}$ можно извлечь подпоследовательность $(f_{\nu_k}), \nu_1 < \nu_2 < \cdots < \nu_k < \ldots$, равномерно сходящуюся на каждом из множеств U_m . Так как U — объединение множеств U_m , для всякого $x \in U$ существует предел $\lim_{k \to \infty} f_{\nu_k}(x) = f_0(x)$. Тем самым определено некоторое отображение $f_0: U \to \mathbb{R}^n$. Для всякого m вектор-функция f_0 непрерывна на множестве U_m как предел равномерно сходящейся последовательности непрерывных функций. Отсюда, очевидно, следует, что функция f_0 непрерывна на множестве U. Поскольку последовательность функций $(f_{\nu_k})_{k \in \mathbb{N}}$ в силу неравенства (2.7) ограничена в $W_p^1(U)$, каково бы ни было p > 1, то $f_0 \in W_p^1(U)$ для всех p > 1.

Покажем, что построенная вектор-функция f_0 и есть искомая. Последовательность функций $(f_{\nu})_{\nu\in\mathbb{N}}$, а значит, и ее подпоследовательность $(f_{\nu_k})_{k\in\mathbb{N}}$ ограничены в $W^1_p(U)$, каково бы ни было p>1. Матричные функции $G_{f_{\nu}}$ сходятся к матричной функции G_0 почти всюду, и так как элементы матриц $G_{f_{\nu}}$ образуют последовательности, ограниченные в $L_{\infty}(U)$, матричные функции $G_{f_{\nu}}$ сходятся к G_0 в $L_p(U)$ при всяком p>1. Каждое из отображений f_{ν} является квазиизометрическим. При этом $L(f_{\nu}) \leq L = \mathrm{const} < \infty$ для всех ν . Следовательно, при каждом ν для почти всех $x \in U$ для любого вектора $\xi \in \mathbb{R}^n$ имеем неравенства $|\xi|/L \leq |f'_{\nu}(x)\xi| \leq L|\xi|$, и, значит, для почти всех $x \in U$ для всякого вектора $\xi \in \mathbb{R}^n$ выполняются неравенства

$$|\xi|^2/L^2 \le \langle G_{f_{\nu}}(x)\xi, \xi \rangle \le L^2|\xi|^2.$$

Пусть E_{ν} — множество тех $x \in U$, для которых эти неравенства не выполняются хотя бы для одного $\xi \in \mathbb{R}^n$, E_0 — множество тех $x \in U$, для которых $G_{f_{\nu}}(x)$ не стремится к $G_0(x)$. Объединение E множеств $\{E_0, E_1, E_2, \dots\}$ является множеством меры нуль, и для всякого $x \notin E$ выполняются неравенства

$$|\xi|^2/L^2 \le \langle G_0(x)\xi, \xi \rangle \le L^2|\xi|^2.$$

В частности, мы получаем, что квадратичная форма $\langle G_0(x)\xi,\xi\rangle$ является положительно определенной для почти всех $x\in U$.

Из доказанного видно, что для последовательности $(f_{\nu_k})_{k\in\mathbb{N}}$ выполнены все условия основной леммы и, значит, матричная функция $G_0(x)$ является метрическим тензором отображения f_0 . Таким образом, отображения f_{ν_k} для каждого p>1 сходятся слабо в $W^1_p(U)$ к отображению f_0 , а метрические тензоры отображений f_{ν_k} сходятся в $L_{p/2}(U_m)$ к метрическому тензору отображения f_0 при каждом m. Теорема 4 статьи [2] теперь позволяет заключить, что f_{ν_k} при $k\to\infty$ сходится к f_0 в $W^1_p(U_m)$ при $k\to\infty$ для всякого номера m.

Докажем, что на самом деле $f_{\nu_k} \to f_0$ в $W^1_p(U)$ при $k \to \infty$. Действительно, функции f'_{ν_k} сходятся по мере к функции f_0 на каждом из множеств U_m , а потому и на всем множестве U. Имеем $|f'_{\nu_k}| \le L = \mathrm{const} < \infty$ для почти всех $x \in U$. Так как mes $U < \infty$, в силу теоремы Лебега отсюда вытекает, что

$$\int\limits_{\widetilde{U}} \left| f'_{\nu_k} - f'_0 \right|^p dx \to 0$$

при $k\to\infty$ и, значит, $\|f_{\nu_k}-f_0\|_{L^1_1(U)}\to 0$ при $k\to\infty$. Первое слагаемое в выражении для нормы в $W^1_p(U)$, которое приводится выше, стремится к нулю в силу того, что функции f_{ν_k} сходятся к функции f_0 при $k\to\infty$ почти всюду.

Фиксируем произвольно значение p>n и для $\nu\in\mathbb{N}$ положим

$$\delta_{\nu} = \inf_{\varphi \in \mathbb{D}_n} \|\varphi \circ f_{\nu} - f_0\|_{L_p^1(U)}.$$

Покажем, что $\delta_{\nu}\to 0$ при $\nu\to\infty$. Предположим, что это не так. Тогда $\Delta=\lim_{\nu\to\infty}\delta_{\nu}>0$. Пусть последовательность номеров $(\nu_m)_{m\in\mathbb{N}}$ такова, что $\nu_1<\nu_2<\dots<\nu_m<\dots$ и $\delta_{\nu_m}\to\Delta$ при $\nu\to\infty$. Не уменьшая общности, можно считать, что $\delta_{\nu_m}>\varepsilon=\Delta/2>0$ при каждом m. Применяя предыдущие рассуждения к последовательности отображений $\tilde{f}_m=f_{\nu_m},\ m=1,2,\dots$, получим некоторую подпоследовательность, сходящуюся в $W_p^1(U)$ к некоторому отображению \tilde{f}_0 . Простоты ради будем считать, что $\tilde{f}_m=f_{\nu_m}$ и есть требуемая подпоследовательность. Это, очевидно, не умаляет общности. Матричная

функция $G_0(x)$ является метрическим тензором отображения \tilde{f}_0 . Таким образом, мы получаем квазиизометрические отображения f_0 и \tilde{f}_0 области U в \mathbb{R}^n , метрические тензоры которых совпадают. Теорема 3 работы [2] позволяет заключить, что существует мёбиусово отображение θ такое, что $\tilde{f}_0 = \theta \circ f_0$. Для почти всех $x \in U$ имеем

$$G_0(x) = \left[\tilde{f}_0'(x)\right]^* \tilde{f}_0'(x) = \left[f_0'(x)\right]^* [\theta'(x)]^* \theta'(x) f_0'(x).$$

Так как θ — мёбиусово отображение, то $[\theta'(x)]^*\theta'(x) = \lambda(x)\mathbf{I}_n$ и, следовательно, для почти всех $x \in U$ выполняется равенство

$$G_0(x) = \lambda(x)[f_0'(x)]^* I_n f_0'(x) = \lambda(x) G_0(x).$$

Отсюда вытекает, что $\lambda(x) \equiv 1$ и, значит, для всех $x \in U$ матрица $\theta'(x)$ ортогональна. Следовательно, θ — изометрия пространства \mathbb{R}^n .

Согласно определению δ_{ν_m} при каждом m будет

$$\delta_{
u_m} = \inf_{arphi \in \mathbb{D}_n} \| arphi \circ f_{
u_m} - f_0 \|_{L^1_p(U)},$$

тем самым при каждом m найдется $\varphi_m \in \mathbb{D}_n$ такое, что

$$\|\varphi_m \circ f_{\nu_m} - f_0\|_{L^1_n(U)} < \delta_{\nu_m} + 1/m.$$

Имеем $f_0 = \theta^{-1} \circ \tilde{f}_0$. Следующее равенство верно для всякой точки $x \in U$, для которой определены все величины, стоящие в обеих частях этого равенства:

$$\left\|\varphi_m'f_{\nu_m}'(x) - \tilde{f}_0'(x)\right\| = \left\|\varphi_m'f_{\nu_m}'(x) - \theta'f_0'(x)\right\| = \left\|[\theta']^{-1}\varphi_m'f_{\nu_m}'(x) - f_0'(x)\right\|.$$

Это позволяет заключить, что

$$\|\varphi_m \circ f_{\nu_m} - \tilde{f}_0\|_{L_p^1(U)} = \|\varphi'_m f'_{\nu_m} - \tilde{f}'_0\|_{L_p(U)}$$

$$= \|[\theta']^{-1} \varphi'_m f'_{\nu_m} - f'_0\|_{L_p(U)} = \|\theta^{-1} \circ \varphi_m \circ f_{\nu_m} - f_0\|_{L_p^1(U)} \ge \delta_{\nu_m} + 1/m.$$

Так как $\|\varphi_m \circ f_{\nu_m} - \tilde{f}_0\|_{L^1_p(U)} \to 0$ при $m \to \infty$, то из доказанных неравенств следует, что $\Delta_m \to 0$ и, значит, $\Delta = \varlimsup_{\nu \to \infty} \delta_{\nu} = 0$. Согласно определению величины δ_{ν} для каждого номера $\nu \in \mathbb{N}$ найдется отображение $\varphi_{\nu} \in \mathbb{D}_n$ такое, что $\|\varphi_{\nu} \circ f_{\nu_m} - f_0\|_{L^1_p(U)} < \delta_{\nu} + 1/\nu$. Последовательность отображений $(\varphi_{\nu})_{\nu \in \mathbb{N}}$ и есть искомая. \square

Следствие. Пусть $f_{\nu}: U \to \mathbb{R}^n$ — последовательность отображений с непрерывным метрическим тензором области $U \subset \mathbb{R}^n$, удовлетворяющей условиям теоремы 1. Предположим, что метрические тензоры $G_{f_{\nu}}$ отображений сходятся к матричной функции $G_0(x)$ такой, что $g_0(x) \in \mathbb{S}^+(n)$ при каждом $x \in U$, причем сходимость равномерна на всяком компактном множестве $A \subset U$. Тогда найдется отображение $f_0: U \to \mathbb{R}^n$ такое, что $G_0(x)$ является метрическим тензором отображения f_0 и существует последовательность $(\varphi_{\nu})_{\nu \in \mathbb{N}}$ движений пространства \mathbb{R}^n такая, что $\varphi_{\nu} \circ f_{\nu}$ сходится в $W^1_{p,\mathrm{loc}}(U)$ к отображению f_0 .

Замечание. В условиях следствия, вообще говоря, нельзя утверждать, что отображения $\varphi_{\nu}\circ f_{\nu}$ сходятся к f_0 в $W^1_{\infty,\mathrm{loc}}(U)$.

§ 3. Отображения с непрерывным метрическим тензором

Если $f:U\to\mathbb{R}^n$ — СМТ-отображение, то, вообще говоря, f может не принадлежать классу $\mathscr{C}^1.$

ПРИМЕР 1. Пусть n=2. На плоскости \mathbb{R}^2 введем полярную систему координат (r,φ) , где $r\geq 0$ и $-\infty<\varphi<\infty$. Декартовы координаты точки выражаются через r и φ по формулам $x_1=r\cos\varphi, \ x_2=r\sin\varphi.$

Пусть $\theta(r)$ — строго убывающая функция на интервале $(0,\infty)$ такая, что $\theta(r)\to\infty$ при $r\to 0$, а ее производная $\theta'(r)$ стремится к нулю при $r\to 0$. Пусть $f:\mathbb{R}^2\to\mathbb{R}^2$ — отображение, сопоставляющее точке с полярными координатами (r,ψ) , где r>0, точку с полярными координатами (ρ,θ) , где $\rho=r,\psi=\theta(r)+\varphi$, а начало координат переводящее в себя. Всякий луч, исходящий из начала координат, этим отображением преобразуется в спираль, делающую бесконечное множество оборотов вокруг начала. Отсюда ясно, что данное отображение f недифференцируемо в точке O=(0,0).

Простые вычисления показывают, что метрический тензор отображения f имеет вид $G(x)=(\delta_{ij}+\theta'(|x|)h_{ij}(x))_{i,j=1,2}$, где функции $h_{ij}(x)$ непрерывны в каждой точке $x\neq 0$ и $h_{ij}(x)=O(1)$ при $x\to 0$. Функция G(x) тем самым непрерывна в \mathbb{R}^2 . Следовательно, f — СМТ-отображение. В то же время $f\notin\mathscr{C}^1$.

Пусть n>2. Представим \mathbb{R}^n как прямое произведение $\mathbb{R}^{n-2}\times\mathbb{R}^2$. Произвольная точка $x\in(x_1,x_2,\ldots,x_n)$ представляет собой пару x=(y,z), где $y\in\mathbb{R}^{n-2}$, а $z\in\mathbb{R}^2$. Преобразование $F:(y,z)\in\mathbb{R}^n\mapsto(y,f(z))$, где f — описанное выше отображение плоскости \mathbb{R}^2 , очевидно, является СМТ-отображением, причем F недифференцируемо ни в одной точке (n-2)-мерной плоскости $\mathbb{R}^{n-2}\times\{0\}$ и, стало быть, $F\notin\mathscr{C}^1$. \triangleright

ПРИМЕР 2. Покажем, что из равномерной сходимости метрических тензоров отображений не следует равномерная сходимость производных. Ограничимся случаем n=2. Для этой цели модифицируем отображение f, построенное в примере 1. В полярных координатах отображение f задается формулой f(0)=0 и для всякой точки $x=(r,\varphi)$ с r>0 имеем $f(x)=(r,\theta(r)+\varphi)$, где функция θ определена и является монотонной на промежутке $(0,\infty)$, причем $\theta(r)\to\infty$, а $\theta'(r)\to 0$ при $r\to 0$. Для $\nu\in\mathbb{N}$ пусть θ_{ν} есть функция, равная $\theta(2/\nu)+1/\nu$ в промежутке $(0,1/\nu)$ и $\theta(r)$ при $r\geq 2/\nu$. Кроме того, потребуем, чтобы функция θ_{ν} на промежутке $(0,2/\nu]$ удовлетворяла условию $|\theta'_{\nu}(r)|\leq |\theta'(r)|$.

Пусть $f_{\nu}: \mathbb{R}^2 \to \mathbb{R}^2$ — отображение плоскости \mathbb{R}^2 , переводящее начало координат в себя и точку с полярными координатами (r,φ) , где r>0, в точку с полярными координатами $(r,\theta_{\nu}(r)+\varphi)$. Легко проверяется, что $f_{\nu}\to f$ и $G_{f_{\nu}}(x)\to G_f(x)$ при $\nu\to\infty$ для всякой точки $x\in\mathbb{R}^2$, причем сходимость равномерна во всяком круге B(0,R). Матричные функции $f'_{\nu}(x)$, однако, не сходятся равномерно к функции f'(x) на множестве $B(0,R)\setminus\{0\}$ ни при каком R>0, ибо в противном случае матричная функция f'(x) имела бы предел при $x\to 0$ и отображение f было бы дифференцируемым в точке 0.

Наша цель — доказать, что для всякого СМТ-отображения длина образа спрямляемой кривой может вычисляться по тем же формулам, что и в случае отображений класса \mathscr{C}^1 .

Точное определение понятия кривой было дано М. Фреше еще в начале 20-го века. Мы будем иметь дело с ориентированными кривыми в смысле Фреше (см. [7]). Параметризованной кривой в метрическом пространстве М с

метрикой ρ называется всякое непрерывное отображение x некоторого отрезка [a,b] в пространство M. На множестве параметризованных кривых может быть определено некоторое отношение эквивалентности. Согласно M. Фреше кривая в пространстве M есть класс K эквивалентных в смысле этого отношения параметризованных кривых. Элементы класса K называют napamempusauusmu kpusoù K.

Пусть K_{ν} — последовательность кривых в метрическом пространстве M. Говорят, что кривые K_{ν} при $\nu \to \infty$ cxodsmcs κ κ pusoù K, если существуют параметризованные кривые $x_{\nu}:[a,b]\to M, \ x:[a,b]\to M$ такие, что x_{ν} при каждом ν есть параметризация кривой $K_{\nu}, \ x$ — параметризация кривой K и при $\nu \to \infty$ отображения x_{ν} равномерно сходятся на промежутке [a,b] к x, т. е. $\rho[x_{\nu}(t),x(t)]$ равномерно стремится к нулю при $\nu \to \infty$.

Пусть $x:[a,b] \to M$ — параметризованная кривая в метрическом пространстве M. Pазбиением nромежутка [a,b] будем называть всякую конечную последовательность $\alpha=\{t_i\},\ i=0,1,\ldots,m,$ точек этого промежутка такую, что $t_0=a < t_1 < \cdots < t_{m-1} < t_m = b.$ Точки t_i при этом называются yзлами разбиения α . Полагаем $|\alpha|=\max_{1\leq i\leq m}(t_i-t_{i-1})$. Положим также

$$l(x,\alpha) = \sum_{i=1}^{m} \rho[x(t_i), x(t_{i-1}].$$

Символом l(x,a,b) обозначим длину параметризованной кривой x. Имеем $l(x,a,b)=\sup_{\alpha}l(x,\alpha)=\lim_{|\alpha|\to 0}l(x,\alpha).$ Если K — кривая в пространстве M, то длины всех ее параметризаций совпадают.

Общее значение длин параметризаций кривой K называется ее ∂ линой и обозначается далее символом s(K).

Кривая K называется cnpямляемой, если ее длина конечна, $s(K) < \infty$. Всякая спрямляемая кривая допускает натуральную параметризацию $x:[0,l] \to M$, т. е. такую, что при каждом s длина дуги кривой с концами в точках x(0) и x(s) равна s.

Пусть дано открытое множество $U \subset \mathbb{R}^n$, и пусть $F(x,\xi)$ — функция переменных $x \in U$ и $\xi \in \mathbb{R}^n$. Мы будем предполагать, что F удовлетворяет следующему условию.

Н. Функция $F(x,\xi)$ непрерывна на множестве $U \times \mathbb{R}^n \subset \mathbb{R}^{2n}$ и положительно однородна первой степени относительно ξ , т. е. для любой точки $x \in U$ и любого вектора $\xi \in \mathbb{R}^n$ для всякого числа $\lambda \geq 0$ имеет место равенство $F(x,\lambda\xi) = \lambda F(x,\xi)$.

По функции F определим некоторый функционал на множестве всех спрямляемых кривых, лежащих в открытом множестве U. Именно, пусть $x(s),\ 0 \le s \le l$, — параметризация кривой K, где параметр s — длина дуги. Тогда полагаем

$$l_{{}_F}(K)=l_{{}_F}(x,0,l)=\int\limits_0^l F[x(s),x'(s)]\,ds.$$

Предложение 1. Пусть K_{ν} — последовательность спрямляемых кривых в \mathbb{R}^n , сходящаяся к спрямляемой кривой K. Тогда если длины кривых K_{ν} имеют пределом длину кривой K, то для любой функции $F(x,\xi)$, удовлетворяющей условию H, имеет место равенство $l_F(K) = \lim_{\nu \to \infty} l_F(K_{\nu})$.

Доказательство данного предложения содержится в классическом труде [8]. Оно может быть получено также как частный случай общей теоремы, доказанной в работе [3].

Пусть K — спрямляемая кривая, лежащая в области U пространства \mathbb{R}^n , и пусть $x:[0,l]\to U$ — натуральная параметризация этой кривой. Предположим, что функция F переменных $x\in U$ и $\xi\in\mathbb{R}^n$ удовлетворяет условию Н. Для разбиения $\alpha=\{t_i\},\,i=0,1,\ldots,m$, промежутка [0,l] положим

$$l_{\scriptscriptstyle F}(x,\alpha) = \sum_{i=1}^m F[x(t_{i-1}), x(t_i) - x(t_{i-1})].$$

Предложение 1 позволяет показать, что имеет место равенство

$$l_{\scriptscriptstyle F}(K) = l_{\scriptscriptstyle F}(x,0,l) = \lim_{|\alpha| \to 0} l_{\scriptscriptstyle F}(x,\alpha). \tag{3.1}$$

Для доказательства последнего утверждения рассмотрим ломаную K_{α} , вписанную в кривую K и имеющую вершинами точки $x(t_i)$. Пусть $x_{\alpha}(t)$ — параметризация этой ломаной, определенная условием: для $t \in [t_{i-1}, t_i]$ для всех значений $i=1,2,\ldots,m$ выполняется равенство $x_{\alpha}(t)=x(t_{i-1})+a_i(t-t_{i-1})$, где $a_i=\frac{x(t_i)-x(t_{i-1})}{t_i-t_{i-1}}$. При $|\alpha|\to 0$ ломаные K_{α} сходятся к кривой K и их длины имеют пределом длину кривой K. В силу предложения 1 отсюда следует, что $l_{\scriptscriptstyle F}(K_{\alpha})\to l_{\scriptscriptstyle F}(K)$ при $|\alpha|\to 0$.

Требуемый результат получается сравнением суммы $l_{\scriptscriptstyle F}(x,0,l)$ с интегралом, которым выражается величина $l_{\scriptscriptstyle F}(x_{\alpha},0,l)$.

Лемма 2. Пусть $f:U\to\mathbb{R}^n$ — СМТ-отображение открытого множества U пространства \mathbb{R}^n , G(x) — его метрический тензор. Тогда отображение f является локально топологическим и для всякой точки $p\in U$ по любому $\varepsilon>0$ найдется $\delta>0$ такое, что $B(p,\delta)\subset U$ и для любых $x_1,x_2\in B(p,\delta)$ выполняется неравенство

$$||f(x_2) - f(x_1)| - \sqrt{\langle G(p)(x_2 - x_1), x_2 - x_1 \rangle}| \le \varepsilon |x_2 - x_1|.$$
 (3.2)

Доказательство. Симметрическая матрица G(p) является положительно определенной. Пусть R — симметрическая матрица такая, что $R^2 = G(p)$, и φ — аффинное отображение $t \in \mathbb{R}^n \mapsto p + R^{-1}t$. Положим $u(t) = f[\varphi(t)]$. Область определения u — открытое множество $V = \varphi^{-1}(U)$.

Пусть $E \subset U$ — множество меры нуль такое, что отображение f дифференцируемо для всякого $x \in U \setminus E$. Положим $E' = \varphi^{-1}(E)$. Имеем $\operatorname{mes}_n(E') = 0$. Если $t \in V \setminus E'$, то отображение u дифференцируемо в точке t. При этом $u'(t) = f'[\varphi(t)]\varphi'(t) = f'[\varphi(t)]R^{-1}$. Метрический тензор отображения u(t) в точке $t \in V \setminus E'$ имеет вид

$$[u'(t)]^*u'(t) = R^{-1}G[\varphi(t)]R^{-1}.$$

Матричная функция $G_u(t)=R^{-1}G[\varphi(t)]R^{-1}$ допускает непрерывное продолжение на все множество V. Имеем $G_u(0)=R^{-1}G(p)R^{-1}=\mathrm{I}_n$, откуда следует, что $G_u(t)=\mathrm{I}_n+\Phi(t)$, где $\Phi(t)=G_u(t)-G_u(0)\to 0$, при $t\to 0$.

Для всякой точки $t \in V$, не принадлежащей множеству E', для любого вектора $\xi \in \mathbb{R}^n$ имеем

$$|u'(t)\xi|^2 = \langle [u'(t)]^* u'(t)\xi, \xi \rangle = |\xi|^2 + \langle \Phi(t)\xi, \xi \rangle.$$
 (3.3)

Далее, $|\Phi(t)\xi,\xi\rangle| \leq |\Phi(t)\xi||\xi| \leq \|\Phi(t)\||\xi|^2$. Пусть λ таково, что $1 < \lambda < 2^{1/2n-2}$. Найдем $\eta > 0$ такое, что шар $B(0,\eta)$ содержится в множестве V и для всякого $t \in B(0,\eta)$ выполняются неравенства $\|\Phi(t)\| < (\lambda^2 - 1)/\lambda^2 < \lambda^2 - 1$. Ввиду равенства (3.3) для почти всех $t \in B(0,\eta)$ справедливы неравенства

$$|\xi|^2(1-\|\Phi(t)\|) \le |u'(t)\xi|^2 \le |\xi|^2(1+\|\Phi(t)\|),$$

откуда вытекает, что для таких t

$$\frac{1}{\lambda}|\xi| \le |u'\xi| \le \lambda|\xi|.$$

В силу теоремы Мартио и Вяйсяля [9], цитированной выше, из доказанного следует, что отображение u локально топологическое. В частности, u является топологическим на некоторой окрестности точки 0. Мы можем, очевидно, считать, что шар $B(0,\eta)$ и является этой окрестностью.

Таким образом, отображение $u=f\circ\varphi$ является топологическим на некотором шаре $B(0,\eta)$. Так как φ — топологическое отображение, отсюда вытекает, что отображение f будет топологическим на некоторой окрестности точки p. Ввиду произвольности $p\in U$ доказано, что f — локально топологическое отображение.

Осталось установить, что в некоторой окрестности точки p выполняется неравенство (3.2).

Зададим произвольно $\varepsilon > 0$. Положим

$$\varepsilon_1 = \min\{\varepsilon/\|R\|, 1 - 1/\lambda\},\$$

где λ определено, как указано выше. Пусть $0 < r < \eta$ и

$$\alpha(r) = \sup_{|t| < r} \|\Phi(t)\|.$$

Очевидно, $\alpha(r) \to 0$ при $r \to 0$. Для всякого $t \in B(0,r)$ имеем $\|\Phi(t)\| \le \alpha(r)$. Положим $L = 1 + \varepsilon_1$, и пусть $r \in (0,\eta)$ таково, что $\sqrt{1 - \alpha(r)} > 1/L$ и $\sqrt{1 + \alpha(r)} < L$. Тогда при |t| < r будем иметь

$$\frac{|\xi|}{L} \le |u'(t)\xi| \le L|\xi|.$$

Из определения величины ε_1 вытекает, что

$$1 - \varepsilon_1 > 1/\lambda$$
, $L = 1 + \varepsilon_1 < 1/(1 - \varepsilon_1) < \lambda$.

Отображение u является локально топологическим на шаре $B(0,\eta)$, а следовательно, и на шаре B(0,r). В силу теоремы Ф. Джона [10] (доказательство этой теоремы приводится в [4]) найдется значение ρ такое, что $0 < \rho < r$ и для любых $t_1, t_2 \in B(0,\rho)$ выполняются неравенства

$$|t_2 - t_1|/L \le |u(t_2) - u(t_1)| \le L|t_2 - t_1|.$$

Теперь заметим, что

$$\frac{1}{L} = \frac{1}{1 + \varepsilon_1} > 1 - \varepsilon_1,$$

следовательно, для любых $t_1, t_2 \in B(0, \rho)$ справедливы неравенства

$$(1-\varepsilon_1)|t_2-t_1| \le |u(t_2)-u(t_1)| \le (1+\varepsilon_1)|t_2-t_1|.$$

Отсюда получаем, что для любых $t_1, t_2 \in B(0, \rho)$ имеет место неравенство

$$||u(t_2) - u(t_1)| - |t_2 - t_1|| \le \varepsilon_1 |t_2 - t_1|. \tag{3.4}$$

Отображение φ преобразует шар $B(0,\rho)$ в некоторый эллипсоид с центром в точке p. Пусть $\delta>0$ таково, что шар $B(p,\delta)$ содержится в этом эллипсоиде. Возьмем произвольно точки $x_1,x_2\in B(p,\delta)$. Пусть $x_1=\varphi(t_1)$ и $x_2=\varphi(t_2)$, где $t_1,t_2\in B(0,\rho)$. Тогда

$$f(x_2) - f(x_1) = u(t_2) - u(t_1).$$

Имеем $t_2 - t_1 = R(x_2 - x_1)$ и, значит,

$$|t_2 - t_1| = \sqrt{\langle R(x_2 - x_1), R(x_2 - x_1) \rangle}$$

$$= \sqrt{\langle R^2(x_2 - x_1), (x_2 - x_1) \rangle} = \sqrt{\langle G(p)(x_2 - x_1), x_2 - x_1 \rangle}.$$

Из определения ε_1 вытекает, что

$$\varepsilon_1 |t_2 - t_1| = \varepsilon_1 |R(x_2 - x_1)| \le \varepsilon_1 ||R|| ||x_2 - x_1| \le \varepsilon |x_2 - x_1|.$$

Левая часть неравенства (3.4), как следует из сказанного, равна

$$||f(x_2) - f(x_1)| - \sqrt{\langle G(p)(x_2 - x_1), x_2 - x_1 \rangle}|,$$

правая часть не превосходит $\varepsilon |x_2 - x_1|$ и тем самым для любых двух точек x_1 и x_2 шара $B(p, \delta)$ выполняется неравенство (3.2). \square

Теорема 2. Пусть U — открытое множество в пространстве \mathbb{R}^n и $f: U \to \mathbb{R}^n$ — отображение класса СМТ. Тогда если параметризованная кривая x(s), $x \in [0, l]$, проходящая в области U, спрямляема (параметр s — длина дуги), то кривая y(s) = f[x(s)] также спрямляема и ее длина выражается через метрический тензор $G_f(x)$ отображения f по формуле

$$l(y,0,l) = \int_{0}^{l} \sqrt{\langle G_f[x(s)]x'(s), x'(s)\rangle} \, ds. \tag{3.5}$$

ДОКАЗАТЕЛЬСТВО. Заметим, что для отображений класса \mathscr{C}^1 утверждение теоремы очевидным образом верно. Равенство (3.5) в этом случае следует из того, что если $f \in \mathscr{C}^1$, то функция y(s) = f[x(s)] абсолютно непрерывна и y'(s) = f'[x(s)]x'(s) для почти всех $s \in [0, l]$.

Для произвольного отображения класса СМТ можно только утверждать, что оно принадлежит классу $W^1_{\infty, \text{loc}}$ и, значит, его производные суть функции, определенные в U лишь почти всюду. Множество точек спрямляемой кривой, однако, есть множество меры нуль. Поэтому нельзя даже утверждать, что матрица f'[x(s)] определена для почти всех $s \in [0, l]$.

Пусть $f:U\to\mathbb{R}^n$ — произвольное СМТ-отображение, $x(s),\ s\in[0,l],$ — спрямляемая кривая, лежащая в множестве U (параметр s — длина дуги). Множество $E=x([0,l])\subset U$ компактно, и, значит, найдется h>0 такое, что для всякой точки $p\in E$ шар $\overline{B}(p,h)$ содержится в U. Пусть H — объединение всех таких шаров. Множество H компактно и содержится в U.

Зададим произвольно $\varepsilon > 0$. Функция

$$F(x,\xi) = \sqrt{\langle G_f(x)\xi, \xi \rangle}$$

переменных $x \in U$ и $\xi \in \mathbb{R}^n$ непрерывна. Множество $H \times \overline{B}(0,1)$ в пространстве $\mathbb{R}^{2n} = \mathbb{R}^n \times \mathbb{R}^n$ компактно, и, значит, найдется $\delta_1 > 0$ такое, что если $x_1, x_2 \in H$, причем $|x_2 - x_1| < \delta$ и $|\xi| = 1$, то выполняется неравенство

$$|F(x_2,\xi)-F(x_1,\xi)|<\varepsilon.$$

В силу однородности $F(x,\xi)$ в этом случае для произвольного $\xi \in \mathbb{R}^n$ для любых $x_1,x_2 \in H$ таких, что $|x_2-x_1| < \delta_1$, имеет место неравенство

$$|F(x_2,\xi) - F(x_1,\xi)| < \varepsilon|\xi|. \tag{3.6}$$

Ввиду леммы 2 для всякой точки $p \in U$ существует r = r(p) > 0 такое, что если $x_1, x_2 \in B(p,r)$, то

$$||f(x_2) - f(x_1)| - F(p, x_2 - x_1)| \le \varepsilon |x_2 - x_1|. \tag{3.7}$$

Положим $B_p = B[p,r(p)]$. Шары $B_p, p \in H$, образуют открытое покрытие множества H. Так как H компактно, найдется $\delta_2 > 0$ такое, что для всякой точки $x \in H$ шар $B(x,\delta_2)$ содержится в одном из шаров B_p . Положим $\delta = \min\{\delta_1,\delta_2\}$.

Пусть α — разбиение промежутка [0,l] такое, что $|\alpha| < \delta$, и пусть $s_0 = 0 < s_1 < \cdots < s_m = l$ — узлы этого разбиения. Для $i = 0,1,\ldots,m$ пусть $x_i = x(s_i),$ $y_i = f(x_i)$. Имеем

$$|x_i - x_{i-1}| \le s_i - s_{i-1} \le |\alpha| < \delta.$$

Отсюда вытекает, что при каждом $i=1,2,\ldots,m$ найдется точка $p_i\in H$ такая, что $B(x_i,\delta)\subset B_{p_i}$. Так как $|x_{i-1}-x_i|<\delta$, то x_{i-1} принадлежит шару $B(x_i,\delta)$ и, значит, точки x_{i-1} и x_i обе принадлежат шару B_{p_i} . Следовательно, для любого вектора $\xi\in\mathbb{R}^n$ выполняется неравенство

$$|F(x_{i-1},\xi) - F(p_i,\xi)| \le \varepsilon |\xi|. \tag{3.8}$$

Из неравенства (3.7), очевидно, будем иметь

$$||f(x_i) - f(x_{t-1})| - F(p_i, x_i - x_{i-1})| \le \varepsilon |x_i - x_{i-1}|. \tag{3.9}$$

Далее, $f(x_i) = y_i = f[x(s_i)]$. Из неравенств (3.8) и (3.9) вытекает, что

$$\left| \sum_{i=1}^{m} |f(x_i) - f(x_{t-1})| - \sum_{i=1}^{m} F(x_{i-1}, x_i - x_{i-1}) \right| \le 2\varepsilon l.$$

Переходя в этом неравенстве к пределу при $|\alpha| \to 0$, получим, что

$$|l(y, 0.l) - l_{\scriptscriptstyle E}(x, 0.l)| \le 2\varepsilon l.$$

Так как $\varepsilon>0$ произвольно, отсюда следует, что $l(y,0.l)=l_{\scriptscriptstyle F}(x,0.l)$, что и требовалось доказать. \square

ЛИТЕРАТУРА

- Ciarlet P. G., Laurent F. Up to isometries, a deformations is a continuous of its metric tensor // C. R. Acad. Sci. Paris. Ser. I. 2002. V. 335. P. 489–493.
- Решетняк Ю. Г. Теоремы устойчивости для отображений с ограниченным искажением // Сиб. мат. журн. 1968. Т. 8, № 3. С. 667–684.
- Решетняк Ю. Г. Общие теоремы о полунепрерывности и о сходимости с функционалом // Сиб. мат. журн. 1967. Т. 8, № 5. С. 1051–1069.

- **4.** *Решетняк Ю.* Γ . Теоремы устойчивости в геометрии и анализе. 2-е изд. перераб. и доп. Новосибирск: Изд-во ИМ СО РАН, 1996.
- 5. Решетняк Ю. Г. Пространственные отображения с ограниченным искажением. Новосибирск: Наука, 1982. (Перераб. и доп. англ. перевод: Reshetnyak Yu. G. Space mapping with bounded distortion. AMS Transl. of math. monographs. 1989, V. 73).
- Гольдштейн В. М. О поведении отображений с ограниченным искажением при коэффициенте искажения, близком к единице // Сиб. мат. журн. 1971. Т. 12, № 6. С. 1250–1258.
- 7. Александров А. Д., Решетняк Ю. Г. Поворот кривой в n-мерном евклидовом пространстве // Сиб. мат. журн. 1988. Т. 29, № 1. С. 3–22.
- $\bf 8.~$ Tonelli L. Fondamenti di calcolo delle variazione. Bologna, 1923. V. I, II.
- 9. Martio O., Väisälä J. Elliptic equations and maps of bounded map distortion // Math. Ann. 1988. V. 282. P. 423–443.
- 10. John F. Rotation and strain // Comm. Pure Appl. Math. 1951. V. 14, N 3. P. 391–413.

Статья поступила 9 декабря 2002 г.

Решетняк Юрий Григорьевич Институт математики им. С. Л. Соболева СО РАН, пр. Академика Коптюга, 4, Новосибирск 630090 ugresh@math.nsc.ru