ДЕФОРМАЦИИ ВЕКТОРНЫХ ПОЛЕЙ И КАНОНИЧЕСКИЕ КООРДИНАТЫ НА ОРБИТАХ КОПРИСОЕДИНЕННОГО ПРЕДСТАВЛЕНИЯ

С. П. Барановский, И. В. Широков

Аннотация. Доказан результат, устанавливающий взаимно однозначное соответствие между существованием линейного канонического вложения, позволяющего осуществлять переход к координатам Дарбу на орбитах коприсоединенного представления, и существованием поляризации линейного функционала. В качестве следствия из основной теоремы доказано, что произвольная поляризация является нормальной, т. е. удовлетворяет условию Пуканского. Рассмотрен пример.

Ключевые слова: алгебра Ли, орбита коприсоединенного представления, скобка Пуассона — Ли, поляризация, условие Пуканского.

1. Введение

Пусть G — вещественная связная группа Ли, \mathfrak{g} — ее алгебра Ли, \mathfrak{g}^* — пространство, дуальное к алгебре Ли \mathfrak{g} . Группа G действует на пространстве \mathfrak{g}^* коприсоединенным представлением Ad^* , расслаивая последнее на орбиты коприсоединенного представления. Пусть λ — функционал из \mathfrak{g}^* , \mathscr{O}_{λ} — орбита коприсоединенного представления, проходящая через точку $\lambda \in \mathfrak{g}^*$. Известно, что пара $(\mathscr{O}_{\lambda}, \omega_{\lambda})$, где ω_{λ} — форма Кириллова, является симплектическим многообразием.

Согласно теореме Дарбу на многообразии \mathcal{O}_{λ} существуют такие локальные координаты (q,p), называемые каноническими, в которых форма Кириллова ω_{λ} принимает вид

$$\omega_{\lambda} = dp_a \wedge dq^a, \quad a = 1, \dots, \frac{1}{2} \dim \mathscr{O}_{\lambda}.$$
 (1)

Пусть e_i — базис алгебры Ли \mathfrak{g} $(i=1,\ldots,\dim\mathfrak{g})$, тогда $[e_i,e_j]=C_{ij}^ke_k$, где C_{ij}^k — структурные константы алгебры Ли \mathfrak{g} . Введем 1-формы e^i , дуальные к базисным векторам e_i , т. е. $\langle e^i,e_j\rangle=\delta_j^i$. 1-Формы e^i образуют базис пространства \mathfrak{g}^* . Далее мы будем называть пространство \mathfrak{g}^* коалгеброй, а элементы из \mathfrak{g}^* — ковекторами. Из вышесказанного следует, что произвольная точка $x\in\mathfrak{g}^*$ имеет координаты x_i : $x=x_ie^i$.

На коалгебре \mathfrak{g}^* существует скобка Пуассона — Ли, определяемая следующим образом:

$$\{\phi, \psi\}(x) = \langle x, [\nabla \phi, \nabla \psi] \rangle, \quad \phi, \psi \in C^{\infty}(\mathfrak{g}^*).$$
 (2)

Для линейных координат x_i на \mathfrak{g}^* скобка (2) примет вид

$$\{x_i, x_j\} = C_{ij}^k x_k.$$

Пусть задано вложение $\mathscr{O}_{\lambda} \to \mathfrak{g}^*$, или, в координатах, $(q^a, p_a) \mapsto x_i$. Выделим специальный класс канонических вложений $(q^a, p_a) \mapsto x_i$, введя следующее

Определение 1. Вложение $(q^a,p_a)\mapsto x_i$ назовем p-линейным каноническим вложением, если функции $x_i(q,p)$, где (q^a,p_a) — координаты Дарбу, удовлетворяют условиям

$$x_i(q,p) = X_i^a(q)p_a + \chi_i(q), \ x_i(0,0) = \lambda_i, \ a = 1, \dots, \frac{1}{2}\dim \mathcal{O}_{\lambda}; \ i = 1, \dots, \dim \mathfrak{g}.$$
 (3)

Напомним некоторые определения, следуя работам [1,2]. Введем на \mathfrak{g} кососимметрическую форму $B_{\lambda}: \mathfrak{g} \times \mathfrak{g} \to R$:

$$B_{\lambda}(X,Y) = \langle \lambda, [X,Y] \rangle, \quad X,Y \in \mathfrak{g}.$$
 (4)

Определение 2. Подалгебра $\mathfrak{n}\subset\mathfrak{g}_\mathbb{C}$ называется поляризацией функционала $\lambda,$ если

$$\langle \lambda, [\mathfrak{n}, \mathfrak{n}] \rangle = 0, \tag{5}$$

$$\dim \mathfrak{n} = \dim \mathfrak{g} - \frac{1}{2} \dim \mathscr{O}_{\lambda}, \tag{6}$$
 иначе говоря, поляризация является максимальным вполне изотропным под-

иначе говоря, поляризация является максимальным вполне изотропным подпространством относительно формы (4).

Более того, поляризация $\mathfrak n$ является подалгеброй изотропии алгебры $\mathfrak g_\mathbb C$ локальной группы $G_\mathbb C$, действующей на локальном однородном многообразии Q,

$$\dim Q = \frac{1}{2} \dim \mathcal{O}_{\lambda} = \dim \mathfrak{g} - \dim \mathfrak{n}, \tag{7}$$

являющимся лагранжевым подмногообразием к орбите \mathcal{O}_{λ} . Заметим также, что согласно [1] произвольная поляризация \mathfrak{n} содержит стабилизатор функционала λ , т. е. $\mathfrak{g}^{\lambda} \subset \mathfrak{n}$.

Основным результатом данной работы является следующая

Теорема 1. *p*-Линейное каноническое вложение $\mathcal{O}_{\lambda} \to \mathfrak{g}^*$ существует тогда и только тогда, когда существует поляризация \mathfrak{n} линейного функционала λ .

Далее везде, где это не будет вызывать разночтений, мы будем называть *р*-линейное каноническое вложение просто *каноническим вложением*.

Вопрос о существовании канонического вложения играет центральную роль при проведении квантования симплектических многообразий (см., например, [3, 4]). Основное преимущество линейности функций (3) состоит в том, что квадратичные по x_i функции Гамильтона переходят в квадратичные по p_a операторы при проведении квантования, причем не возникает проблем с упорядочиванием полученных операторов.

В работе [3] доказан результат (теорема 1.4), эквивалентный теореме 1. Однако между данными результатами имеется существенное отличие. В работе [3] при доказательстве теоремы 1.4 существенную роль играет специальное условие, накладываемое на поляризацию. Данное условие называется условием Пуканского:

$$\lambda + \mathfrak{n}^{\perp} \subset \mathscr{O}_{\lambda}, \tag{8}$$

где

$$\mathfrak{n}^{\perp} = \{ \mu \in \mathfrak{g}^* \mid \langle \mu, \mathfrak{n} \rangle = 0 \}. \tag{9}$$

Согласно работе [2] поляризация, удовлетворяющая условию Пуканского, называется *нормальной*. Таким образом, в работе [3] требование нормальности поляризации является ключевым при построении канонических координат, а также при квантовании орбит, причем отказ от этого условия делает несостоятельным приведенные доказательства. В нашем же подходе из теоремы 1 получено

Следствие 1.1. Произвольная поляризация $\mathfrak n$ линейного функционала $\lambda \in \mathscr O_\lambda$ нормальна.

Иначе говоря, нам удалось показать, что условие Пуканского, обычно накладываемое на поляризации, излишне и автоматически вытекает из существования поляризации.

Структура данной работы такова. В п. 2 излагается специальный формализм деформаций векторных полей (см. [5]). Данный формализм используется при доказательстве теоремы 1 и следствия 1.1, которым посвящен п. 3. В п. 4 приведен нетривиальный пример.

2. Деформации векторных полей на однородных пространствах

Пусть M — однородное правое G-пространство, где G — группа Ли преобразований пространства M. Однородное пространство M можно представить как фактор-многообразие G/H, где H — подгруппа стационарности (изотропии) некоторой точки $q_0 \in M$. Введем следующие обозначения: \mathfrak{g} — алгебра Ли группы G, \mathfrak{n} — алгебра Ли группы H, $\{X_i\}$, $i=1,\ldots,\dim G$, — векторные поля (генераторы действия группы G) на пространстве M, образующие алгебру Ли \mathfrak{g} .

Известно (см., например, [6]), что однородному пространству естественным образом сопоставляется главное расслоение $G(M=G/H,H,\pi)$. Пусть $\{g^i\}$, где $i=1,\ldots,\dim G$, — координаты расслоенного многообразия G. Над областями тривиализации в расслоенном пространстве G можно ввести координаты прямого произведения $U\times H$, где $U\subset M$ — область в M (область тривиализации). Эти координаты в дальнейшем будут обозначаться через $(q^a,h^{\bar{a}}),\ a=1,\ldots,\dim M, \bar{a}=1,\ldots,\dim H$. Таким образом, имеет место локальное расщепление координат $\{g^i\}$ на координаты слоя и координаты базы, что можно обозначить как $(g^i)=(q^a,h^{\bar{a}})$. Если (локально) задано гладкое сечение $s:M\to G$ расслоения G, то в этом случае координаты произвольной точки $g\in G$ можно представить в виде g=hs(q). Выше и далее в этом параграфе $i,j,k,\ldots=1,\ldots,\dim \mathfrak{g}$, а множество индексов a,b,c,\ldots пробегает значения $1,\ldots,\dim M$.

Векторные поля X_i удовлетворяют соотношениям

$$[X_i, X_j] = C_{ij}^k X_k, \quad i, j, k = 1, \dots, \dim \mathfrak{g}, \tag{10}$$

где C^k_{ij} — структурные константы алгебры Ли \mathfrak{g} . И в локальных координатах (q^a) имеют вид $X_i = X^a_i(q)\partial q^a$.

Пусть V — некоторое векторное пространство, $\mathfrak{gl}(V)$ — алгебра Ли группы преобразований пространства V. Введем основное

Определение 3. $\mathfrak{gl}(V)$ -Деформацией векторного поля X_i назовем неоднородный линейный оператор

$$\widehat{X}_i = X_i + \chi_i, \tag{11}$$

где χ_i — компоненты отображения $\chi: M \to \mathfrak{gl}(V)$ такого, что множество операторов \widehat{X}_i образует исходную алгебру Ли \mathfrak{g} .

Иначе говоря, \mathfrak{gl} -деформации — это возмущения алгебры Ли векторных полей с сохранением коммутационных соотношений.

Отметим, что деформации векторных полей имеют достаточно простое дифференциально-геометрическое описание в терминах однородных векторных расслоений (см. [7]).

Используя соотношения (10) и (11), получим

$$X_i^a \frac{\partial \chi_j}{\partial q^a} - X_j^a \frac{\partial \chi_i}{\partial q^a} + [\chi_i, \chi_j] = C_{ij}^k \chi_k.$$
 (12)

Таким образом, задача построения $\mathfrak{gl}(V)$ -деформаций заключается в решении системы нелинейных дифференциальных уравнений (12) на неизвестные матричные функции $\chi_i(q)$, заданные на многообразии M.

Определение 4. $\mathfrak{gl}(V)$ -Деформации \widehat{X}_i и \widehat{X}_i' будем называть эквивалентными, если существует такая гладкая GL(V)-значная функция на M, что выполняется соотношение

$$\widehat{X}' = A^{-1}(q)\widehat{X}A(q). \tag{13}$$

Применим эквивалентность (13) к тривиальному решению уравнения (12): $\chi_i=0$ для любого i. Получим

$$X'_i = A^{-1}(q)X_iA(q) = X_i + A^{-1}(q)X_i^a \frac{\partial A(q)}{\partial q^a}.$$

Таким образом, класс эквивалентности, соответствующий нулевому решению уравнения (12), не является пустым.

Определение 5. Деформации, принадлежащие классу эквивалентности нулевого решения уравнения (12), будем называть *тривиальными*.

Элементарными вычислениями можно получить явный вид функций $\chi_i(q)$ в случае тривиальных деформаций:

$$\chi^{tr}(q) = A^{-1}(q) X^a \frac{\partial A(q)}{\partial q^a}.$$
 (14)

Над многообразием G определено семейство левоинвариантных векторных полей ξ_i таких, что

$$[\xi_i, \xi_j] = C_{ij}^k \xi_k.$$

В локальных координатах (q,h) левоинвариантные векторные поля имеют вид

$$\xi(q) = X_i^a(q)\partial q^a + \xi_i^\alpha(q,h)\partial h^\alpha.$$

Приведем без доказательства (см. [5]) следующий результат.

Теорема 2. Пространство всех нетривиальных $\mathfrak{gl}(V)$ -деформаций генераторов X действия группы Ли G на однородном пространстве M=G/H изоморфно пространству неэквивалентных представлений подалгебры изотропии \mathfrak{h} в пространстве V. Над областями тривиализации расслоения $G(M,H,\pi)$ все нетривиальные деформации представляются в виде

$$\widehat{X}_i = X_i + \xi_i^{\alpha}(e_H, x)\Lambda_{\alpha}, \tag{15}$$

где $\Lambda_{\alpha} \in \mathfrak{gl}(V)$, и образуют базис представления \mathfrak{h} в V.

Следствие 2.1. Произвольная деформация левоинвариантного поля на связной односвязной группе Ли тривиальна.

Рассмотрим одномерные представления алгебры \mathfrak{h} , т. е. пусть генераторы Λ_{α} удовлетворяют соотношению

$$C_{\alpha\beta}^{\gamma} \, \Lambda_{\gamma} = 0. \tag{16}$$

Одномерное представление можно задать с помощью ковектора λ или, что эквивалентно, набором чисел λ_{α} , где $\lambda_{\alpha}=\lambda(e_{\alpha})$, здесь e_{α} — базис алгебры \mathfrak{h} . При этом условие (16) примет вид

$$\langle \lambda, [\mathfrak{h}, \mathfrak{h}] \rangle = 0. \tag{17}$$

Для деформаций, индуцированных одномерными представлениями алгебры \mathfrak{h} , имеем следующий результат, который является частным случаем теоремы, доказанной выше.

Следствие 2.2. Пространство нетривиальных деформаций, индуцируемое одномерным представлением алгебры \mathfrak{h} , конечномерно и изоморфно фактор-пространству $\mathfrak{h}^*/[\mathfrak{h},\mathfrak{h}]^*$.

Следствие 2.2 представляет собой предложение 2 из работы [8]. В заключение данного параграфа отметим, что в случае одномерных представлений приведенный формализм имеет непосредственную связь с одномерными когомологиями алгебр Ли (см. [9,10]).

3. Теорема о линейном каноническом вложении

Доказательство теоремы 1. Пусть $x_i = X_i^a(q)p_a + \chi_i(q), a = 1, \ldots, \frac{1}{2} \dim \mathcal{O}_{\lambda}$, — функции, реализующие линейное каноническое вложение $(q,p) \mapsto x_i$, где (q^a,p_a) — канонические координаты на орбите коприсоединенного представления. Далее будем полагать, что координаты (q^a,p_a) вещественны.

Из скобки Ли — Пуассона (2) и формы Кириллова (1) получим

$$\frac{\partial x_i(q,p)}{\partial q^a} \frac{\partial x_j(q,p)}{\partial p_a} - \frac{\partial x_j(q,p)}{\partial q^a} \frac{\partial x_i(q,p)}{\partial p_a} = C_{ij}^k x_k(q,p). \tag{18}$$

Введем следующие линейные дифференциальные операторы:

$$X_i = X_i^a(q) rac{\partial}{\partial q^a}.$$

Из выражений (2) и (18) получаем

$$[X_i, X_j] = C_{ij}^k X_k, \tag{19}$$

$$X_i^a(q)\frac{\partial \chi_j(q)\partial}{q^a} - X_j^a(q)\frac{\partial \chi_i(q)}{\partial q^a} = C_{ij}^k \chi_k(q). \tag{20}$$

Поскольку каноническое вложение взаимно однозначно, выполняется условие

$$\operatorname{rank}\left(\frac{\partial x_i(q,p)}{\partial p_a}, \frac{\partial x_i(q,p)}{\partial q^b}\right)\Big|_{q=p=0} = \dim \mathscr{O}_{\lambda}. \tag{21}$$

Выбираем локальные координаты q^a и базис в алгебре Ли так, чтобы $X_a^b(q=0)=\delta_a^b$ и $X_{\bar a}^b(q=0)=0$. Расписывая в явном виде последнее выражение, получим

$$\operatorname{rank} \begin{pmatrix} \mathbb{I}_{ab} & \frac{\partial \chi_a(q)}{\partial q^b} \Big|_{q=0} \\ 0 & \frac{\partial \chi_{\bar{a}}(q)}{\partial q^b} \Big|_{q=0} \end{pmatrix} = \dim \mathcal{O}_{\lambda}, \tag{22}$$

где \mathbb{I}_{ab} — единичная матрица соответствующего размера, причем $\mathrm{rank}\,\mathbb{I}_{ab}=(1/2)\dim\mathscr{O}_\lambda$ и, следовательно, $\mathrm{rank}\,\frac{\partial\chi_{\bar{a}}(q)}{\partial q^b}\big|_{q=0}=(1/2)\dim\mathscr{O}_\lambda$.

Из вышесказанного следует, что X_i — генераторы действия группы G на пространстве Q. Так как данное действие транзитивно, Q локально может быть представлено как однородное пространство группы G, т. е. Q локально изоморфно G/H, где H — подгруппа стационарности точки q=0. Соотношение (20) означает, что $\widehat{X}_i = X_i + \chi_i$ — деформация операторов X_i . Следовательно, согласно теореме 2 и следствию 2.2 получим, что χ_i представимо в виде $\chi_i^{\alpha}(q)\lambda_{\alpha}$. При этом λ_{α} удовлетворяют условию $\langle \lambda, [\mathfrak{h}, \mathfrak{h}] \rangle$, где \mathfrak{h} — алгебра Ли группы H. Так как $\dim \mathfrak{h} = \dim G - \frac{1}{2} \dim \mathscr{O}_{\lambda}$, последнее соотношение означает, что \mathfrak{h} — поляризация функционала λ .

Пусть теперь существует поляризация \mathfrak{h} функционала λ , H — группа Ли алгебры \mathfrak{h} . Рассмотрим однородное пространство Q = G/H с генераторами X_i действия группы G на пространстве Q. Согласно теореме 2 построим операторы

$$\widehat{X}_i = X_i^a(q)\partial q^a + \chi_i^{ar{a}}(q)\lambda_{ar{a}},$$

где индексы a нумеруют компоненты из пространства Q, а индексы \bar{a} — из подгруппы H. Для доказательства того, что символы данных операторов, а именно функции $x_i(q,p)=x_i^a(q)p_a+\chi_i^{\bar{a}}(q)\lambda_{\bar{a}}$, реализуют каноническое вложение, нужно доказать соотношение (22) или, эквивалентно, показать, что ранги rank \mathbb{I}_{ab} и rank $\frac{\partial \chi_{\bar{a}}(q)}{\partial q^b}\Big|_{q=0}$ равны $(1/2)\dim \mathcal{O}_{\lambda}$. Условие для первого ранга выполняется автоматически, так как операторы \widehat{X}_i являются деформациями векторных полей X_i — генераторов действия группы G на пространстве G/H.

Докажем, что выполняется соотношение

$$\operatorname{rank} rac{\partial \chi_{ar{a}}(q)}{\partial q^b}igg|_{q=0} = rac{1}{2} \dim \mathscr{O}_{\lambda}.$$

Из теоремы 2 имеем $\chi_{ar{a}}=\xi_{ar{a}}^k(e_H,q)\lambda_k$, значит,

$$\left. \frac{\partial \chi_{\bar{a}}(q)}{\partial q^a} \right|_{q=0} = \left. \frac{\partial \xi_{\bar{a}}^k(e_H, q)}{\partial q^a} \right|_{q=0} \lambda_k = C_{\bar{a}a}^k \lambda_k. \tag{23}$$

Последнее равенство следует из левоинвариантности 1-форм, определяющих поля $\xi_i(g)$. Из приведенного соотношения вытекает, что

$$\operatorname{rank} rac{\chi_{ar{a}}(q)}{\partial q^a}igg|_{a=0} = \operatorname{rank}(C^k_{ar{a}a}\lambda_k) = \operatorname{rank} C_{ar{a}a}(\lambda).$$

Таким образом, нам необходимо вычислить ранг матрицы $C_{\bar{a}a}(\lambda)$. Введем отображение $C:\mathfrak{h}\to\mathfrak{g}^*$, которое действует по правилу

$$(Cy)_a = C_{\bar{a}a}(\lambda)y^{\bar{a}}, \quad y \in \mathfrak{h}, \ \lambda \in \mathfrak{g}^*.$$

Tогда $\operatorname{rank} C_{\bar{a}a}(\lambda) = \operatorname{rank} C$. По определению имеем

$$\operatorname{rank} C = \dim \mathfrak{h} - \dim \ker C,$$

где $\ker C = \mathfrak{h}^{\lambda} = \mathfrak{h} \cap \mathfrak{g}^{\lambda}$. Так как \mathfrak{h} — поляризация, то $\mathfrak{g}^{\lambda} \subset \mathfrak{h}$ и $\dim \mathfrak{h}^{\lambda} = \dim \mathfrak{g}^{\lambda}$. Следовательно, $\operatorname{rank} C = \dim \mathfrak{h} - \dim \mathfrak{g}^{\lambda}$, где $\dim \mathfrak{h} = \frac{1}{2}(\dim \mathfrak{g} + \dim \mathfrak{g}^{\lambda})$, откуда заключаем, что

$$\operatorname{rank} C = \frac{1}{2} (\dim \mathfrak{g} - \dim \mathfrak{g}^{\lambda}).$$

Выражение в скобках есть размерность орбиты $\mathscr{O}_{\lambda},$ т. е. окончательно имеем

$$\operatorname{rank} rac{\partial \chi_{ar{a}}(q)}{\partial q^a}igg|_{q^a=0}=\operatorname{rank} C=\operatorname{rank} C_{ar{a}a}(\lambda)=rac{1}{2}\dim \mathscr{O}_{\lambda}. \qquad \Box$$

При доказательстве теоремы мы предполагали вещественность поляризации и, как следствие, вещественность координат (q^a,p_a) . В общем случае поляризация может быть комплексной так же, как и канонические координаты. В этом случае по заданной комплексной поляризации $\mathfrak{n} \subset \mathfrak{g}_{\mathbb{C}}$ строится вещественное подпространство \mathfrak{m} , так что $\mathfrak{m}_{\mathbb{C}} = \mathfrak{n} + \bar{\mathfrak{n}}$ и $\mathfrak{h} = \mathfrak{n} \cap \bar{\mathfrak{n}} \subset \mathfrak{g}$. Локально всегда выполняется условие

$$Ad_h \mathfrak{m} = \mathfrak{m}, \quad h \in H. \tag{24}$$

Для случая, когда \mathfrak{m} — подалгебра, H, M — замкнутые подгруппы группы G с соответствующими алгебрами Ah, \mathfrak{m} и выполнено условие (24), пространство Q представляет собой частично голоморфное многообразие типа (k,l), где $k=\dim \mathfrak{g}-\dim \mathfrak{m},\ l=(\dim \mathfrak{m}-\dim \mathfrak{h})/2$. Отметим, что если приведенные выше условия не выполняются, то многообразие Q определяется локально.

Таким образом, можно заключить, что и в случае комплексной поляризации теорема 1 верна.

ДОКАЗАТЕЛЬСТВО СЛЕДСТВИЯ 1.1. Пусть $x_i = X_i^a(q)p_a + \chi_i(q)$ — функции канонического вложения, соответствующие поляризации $\mathfrak n$.

Из соотношений (8) и (9) следует, что в компонентах условие Пуканского имеет вид

$$\lambda_a \sim \lambda_a + \mu_a$$
, $\lambda_{\bar{a}} \sim \lambda_{\bar{a}}$,

где эквивалентность \sim означает принадлежность орбите \mathcal{O}_{λ} .

Полагая в переходе к каноническим координатам (3) q = 0, получаем

$$x_a = p_a + \lambda_a, \quad x_{\bar{a}} = \lambda_{\bar{a}}.$$

Сравнивая с предыдущим выражением, замечаем, что данные равенства представляют собой условие Пуканского (8). \square

4. Линейное каноническое вложение для орбит группы E(3)

В качестве примера рассмотрим группу движений трехмерной евклидовой плоскости E(3). Группа E(3) представляет собой полупрямое произведение $T^3 \triangleright SO(3)$, где T^3 — абелева группа трансляций евклидовой плоскости, SO(3) — группа вращений. Зафиксируем базис в алгебре Ли $\mathfrak{e}(3) = \{e_i, e_{ij} = -e_{ji}\}$. Коммутационные соотношения в выбранном базисе имеют вид

$$[e_i, e_j] = 0, \quad [e_k, e_{ij}] = \delta_{ki} e_j - \delta_{kj} e_i,$$

 $[e_{ij}, e_{kl}] = \delta_{il} e_{jk} + \delta_{jl} e_{ik} - \delta_{ik} e_{jl} - \delta_{jl} e_{ik}, \quad i, j = 1, 2, 3.$

Обозначим через (x_i, x_{ij}) координаты линейного функционала $x \in \mathfrak{e}^*(3)$ в двойственном базисе:

$$x = \sum_i x_i e^i + \sum_{i < j} x_{ij} e^{ij}.$$

Кольцо инвариантов коприсоединенного представления в данном случае порождается двумя функциями Казимира:

$$K_1(x) = x_1^2 + x_2^2 + x_3^2$$
, $K_2(x) = x_{12}x_3 + x_{23}x_1 - x_{13}x_2$.

Несингулярные орбиты коприсоединенного представления являются поверхностями уровня $\Pi(\varpi_1, \varpi_2) \subset \mathfrak{e}^*(3)$ функций Казимира:

$$\Pi(\varpi_1, \varpi_2) = \{ x \in \mathfrak{e}^*(3) \mid K_1(x) = \varpi_1, \ K_2(x) = \varpi_2 \}.$$

Отметим, что в общем случае поверхность уровня функций Казимира может состоять из нескольких или счетного числа несингулярных орбит. Нетрудно видеть, что любая несингулярная орбита проходит через функционал $\lambda = \jmath_1 e^1 + \jmath_2 e^{23}$ при некоторых значениях параметров \jmath_1, \jmath_2 . Функционалу λ соответствует поверхность уровня $\Pi(\jmath_1^2, \jmath_1 \jmath_2)$.

Градиенты функций Казимира в точке λ образуют в общем случае коммутативную алгебру стабилизатора \mathfrak{g}^{λ} функционала λ . Для группы E(3) и выбранного функционала λ имеем $\mathfrak{e}(3)^{\lambda}=\{e_1,e_{23}\}$. Выберем поляризацию функционала λ : $\mathfrak{n}=\{e_1,e_2,e_3,e_{23}\}=R^1\oplus\mathfrak{e}(2)$, тогда

$$Q = (T^3 \triangleright SO(3))/(T^1 \otimes (T^2 \triangleright SO(2))) \approx SO(3)/SO(2) = S^2.$$

Таким образом, многообразие Q представляет собой двумерную сферу. В локальных координатах функции канонического вложения имеют вид

$$x_1 = j_1 \cos(q_1) \cos(q_2), \quad x_2 = j_1 \sin(q_1) \cos(q_2), \quad x_3 = j_1 \sin(q_2), \quad x_{12} = p_1,$$
 $x_{13} = \sin(q_1)p_2 + \frac{\sin(q_1)\sin(q_2)}{\cos(q_2)}p_1 - j_2\frac{\sin(q_1)}{\cos(q_2)},$ $x_{23} = \sin(q_1)p_2 - \frac{\cos(q_1)\sin(q_2)}{\cos(q_2)}p_1 + j_2\frac{\cos(q_1)}{\cos(q_2)}.$

Построим теперь каноническое вложение для сингулярных орбит. Сингулярные орбиты являются поверхностями уровня обобщенной функции Казимира:

$$\Pi^{\mathrm{sing}}(\varpi) = \big\{ x \in \mathfrak{e}^*(3) \mid x_1 = x_2 = x_3 = 0, \ x_{12}^2 + x_{13}^2 + x_{23}^2 = \varpi \big\}.$$

Очевидно, что произвольная сингулярная орбита проходит через функционал $\lambda = j e^{12}$. Нетрудно также видеть, что построение канонического вложения для сингулярных орбит в данном случае сводится к построению канонического вложения для группы SO(3).

Стабилизатор функционала λ одномерен: $\mathfrak{e}(3)^{\lambda} = \{e_{12}\}$. Согласно определению 2 поляризации размерность алгебры \mathfrak{n} должна быть равна 2. Однако известно, что алгебра $\mathfrak{so}(3)$ не имеет вещественных двумерных подалгебр. Тем не менее и в данном случае мы можем применить теорему 1, допустив существование комплексных поляризаций. Для этого рассмотрим комплексификацию алгебры $\mathfrak{so}(3)$ и в качестве алгебры поляризации выберем подалгебру $\mathfrak{n} = \{e_{12}, e_{23} + ie_{13}\}$. Допуская, что все линейные функционалы продолжаются в комплексную плоскость по линейности, для функций линейного канонического вложения получим

$$x_{12}=-ip\sin(q)+\jmath\cos(q),\quad x_{13}=-ip\cos(q)-\jmath\sin(q),\quad x_{23}=p.$$

Определим теперь область $Q \subset \mathbb{C}^2$. Величины (x_{12}, x_{23}, x_{13}) вещественны и лежат на двумерной сфере радиуса \jmath в R^3 . Отсюда следует, что переменная p вещественна и принадлежит интервалу $(-\jmath, \jmath)$, переменная q комплексна, причем ее вещественная часть определена по модулю 2π , а мнимая принадлежит всей прямой.

ЛИТЕРАТУРА

- 1. Диксмье Ж. Универсальные обертывающие алгебры. М.: Мир, 1978.
- 2. Кириллов А. А. Элементы теории представлений. М.: Наука, 1978.
- 3. Do N. D. Quantum strata of coadjoint orbits // arXiv:math.QA/0003100.
- **4.** *Карасев М. В., Маслов В. П.* Геометрическое и асимптотическое квантование // Успехи мат. наук. 1984. Т. 39, № 6. С. 115—173.
- Барановский С. П., Широков И. В. Продолжение векторных полей на группах Ли и однородных пространствах // Теорет. и мат. физика. 2003. Т. 135, № 1. С. 510–519.
- 6. Кобаяси Ш., Номидзу К. Основы дифференциальной геометрии. М.: Наука, 1981. Т. 1.
- Горбацевич В. В., Онищик А. Л. Группы Ли преобразований // Современные проблемы математики. Фундаментальные направления М.: ВИНИТИ, 1988. Т. 20. С. 103–240. (Итоги науки и техники).
- 8. Широков И. В. Координаты Дарбу на *K*-орбитах и спектры операторов Казимира на группах Ли // Теорет. и мат. физика. 2000. Т. 123, № 3. С. 407–423.
- 9. Фукс Д. Б. Когомологии бесконечномерных алгебр Ли. М.: Наука, 1984.
- Картье П. Когомологии алгебр Ли // Теория алгебр Ли. Топология групп Ли. Семинар «Софус Ли». М.: Изд-во иностр. лит., 1962. С. 32.
- **11.** Барановский С. П., Михеев В. В., Широков И. В. К-орбиты, тождества и инвариантные операторы на однородных пространствах с группами преобразований Пуанкаре и де Ситтера // Изв. вузов. Сер. Физика. 2000. № 11. С. 72—78.

Статья поступила 16 января 2008 г.

Барановский Сергей Петрович, Широков Игорь Викторович Иртышский филиал Новосибирской гос. академии водного транспорта, кафедра физики и высшей математики, пр. Мира, 4, Омск 644024 s.p.baranowski@gmail.com, iv_shirokov@mail.ru