О МИНИМАЛЬНЫХ НЕГРУППОВЫХ СКРУЧЕННЫХ ПОДМНОЖЕСТВАХ, СОДЕРЖАЩИХ ИНВОЛЮЦИИ

А. Л. Мыльников

Аннотация: Подмножество K группы G называется *скрученным*, если $1 \in K$ и для любых $x,y \in K$ элемент $xy^{-1}x$ принадлежит K. Исследуются конечные скрученные подмножества с инволюцией, которые сами не являются подгруппами, но любое собственное скрученное подмножество в них — подгруппа. Исследуются группы, порожденные такими скрученными подмножествами.

Ключевые слова: скрученное подмножество, скрученная подгруппа.

Определение 1 [1]. Подмножество K из группы G называется *скрученным*, если $1 \in K$ и $xy^{-1}x \in K$ для любых элементов $x, y \in K$.

Интерес к скрученным подмножествам вызван прежде всего тем, что они связаны с инволютивными автоморфизмами группы (подробно эта связь изложена в работах Ашбахера [2] и автора [3]).

Понятно, что любая подгруппа в группе является скрученным подмножеством, но обратное не всегда верно (примером такого скрученного подмножества служит подмножество в группе диэдра D_{2n} , n>2, состоящее из всех инволюций и единицы). Поскольку вокруг понятия группы имеется достаточно хорошо разработанная теория, а понятие скрученного подмножества новое, естественно начинать изучение нового объекта с исследования скрученных подмножеств, которые «близки» по своим свойствам к подгруппам. Также напрашивается вопрос о том, какое строение имеют группы, порожденные такими «почти групповыми» скрученными подмножествами.

Ранее, в работах [1,4], изучались конечные группы, содержащие только скрученные подмножества, являющиеся подгруппами. Естественным продолжением этих исследований будет изучение «наименьших негрупповых» скрученных подмножеств и групп, порожденных такими подмножествами. Более точно, мы определим эти подмножества следующим образом.

Определение 2. Подмножество K группы G называется минимальным негрупповым скрученным подмножеством (MNG-подмножеством), если выполняются следующие условия:

- (1) $K \neq \langle K \rangle$;
- (2) для любого собственного скрученного подмножества S из K справедливо $S=\langle S \rangle.$

В настоящей работе изучаются MNG-подмножества, содержащие инволюции. Получены следующие результаты.

⁽c) 2007 Мыльников A. Л.

Теорема 1. Пусть G — конечная группа и K — скрученное подмножество из G такое, что $G = \langle K \rangle$. Тогда следующие условия эквивалентны:

- (I) $K-{
 m MNG}$ -подмножество, содержащее более одной инволюции;
- (II) $G \cong D_{2p}$ группа диэдра порядка 2p, где p простое число, причем справедлив один из следующих случаев:
 - (a) $K = \{1, u, v\}$ при p = 2, где u, v различные инволюции из G;
 - (b) $K = E \cup \{1\}$ при $p \neq 2$, где E множество инволюций из G.

Теорема 2. Пусть G — конечная группа и K — скрученное подмножество из G такое, что $G = \langle K \rangle$. Тогда следующие условия эквивалентны:

- (I) K MNG-подмножество, содержащее только одну инволюцию, но более чем одну максимальную циклическую 2-подгруппу;
 - (II) G и K удовлетворяют одному из случаев:
- (1) $G\cong Q_8$ группа кватернионов и $K=\langle a\rangle\cup\langle b\rangle$, где a,b элементы из G такие, что $G=\langle a,b\rangle$.
- (2) $G=\langle z\rangle \leftthreetimes \langle t\rangle$, где $|t|=2^n,\, n>1,\, |z|=p,\, p$ простое число, $\langle t^2\rangle \le Z(G),\, z^t=z^{-1}$ и справедлив один из вариантов:
- (a) $K=\langle a \rangle \cup \langle b \rangle$ при p=2 для некоторых различных элементов a,b таких, что $|a|=|b|=2^n;$
 - (b) $K = \bigcup_{c \in \langle z \rangle} \langle t \rangle^c$ при $p \neq 2$.

В силу этих результатов общий вопрос о строении MNG-подмножеств, содержащих инволюцию, редуцируется к вопросу о строении MNG-подмножеств, содержащих ровно одну максимальную циклическую 2-подгруппу.

- **1.** Вспомогательные результаты. Следуя [1], подгруппоид, порожденный некоторым подмножеством $M \cup 1$ группы G, с помощью бинарной операции $x \circ y := xy^{-1}x$ будем обозначать через Tw(M).
- **Лемма 1.** Пусть G группа и u,v две различные инволюции из G. Тогда скрученное подмножество Tw(u,v) не является подгруппой.

ДОКАЗАТЕЛЬСТВО. Введем обозначение K:=Tw(u,v). Допустим противное, т. е. что K — подгруппа.

Заметим, что если a,b — инволюции, то элемент aba также является инволюцией. В силу этого нетрудно видеть, что $x^2=1$ для любого $x\in K$.

Так как по предположению K — подгруппа, то $xy \in K$ для любых $x,y \in K$ и, следовательно, $(xy)^2=1$, откуда ввиду соотношений $x^2=1$, $y^2=1$ получаем, что xy=yx. Таким образом, K — абелева подгруппа в G, и, значит, uv=vu. Легко видеть, что подмножество $N:=\{1,u,v\}$ является скрученным. Следовательно, $K=\{1,u,v\}$. Очевидно, K не является подгруппой, что противоречит исходному предположению. Лемма 1 доказана. \square

Следующая лемма является объединением двух общеизвестных утверждений о группе диэдра.

Лемма 2. Пусть $G=\langle u,v\rangle$, где u,v- различные инволюции из G. Тогда

- (a) $G = \langle uv \rangle \times \langle v \rangle$, причем $x^v = x^{-1}$ для любого элемента x из $\langle uv \rangle$;
- (b) если |uv| нечетное число, то все инволюции из группы G сопряжены c инволюцией v при помощи элементов из $\langle uv \rangle$.

Непосредственно из определения множества Tw(M) вытекает

Лемма 3. Пусть G — группа, a, b — элементы из G и K := Tw(a, b).

Тогда для любого элемента x из K либо $x=a^{n_1}b^{m_1}\dots a^{n_k}b^ma^{n_k}\dots b^{m_1}a^{n_1},$ либо $x=a^{n_1}b^{m_1}\dots a^{n_k}b^{m_k}a^nb^{m_k}a^{n_k}\dots b^{m_1}a^{n_1},$ где n_i,m_i,n,m — некоторые целые числа, $i=1,\dots,k$.

Лемма 4. Пусть G — группа, H — нормальная подгруппа в G и K — MNG-подмножество группы G. Допустим, что $xH\subseteq K$ для любого $x\in K$. Пусть $\overline{G}:=G/H$ и \overline{K} — образ подмножества K в \overline{G} .

Тогда \overline{K} — MNG-подмножество.

Доказательство. Допустим противное, т. е. пусть \overline{K} не является MNG-подмножеством. Тогда в \overline{K} существует собственное скрученное подмножество \overline{S} , которое не является подгруппой. Пусть S — полный прообраз \overline{S} в G. В силу условия K — полный прообраз множества \overline{K} , значит, $S \subseteq K$. Понятно, что S — скрученное подмножество и S не подгруппа. Следовательно, S = K, откуда $\overline{S} = \overline{K}$, что противоречит выбору \overline{S} . \square

Лемма 5 [1, лемма 2.1]. Пусть G — группа и K — скрученное подмножество из G. Тогда $\langle x \rangle$ содержится в K для любого $x \in K$.

2. Доказательство теоремы **1.** Покажем, что из (I) вытекает (II). Пусть u, v — различные инволюции из K. Тогда из леммы 1 следует, что K = Tw(u, v). Так как $G = \langle K \rangle$, то G — группа диэдра. По лемме 2 $G = \langle uv \rangle \leftthreetimes \langle v \rangle$, причем $x^v = x^{-1}$ для любого элемента x из $\langle uv \rangle$.

Далее, пусть z — элемент из $\langle uv \rangle$ такой, что |z|=p, где p — простое число из $\pi(\langle uv \rangle)$. Рассмотрим множество $N^*:=\langle z \rangle \cup v$. Поскольку $z^v=z^{-1}$, то $vN^*v=N*$. Для любого числа t имеем $z^tvz^t=z^tvz^tvv=z^tz^{-t}v=v$, откуда следует, что $z^tN^*z^t\subseteq N^*$. Таким образом, N^* — скрученное подмножество.

Очевидно, N^* не является подгруппой.

Рассмотрим множество $K^* := vN^*$. Нетрудно видеть, что K^* — скрученное подмножество, причем K^* не является подгруппой.

Покажем, что $K^* = K$.

Заметим, что для любого числа k справедливо равенство $v(uv)^k = (vu)^k v$.

Так как $z\in\langle uv\rangle$, то существует число m такое, что $z=(uv)^m$, откуда $vz^t=v(uv)^{mt}$. Если mt — четное число, т. е. mt=2k, то

$$v(uv)^{mt} = v(uv)^{2k} = v(uv)^k (uv)^k = (vu)^k v(uv)^k.$$

Если mt — нечетное число, т. е. mt = 2k + 1, то

$$v(uv)^{mt} = v(uv)^{2k+1} = v(uv)^k (uv)(uv)^k = (vu)^k (vuv)(uv)^k.$$

Нетрудно видеть, что при любом t элемент vz^t содержится в K. Таким образом, $K^* \subseteq K$. Поскольку K^* не является подгруппой, а K — MNG-подмножество, то $K^* = K$. Тогда $G = \langle K \rangle = \langle N^* \rangle$, откуда вытекает, что $G \cong D_{2p}$ — группа диэдра порядка 2p, где p — простое число.

Далее, при p=2 имеем $G=\langle u\rangle \times \langle v\rangle$ и $K=\{1,u,v\}$. Таким образом, в этом случае G и K удовлетворяют случаю $\mathrm{II}(\mathrm{a})$ теоремы 1.

Рассмотрим случай, когда $p \neq 2$.

Поскольку $G \cong D_{2p}$, p нечетно, то в силу леммы 1.2(b) все инволюции из G сопряжены с инволюцией v при помощи элементов из $\langle uv \rangle$. Таким образом, если f — инволюция из группы G, то $f = (uv)^m u(vu)^m$ для некоторого числа m. Нетрудно видеть, что $f \in K$. Значит, $E \cup 1 \subseteq K$, где E — множество инволюций

из G. Легко показать, что $E \cup 1$ — скрученное подмножество и не подгруппа. Следовательно, $E \cup 1 = K$.

Таким образом, при $p \neq 2$ получаем, что G и K удовлетворяют случаю $\mathrm{II}(\mathbf{b})$ теоремы 1.

Итак, доказательство того, что в теореме 1 из (I) следует (II), завершено.

Покажем, что из (II) следует (I). Очевидно, что в случае II(a) теоремы 1 $G = \langle K \rangle$ и K является MNG-подмножеством.

Рассмотрим случай II(b). Понятно, что $G = \langle K \rangle$. Таким образом, остается показать, что K - MNG-подмножество.

Очевидно, K не является подгруппой.

Покажем, что любое собственное скрученное подмножество S из K является подгруппой, для чего докажем, что S содержит не более одной инволюции. Допустим противное, т. е. что подмножество S содержит две различные инволюции u,v. Тогда $G=\langle uv\rangle \leftthreetimes \langle v\rangle$ и по лемме 1(b) все инволюции из группы G сопряжены с инволюцией v при помощи элементов из $\langle uv\rangle$. Таким образом, если f — некоторая инволюция из G, то $f=(uv)^k v(vu)^k$ для некоторого числа k. Очевидно, что $f\in Tw(u,v)\subseteq S$. Следовательно, $E\cup 1\subseteq S\subseteq K$, откуда получаем, что S=K; противоречие с выбором S.

Итак, S содержит не более одной инволюции. Следовательно, либо S=1, либо $S=\langle u \rangle$, где u — некоторая инволюция из G. В обоих случаях S — подгруппа, значит, K — MNG-подмножество, и теорема 1 доказана.

3. Доказательство теоремы 2. Покажем, что из (I) следует (II).

Пусть $\langle x \rangle$, $\langle y \rangle$ — две различные максимальные циклические 2-подгруппы из K. Так как в K существует только одна инволюция, то $\langle x \rangle \cap \langle y \rangle \neq 1$. Существуют элементы a из $\langle x \rangle$ и b из $\langle y \rangle$ такие, что $a \neq b$, но $a^2 = b^2 \neq 1$.

Пусть $K^*:=Tw(a,b),\ G^*:=\langle K^*\rangle$ и $H:=\langle a^2\rangle.$ Понятно, что $H\leq Z(G^*).$ Также ясно, что $K^*\subseteq K.$

Далее анализ разбивается на ряд этапов.

(1)
$$K = K^* = Tw(a, b)$$
.

Рассмотрим фактор-группу $\overline{G}^*:=G^*/H$. Пусть \overline{K}^* — образ множества K^* в \overline{G}^* . Ясно, что $\overline{K}^*=Tw(\bar{a},\bar{b})$, где \bar{a},\bar{b} — образы соответственно элементов a,b в \overline{G}^* , $\overline{G}^*=\langle \overline{K}^* \rangle$ и $\bar{a}^2=\bar{b}^2=1, \bar{a}\neq \bar{b}$. По лемме 1 получаем, что \overline{K}^* не подгруппа. Следовательно, K^* не является подгруппой. Поскольку $K^*\subseteq K$, то ввиду того, что K — MNG-подмножество, получаем, что $K=K^*$.

(2)
$$G = \langle a, b \rangle, H \leq Z(G)$$
.

Очевидное следствие (1).

(3) Для любого элемента z из K будет $zH \subseteq K$.

Пусть $z \in K$. Тогда по лемме 3 либо

$$z = a^{n_1}b^{m_1}\dots a^{n_k}b^ma^{n_k}\dots b^{m_1}a^{n_1},$$

либо

$$z = a^{n_1}b^{m_1}\dots a^{n_k}b^{m_k}a^nb^{m_k}a^{n_k}\dots b^{m_1}a^{n_1}$$

для некоторых целых чисел $n, m, n_i, m_i, i = 1, ..., k$.

Для любого элемента h из подгруппы H существует такое целое число s, что $h=a^{2s}=b^{2s}.$ По (2) $H\leq Z(G).$ Тогда либо

$$zh = (a^{n_1}b^{m_1}\dots a^{n_k})b^m(a^{n_k}\dots b^{m_1}a^{n_1})b^{2s} = (a^{n_1}b^{m_1}\dots a^{n_k})b^{m+2s}a^{n_k}\dots b^{m_1}a^{n_1},$$

либо

$$zh = (a^{n_1}b^{m_1} \dots a^{n_k}b^{m_k})a^n(b^{m_k}a^{n_k} \dots b^{m_1}a^{n_1})a^{2s}$$
$$= (a^{n_1}b^{m_1} \dots a^{n_k}b^{m_k})a^{n+2s}(b^{m_k}a^{n_k} \dots b^{m_1}a^{n_1}).$$

В обоих случаях $zh \in K$. Следовательно, $zH \subseteq K$ для любого элемента z из K, и п. (3) доказан.

- (4) Пусть $\overline{G}:=G/H$ и \overline{K} образ подмножества K в \overline{G} . Тогда
- (a) \overline{K} MNG-подмножество;
- (b) $\overline{G}\cong D_{2p}$ группа диэдра порядка 2p, где p простое число.

Понятно, что $\overline{K}^* = Tw(\bar{a}, \bar{b})$, где \bar{a} , \bar{b} — образы соответственно элементов a, b в \overline{G}^* , $\overline{G}^* = \langle \overline{K}^* \rangle$ и $\bar{a}^2 = \bar{b}^2 = 1$, $\bar{a} \neq \bar{b}$. В силу п. (2) из леммы 4 следует, что \overline{K} является MNG-подмножеством. Тогда по теореме 1 получаем, что $\overline{G} \cong D_{2p}$ — группа диэдра порядка 2p, где p — простое число.

(5) Пусть p=2. Тогда G и K удовлетворяют либо случаю (1), либо случаю (2)(а) теоремы 2.

Из (4) получаем, что $\overline{G}=\langle \overline{a}\rangle \times \langle \overline{b}\rangle, \ |\overline{a}|=|\overline{b}|=2.$ Тогда $\langle a\rangle^b=\langle a\rangle$ и $\langle b\rangle^a=\langle b\rangle.$ В силу выбора элементов a,b имеем $|a|=|b|=2^n$ для некоторого натурального числа n>1. Поскольку $a^b=a^m$ для некоторого числа m, то $a^{b^2}=a^{m^2}=a,$ откуда вытекает, что $m^2-1\equiv 0(\operatorname{mod} 2^n)$ и $m\not\equiv 0(\operatorname{mod} 2).$ Так как $m^2-1=(m-1)(m+1),$ то либо $m\equiv 1(\operatorname{mod} 2^n),$ либо $m\equiv -1(\operatorname{mod} 2^n).$

Если $ab \neq ba$, то $m \equiv -1 \pmod{2^n}$, откуда $a^b = a^{-1}$. Аналогично доказывается, что в этом случае $b^a = b^{-1}$. Следовательно, n = 2, т. е. |a| = |b| = 4. Значит, $G \cong Q_8$ — группа кватернионов, т. е. группа G удовлетворяет случаю (1) теоремы 2.

Если ab=ba, то $m\equiv 1(\bmod{2^n})$. Рассмотрим элемент $c:=ab^{-1}$. Поскольку $a^2=b^2$, имеем $c^2=1$. Ясно, что $G=\langle c,b\rangle$. Значит, $G=\langle b\rangle\times\langle c\rangle$. Таким образом, группа G удовлетворяет случаю (2)(a) теоремы 2.

Далее, в обоих случаях рассмотрим множество $N:=\langle a\rangle\cup\langle b\rangle$. В силу леммы 5 $N\subseteq K$. Понятно, что N не является подгруппой. Для любого элемента a^t из $\langle a\rangle$ имеем $a^t\langle b\rangle a^t=a^{2t}(a^{-t}\langle b\rangle a^t)=a^{2t}\langle b\rangle=\langle b\rangle$, так как $a^{2t}\in\langle b\rangle$. Значит, $a^tNa^t\subseteq N$ для любого числа t. Аналогично показывается, что для любого числа t справедливо $b^tNb^t\subseteq N$. Следовательно, N является скрученным подмножеством. Поскольку K — MNG-подмножество и $N\subseteq K$, получаем, что N=K, и п. (5) доказан.

- (6) Пусть $p \neq 2$. Тогда G и K удовлетворяют случаю (2)(b) теоремы 2. Доказательство разбивается на ряд этапов.
- (6.1) Группа G удовлетворяет случаю (2)(b) теоремы 2.

Из (4) и леммы 2 следует, что $\overline{G} = \langle \bar{z} \rangle \leftthreetimes \langle \bar{t} \rangle$, где $|\bar{t}| = 2$, $|\bar{z}| = p$, p — простое число, отличное от 2, и $(\bar{z})^{\bar{t}} = (\bar{z})^{-1}$. Поскольку $|H| = 2^s$ для какого-то числа s, то в группе G существует элемент z, который является некоторым прообразом элемента \bar{z} в группе \overline{G} и имеет порядок, равный p.

Пусть t — некоторый прообраз элемента \bar{t} в группе \overline{G} . Так как $t^2 \in Z(G)$ и $(\bar{z})^{\bar{t}} = (\bar{z})^{-1}$, то $\langle z \rangle \triangleleft G$. Понятно, что $\langle z \rangle \cap \langle t \rangle = 1$. Следовательно, $G = \langle z \rangle \leftthreetimes \langle t \rangle$. Нетрудно видеть, что $z^t = z^{-1}$. Таким образом, группа G удовлетворяет случаю (2)(a) теоремы 2.

(6.2) Множество $N:=\bigcup_{c\in\langle z\rangle}\langle t\rangle^c$ является скрученным подмножеством, причем $N\neq\langle N\rangle=G.$

Легко видеть, что N не является подгруппой и $G=\langle N \rangle$. Таким образом, остается показать, что N — скрученное подмножество.

Очевидно, $1 \in N$.

Далее, для любых целых чисел k, m, n, s имеем

$$\begin{split} (z^{-k}t^mz^k)(z^{-s}t^nz^s)(z^{-k}t^mz^k) &= z^{-k}t^mz^{k-s}t^nz^{s-k}t^mz^k \\ &= z^{-k}(t^mz^{k-s}t^{-m})t^{n+2m}(t^{-m}z^{s-k}t^m)z^k, \end{split}$$

откуда вытекает соотношение

$$(z^{-k}t^mz^k)(z^{-s}t^nz^s)(z^{-k}t^mz^k) = z^{-k}z^{(-1)^m(k-s)}t^{n+2m}z^{(-1)^m(s-k)}z^k.$$

Таким образом,

$$(z^{-k}t^mz^k)(z^{-s}t^nz^s)(z^{-k}t^mz^k) \in \langle t \rangle^c,$$

где $c=z^{(-1)^m(s-k)+k}$. Итак, N — скрученное подмножество, и п. (6.2) доказан.

(6.3)
$$K = N$$
.

Рассмотрим фактор-группу $\overline{G}=G/H$ и множество \overline{K} — образ K в \overline{G} .

В силу п. (4) $\overline{G} = \langle \overline{z} \rangle \leftthreetimes \langle \overline{t} \rangle$, где $|\overline{z}| = p$, $|\overline{t}| = 2$. Ввиду (1) $\overline{K} = Tw(\overline{a}, \overline{b})$, где $|\overline{a}| = |\overline{b}| = 2$ и $\overline{a} \neq \overline{b}$. Поскольку по (4) \overline{K} — MNG-подмножество, применяя теорему 1, получаем, что $\overline{K} = \overline{E} \cup 1$, где \overline{E} — множество инволюций из \overline{G} . Следовательно, для любого элемента \overline{c} из $\langle \overline{z} \rangle$ имеем $\langle \overline{t} \rangle^{\overline{c}} \subseteq \overline{K}$. Тогда ввиду п. (3) получаем, что для любого элемента c из $\langle z \rangle$ справедливо $\langle t \rangle^c \subseteq K$, откуда $N \subseteq K$. В силу (6.2) имеем N = K, и п. (6.3), а вместе с ним п. (6) доказаны.

Итак, доказательство того, что в теореме 2 из (I) следует (II), завершено. Покажем, что из (II) следует (I).

Легко видеть, что в случаях (1) и (2)(a) множество K есть MNG-подмножество и $G = \langle K \rangle$. Покажем, что это справедливо и для случая (2)(b). Легко видеть, что в этом случае $G = \langle K \rangle$. Таким образом, остается только показать, что K — MNG-подмножество.

Сначала покажем, что K — скрученное подмножество.

Пусть $x=z^{-m}t^kz^m,\,y=z^{-s}t^rz^s$ — некоторые элементы из K, где m,k,s,r — целые числа. Тогда

$$\begin{split} xy^{-1}x &= (z^{-m}t^kz^m)(z^{-s}t^{-r}z^s)(z^{-m}t^kz^m) = z^{-m}t^kz^{m-s}t^{-r}z^{s-m}t^kz^m \\ &= z^{-m}(t^kz^{m-s}t^{-k})t^{2k-r}(t^{-k}z^{s-m}t^k)z^m. \end{split}$$

Если число k нечетное, то

$$t^k z^{m-s} t^{-k} = z^{-(m-s)}, \quad t^{-k} z^{s-m} t^k = z^{-(s-m)},$$

а если k четное, то

$$t^k z^{m-s} t^{-k} = z^{m-s}$$
, $t^{-k} z^{s-m} t^k = z^{s-m}$.

Таким образом, в первом случае $xy^{-1}x=z^{s-2m}t^rz^{-(s-2m)},$ а во втором — $xy^{-1}x=z^{-s}t^{2k-r}z^s.$ Очевидно, что в обоих случаях $xy^{-1}x\in K.$

Итак, K — скрученное подмножество.

Теперь покажем, что если S — собственное скрученное подмножество из K, то S является подгруппой.

Допустим противное, т. е. что существует собственное скрученное подмножество S в K, не являющееся подгруппой. Тогда ввиду леммы 5 S содержит подгруппы $\langle t \rangle^{z_1}$, $\langle t \rangle^{z_2}$, где z_1, z_2 — некоторые различные элементы из $\langle z \rangle$. Значит, $\langle t^2 \rangle \subseteq S$.

Обозначим $H:=\langle t^2\rangle$. Заметим, что для любого элемента x из S справедливо $xH\subseteq S$. Действительно, если $x\in S$, то $x=a^c$, где $a\in \langle t\rangle, c\in \langle z\rangle$. По лемме 5 $\langle a^c\rangle\subseteq S$. Тогда если $x\in H$, то $xH\subseteq H\subseteq S$, а если $x\notin H$, то $xH\subseteq \langle a^c\rangle\subseteq S$. Таким образом, для любого элемента x из S справедливо $xH\subseteq S$.

Аналогично показывается, что $xH \subseteq K$ для любого $x \in K$.

Рассмотрим фактор-группу $\overline{G}:=\overline{G/H}$. Очевидно, что $\overline{G}\cong D_{2p}$ — группа диэдра порядка 2p, где p — простое число и $p\neq 2$. Пусть $\overline{S},\overline{K}$ — образы соответственно множеств S,K в \overline{G} . Нетрудно видеть, что $\overline{K}=\overline{E}\cup\{1\}$, где \overline{E} — множество инволюций из \overline{G} . Множество \overline{S} содержит более одной инволюции. В силу теоремы 1 \overline{K} — MNG-подмножество. Поскольку $\overline{S}\neq\langle\bar{s}\rangle$, имеем $\overline{S}=\overline{K}$. Следовательно, S=K, так как множества S и K являются полными прообразами множеств \overline{S} и \overline{K} . Получаем противоречие с тем, что S — собственное скрученное подмножество из K и, значит, K — MNG-подмножество. Теорема 2 доказана.

Автор выражает глубокую благодарность профессору В. В. Беляеву, под руководством которого была выполнена эта работа.

ЛИТЕРАТУРА

- Мыльников А. Л. Конечные перекрученные группы // Математические системы. Красноярск: Краснояр. гос. аграр. ун-т, 2005. Вып. 3. С. 53–58.
- $\textbf{2.} \ \ \textit{Aschbacher M.} \ \textit{Near subgroups of finite groups} \ / / \ \textit{J. Group Theory.} \ 1998. \ \textit{V. 1, N 2. P. 113-129}.$
- 3. *Мыльников А. Л.* Конечные минимальные неперекрученные группы // Вестн. Красноярск. гос. ун-та. 2005. № 1. С. 71–76.
- Мыльников А. Л. Абелевы перекрученные группы // Математические системы. Красноярск: Краснояр. гос. аграр. ун-т, 2005. Вып. 3. С. 59–61.

Статья поступила 10 ноября 2005 г.

Мыльников Андрей Леонидович Сибирский федеральный университет, Институт естественных и гуманитарных наук, кафедра высшей математики, пр. Свободный, 79, Красноярск 660041 mylnand@yandex.ru