СВОЙСТВА БАЗИСНОСТИ В L_p СИСТЕМ СТЕПЕНЕЙ

Б. Т. Билалов

Аннотация: Рассматривается система степеней с комплекснозначными коэффициентами. Установлено необходимое и достаточное условие полноты и минимальности, а также необходимое условие базисности такой системы в лебеговых пространствах.

Ключевые слова: система степеней, свойства базисности, полнота, минимальность.

Многие задачи механики и математической физики требуют исследования базисных свойств в соответствующих банаховых пространствах систем вида [1–4]

$$a(t)v^n(t) + b(t)w^n(t), \quad n > 1, \tag{1}$$

где a(t), b(t), v(t) и w(t) — (вообще говоря) комплекснозначные функции. Поэтому базисные свойства систем (1) изучались многими авторами [5–11]. При различных условиях на входящие в эту систему функции были получены различные условия полноты и в некоторых случаях минимальности в пространствах L_p . В основном исследование базисных свойств системы вида (1) сводится к разрешимости соответствующей краевой задачи сопряжения со сдвигом в классах Харди H_p и Смирнова E_p . Имеются тесные связи между базисными свойствами системы вида (1) и построенной по ней «двойной» системы степеней

$${A(t)\varphi^n(t); B(t)\overline{\varphi}^n(t)}_{n>0}.$$
 (2)

Поэтому исследование базисных свойств системы (2), которая обобщает классическую систему экспонент $\{e^{int}\}_{-\infty}^{+\infty}$ и систему $\{e^{i(n+\beta\cdot {\rm sign}\,n)t}\}_{-\infty}^{+\infty}$ (см. [10, 12–14]), представляет особый интерес.

С другой стороны, рассмотрение системы (2) интересно и с теоретической точки зрения. Так, еще в 1926 г. Уолшем (см. [15]) доказана следующая

Теорема У. Пусть Γ — произвольная кривая Жордана конечной плоскости z. Тогда любая функция f(z), непрерывная на Γ , может быть равномерно приближена на Γ суммой полиномов от z и от \bar{z} (\bar{z} — комплексное сопряжение).

Иначе говоря, система $\{z^n(t); \bar{z}^n(t)\}_{n\geq 0}$ полна в $C_0[a,b]$, а значит, и в $L_p(a,b), p\geq 1$, где $\Gamma\equiv z\{[a,b]\}$ $(z(a)=z(b)), C_0[a,b]\equiv \{f\in C[a,b]: f(a)=f(b)\}.$

Взяв в качестве B(t) функцию $\overline{A}(t)$ в (2) и перейдя от комплексной к действительнозначным функциям, получим эквивалентность базисных свойств систем (2) и

$$\{\operatorname{Re}[A(t)\varphi^n(t)]; \operatorname{Im}[A(t)\varphi^n(t)]\}_{n>0}, \tag{3}$$

рассмотренной в [9,16]. В случае, когда A(t) кусочно гёльдерова на [a,b], $\Gamma = \varphi\{[a,b]\}$ — кусочно ляпуновский контур, в [9] получено необходимое и достаточное условие полноты и минимальности системы (3) в $L_p^{\mathbb{R}}(a,b)$, $p \in (1,+\infty)$.

В предлагаемой работе дано необходимое и достаточное условие полноты и минимальности в L_p , $p \ge 1$ ($L_\infty \equiv C$), а также необходимое условие базисности в L_2 системы вида (1) при более общих предположениях относительно функций A(t), B(t) и $\varphi(t)$. Результаты работы анонсированы в [17].

1. Вспомогательные понятия и основные предположения

Пусть B — банахово пространство над полем комплексных чисел с нормой $\|\cdot\|_B$, в котором задана «двойная» система элементов

$$\{x_n^+; x_n^-\}_{n>0}.$$
 (4)

Определение. Систему (4) назовем *базисом* в B, если для любого $x \in B$ существует единственная последовательность комплексных чисел $\left\{a_n^+; a_n^-\right\}_{n \geq 0}$, для которой

$$\left\| \sum_{n=0}^{N^+} a_n^+ x_n^+ + \sum_{n=0}^{N^-} a_n^- x_n^- - x \right\| \to 0 \quad \text{при } N^-, N^+ \to \infty.$$

Из этого определения не следует безусловная базисность, так как если классическую систему экспонент $\{e^{int}\}_{-\infty}^{+\infty}$ записать в виде $\{e^{int};e^{-i(n+1)t}\}_{n\geq 0}$, то, как известно, она образует базис в $L_p(-\pi,\pi)$, $1< p<+\infty$, в смысле данного определения.

Через H_p и $E_p(D)$ обозначены обычные классы аналитических функций Харди и Смирнова в области D.

Будем предполагать, что комплекснозначные функции $A(t)\equiv |A(t)|e^{i\alpha(t)},$ $B(t)\equiv |B(t)|e^{i\beta(t)}$ и $\varphi(t)$ удовлетворяют следующим условиям.

1. Функции |A(t)|, |B(t)| и $|\varphi'(t)|$ измеримы на (a,b), причем

$$\{|A(t)|^{\pm 1}; |B(t)|^{\pm 1}; |\varphi'(t)|^{\pm 1}\} < +\infty.$$

2. $\Gamma = \varphi\{[a,b]\}$ — замкнутый $(\varphi(a) = \varphi(b))$ спрямляемый простой контур Жордана, Γ либо кривая Радона (т. е. угол $\theta(\varphi(t))$ между касательной в точке $\varphi = \varphi(t)$ к кривой Γ и действительной осью есть функция ограниченной вариации на [a,b]), либо кусочно ляпуновский контур. Обозначим через $\{\varphi_k\}$ точки разрыва функции $\arg \varphi'(t)$ на (a,b). Кривая Γ не имеет точек заострения.

Для определенности будем считать, что, когда точка $\varphi = \varphi(t)$ с возрастанием t пробегает кривую Γ , внутренняя область int Γ остается слева.

- 3. Функции $\alpha(t)$ и $\beta(t)$ кусочно непрерывны на [a,b] и могут иметь бесконечное число точек разрыва первого рода. Пусть $\{\alpha_k\}$ и $\{\beta_k\}$ точки разрыва этих функций на (a,b) соответственно.
- 4. Положим $\{\tilde{s}_k\} \equiv \{\alpha_k\} \cup \{\beta_k\} \cup \{\varphi_k\}$. Множество $\{\tilde{s}_k\}$ может иметь единственную предельную точку $s_0 \in (a,b)$. Функция $\theta(t) \equiv \beta(t) \alpha(t) + \frac{2}{p}\arg\varphi'(t)$ в точке s_0 имеет справа и слева конечные пределы, где $p \in (1,+\infty)$ некоторое число.

Не ограничивая общности, будем считать, что функции $\alpha(t)$, $\beta(t)$ и arg $\varphi'(t)$ непрерывны слева на (a,b).

Функцию $\arg \varphi'(t)$ определим следующим образом. Будем брать в каждой начальной точке разрыва $\widetilde{\varphi}_k$, где $(\widetilde{\varphi}_k,\widetilde{\varphi}_{k+1})$ — интервал непрерывности функции $\arg \varphi'(t)$), ветвь $\arg \varphi'(\widetilde{\varphi}_k+0)$. В конечной точке $\widetilde{\varphi}_{k+1}$ значение $\arg \varphi'(\widetilde{\varphi}_{k+1}-0)$ будем получать из выбранной ветви $\arg \varphi'(\widetilde{\varphi}_k+0)$ путем непрерывного изменения, причем $0 \leq \arg \varphi'(a+0) < 2\pi$, $|\arg \varphi'(\widetilde{\varphi}_k+0) - \arg \varphi'(\widetilde{\varphi}_k-0)| < \pi$.

$$5. \ \sum_{i=1}^{\infty} | ilde{h}_i| < +\infty,$$
 где $ilde{h}_i = heta(ilde{s}_i + 0) - heta(ilde{s}_i - 0).$

Прежде чем сформулировать основные теоремы, определим некоторые величины, необходимые в дальнейшем.

Пусть r — номер, после которого выполняется условие

$$-rac{2\pi}{q} < \tilde{h}_k < rac{2\pi}{p}, \quad rac{1}{p} + rac{1}{q} = 1, \quad k \geq r.$$

Перенумеруем элементы множества $\{\tilde{s}_i\}_1^r$ по возрастанию и обозначим их через $\{s_i\}_i^r$. Перенумеруем соответствующие им скачки $\{\tilde{h}_i\}_i^r$ и обозначим их через $\{h_i\}_i^r$. Отметим, что в зависимости от того, принадлежит ли число $h_0 = \theta(s_0+0) - \theta(s_0-0)$ интервалу $(-\frac{2\pi}{q},\frac{2\pi}{p})$, точка s_0 и число h_0 могут быть включены соответственно в множества $\{\tilde{s}_i\}_1^r$ и $\{\tilde{h}_i\}_1^r$.

Определим целые числа n_i , $i=\overline{1,r}$, из условий

$$-\frac{1}{q} < \frac{h_i}{2\pi} + n_{i-1} - n_i \le \frac{1}{p}, \quad n_0 = 0, \ i = \overline{1, r}.$$
 (5)

Обозначим

$$\omega_{\varphi} \stackrel{\text{def}}{=} \frac{1}{2\pi} \left[\beta(a+0) - \beta(b-0) + \alpha(b-0) - \alpha(a+0) + \frac{2}{p} (\arg \varphi'(a+0) - \arg \varphi'(b-0)) \right] + \frac{2}{p} + n_r - 1. \quad (6)$$

Всюду в дальнейшем через $\overline{L\{M\}}$ обозначаем замыкание линейной оболочки множества M.

При доказательстве основных теорем нам понадобятся следующие леммы, которые представляют самостоятельный интерес.

Лемма 1. Пусть B — банахово пространство, система $\{x_i\}_{i\geq 1}\subset B$ неминимальна, а $\{x_i\}_{i\geq 2}$ минимальна в B. Тогда $x_1\in X_1$, где X_1 — замыкание линейной оболочки $\{x_i\}_{i\geq 2}$, т. е. $X_1\equiv \overline{L\{x_i\}}_{i\geq 2}$.

Доказательство. Так как $\{x_i\}_{i\geq 1}$ неминимальна, существует $r\in\mathbb{N}$ такое, что $x_r\in X^1_r$, где $X^1_r\equiv\overline{L\{x_n\}}_{n\geq 1,n\neq r}.$

Пусть $X_r^2 \equiv \overline{L\{x_n\}}_{n\geq 2, n\neq r}$. Если r=1, то утверждение леммы очевидно. Пусть r>1. Очевидно, что $\inf_{x\in X_r^2}\|x_r-x\|=\rho>0, \|\cdot\|$ — норма в B. Из $x_r\in X_r^1$

следует, что для любого k>1 существуют $N^{(k)}$ и $\left\{a_{n}^{k}\right\}_{1}^{N^{(k)}}$ такие, что

$$\left\| x_r - \sum_{n=1}^{N^{(k)}} a_n^k x_n \right\| < \frac{1}{k}. \tag{7}$$

Следовательно,

$$\frac{1}{k} > \left\| x_r - \sum_{n=2, n \neq r}^{N^{(k)}} a_n^k x_n \right\| - \left| a_1^k \right| \|x_1\| \ge \rho - \left| a_1^k \right| \|x_1\|,$$

т. е.

$$||a_1^k|| > \frac{1}{||x_1||} \left(\rho - \frac{1}{k}\right) \ge \frac{\rho}{2||x_1||} > 0 \quad \forall k \ge N_0$$

при некотором N_0 , и, значит, $\inf_{k\geq N_0}|a_1^k|\geq \frac{\rho}{2\|x_1\|}$. Возьмем произвольное $\varepsilon>0$. Тогда найдется $N_1\geq N_0$ такое, что $\frac{2\|x_1\|}{\rho k}<\varepsilon$ для любого $k\geq N$. В результате из (7) имеем

$$\left\| x_1 - \left(\frac{1}{a_1^k} x_r - \sum_{n=2, n \neq r}^{N^{(k)}} \frac{a_n^k}{a_1^k} x_n \right) \right\| < \frac{1}{k} \cdot \frac{1}{\left| a_1^k \right|} \le \frac{2\|x_1\|}{\rho k} < \varepsilon \quad \forall k \ge N_1, \text{ T. e. } x_1 \in X_1.$$

Лемма доказана.

Лемма 2. Пусть B — банахово пространство. Система $\{x_n\}_{n\geq 1}\subset B$ минимальна в B только в том случае, если $x_k\notin \overline{L\{x_n\}}_{n\geq k+1}\ \forall k\in N.$

В [18] условие этой леммы положено в основу определения усиленно линейной независимости систем.

Доказательство. Покажем, что $x_2 \notin \overline{L\{x_n\}}_{n \geq 1, n \neq 2}$. Ясно, что есть такое $\rho > 0$, что

$$\left\| \sum_{n=3}^{N} a_n^N x_n - x_2 \right\| \ge \rho > 0$$

для всех $N\geq 3$ и $\left\{a_n^N\right\}$. Пусть $x_2\in\overline{L\{x_n\}}_{n\geq 1,n\neq 2}$. Тогда для любого $k\geq 1$ найдутся N и $\left\{a_n^k\right\}_{n=1}^N$ такие, что

$$\left\| \sum_{n=3}^{N} a_n^k x_n + a_1^k x_1 - x_2 \right\| < \frac{1}{k}.$$
 (8)

Тем самым

$$\frac{1}{k} > \left\| \sum_{n=3}^{N} a_n^k x_n - x_2 \right\| - \left| a_1^k \right| \|x_1\| \ge \rho - \left| a_1^k \right| \|x_1\|, \quad \left| a_1^k \right| \ge \frac{1}{\|x_1\|} \left(\rho - \frac{1}{k} \right).$$

Из (8) имеем

$$\left\| \sum_{n=3}^{N} \frac{a_n^k}{a_1^k} x_n - \frac{1}{a_1^k} x_2 + x_1 \right\| \le \frac{1}{k} \cdot \frac{\|x_1\|}{\rho - 1/k} \to 0$$

при $k\to\infty$, т. е. $x_1\in\overline{L\{x_n\}}_{n\geq 2}$. Получили противоречие, следовательно, $x_2\notin\overline{L\{x_n\}}_{n\geq 1,n\neq 2}$. Итак, по условиям леммы 2 для любого $k_0\geq 1$ будет

$$x_{k_0-1} \notin \overline{L\{x_n\}}_{n \ge k_0-1, n \ne k_0}, \quad x_{k_o} \notin \overline{L\{x_n\}}_{n \ge k_0+1}.$$

Из предыдущих рассуждений следует, что $x_{k_o} \notin \overline{L\{x_n\}}_{n \geq k_0-1, n \neq k_0}$. Рассмотрим систему $\{x_{k_0-2}; x_{k_0}; x_{k_0-1}; x_{k_0+1}; \dots\}$. Для нее выполняются все условия леммы 2, если в качестве элементов x_1, x_2 взять соответственно x_{k_0-2} и x_{k_0} . В результате $x_{k_0} \notin \overline{L\{x_{k_0-2}; x_{k_0-1}; x_{k_0+1}; \dots\}}$. Продолжая этот процесс, в итоге получаем $x_{k_0} \notin \overline{L\{x_n\}}_{n \geq 1, n \neq k_0}$. То, что из минимальности вытекает выполнение условий леммы, очевидно. Лемма доказана.

2. Необходимое и достаточное условие полноты системы степеней

Основным результатом этого пункта является следующая

Теорема 1. Пусть функции A(t), B(t) и $\varphi(t)$ удовлетворяют условиям 1–5 и ω_{φ} определяется из (5), (6). Тогда система (2) полна в $L_p(a,b), 1 , только в том случае, если <math>\omega_{\varphi} \leq \frac{1}{n}$.

ДОКАЗАТЕЛЬСТВО. Полнота системы (2) в L_p эквивалентна равенству нулю п. в. любой $f \in L_p$, для которой

$$\int_{a}^{b} A\varphi^{n} \bar{f} dt = 0, \quad \int_{a}^{b} B\overline{\varphi}^{n} \bar{f} dt = 0, \quad n = \overline{0, \infty}.$$
 (9)

Обозначим через $t=\psi(\varphi)$ функцию, обратную к $\varphi=\varphi(t)$ на (a,b). Очевидно, что $t=\psi(\varphi)$ является однозначной и кусочно дифференцируемой на $\Gamma\setminus\{\varphi(a)=\varphi(b)\}$. В дальнейшем точка $\varphi_0=\varphi(a)=\varphi(b)$ рассматривается как «склеенные» две различные «концевые» точки: $\varphi_0^+=\varphi(a), \ \varphi_0^-=\varphi(b)$. Тогда естественно считать $\psi(\varphi_0^+)=a$ и $\psi(\varphi_0^-)=b$. Из (9) имеем

$$\int_{a}^{b} A\varphi^{n} \bar{f} dt = \int_{\Gamma} A(\psi(\varphi)) \bar{f}(\psi(\varphi)) [\varphi'(\psi(\varphi))]^{-1} \varphi^{n} d\varphi$$

$$= \int_{\Gamma} \Phi_{1}(\varphi) \varphi^{n} d\varphi = 0, \quad n = \overline{0, \infty}, \quad (10)$$

где

$$\Phi_1(arphi) = rac{A(\psi(arphi))ar{f}(\psi(arphi))}{arphi'(\psi(arphi))}.$$

Из условия 1 следует, что $\Phi_1(\varphi) \in L_1(\Gamma)$. Тогда согласно [19, с. 205] равенства (10) эквивалентны существованию функции $F_1(z)$ из класса Смирнова $E_1(\operatorname{int}\Gamma): F_1^+(\varphi) = \Phi(\varphi)$ п. в. на Γ , где $F_1^+(\varphi)$ — граничные значения по всем некасательным путям изнутри области $\operatorname{int}\Gamma$ функции F(z) на Γ . Из условия 1 и того, что $f \in L_q(a,b)$ ($\frac{1}{p}+\frac{1}{q}=1$), следует, что $F_1^+ \in L_q(\Gamma)$. Из [20, с. 90] согласно условию 2 вытекает, что $\operatorname{int}\Gamma$ принадлежит классу C областей Смирнова. Тогда по теореме В. И. Смирнова [20, с. 92] функция $F_1(z)$ принадлежит классу $E_q(\operatorname{int}\Gamma)$. Выражая $\bar f$ через F_1^+ , имеем

$$ar{f}(\psi(arphi)) = rac{arphi'(\psi(arphi))}{A(\psi(arphi))} F_1^+(arphi), \quad arphi \in \Gamma.$$

Из второго равенства (9) находим

$$\int\limits_a^b \overline{B}(t) arphi^n(t) f(t) \, dt = \int\limits_\Gamma \Phi_2(arphi) arphi^n \, darphi = 0, \quad n = \overline{0, \infty},$$

где

$$\Phi_2(arphi) = rac{\overline{B}(\psi(arphi))}{arphi'(\psi(arphi))} \cdot f(\psi(arphi)).$$

Аналогично предыдущему показываем, что существует функция $F_2(z) \in E_q(\operatorname{int}\Gamma)$, для которой $F_2^+(\varphi) = \Phi_2(\varphi)$ п. в. на Γ . В результате

$$\bar{f}(\psi(\varphi)) = \frac{\varphi'(\psi(\varphi))}{B(\psi(\varphi))} \overline{F}_2^+(\varphi), \quad \varphi \in \Gamma.$$
(11)

Таким образом, получаем следующую задачу сопряжения в классе Смирнова $E_q(\operatorname{int}\Gamma)$:

$$F_1^+(\varphi) - rac{A(\psi(\varphi))}{B(\psi(\varphi))} \cdot rac{\overline{\varphi}'(\psi(\varphi))}{\varphi'(\psi(\varphi))} \overline{F}_2^+(\varphi) = 0$$
 п. в. на Γ . (12)

Итак, если система (2) не полна в $L_p(a,b)$, то однородная задача сопряжения (12) нетривиально разрешима в классе $E_q(\text{int }\Gamma)$.

Пусть теперь задача (12) имеет нетривиальное решение $(F_1(z); F_2(z))$ в классе $E_q(\inf \Gamma)$. Рассмотрим функцию (11). По теореме 11.4 работы [20, с. 91] функции $|F_i^+(\varphi)|^q$, i=1,2, суммируемы вдоль Γ , т. е.

$$\int\limits_{\Gamma}|F_i^+|^q|\,d\varphi|\leq C<+\infty,\quad i=1,2.$$

Принимая во внимание условие 1, получим

$$\int_{a}^{b} |f(\varphi(t))|^{q} dt = \int_{a}^{b} |F_{2}^{+}(\varphi(t))|^{q} \frac{|\varphi'(t)|^{q-1}}{|\overline{B}(t)|^{q}} |d\varphi(t)| \le C_{0} \int_{\Gamma} |F_{2}^{+}(\varphi)|^{q} |d\varphi|, \quad C_{0} > 0.$$

Значит, $g(t) \equiv f(\varphi(t)) \in L_q(a,b)$.

Очевидно, что $F_i(z) \in E_1(\text{int }\Gamma), i = 1, 2$. Тогда выполняется следующее равенство [19, с. 205]:

$$\int\limits_{\Gamma}F_{i}^{+}(arphi)arphi^{k}darphi=0,\quad k\geq0,\;i=1,2.$$

Полагая здесь сначала $F_1^+(\varphi)=\frac{A(\psi(\varphi))}{\varphi'(\psi(\varphi))}\bar{f}(\varphi)$, затем $F_2^+(\varphi)=\frac{\overline{B}(\psi(\varphi))}{\varphi'(\psi(\varphi))}f(\varphi)$, получаем равенства (9).

Таким образом, если задача сопряжения (12) нетривиально разрешима в классе $E_q(\inf \Gamma)$, то система (2) не полна в $L_p(a,b)$.

Итак, полнота системы (2) в $L_p(a,b)$, $p \in (1,+\infty)$, эквивалентна существованию только нулевого решения задачи сопряжения (12) в классе Смирнова $E_q(\text{int }\Gamma)$.

Обозначим через $z = \omega(\xi)$, $\omega'(0) > 0$, $\omega(-\pi) = \varphi(a)$, функцию, осуществляющую конформное однолистное отображение круга $D = \{\xi \in C/|\xi| < 1\}$ на int Γ . Рассмотрим следующие функции, определенные в единичном круге:

$$\Phi_i(\xi) \equiv F_i[\omega(\xi)][\omega'(\xi)]^{\frac{1}{q}}, \quad i = 1, 2.$$

Известно [20, с. 91], что функции $F_i(z)$, i=1,2, принадлежат классу Смирнова $E_q(\operatorname{int}\Gamma)$ тогда и только тогда, когда функции $\Phi_i(\xi)$, i=1,2, принадлежат классу Харди H_q в единичном круге. Очевидно, что $\varphi=\omega(e^{i\sigma}), -\pi<\sigma<\pi$. Тогда из (12) имеем

$$\Phi_1^+(\xi) - G(\omega(\xi)) \left[\frac{\omega'(\xi)}{\overline{\omega}'(\xi)} \right]^{\frac{1}{q}} \overline{\Phi}_2^+(\xi) = 0, \quad |\xi| = 1, \tag{13}$$

где

$$G(arphi) = rac{A(\psi(arphi))}{B(\psi(arphi))} \cdot rac{\overline{arphi}'(\psi(arphi))}{arphi'(\psi(arphi))}, \quad arphi \in \Gamma.$$

Следовательно, полнота системы (2) в $L_p(a,b)$ эквивалентна существованию только нулевого решения задачи сопряжения (13) в классе Харди H_q . Введем следующие функции:

$$\begin{split} \widetilde{A}(\sigma) &\equiv A(\psi(\omega(e^{i\sigma}))), \\ \widetilde{B}(\sigma) &\equiv B(\psi(\omega(e^{i\sigma}))) \frac{\varphi'(\psi(\omega(e^{i\sigma})))}{\overline{\varphi}'(\psi(\omega(e^{i\sigma})))} \left[\frac{\overline{\omega}'(e^{i\sigma})}{\omega'(e^{i\sigma})} \right]^{\frac{1}{q}}, \quad -\pi < \sigma \leq \pi. \end{split}$$

Рассмотрим систему экспонент

$$\{\widetilde{A}(\sigma)e^{in\sigma}; \widetilde{B}(\sigma)e^{-in\sigma}\}_{n=1}^{\infty}.$$
 (14)

Рассуждая, как и выше, доказываем, что полнота системы (14) в $L_p(-\pi,\pi)$ эквивалентна существованию только нулевого решения задачи сопряжения (13) в классе Харди H_q в единичном круге. Следовательно, полнота системы (2) в $L_p(a,b)$ эквивалентна полноте системы (14) в $L_p(-\pi,\pi)$.

Обозначим через $\xi = \tau(z)$ обратную функцию к $z = \omega(\xi)$, осуществляющую конформное однолистное отображение области int Γ на единичный круг. Пусть $\tau_k = \tau(\varphi(\tilde{s}_k)), \ k = \overline{1,\infty}$. Очевидно, что множество $\{\sigma_k = \arg \tau_k\}_1^\infty$ состоит из точек разрыва функции $\tilde{\theta}(\sigma) \equiv \arg \tilde{B}(\sigma) - \arg \tilde{A}(\sigma)$ на $(-\pi,\pi)$. Ясно, что

$$\arg \widetilde{A}(\sigma) \equiv \alpha(\psi(\omega(e^{i\sigma}))),$$

$$\arg \widetilde{B}(\sigma) \equiv \beta(\psi(\omega(e^{i\sigma}))) + 2\arg \varphi'(\psi(\omega(e^{i\sigma}))) - \frac{2}{a}\arg \omega'(e^{i\sigma}).$$

Отметим, что $\varphi'(\nu(\sigma))$ — значение функции $\varphi(t)$ в точке $t = \nu(\sigma)$. Используя теорему 11.2 из [20, с. 88], представим функцию $\arg \omega'(e^{i\sigma})$ в следующем виде:

$$\arg \omega'(e^{i\sigma}) = \theta(s(\sigma)) - \sigma - \frac{\pi}{2}, \quad -\pi < \sigma \leq \pi,$$

где $\theta(s(\sigma))$ — угол между касательной в точке $\omega(e^{i\sigma})$ к кривой Γ и действительной осью; $s(\sigma)$ — длина дуги, отсчитываемая от точки $\varphi=\varphi(a)$ в положительном направлении до точки $\omega(e^{i\sigma})$, $-\pi < \sigma \leq \pi$. Из условий 1–5 следует, что функции $\widetilde{A}(\sigma)$ и $\widetilde{B}(\sigma)$ удовлетворяют всем условиям теоремы 1 на $[-\pi,\pi]$ из [21]. Учитывая геометрический смысл аргумента производной и применяя результаты работы [21] к системе (14), получаем утверждение теоремы. Теорема доказана.

3. Необходимое и достаточное условие минимальности системы степеней

Справедлива следующая

Теорема 2. Пусть функции A(t), B(t) и $\varphi(t)$ удовлетворяют условиям 1–5, ω_{φ} определяется из (5), (6). Тогда система (2) минимальна в $L_p(a,b)$, $1 , только в том случае, если <math>\omega_{\varphi} > -\frac{1}{a}$, $0 \in \text{int } \Gamma$.

Доказательство. Сначала предположим, что $0 \in \text{int } \Gamma$. Пусть $-\frac{1}{q} < \omega \leq \frac{1}{p}$. Применяя теорему 1 к системе

$${A_1(t)\varphi^n(t); B(t)\overline{\varphi}^n(t)}_{n=0}^{\infty},$$

где $A_1(t) \equiv A(t) \cdot \varphi(t)$, и учитывая, что $\arg \varphi(b) - \arg \varphi(a) = 2\pi$, получаем, что она не полна в $L_p(a,b)$. Из того, что (2) полна в $L_p(a,b)$, следует, что $A(t) \notin \overline{\{A(t)\varphi^{n+1}(t); B\overline{\varphi}^n(t)\}}_{n=0}^{\infty}$, причем дефект этой системы равен 1. Рассмотрим систему

$$\{A_2(t)\varphi^n(t); B(t)\overline{\varphi}^n(t)\}_{n=0}^{\infty},\tag{15}$$

где $A_2(t)\equiv A(t)\varphi^2(t)$. Как показано при доказательстве полноты, подпространство функций из $L_q(a,b)$, аннулирующих последовательность (15), и подпространство решений задачи сопряжения

$$F_1^+(arphi) - rac{A_2(\psi(arphi))}{B(\psi(arphi))} \cdot rac{\overline{arphi}'(\psi(arphi))}{arphi'(\psi(arphi))} \overline{F}_2^+(arphi) = 0, \quad arphi \in \Gamma,$$

в классе $E_q(\operatorname{int}\Gamma)$ имеют одинаковую размерность. В свою очередь, эта задача эквивалентна задаче

$$\Phi_1^+(\xi) - G(\omega(\xi)) \left[\frac{\omega'(\xi)}{\overline{\omega}'(\xi)} \right]^{\frac{1}{q}} \overline{\Phi}_2^+(\xi) = 0, \quad |\xi| = 1, \tag{16}$$

в H_q , где $G(\varphi)=rac{A_2(\psi(\varphi))}{B(\psi(\varphi))}\cdotrac{\overline{arphi}'(\psi(arphi))}{arphi'(\psi(arphi))}.$

Аналогичная связь имеется между задачей (16) и системой

$$\{\widetilde{A}(\sigma)e^{in\sigma}; \widetilde{B}(\sigma)e^{-in\sigma}\}_{n=1}^{\infty},$$
 (17)

где $\widetilde{A}(\sigma) \equiv A_2(\psi(\omega(e^{i\sigma}))), B(\sigma)$ из п. 2. По теореме 1 работы [21] система $\{\widetilde{A}e^{in\sigma}; \widetilde{B}e^{-ik\sigma}\}_{n=-1,k=1}^{\infty}$ полна и минимальна в $L_p(-\pi,\pi)$, значит, система (17) имеет дефект, равный 2. Следовательно, и система (15) имеет дефект, равный 2, в результате

$$A(t)\varphi(t) \notin \overline{\{A(t)\varphi^k(t); \overline{B}\varphi^n(t)\}}_{k=2,n=0}^{\infty}.$$

Продолжая этот процесс, получаем, что для любого $l \geq 0$

$$A\varphi^l \notin \overline{\{A\varphi^k; B\overline{\varphi}^n\}}_{k=l+1,n=0}^{\infty}, \quad B\varphi^l \notin \overline{\{A\varphi^k; B\overline{\varphi}^n\}}_{k=0,n=l+1}^{\infty}$$

Из леммы 2 следует минимальность системы (2) в $L_p(a,b)$. То, что при $\omega \le -\frac{1}{q}$ система (2) полна, но неминимальна, доказывается аналогично теореме 1 работы [21].

Рассмотрим случай, когда $0 \in \text{ext }\Gamma$. Пусть сначала $\omega \leq \frac{1}{p}$. Из $0 \in \text{ext }\Gamma$ вытекает, что $\arg \varphi(b) = \arg \varphi(a)$. Тогда из теоремы 1 в [21] следует, что система

$$\{A(t)\varphi^n(t); B(t)\overline{\varphi}^n\}_{n=m}^{\infty}$$
(18)

полна в $L_p(a,b)$ для любого целого m, т. е. (1) неминимальна.

Пусть теперь $\omega > \frac{1}{p}$. Как уже показано, полнота системы (18) эквивалентна существованию только нулевого решения задачи сопряжения

$$\Phi_1^+(\varphi) - \frac{A(\psi(\varphi))}{B(\psi(\varphi))} \cdot \frac{\overline{\varphi}'(\psi(\varphi))}{\varphi'(\psi(\varphi))} \cdot \frac{\varphi^m}{\overline{\varphi}^m} \overline{\Phi}_2^+(\varphi) = 0, \quad \varphi \in \Gamma, \tag{19}$$

в $E_q(\operatorname{int}\Gamma)$.

Очевидно, что если $(F_1(z); F_2(z))$ является решением задачи (12), то $\Phi_i(z) \equiv F_i(z) \cdot z^m$, i=1,2, — решение (19), и, обратно, так как $z^{\pm m}$ является аналитическим в int Γ . Значит, подпространства решений задач (12) и (19) имеют одинаковую размерность. В итоге множество функций из $L_q(a,b)$, аннулирующих

последовательности (2) и (18) при любом $m \ge 0$, имеют одинаковую размерность. Таким образом, удаление m первых пар функций системы (2) не влияет на ее полноту в $L_p(a,b)$ и, значит, она неминимальна.

Пусть теперь $0 \in \Gamma$. Не ограничивая общности, будем считать, что $\varphi(a) = \varphi(b) = 0$. Докажем, что при любом $m \geq 0$ система (18) неминимальна. Пусть при некотором целом $m_0 \geq 0$ система (18) минимальна в $L_p(a,b)$, и пусть $\{h_n^+(t); h_n^-(t)\}_{n=m_0}^{\infty}$ — биортогональная ей система, т. е.

$$\int_{a}^{b} A(t)\varphi^{m_{0}}(t)\bar{h}_{m_{0}}^{+}(t) dt = \int_{\Gamma} A(\psi(\varphi)) \frac{\bar{h}_{m_{0}}^{+}(\psi(\varphi))}{\varphi'(\psi(\varphi))} \varphi^{m_{0}} d\varphi = 1 \neq 0,$$
 (20)

$$\int\limits_a^b A(t)\varphi^{m_0+n}(t)\bar{h}_{m_0}^+(t)\,dt=\int\limits_\Gamma A(\psi(\varphi))\frac{\bar{h}_{m_0}^+(\psi(\varphi))}{\varphi'(\psi(\varphi))}\varphi^{n+m_0}\,d\varphi=0,\quad n\geq 1,\quad (21)$$

где $t=\psi(arphi)$ — обратная к arphi=arphi(t) функция.

Введем функцию

$$\omega(\varphi) = \int_{\varphi_0^-}^{\varphi} \xi^{m_0} A(\psi(\xi)) \frac{\bar{h}_{m_0}^+(\psi(\xi))}{\varphi'(\psi(\xi))} d\xi,$$

где интегрирование идет от точки $\varphi_0^- = \varphi(a)$ по контуру Γ в положительном направлении до точки φ . Интегрируя по частям, из (21) имеем

$$0=arphi^n\omega(.arphi)|_{arphi_0^-}^{arphi_0^+}-n\int\limits_{\Gamma}arphi^{n-1}\omega(arphi)darphi,\quad n=\overline{1,\infty}.$$

Из $\varphi(a) = \varphi(b) = 0$ следует, что

$$\int_{\Gamma} \varphi^n \omega(\varphi) d\varphi = 0, \quad n = \overline{0, \infty}.$$
 (22)

Функция $\omega(\varphi)$ имеет ограниченное изменение относительно длины дуги s. Тогда по теореме Риссов [19, с. 209] из (22) следует, что функция $\omega(\varphi)$ абсолютно непрерывна на Γ и, значит, $\omega(\varphi_0^-) = \omega(\varphi_0^+)$. С другой стороны, из (20) имеем

$$\omega(\varphi_0^+) - \omega(\varphi_0^-) = \int\limits_{\Gamma} A(\psi(\varphi)) \frac{\bar{h}_{m_0}^+(\psi(\xi))}{\varphi'(\psi(\xi))} \varphi^{m_0} \, d\varphi \neq 0.$$

Получили противоречие. Теорема доказана.

Замечание. Как следует из доказательств теорем 1, 2, на полноту и минимальность системы (1) влияет только разность аргументов функций A(t), B(t) (т. е. на утверждения этих теорем функция $\xi(t)$ не имеет никакого влияния, если $\alpha = \beta \pmod{\xi}$).

4. Необходимое условие базисности систем степеней в L_2

В этом пункте рассматривается базисность системы (1) в L_2 . Оказывается, система экспонент, которая образует базис в L_2 , является исключением среди систем вида (1).

Теорема 3. Пусть функции A(t), B(t), $\varphi(t)$ удовлетворяют условиям 1, 2. Если система (1) образует базис в $L_2(a,b)$, то $|\varphi(t)| \equiv \text{const } \text{на } [a,b]$.

Доказательство. Допустим противное. Пусть

$$R = \max_{[a,b]} |\varphi(t)| > \min_{[a,b]} |\varphi(t)| = r.$$

Из базисности (2) следует, что любая $f \in L_2$ имеет биортогональное разложение

$$f(t) = A(t) \sum_{n=0}^{\infty} a_n \varphi^n(t) + B(t) \sum_{n=0}^{\infty} b_n \overline{\varphi}^n(t).$$
 (23)

Обозначим

$$f^+(t) = \sum_{n=0}^\infty a_n arphi^n(t).$$

Из базисности и из условия 1 получаем, что $f^+(t) \in L_2(a,b)$. Рассмотрим степенной ряд $F(z) \equiv \sum\limits_{n=0}^\infty a_n z^n$. Его радиус сходимости обозначим через R_0 . Покажем, что $R_0 \geq R$. Пусть $R_0 < R$. Так как $|\varphi(t)| \in C[a,b]$, найдется точка $t_0 \in [a,b]$ такая, что $R = |\varphi(t_0)|$. Следовательно, существует δ -окрестность $\overline{G}_\delta(t_0) = [t_0 - \delta, t_0 + \delta]$ (при $t_0 = a$ или $t_0 = b$ — односторонняя окрестность) точки t_0 такая, что $R_0 < |\varphi(t)| \leq R$ для любого $t \in \overline{G}_\delta(t_0)$, т. е. $r_\delta = \min_{\overline{G}_\delta(t_0)} |\varphi(t)| > R_0$.

Из сходимости в L_2 ряда (23) следует, что $\|a_n\varphi^n(t)\|_{L_2} \to 0$ при $n \to \infty$, где $\|\cdot\|_{L_2}$ — норма в $L_2(a,b)$. Таким образом, $\|a_n\varphi^n(t)\|_{L_2(\overline{G}_\delta(t_0))} \to 0$, $n \to \infty$. Как известно, $R_0 = \frac{1}{\lim\limits_n \sqrt[n]{|a_n|}}$, т. е. существует последовательность $\{n_k\}$ такая, что

 $R_0^{-1}=\lim_{k o\infty}\sqrt[n_k]{|a_{n_k}|}$. Так как $r_\delta>R_0$, то для достаточно больших k

$$r_{\delta} > \frac{1}{\sqrt[n_k]{|a_{n_k}|}}, \quad \text{r. e. } |a_{n_k}\varphi^{n_k}(t)| > 1 \ \forall t \in \overline{G}_{\delta}(t_0).$$

Отсюда $\|a_{n_k}\varphi^{n_k}(t)\|_{L_2(\overline{G}_\delta(t_0))} \ge 2\delta > 0$ для достаточно больших k; противоречие. Значит, $R_0 \ge R$. Следовательно, для любой $f \in L_2$ функция F(z) является аналитической в круге z:|z|< R. Так как r< R, найдется δ_0 -окрестность некоторой точки $\tau\in(a,b)$ такая, что $|\varphi(t)|< R$ для любого $t\in D_{\delta_0}(\tau)=[\tau-\delta_0,\tau+\delta_0]$. Очевидно, что $F^+[\varphi(t)]=f^+(t)$ п. в. на $D_{\delta_0}(\tau)$. Из условий 1, 2 вытекает, что ряд $\sum_{n=0}^\infty a_n \xi^n$ сходится в $L_2(\Gamma)$. Тогда

$$\int_{\Gamma} \sum_{n=0}^{\infty} a_n \xi^n \xi^k d\xi = \sum_{n=0}^{\infty} a_n \int_{\Gamma} \xi^{n+k} d\xi = 0 \quad \forall k \ge 0.$$

Из этого равенства и теоремы Смирнова [22, с. 424] следует, что существует $F_1(z)\in E_1(\operatorname{int}\Gamma)$, для которой $F_1(\xi)=\sum\limits_{n=0}^\infty a_n\xi^n$ п. в. на $\Gamma.$ По условию 2 int Γ принадлежит классу C областей Смирнова [20, с. 90]. Так как $F_1^+(\xi)\in L_2(\Gamma)$, опять же по теореме Смирнова [20, с. 92] функция $F_1(z)$ принадлежит $E_2(\operatorname{int}\Gamma)$. Из предыдущих рассуждений вытекает, что $F_1^+[\varphi(t)]=F^+[\varphi(t)]$ п. в. на $D_{\delta_0}(\tau)$. По теореме единственности Привалова [22, с. 413] $F_1(z)\equiv F(z)$ в int $\Gamma.$

Следовательно, $F(z) \in E_2(\operatorname{int}\Gamma)$ и $F^+[\varphi(t)] = f^+(t)$ п. в. на [a,b].

Аналогично доказывается, что функция

$$\Phi(z) \equiv \sum_{n=0}^{\infty} \bar{b}_n z^n$$

принадлежит $E_2(\operatorname{int}\Gamma)$ и

$$\overline{\Phi}[arphi(t)] = \sum_{n=0}^\infty b_n \overline{arphi}^n(t)$$
 п. в. на $[a,b].$

В итоге функции F(z) и $\Phi(z)$ являются решениями следующей задачи сопряжения в $E_2(\operatorname{int}\Gamma)$:

$$A(t)F^+[\varphi(t)] + B(t)\overline{\Phi}^+[\varphi(t)] = f(t)$$
 п. в. на $[a,b]$. (24)

Аналогично доказательству теоремы 1 получаем, что однородная задача

$$A(t)F^+[arphi(t)]+B(t)\overline{\Phi}^+[arphi(t)]=0$$
 п. в. на $[a,b]$

имеет только тривиальное решение в $E_2(\inf \Gamma)$, так как (2) полна в $L_2(a,b)$. Значит, (24) однозначно разрешима в $E_2(\inf \Gamma)$.

Так как r < R, найдется $z_0 \in \operatorname{ext} \Gamma$ такая, что $|z_0| < R$. Рассмотрим функцию

$$f_0(\varphi(t)) \equiv \frac{1}{\varphi(t) - z_0} \equiv \frac{f(t)}{A(t)}.$$

Очевидно, что

$$f_0(z)=rac{1}{z-z_0}\in E_2(\operatorname{int}\Gamma)$$

и, более того,

$$A(t) f_0^+[\varphi(t)] = f(t)$$
 на $[a, b]$. (25)

Сравнивая (25) с (24), из единственности получаем, что $F(z) \equiv f_0(z)$, $\Phi(z) \equiv 0$ в int Γ . Тем самым F(z) является аналитическим продолжением $f_0(z)$ из области int Γ в $C_R \setminus$ int Γ , $C_R = \{z \in \mathbb{C} \mid |z| < R\}$. Но из единственности аналитического продолжения следует, что это невозможно, так как $z_0 \in C_R$ является полюсом функции $f_0(z)$ в C_R . Теорема доказана.

Замечание. Как показано в [23], в случае базисности система вида (1) изоморфна классической системе экспонент.

ЛИТЕРАТУРА

- 1. Бицадзе А. В. Об одной системе функций // Успехи мат. наук. 1950. Т. 5, № 4. С. 150–151.
- Пономарев С. М. Об одной задаче на собственные значения // Докл. АН СССР. 1979.
 Т. 249, № 5. С. 1068–1070.
- Шкаликов А. А. О свойствах части собственных и присоединенных элементов самосопряженных квадратичных пучков операторов // Докл. АН СССР. 1985. Т. 283, № 5. С. 1100–1194.
- 4. Габов С. А., Крутицкий П. А. О нестационарной задаче Ларсена // Журн. вычисл. математики и мат. физики. 1987. Т. 27, № 8. С. 1184—1194.
- 5. Джавадов М. Г. О полноте некоторой части собственных функций несамосопряженного дифференциального оператора // Докл. АН СССР. 1964. Т. 159, № 4. С. 723–725.
- 6. Шкаликов А. А. Об одной системе функций // Мат. заметки. 1975. Т. 18, \aleph 6. С. 855–860.
- 7. Любарский Ю. И. Полнота и минимальность систем функций вида $\{a(t)\varphi^n(t)-b(t)\varphi^n(t)\}$. II // Теория функций, функцион. анал. и их приложения. Харьков, 1988. № 49. С. 77–86.

- Любарский Ю. И., Ткаченко В. А. Полнота и минимальность специальных систем функций на множествах в комплексной плоскости. Харьков, 1985. 29 с. (Препринт / ФТИНТ АН УССР; № 33).
- 9. Барменков А. Н. Об аппроксимативных свойствах некоторых систем функций. Дис. . . . канд. физ.-мат. наук. М., 1983.
- 10. *Моисеев Е. И.* О базисности одной системы синусов и косинусов // Докл. АН СССР. 1984. Т. 275, № 4. С. 794–798.
- Моисеев Е. И. О базисности одной системы синусов // Дифференц. уравнения. 1987.
 Т. 23, № 1. С. 177–179.
- 12. Levinson N. Gap and density theorems. New York: Publ. Amer. Math. Soc., 1940.
- 13. Винер Н., Пэли Р. Преобразование Фурье в комплексной области. М.: Наука, 1964.
- 14. Седлецкий А. М. Биортогональные разложения в ряды экспонент на интервалах вещественной оси // Успехи мат. наук. 1982. Т. 37, № 5. С. 51–95.
- **15.** Уолш Дж. Л. Интерполяция и аппроксимация рациональными функциями в комплексной области. М.: Изд-во иностр. лит., 1961.
- 16. Казьмин Ю. А. Замыкание линейной оболочки одной системы функций // Сиб. мат. журн. 1977. Т. 18, № 4. С. 799–805.
- 17. Билалов Б. Т. Необходимое и достаточное условие полноты и минимальности системы вида $\{A\varphi^n; B\overline{\varphi}^n \ // \ Докл. \ PAH. \ 1992. \ T. \ 322, № 6. C. \ 1019–1021.$
- Turner R. E. L. Eigenfunction expansions in banach spaces // Quart. J. Math. Oxford. 1968.
 V. 19, N 2. P. 193-211.
- 19. Привалов И. И. Граничные свойства аналитических функций. М.; Л.: ГИТТЛ, 1950.
- 20. Данилюк И. И. Нерегулярные граничные задачи на плоскости. М.: Наука, 1975.
- 21. Билалов Б. Т. Базисные свойства некоторых систем экспонент, косинусов и синусов // Сиб. мат. журн. 2004. Т. 45, № 2. С. 264–273.
- **22.** Голузин Г. М. Геометрическая теория функций комплексного переменного. М.: Наука, 1966
- **23.** Билалов Б. Т. Об изоморфизме двух базисов в $L^{\rm p}$. II // Фундаментальная и прикладная математика. 1995. Т. 1, № 4. С. 1091–1094.

Статья поступила 1 июля 2004 г.

Билалов Билал Тельман оглы Институт математики и механики НАН Азербайджана ул. Ф. Агаева, 9, квартал 553. Баку Az 1141, Азербайджан b_bilalov@mail.ru